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A Practical Tool for Visualizing and Data Mining Medical Time Series 

 

Abstract 
The increasing interest in time series data mining in the last 
decade has had surprisingly little impact on real world medical 
applications. Real world practitioners who work with time series 
on a daily basis rarely take advantage of the wealth of tools that 
the data mining community has made available. In this work, we 
attempt to address this problem by introducing a simple 
parameter-light tool that allows users to efficiently navigate 
through large collections of time series. Our system has the 
unique advantage that it can be embedded directly into any 
standard graphical user interfaces, such as Microsoft Windows, 
thus making deployment easier. Our approach extracts features 
from a time series of arbitrary length and uses information 
about the relative frequency of these features to color a bitmap 
in a principled way. By visualizing the similarities and 
differences within a collection of bitmaps, a user can quickly 
discover clusters, anomalies, and other regularities within their 
data collection. We demonstrate the utility of our approach with 
a set of comprehensive experiments on real datasets from a 
variety of medical domains, including ECGs and EEGs. 
 
Keywords: Time Series, Chaos Game, Visualization. 
 
 

1  Introduction  
The increasing interest in time series data mining in the 
last decade has resulted the introduction of a variety of 
similarity measures/ representations/ definitions/ indexing 
techniques and algorithms (see, e.g., [1][2][3][4] 
[9][12][13][15][22]). Surprisingly, this massive research 
effort has had little impact on real world medical 
applications. Examples of implemented systems are rare 
exceptions [16]. Cardiologists and other medical 
practitioners who work with time series on a daily basis 
rarely take advantage of the wealth of tools that the data 
mining community has made available. While it is 
difficult to firmly establish the reasons for the discrepancy 
between tool availability and practical adoption, the 
following reasons suggested themselves after an informal 
survey. 
• Time series data mining tools often come with a 

bewildering number of parameters. It is not obvious 
to the practitioner how these should be set [14]. 

• Research tools often require (relatively) specialized 
hardware and/or software, rather than the ubiquitous 
desktop PC/Windows environment that prevails in 
most clinics. 

• Many tools have a steep learning curve, requiring 
already busy doctors to spend many unproductive 

hours learning the system before any possibility of 
useful work. 

In this work, we attempt to address this problem by 
introducing a simple parameter-light tool that allows users 
to efficiently navigate through large collections of time 
series. Our approach extracts features from a time series 
of arbitrary length, and uses information about the relative 
frequency of these features to color a bitmap in a 
principled way. By visualizing the similarities and 
differences within a collection of these bitmaps, a user 
can quickly discover clusters, anomalies, and other 
regularities within their data collection.  

While our system can be used as an interactive tool, it 
also has the unique advantage that it can be embedded 
directly into any standard graphical user interfaces, such 
as Windows, Mac OS, etc. Since users navigate through 
files by looking at their icons, we decided to employ the 
bitmap representation as the icon corresponding to each 
time series. Simply by glancing at the icons contained in a 
folder of time series files, a user can quickly identify files 
that require further investigation. In Figure 1, we have 
illustrated a simple example1. 

 

Figure 1. Four time series files represented as time series 
bitmaps. While they are all examples of EEGs, 
example_a.dat is from a normal trace, whereas the others 
contain examples of spike-wave discharges. The fact that 
there is some difference between one dataset and all the rest 
is immediately apparent from a casual inspection of the 
bitmap representation.  

The utility of the idea shown in Figure 1 can be further 
enhanced by arranging the icons within the folder by 
pattern similarity, rather than the typical choices of 
arranging them by size, name, date, etc.. This can be 
achieved by using multidimensional scaling or a self-
organizing map algorithm to arrange the icons. 

                                                            
1 We encourage the interested reader to visit [10] to view full 
color examples of all figures in this work. We are grateful to Dr. 
Keogh for hosting the resource. 



 

2 Background and Related Work 
In this section, we give brief reviews of chaos games and 
symbolic representations of time series, which together 
are at the heart of our visualization/data mining technique.   

2.1   Chaos Game Representations 
Our visualization technique is partly inspired by an 
algorithm to draw fractals called the Chaos game [3]. The 
method can produce a representation of DNA sequences, 
in which both local and global patterns are displayed.  

The basic idea is to map frequency counts of DNA 
substrings of length L into a 2L by 2L matrix as shown in 
Figure 2, then color-code these frequency counts. From 
our point of view, the crucial observation is that the CGR 
representation of a sequence allows the investigation of 
the patterns in sequences, giving the human eye a 
possibility to recognize hidden structures. 

