Multiple Sequence Alignment Based on Profile Alignment of Intermediate Sequences

Yue Lu and Sing-Hoi Sze RECOMB 2007

Presented by: Wanxing Xu March 6, 2008

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

Biology Motivation

Multiple Sequence Alignment:

- Assess sequence conservation of protein domains, tertiary and secondary structures and even individual amino acids or nucleotides.
- Evolutionary relationships or sequence conservation among homologous.
- Simultaneously compare several sequences.

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

Computation Problem

Methods:

- Pairwise alignments
- Prograssive alignment construction
- Iterative methods
- Hidden Markov models
- Problems:
 - Accuracy
 - Computational complexity

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

Algorithm-Introduction

- Incorporate additional hits into the input sequences
 - Hits that are not intermediate will introduce noise
 - Use carefully defined intermediate sequences
- Align profiles instead of the sequences
 - Construct a profile for each sequence
 - Align the profiles by modifying the pair-HMM
 - Obtain a secondary structure prediction

Algorithm

- Finding intermediate sequences
- Choosing intermediate sequences
- Constructing sequence profiles
- Alignment via modified pair-HMM

Finding Intermediate Sequence

Definitions of Intermediate Sequence

Between two input sequences:

Definition 1. Given two sequences s_1 and s_2 , and a distance score $d(s_1, s_2)$ between them, a sequence r is intermediate between s_1 and s_2 if $d(r, s_1) < d(s_1, s_2)$ and $d(r, s_2) < d(s_1, s_2)$.

Between multiple sequences:

Definition 2. Given n input sequences s_1, \ldots, s_n , and m hits r_1, \ldots, r_m from database search of these sequences, find all hits r_k that are intermediate between some pair of input sequences s_i and s_j .

Finding Intermediate Sequence

- No need to compute pairwise distances between the potentially very large number of hits.
- The number of pairwise distance score computations: O(mn+n²)
- The number of score comparisons is $O(mn^2)$.

- The number of intermediate sequences can be very large
- Use a subset of intermediate sequences
- Similar sequences are likely to contain redundant information
- Choose a small subset of intermediate sequences using a greedy strategy
- Goal: identify a combined set of sequences as divergent as possible

Definition

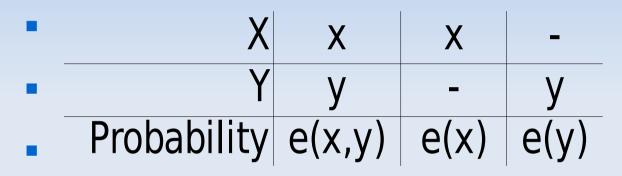
Definition 3. Given n input sequences s_1, \ldots, s_n , m intermediate sequences r_1, \ldots, r_m , add k intermediate sequences from among r_1, \ldots, r_m , denoted by s_{n+1}, \ldots, s_{n+k} , so that the minimum distance between sequences in the combined set s_1, \ldots, s_{n+k} is the largest possible when distances between the input sequences s_1, \ldots, s_n are ignored.

Greedy algorithm

Input: n input sequences s_1, \ldots, s_n , m intermediate sequences r_1, \ldots, r_m , distance score d(r, s) between two sequences r and s. Output: k intermediate sequences s_{n+1}, \ldots, s_{n+k} added to s_1, \ldots, s_n .

 $R \leftarrow \{r_1, \ldots, r_m\};$ for each r_i in R do $\{ d_i \leftarrow \min_{1 \le j \le n} d(r_i, s_j); \}$ for $j \leftarrow 1$ to k do $\{ s_{n+j} \leftarrow r_i \text{ with the maximum } d_i; \text{ remove } r_i \text{ from } R;$ for each r_i in R do $\{ d_i \leftarrow \min(d_i, d(r_i, s_{n+j})); \} \}$

- Iteratively add the farthest intermediate sequence.
- Does not guarantee optimum divergence, but still reasonable.
- The number of pairwise score computations is O(m(n+k)).

