

Track Title: Special Track on Data Mining

Paper Title: A Practical Tool for Visualizing and Data Mining Medical Time Series

Authors: Li Wei (wli@cs.ucr.edu)
Nitin Kumar (nkumar@cs.ucr.edu)
Venkata Nishanth Lolla (vlolla@cs.ucr.edu)
Eamonn Keogh (eamonn@cs.ucr.edu)
Stefano Lonardi (stelo@cs.ucr.edu)
Chotirat Ann Ratanamahatana (ratana@cs.ucr.edu)

University of California - Riverside
Department of Computer Science & Engineering
Riverside, CA 92521, USA

&

Helga Van Herle (hvanherle@mednet.ucla.edu)

University of California, Los Angeles
David Geffen School of Medicine

Technical Areas: Data Mining, Time Series, Classification, Clustering, Anomaly Detection

Contact Info: Dr. Eamonn Keogh
Department of Computer Science and Engineering
Surge Building
University of California Riverside
Riverside, CA 92521-0144
E-mail: eamonn@cs.ucr.edu
Phone: 1-951-827-2032
Fax: 1-951- 827-4643

Preference: Oral presentation

A Practical Tool for Visualizing and Data Mining Medical Time Series

Abstract
The increasing interest in time series data mining in the last
decade has had surprisingly little impact on real world medical
applications. Real world practitioners who work with time series
on a daily basis rarely take advantage of the wealth of tools that
the data mining community has made available. In this work, we
attempt to address this problem by introducing a simple
parameter-light tool that allows users to efficiently navigate
through large collections of time series. Our system has the
unique advantage that it can be embedded directly into any
standard graphical user interfaces, such as Microsoft Windows,
thus making deployment easier. Our approach extracts features
from a time series of arbitrary length and uses information
about the relative frequency of these features to color a bitmap
in a principled way. By visualizing the similarities and
differences within a collection of bitmaps, a user can quickly
discover clusters, anomalies, and other regularities within their
data collection. We demonstrate the utility of our approach with
a set of comprehensive experiments on real datasets from a
variety of medical domains, including ECGs and EEGs.

Keywords: Time Series, Chaos Game, Visualization.

1 Introduction
The increasing interest in time series data mining in the
last decade has resulted the introduction of a variety of
similarity measures/ representations/ definitions/ indexing
techniques and algorithms (see, e.g., [1][2][3][4]
[9][12][13][15][22]). Surprisingly, this massive research
effort has had little impact on real world medical
applications. Examples of implemented systems are rare
exceptions [16]. Cardiologists and other medical
practitioners who work with time series on a daily basis
rarely take advantage of the wealth of tools that the data
mining community has made available. While it is
difficult to firmly establish the reasons for the discrepancy
between tool availability and practical adoption, the
following reasons suggested themselves after an informal
survey.
• Time series data mining tools often come with a

bewildering number of parameters. It is not obvious
to the practitioner how these should be set [14].

• Research tools often require (relatively) specialized
hardware and/or software, rather than the ubiquitous
desktop PC/Windows environment that prevails in
most clinics.

• Many tools have a steep learning curve, requiring
already busy doctors to spend many unproductive

hours learning the system before any possibility of
useful work.

In this work, we attempt to address this problem by
introducing a simple parameter-light tool that allows users
to efficiently navigate through large collections of time
series. Our approach extracts features from a time series
of arbitrary length, and uses information about the relative
frequency of these features to color a bitmap in a
principled way. By visualizing the similarities and
differences within a collection of these bitmaps, a user
can quickly discover clusters, anomalies, and other
regularities within their data collection.

While our system can be used as an interactive tool, it
also has the unique advantage that it can be embedded
directly into any standard graphical user interfaces, such
as Windows, Mac OS, etc. Since users navigate through
files by looking at their icons, we decided to employ the
bitmap representation as the icon corresponding to each
time series. Simply by glancing at the icons contained in a
folder of time series files, a user can quickly identify files
that require further investigation. In Figure 1, we have
illustrated a simple example1.

Figure 1. Four time series files represented as time series
bitmaps. While they are all examples of EEGs,
example_a.dat is from a normal trace, whereas the others
contain examples of spike-wave discharges. The fact that
there is some difference between one dataset and all the rest
is immediately apparent from a casual inspection of the
bitmap representation.

The utility of the idea shown in Figure 1 can be further
enhanced by arranging the icons within the folder by
pattern similarity, rather than the typical choices of
arranging them by size, name, date, etc.. This can be
achieved by using multidimensional scaling or a self-
organizing map algorithm to arrange the icons.

1 We encourage the interested reader to visit [10] to view full
color examples of all figures in this work. We are grateful to Dr.
Keogh for hosting the resource.

2 Background and Related Work
In this section, we give brief reviews of chaos games and
symbolic representations of time series, which together
are at the heart of our visualization/data mining technique.

2.1 Chaos Game Representations
Our visualization technique is partly inspired by an
algorithm to draw fractals called the Chaos game [3]. The
method can produce a representation of DNA sequences,
in which both local and global patterns are displayed.

The basic idea is to map frequency counts of DNA
substrings of length L into a 2L by 2L matrix as shown in
Figure 2, then color-code these frequency counts. From
our point of view, the crucial observation is that the CGR
representation of a sequence allows the investigation of
the patterns in sequences, giving the human eye a
possibility to recognize hidden structures.