 

Figure 2.  The quad-tree representation of a sequence over 
the alphabet {A,C,G,T} at different levels of resolution. 

A biologist can recognize that a particular substring, say 
in a bacterial genome, is rarely used. This would suggest 
the possibility that the bacteria have evolved to avoid a 
particular restriction enzyme site, which means that it 
might not be easily attacked by a specific bacterio-phage. 

We can get a hint of the potential utility of the approach 
if, for example, we take the first 5,000 symbols of the 
mitochondrial DNA sequences of four familiar species 
and use them to create their own file icons. Figure 3 
below illustrates this. Even if we did not know these 
particular animals, we would have no problem 
recognizing that there are two pairs of highly related 
species being considered.   

With respect to the non-genetic sequences, Joel Jeffrey 
noted, “The CGR algorithm produces a CGR for any 
sequence of letters”[9]. However, it is only defined for 
discrete sequences, and most time series are real valued.   

 

Figure 3. The gene sequences of mitochondrial DNA of four 
animals, used to create their own file icons using a chaos 
game representation. Note that Pan troglodytes is the 
familiar Chimpanzee, and Loxodonta africana and Elephas 
maximus are the African and Indian Elephants, respectively. 
The file icons show that humans and chimpanzees have 
similar genomes, as do the African and Indian elephants. 

The results in figure 3 encouraged us to try a similar 
technique on real valued time series data and investigate 
the utility of such a representation on the classic data 
mining tasks of clustering, classification, and 
visualization. Since CGR involves treating a data input as 
an abstract string of symbols, a discretization method is 
necessary to transform continuous time series data into 
discrete domain. For this purpose, we used the Symbolic 
Aggregate approXimation (SAX) [17], which we review 
below.  

2.2   Symbolic Time Series Representations 
While there are at least 200 techniques in the literature for 
converting real valued time series into discrete symbols 
[7], the SAX technique of Lin et. al. [17] is unique and 
ideally suited for data mining. SAX is the only symbolic 
representation that allows the lower bounding of the 
distances in the original space. The ability to efficiently 
lower bound distances is at the heart of hundreds of 
indexing algorithms and data mining techniques 
[2][6][11][13][17][20]. While we do not directly exploit 
the lower bounding property in this work, we note that if a 
representation is tightly lower bounding the original data, 
it must be representing it with great fidelity. It is this 
implicit property that we are exploiting. We can be sure 
that the SAX representation is accurately summarizing the 
time series, and as we will show, a minor modification of 
the chaos game can accurately summarize the SAX 
sequences. 

The SAX representation is created by taking a real valued 
signal and dividing it into equal sized sections. The mean 
value of each section is then calculated. By substituting 
each section with its mean, a reduced dimensionality 
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piecewise constant approximation of the data is obtained. 
This representation is then discretized in such a manner as 
to produce a word with approximately equi-probable 
symbols. Figure 4 shows a short time series being 
converted into the SAX word baabccbc. 

 

Figure 4. A real valued time series can be converted to the 
SAX word baabccbc. Note that all three possible symbols 
are approximately equally frequent.    

Note that the user must choose both the length of the local 
sliding window N, and the number n of equal sized 
sections in which to divide it (as we will see, there is no 
choice to be made for alphabet size). A good choice for N 
should reflect the natural scale at which the events occur 
in the time series. For example, for ECGs this is about the 
length of one or two heartbeats. A good value for n 
depends of the complexity of the signal.  Intuitively, one 
would like to achieve a good compromise between 
fidelity of approximation and dimensionality reduction. 
Two groups of researchers have independently suggested 
using Minimum Description Length MDL to set these 
parameters [14][19]. As we shall see, the proposed 
technique is not too sensitive to parameter choices. 

The SAX representation has been successfully used by 
various groups of researchers for indexing, classification, 
clustering [17], motif discovery [5][6][19], rule discovery, 
visualization [16], and anomaly detection [14].  

 

3   Time Series Bitmaps 
 
At this point, the connection between the two 
“ingredients” for the time series bitmaps should be 
evident. We have seen in Section 2.1 that the Chaos game 
[3] bitmaps can be used to visualize discrete sequences, 
and we have seen in Section 2.2 that the SAX 
representation is a discrete time series representation that 
has demonstrated great utility for data mining. It is natural 
to consider combining these ideas. 

