Multiple Sequence Alignment Based on Profile Alignment of Intermediate Sequences

Yue Lu and Sing-Hoi Sze RECOMB 2007

Presented by: Wanxing Xu March 6, 2008

Content

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

Content

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

Biology Motivation

- Multiple Sequence Alignment:
- Assess sequence conservation of protein domains, tertiary and secondary structures and even individual amino acids or nucleotides.
- Evolutionary relationships or sequence conservation among homologous.
- Simultaneously compare several sequences.

Content

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

Content

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

Computation Problem

- Methods:
- Pairwise alignments
- Prograssive alignment construction
- Iterative methods
- Hidden Markov models
- Problems:
- Accuracy
- Computational complexity

Content

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

Content

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

Algorithm-Introduction

- Incorporate additional hits into the input sequences
- Hits that are not intermediate will introduce noise
- Use carefully defined intermediate sequences
- Align profiles instead of the sequences
- Construct a profile for each sequence
- Align the profiles by modifying the pair-HMM
- Obtain a secondary structure prediction

Algorithm

- Finding intermediate sequences
- Choosing intermediate sequences
- Constructing sequence profiles
- Alignment via modified pair-HMM

Finding Intermediate Sequence

- Definitions of Intermediate Sequence
- Between two input sequences:

Definition 1. Given two sequences s_{1} and s_{2}, and a distance score $d\left(s_{1}, s_{2}\right)$ between them, a sequence r is intermediate between s_{1} and s_{2} if $d\left(r, s_{1}\right)<$ $d\left(s_{1}, s_{2}\right)$ and $d\left(r, s_{2}\right)<d\left(s_{1}, s_{2}\right)$.

- Between multiple sequences:

Definition 2. Given n input sequences s_{1}, \ldots, s_{n}, and m hits r_{1}, \ldots, r_{m} from database search of these sequences, find all hits r_{k} that are intermediate between some pair of input sequences s_{i} and s_{j}.

Finding Intermediate Sequence

- No need to compute pairwise distances between the potentially very large number of hits.
- The number of pairwise distance score computations: $O\left(m n+n^{2}\right)$
- The number of score comparisons is $O\left(m n^{2}\right)$.

Choosing Intermediate Sequences

- The number of intermediate sequences can be very large
- Use a subset of intermediate sequences
- Similar sequences are likely to contain redundant information
- Choose a small subset of intermediate sequences using a greedy strategy
- Goal: identify a combined set of sequences as divergent as possible

Choosing Intermediate Sequences

- Definition

Definition 3. Given n input sequences s_{1}, \ldots, s_{n}, m intermediate sequences r_{1}, \ldots, r_{m}, add k intermediate sequences from among r_{1}, \ldots, r_{m}, denoted by s_{n+1}, \ldots, s_{n+k}, so that the minimum distance between sequences in the combined set s_{1}, \ldots, s_{n+k} is the largest possible when distances between the input sequences s_{1}, \ldots, s_{n} are ignored.

Choosing Intermediate Sequences

- Greedy algorithm

Input: n input sequences s_{1}, \ldots, s_{n}, m intermediate sequences r_{1}, \ldots, r_{m}, distance score $d(r, s)$ between two sequences r and s.
Output: k intermediate sequences s_{n+1}, \ldots, s_{n+k} added to s_{1}, \ldots, s_{n}.
$R \leftarrow\left\{r_{1}, \ldots, r_{m}\right\} ;$
for each r_{i} in R do $\left\{d_{i} \leftarrow \min _{1 \leq j \leq n} d\left(r_{i}, s_{j}\right) ;\right\}$
for $j \leftarrow 1$ to k do $\{$
$s_{n+j} \leftarrow r_{i}$ with the maximum d_{i}; remove r_{i} from R; for each r_{i} in R do $\left.\left\{d_{i} \leftarrow \min \left(d_{i}, d\left(r_{i}, s_{n+j}\right)\right) ;\right\}\right\}$

Choosing Intermediate Sequences

- Iteratively add the farthest intermediate sequence.
- Does not guarantee optimum divergence, but still reasonable.
- The number of pairwise score computations is $O(m(n+k))$.

Constructing Sequence Profiles

- Assign each intermediate sequence $r_{i}(i=1$..m $)$ to the most similar sequence $s_{j}(j=1 . . n+k)$.
- Use star alignment for each sequence s_{j} and the intermediate sequence assigned to it.
- The relative frequency of each residue of s_{j} is used to construct a profile as a probability distribution.