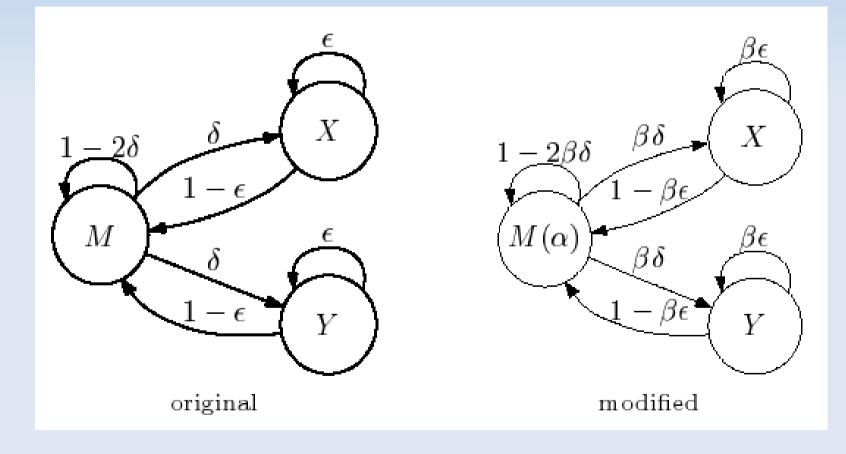

Constructing Sequence Profiles

- Assign each intermediate sequence r_i (i=1..m) to the most similar sequence s_i (j=1..n+k).
- Use star alignment for each sequence s_j and the intermediate sequence assigned to it.
- The relative frequency of each residue of s_j is used to construct a profile as a probability distribution.

Constructing Sequence Profiles

- If the number of very closely related sequences assigned to s_j is very large, It will have over-contribution.
- Solution: before choosing intermediate sequences, remove sequences from the original set so that none of the remaining sequences are very similar to each other.

Original model:


- δ : the gap opening probability
- ε: the gap extension probability

- Add the probability distribution of residues at each position:
 - $p_1(x,i)$: residue x at position i in X.
 - $p_{2}(y,j)$: residue y at position j in Y.
- New emission probability of state M: $e'(i, j) = \sum_{x} \sum_{y} p_1(x, i) p_2(y, j) e(x, y)$ $e'(i) = \sum_{x} p_1(x, i) e(x) e'(j) = \sum_{y} p_2(x, i) e(y)$

Secondary structure predictions:

- In state M, introduce an additional parameter α
- Subdivide the emission probability e'(i,j) into two cases to obtain the state M(α) with emission probability αe'(i,j) if (x,y) at position i in X and j in Y have the same secondary structure type.
- (1-α)e'(*i*,*j*) otherwise.
- Decrease in emission will allow more gaps:
 - Use β to compensate for the change

Secondary structure prediction

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

- Biology Motivation
- Computation Problem
- Algorithm
- Performance

- Benchmark Sets:
 - BAliBASE 3.0
 - HOMSTRAD
 - PREFAB
 - SABmark

- Compare with:
 - MAFFT 5.8
 - ProbCons 1.10

SPEM

		SP		CS				
	$\mathbf{M}\mathbf{A}\mathbf{F}\mathbf{F}\mathbf{T}$	${\tt ProbCons}$	SPEM	ISPAlign	MAFFT	$\operatorname{Prob}\operatorname{Cons}$	SPEM	ISPAlign
1V1 {38}	64.8	64.5	73.1	76.0	44.6	40.4	51.6	56.9
$1V2$ $\{42\}$	92.8	93.4	92.1	93.5	83.9	85.6	82.6	85.8
$1 (V1-V2) \{80\}$	79.5	79.7	83.1	85.2	65.2	64.2	67.9	72.1
(vs MAFFT)			(4e-5)	(5e-8)			(0.01)	(2e-7)
(vs ProbCons)			(7e-4)	(2e-6)			(0.01)	(2e-5)
(VS SPEM)				(0.002)				(9e-5)
2 {37}	91.8	89.7	88.0	91.9	46.0	40.8	47.1	53.8
3 {29}	81.4	78.8	82.8	83.5	56.8	54.3	51.4	59.9
$4\{36\}$	89.2	86.8	87.5	90.3	67.9	60.9	55.4	63.3
$5\{14\}$	88.2	87.5	87.0	90.3	57.6	59.4	55.9	63.9
All (1-5) {196}	84.5	83.3	85.0	87.5	60.3	57.3	58.3	64.6
(vs MAFFT)			(0.005)	(2e-11)			(-)	(2e - 10)
(vs ProbCons)			(5e-4)	(2e–13)			(—)	(4e - 10)
(vs SPEM)				(3e-7)			2 8	(5e-11)

	SPS			CS			SPEM	ISPAlign	ISPAlign
	ProbCons	SPEM	ISPAlign	ProbCons	SPEM	ISPAlign	(vs ProbCons)	(vs ProbCons)	(VS SPEM)
0-20% {156}	49.7	67.2	68.5	43.1	61.0	62.7	(4e-23)	(5e-24)	(4e-5)
20-40% {459}	80.5	85.6	86.8	74.7	80.4	81.9	(2e-29)	(2e-53)	(7e–7)
40-70% {348}	94.8	94.9	95.5	92.2	92.3	93.2	(0.03)	(2e-9)	(0.003)
70-100% {69}	99.1	98.5	99.0	99.1	98.4	98.9	(0.007*)	·(—)	· (—) ·
All {1032}	81.9	86.8	87.8	77.4	82.7	84.0	(2e-46)	(8e - 87)	(le-12)