The Chaos game bitmaps are defined for sequences with 
an alphabet size of four. It is fortuitous that DNA strings 
have this cardinality. SAX can produce strings on any 
alphabet sizes. As it turns out, a cardinality of four (or 
three) has been reported by many authors as an excellent 

choice for diverse datasets on assorted problems 
[5][6][14][16][17][19].  

We need to define an initial ordering for the four SAX 
symbols a, b, c, and d. We use simple alphabetical 
ordering as shown in Figure 5. 
After converting the original raw time series into the SAX 
representation, we can count the frequencies of SAX 
“subwords” of length L, where L is the desired level of 
recursion. Level-1 frequencies are simply the raw counts 
of the four symbols. For level 2, we count pairs of 
subwords of size 2 (aa, ab, ac, etc.). Note that we only 
count subwords taken from individual SAX words. For 
example, in the SAX representation in Figure 5 middle 
right, the last symbol of the first line is a, and the first 
symbol of the second word is b. However, we do not 
count this as an occurrence of ab. 

 

Figure 5. Top) The four possible SAX symbols are mapped 
to four quadrants of a square, and pairs, triplets, etc are 
recursively mapped to finer grids.  Middle) We can extract 
counts of symbols from a SAX representation and record 
them in the grids. Bottom)  The recorded values can be 
linearly mapped to colors, thus creating a square bitmap.  

Once the raw counts of all subwords of the desired length 
have been obtained and recorded in the corresponding 
pixel of the grid, one more step is required. Since the time 
series in a data collection may be of various lengths, we 
normalize the frequencies by dividing it by the largest 
value. The pixel values P thus range from 0 to 1. The final 
step is to map these values to colors. In the example 
above, we mapped to grayscale, with 0 = white, 1 = black. 
However, it is generally recognized that grayscale is not 
perceptually uniform [21]. A color space is said to be 
perceptually uniform if small changes to a pixel value are 
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approximately equally perceptible across the range of that 
value. For all images in this paper, we encode the pixels 
values to be [P, 1-P, 0] in the RGB color space.  

Note that unlike the arbitrarily long, and arbitrarily shaped 
time series from which they where derived, for a fixed L, 
the bitmaps have a constant space and structure. 

It is important to note that we do not suggest any utility in 
viewing a single time series bitmap. The representation is 
abstract, and we do not expect a user to be able to imagine 
the structure of time series given the bitmap. The utility of 
the bitmaps comes from the ability to efficiently compare 
and contrast them.  

 

4   Time Series Thumbnails 
A unique advantage of the time series bitmap 
representation is the fact that we can transparently 
integrate it into the user graphical interface of most 
standard operating systems. 

Since most operating systems use the ubiquitous square 
icon to represent a file, we can arrange for the icons for 
time series files to appear as their bitmap representations. 
Simply by glancing at the contents of a folder of time 
series files, a user may spot files that require further 
investigation, or note natural clusters in the data. 

The largest possible icon size varies by operating system. 
All modern versions of Microsoft Windows support 32 by 
32 pixels, which is large enough to support a bitmap of 
level 5. As we will see, level 2 or 3 seems adequate for 
most tasks/datasets.  

To augment the utility of the time series bitmaps, we can 
arrange for their placement on screen to reflect their 
structure. Normally, file icons are arranged by one of a 
handful of common criteria, such as name, date, size, etc.    

We have created a simple modification of the standard 
Microsoft Windows (98 or later) file browser by 
introducing the concept of Cluster View. If Cluster View 
is chosen by the user, the time series thumbnails arrange 
themselves by similarity. This is achieved by performing 
Multi-Dimensional Scaling (MDS) of the bitmaps, and 
projecting them into a 2 dimensional space. For aesthetic 
reasons, we “snap” the icons to the closest grid point.  

Figure 6 displays an example of Cluster View in 
Microsoft Windows XP Operating System.  

In this example, the Cluster View is obtained for five 
MIT-BIH Arrhythmia Database files. It is evident in the 
figure that eeg1.dat, eeg2.dat, and eeg3.dat belong to one 
cluster whereas eeg6.dat and eeg7.dat belong to another. 
In this case, the grouping correctly reflects the fact that 
latter two files come from a different patient to first three. 