Constructing Sequence Profiles

- If the number of very closely related sequences assigned to s_{j} is very large, It will have over-contribution.
- Solution: before choosing intermediate sequences, remove sequences from the original set so that none of the remaining sequences are very similar to each other.

Modified Pair-HMM

- Original model:

- δ : the gap opening probability
- ε : the gap extension probability

Modiffed Pair-HMM

- Add the probability distribution of residues at each position:
- $p_{1}(x, i)$: residue x at position i in X.
- $p_{2}(y, j)$: residue y at position j in Y.
- New emission probability of state M :

$$
\begin{aligned}
& e^{\prime}(i, j)=\sum_{x} \sum_{y} p_{1}(x, i) p_{2}(y, j) e(x, y) \\
& e^{\prime}(i)=\sum_{x} p_{1}(x, i) e(x) \quad e^{\prime}(j)=\sum_{y} p_{2}(x, i) e(y)
\end{aligned}
$$

Modified Pair-HMM

- Secondary structure predictions:
- In state M, introduce an additional parameter α
- Subdivide the emission probability $e^{\prime}(i, j)$ into two cases to obtain the state $M(\alpha)$ with emission probability $\alpha e^{\prime}(i, j)$ if (x, y) at position i in X and j in Y have the same secondary structure type.
- (1- α) $e^{\prime}(i, j)$ otherwise.
- Decrease in emission will allow more gaps:
- Use β to compensate for the change

Modified Pair-HMM

- Secondary structure prediction

original

modified

Content

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

Content

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

Performance

- Benchmark Sets:
- BAliBASE 3.0
- HOMSTRAD
- PREFAB
- SABmark
- Compare with:
- MAFFT 5.8
- ProbCons 1.10
- SPEM

Performance

	SPS				CS			
	MAFFT	ProbCons	SPEM	ISPAlign	MAFFT	ProbCons	SPEM	ISPAlign
1V1 \{38\}	64.8	64.5	73.1	76.0	44.6	40.4	51.6	56.9
1V2 $\{42\}$	92.8	93.4	92.1	93.5	83.9	85.6	82.6	85.8
$1(\mathrm{Vl}-\mathrm{V} 2)\{80\}$	79.5	79.7	83.1	85.2	65.2	64.2	67.9	72.1
(vs MAFFT)			(4e-5)	(5e-8)			(0.01)	(2e-7)
(vs ProbCons)			(7e-4)	(2e-6)			(0.01)	(2e-5)
(vaspem)				(0.002)				(9e-5)
$2\{37\}$	91.8	89.7	88.0	91.9	46.0	40.8	47.1	53.8
$3\{29\}$	81.4	78.8	82.8	83.5	56.8	54.3	51.4	59.9
$4\{36\}$	89.2	86.8	87.5	90.3	67.9	60.9	55.4	63.3
$5\{14\}$	88.2	87.5	87.0	90.3	57.6	59.4	55.9	63.9
All (1-5) $\{196\}$	84.5	83.3	85.0	87.5	60.3	57.3	58.3	64.6
(vs MAFFT)			(0.005)	(2e-11)			(-)	(2e-10)
(va ProbCons)			(5e-4)	$(2 \mathrm{e}-13)$			(-)	(4e-10)
(vs SPEM)				$(3 \mathrm{e}-7)$				(5e-11)

Performance

	SPS			CS			SPEM	ISPAlign	ISPAlig
	ProbCons	SPEM	ISPAlign	ProbGons	SPEM	ISPAlign	(vs ProbCons)	(va ProbCons)	(vaspem)
0-20\% \{156\}	49.7	67.2	68.5	43.1	61.0	62.7	(4e-23)	(5e-24)	(4e-5)
20-40\% \{459\}	80.5	85.6	86.8	74.7	80.4	81.9	(2e-29)	(2e-53)	(7e-7)
40-70\% \{348\}	94.8	94.9	95.5	92.2	92.3	93.2	(0.03)	(2e-9)	(0.003)
70-100\% \{69\}	99.1	98.5	99.0	99.1	98.4	98.9	(0.007*)	(-)	(-)
All $\{1032\}$	81.9	86.8	87.8	77.4	82.7	84.0	(2e-46)	(8e-87)	(1e-12)