							SP ²	ISPAlign ²	ISPAlign ²
	MAFFT ²	ProbCons ²	MAFFT ⁵⁰	Prob Cons ⁸	⁶⁰ SP ² I	SPAlign ²	$(vs MAFFT^{50})$	(vs MAFFT ⁵⁰	$\left(vs SP^{2}\right)$
0-20% {887}	36.2	38.9	56.7	55.6	64.6	64.8	(3e-36)	(5e-46)	(0.03)
20-40% {588}	81.0	82.8	87.1	87.2	89.7	90.1	(2e-16)	(6e-28)	(0.01)
40-70% {112}	96.2	96.4	96.0	95.4	95.3	97.6	(0.02^*)	()	(-)
70-100% {95}	97.9	97.8	98.0	97.3	97.2	98.0	(6e-4*)	(—)	(0.005)
All {1682}	59.4	61.4	72.3	71.7	77.3	77.7	(le-46)	(7e-69)	(2e-4)

		f_{D}			f_{M}	
	ProbCons	SPEM	ISPAlign	$\operatorname{Prob} \operatorname{Cons}$	SPEM	ISPAlign
Twilight {205}	29.3	44.2	46.1	21.0	30.8	32.0
(vs ProbCons)		(2e - 26)	(6e - 29)		(1e-27)	(3e-29)
(vs SPEM)			(0.01)			(0.005)
Superfamily {422}	57.1	68.3	69.0	43.6	50.9	51.6
(vs ProbCons)		(4e - 49)	(le-51)		(1e-48)	(1e-51)
(vs SPEM)			(0.02)		u. 18	(7e-4)

) CS		PREFAB Q						
	ProbCons	$\mathrm{Meth}\mathrm{od}1$	$\operatorname{Method} 2$	$\mathrm{M}\operatorname{eth}\operatorname{od} 3$	$\operatorname{Meth} \operatorname{od} 4$	$\operatorname{Prob}\operatorname{Cons}$	$\operatorname{M}\operatorname{eth}\operatorname{od} 1$	$\operatorname{Method} 2$	$\operatorname{Method} 3$	$\mathrm{Method4}$
0-20%	43.1	59.1	59.2	59.4	62.7	38.9	58.2	58.6	61.3	64.8
(vs previous)		(3e-22)	(-)	(0.04)	(6e-8)		(2e-103)	(-)	(6e - 12)	(7e-29)
20-40%	74.7	79.1	79.6	81.4	81.9	82.8	88.7	89.0	89.7	90.1
(vs previous)		(2e-24)	(0.003)	(7e-14)	(0.005)		(9e-45)	(-)	(2e-4)	(0.004)
40-70%	92.2	92.1	92.5	93.1	93.2	96.4	94.4	96.6	97.8	97.6
(vs previous)		(-)	(8e-4)	(0.001)	(-)		(-)	(0.002)	(-)	(0.008*)
70–100%	99.1	98.2	99.1	99.2	98.9	97.8	97.0	96.9	98.1	98.0
(vs previous)		$(6e-4^*)$	(1e-4)	(-)	(0.003*)		(0.04^{*})	(0.02)	(-)	(-)
All	77.4	81.7	82.2	83.2	84.0	61.4	73.5	73.9	75.7	77.7
(vs previous)		(5e-38)	(1e-6)	(1e-14)	(1e-6)		(7e-146)	(-)	(2e-15)	(4e-28)

Future Work

- Adding intermediate sequence
 - Rather than a fixed number, the number to add depends on the number of the input.
 - Or until the minimum distances fall below a threshold.
- Retain the pair-HMM using a set of confirmed secondary structures.
- Use other profile method
- Use 3D structures if possible

References

- Do, C.B., Mahabhashyam, M.S., Brudno, M., Batzoglou, S.: ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res. 15 (2005) 330–340
- Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis. Cambridge University Press (1998)
- Gusfield, D.: Efficient methods for multiple sequence alignment with guaranteed error bounds. Bull. Math. Biol. 55 (1993) 141–154
- Salamov, A.A., Suwa, M., Orengo, C.A., Swindells, M.B.: Combining sensitive database searches with multiple intermediates to detect distant homologues. Protein Eng. 12 (1999) 95–100
- Zhou, H., Zhou, Y.: SPEM: improving multiple sequence alignment with sequence profiles and predicted secondary structures. Bioinformatics 21 (2005) 3615–3621
- http://en.wikipedia.org/wiki/Multiple_sequence_alignment
- http://en.wikipedia.org/wiki/Hidden_Markov_Model
- http://lectures.molgen.mpg.de/MSA/Intro/index.html

Thank you!

Questions or Comment?