For bitmaps with same size, we define the distance 
between them as the summation of the square of the 
distance between each pair of pixels. More formally, for 
two n× n bitmaps BA and BB, the distance between them 

is defined as ∑∑
= =

−=
n

i

n

j
ijij BBBABBBAdist

1 1
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Figure 6. A snapshot of a folder containing cardiograms 
when its files are arranged by “Cluster” option. Five 
cardiograms have been grouped into two different clusters 
based on their similarity. 

  

5   Experimental Evaluation 
In this section, we test our proposed approach with a 
comprehensive set of experiments. We will show some 
experiments that objectively measure the utility of our 
approach on clustering, classification, and anomaly 
detection. We note once again that the quality of 
illustrations here suffers from monochromic printing and 
small-scale reproduction. We urge the interested reader to 
consult [10] for large-scale color reproductions and 
additional details.  
 

5.1 Clustering 

We considered a four-class ECG clustering problem, 
where each class corresponds to a different patient. Figure 
7 shows the clustering obtained with level 3 bitmaps, 
using parameters N = 150, n = 5. The results are correct, 
in that each time series from a given patient is assigned to 
its own sub-tree. For this problem, we found that we 
could vary the N and n parameters by a factor of 4 (N > n) 
and still obtain the correct clustering. 
 



 

Figure 7. The clustering obtained by the time series 
thumbnail approach on a homogeneous data collection. 

 
5.2 Classification 

For classification, we considered an ECG classification 
problem. Our ECG dataset is a four-class problem derived 
from BIDMC Congestive Heart Failure Database of four 
patients.  Each instance consists of 3,200 contiguous data 
points (about 20 heartbeats) randomly extracted from a 
long (several hours) ECG signal.  Twenty instances are 
extracted from each class (patient). We compared to the 
ubiquitous Euclidean distance [12][13][15] and DTW 
[11][20]. 

For both datasets, we measure the error rates, using the 
one-nearest-neighbor with leaving-one-out evaluation 
method. The results are summarized in Table 1. 

Table 1: Classification error rates. 
 Euclidean DTW Bitmaps

ECG 42.25 % 16.25 % 7.50 % 

We also considered a Normal vs Arrhythmia problem that 
appeared in [8]. Using Markov models, the authors 
reported an error rate of 2%. With our technique, under 
virtually any parameter settings, we achieve 0% error.  
We can achieve perfect classification using one nearest 
neighbor as above, or we can use MDS to project the data 
into 2 dimensional space and achieve perfect 
classification using a simple linear classifier, a decision 
tree or SVD. Figure 8 shows the data projected into 2D 
space, and the linear classifier learned.  

 

Figure 8. The MIT ECG Arrhythmia dataset projected into 
2D space using only the information from level-2 time series 
bitmaps. The two classes are easily separated by a simple 
linear classifier (gray line). 

 

5.3 Anomaly detection  

The time series bitmap distance measure allows the 
creation of a simple anomaly detection algorithm. 

We can create two concatenated windows and slide them 
together across the sequence. At each time instance, we 
build a time series bitmap for the two windows and 
measure the distance between them. We report this 
distance as an anomaly score. Figure 9 illustrates the idea 
on some annotated ECG data. This approach easily 
detects the single anomaly shown, and the rest of the 
annotated anomalies in this dataset (not shown).  
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Figure 9. Using time series bitmaps as an anomaly detector. 
Top) A subsection of an ECG dataset. A cardiologist annotated 
a premature ventricular contraction at approximately the 1.4 
mark. Middle) The score of our approach shows a strong peak 
for the duration of the anomalous heartbeat. Bottom) The 
bitmaps before and after the peak are very different. 

At each “step” of the sliding window, we can 
incrementally ingress a new data point, and egress an old 
data point (updating only two pixels of each bitmap). 
Hence, the time complexity is linear in the length of the 
time series. 

We have built an online version of this tool, which the 
readers may investigate with their own datasets (or 
several built-in examples). We encourage the interested 
reader to experiment with the tool [10].  

In the simple example above, both sliding windows are of 
the same length. More generally, one may wish for the 
trailing window to be larger, so that it retains more of a 
“memory” of the previous data. We leave such 
considerations for future work. 
 
Reproducible Results Statement: In the interests of competitive scientific 
inquiry, all datasets used in this work are available at the following URL 
[10]. This research was partly funded by the National Science 
Foundation under grant IIS-0237918. 
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