	MAFFT ${ }^{2}$ ProbCons $^{2} \mathrm{MAFFT}^{50} \mathrm{ProbCons}^{50} \mathrm{SF}^{2} \mathrm{ISPAlign}^{2}\left(\mathrm{vs} \mathrm{MAFFT}{ }^{50}\right)\left(\mathrm{vs} \mathrm{MAFFT}^{50}\right)\left(\mathrm{vs} \mathrm{SF}^{2}\right)$								
0-20\% \{887\}	36.2	38.9	56.7	55.6	64.6	64.8	(3e-36)	(5e-46)	(0.03)
20-40\% \{588\}	81.0	82.8	87.1	87.2	89.7	90.1	(2e-16)	(6e-28)	(0.01)
40-70\% \{112\}	96.2	96.4	96.0	95.4	95.3	97.6	(0.02*)	(-)	(-)
70-100\% \{95\}	97.9	97.8	98.0	97.3	97.2	98.0	(6e-4*)	(-)	(0.005)
All $\{1682\}$	59.4	61.4	72.3	71.7	77.3	77.7	(le-46)	(7e-69)	(2e-4)

Performance

	f_{D}			f_{M}		
	ProbGons	SPEM	ISPAlign	ProbGons	SPEM	1SPAlign
Twilight $\{205\}$	29.3	44.2	46.1	21.0	30.8	32.0
(vs ProbGons)		$(2 \mathrm{e}-26)$	$(6 \mathrm{e}-29)$		$(1 \mathrm{e}-27)$	$(3 \mathrm{e}-29)$
(vs spem)			(0.01)			(0.005)
Superfamily $\{422\}$ (vs ProbGons)	57.1	68.3	69.0	43.6	50.9	51.6
(vs sPEM)						

	HOMSTRAD CS					PREFAB Q				
	ProbCons	Method 1	Method2	Methods	Method 4	ProbCons	Method 1	Method2	Method3	Method 4
0-20\%	43.1	59.1	59.2	59.4	62.7	38.9	58.2	58.6	61.3	64.8
(vs previous)		(3e-22)	(-)	(0.04)	(6e-8)		(2e-103)	(-)	(6e-12)	(7e-29)
20-40\%	74.7	79.1	79.6	81.4	81.9	82.8	88.7	89.0	89.7	90.1
(vs previous)		(2e-24)	(0.003)	(7e-14)	(0.005)		$(9 \mathrm{e}-45)$	(-)	(2e-4)	(0.004)
40-70\%	92.2	92.1	92.5	93.1	93.2	96.4	94.4	96.6	97.8	97.6
(vs previous)		(-)	(8e-4)	(0.001)	(-)		(-)	(0.002)	(-)	(0.008*)
70-100\%	99.1	98.2	99.1	99.2	98.9	97.8	97.0	96.9	98.1	98.0
(vs previous)		(6e-4*)	(1e-4)	(-)	(0.003*)		(0.04*)	(0.02)	(-)	(-)
All	77.4	81.7	82.2	83.2	84.0	61.4	73.5	73.9	75.7	77.7
(vs previous)		(5e-38)	(1e-6)	(1e-14)	(1e-6)		(7e-146)	(-)	(2e-15)	(4e-28)

Future Work

- Adding intermediate sequence
- Rather than a fixed number, the number to add depends on the number of the input.
- Or until the minimum distances fall below a threshold.
- Retain the pair-HMM using a set of confirmed secondary structures.
- Use other profile method
- Use 3D structures if possible

References

- Do, C.B., Mahabhashyam, M.S., Brudno, M., Batzoglou, S.: ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res. 15 (2005) 330-340
- Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis. Cambridge University Press (1998)
- Gusfield, D.: Efficient methods for multiple sequence alignment with guaranteed error bounds. Bull. Math. Biol. 55 (1993) 141-154
- Salamov, A.A., Suwa, M., Orengo, C.A., Swindells, M.B.: Combining sensitive database searches with multiple intermediates to detect distant homologues. Protein Eng. 12 (1999) 95-100
- Zhou, H., Zhou, Y.: SPEM: improving multiple sequence alignment with sequence profiles and predicted secondary structures. Bioinformatics 21 (2005) 3615-3621
- http://en.wikipedia.org/wiki/Multiple_sequence_alignment
- http://en.wikipedia.org/wiki/Hidden_Markov_Model
- http://lectures.molgen.mpg.de/MSA/Intro/index.html

Thank you!

Questions or Comment?