Figure 2. The quad-tree representation of a sequence over
the alphabet {A,C,G,T} at different levels of resolution.

A biologist can recognize that a particular substring, say
in a bacterial genome, is rarely used. This would suggest
the possibility that the bacteria have evolved to avoid a
particular restriction enzyme site, which means that it
might not be easily attacked by a specific bacterio-phage.

We can get a hint of the potential utility of the approach
if, for example, we take the first 5,000 symbols of the
mitochondrial DNA sequences of four familiar species
and use them to create their own file icons. Figure 3
below illustrates this. Even if we did not know these
particular animals, we would have no problem
recognizing that there are two pairs of highly related
species being considered.

With respect to the non-genetic sequences, Joel Jeffrey
noted, “The CGR algorithm produces a CGR for any
sequence of letters”[9]. However, it is only defined for
discrete sequences, and most time series are real valued.

Figure 3. The gene sequences of mitochondrial DNA of four
animals, used to create their own file icons using a chaos
game representation. Note that Pan troglodytes is the
familiar Chimpanzee, and Loxodonta africana and Elephas
maximus are the African and Indian Elephants, respectively.
The file icons show that humans and chimpanzees have
similar genomes, as do the African and Indian elephants.

The results in figure 3 encouraged us to try a similar
technique on real valued time series data and investigate
the utility of such a representation on the classic data
mining tasks of clustering, classification, and
visualization. Since CGR involves treating a data input as
an abstract string of symbols, a discretization method is
necessary to transform continuous time series data into
discrete domain. For this purpose, we used the Symbolic
Aggregate approXimation (SAX) [17], which we review
below.

2.2 Symbolic Time Series Representations
While there are at least 200 techniques in the literature for
converting real valued time series into discrete symbols
[7], the SAX technique of Lin et. al. [17] is unique and
ideally suited for data mining. SAX is the only symbolic
representation that allows the lower bounding of the
distances in the original space. The ability to efficiently
lower bound distances is at the heart of hundreds of
indexing algorithms and data mining techniques
[2][6][11][13][17][20]. While we do not directly exploit
the lower bounding property in this work, we note that if a
representation is tightly lower bounding the original data,
it must be representing it with great fidelity. It is this
implicit property that we are exploiting. We can be sure
that the SAX representation is accurately summarizing the
time series, and as we will show, a minor modification of
the chaos game can accurately summarize the SAX
sequences.

The SAX representation is created by taking a real valued
signal and dividing it into equal sized sections. The mean
value of each section is then calculated. By substituting
each section with its mean, a reduced dimensionality

CC CT TC TT

CA CG TA TC

AC AT GC GT

AA AG GA GG

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

CC CT TC TT

CA CG TA TC

AC AT GC GT

AA AG GA GG

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TG

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

C T

A G

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

CC CT TC TT

CA CG TA TC

AC AT GC GT

AA AG GA GG

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TC

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

C T

A G

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TC

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TG

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

C T

A G

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

piecewise constant approximation of the data is obtained.
This representation is then discretized in such a manner as
to produce a word with approximately equi-probable
symbols. Figure 4 shows a short time series being
converted into the SAX word baabccbc.

Figure 4. A real valued time series can be converted to the
SAX word baabccbc. Note that all three possible symbols
are approximately equally frequent.

Note that the user must choose both the length of the local
sliding window N, and the number n of equal sized
sections in which to divide it (as we will see, there is no
choice to be made for alphabet size). A good choice for N
should reflect the natural scale at which the events occur
in the time series. For example, for ECGs this is about the
length of one or two heartbeats. A good value for n
depends of the complexity of the signal. Intuitively, one
would like to achieve a good compromise between
fidelity of approximation and dimensionality reduction.
Two groups of researchers have independently suggested
using Minimum Description Length MDL to set these
parameters [14][19]. As we shall see, the proposed
technique is not too sensitive to parameter choices.

The SAX representation has been successfully used by
various groups of researchers for indexing, classification,
clustering [17], motif discovery [5][6][19], rule discovery,
visualization [16], and anomaly detection [14].

3 Time Series Bitmaps

At this point, the connection between the two
“ingredients” for the time series bitmaps should be
evident. We have seen in Section 2.1 that the Chaos game
[3] bitmaps can be used to visualize discrete sequences,
and we have seen in Section 2.2 that the SAX
representation is a discrete time series representation that
has demonstrated great utility for data mining. It is natural
to consider combining these ideas.

The Chaos game bitmaps are defined for sequences with
an alphabet size of four. It is fortuitous that DNA strings
have this cardinality. SAX can produce strings on any
alphabet sizes. As it turns out, a cardinality of four (or
three) has been reported by many authors as an excellent

choice for diverse datasets on assorted problems
[5][6][14][16][17][19].

We need to define an initial ordering for the four SAX
symbols a, b, c, and d. We use simple alphabetical
ordering as shown in Figure 5.
After converting the original raw time series into the SAX
representation, we can count the frequencies of SAX
“subwords” of length L, where L is the desired level of
recursion. Level-1 frequencies are simply the raw counts
of the four symbols. For level 2, we count pairs of
subwords of size 2 (aa, ab, ac, etc.). Note that we only
count subwords taken from individual SAX words. For
example, in the SAX representation in Figure 5 middle
right, the last symbol of the first line is a, and the first
symbol of the second word is b. However, we do not
count this as an occurrence of ab.

Figure 5. Top) The four possible SAX symbols are mapped
to four quadrants of a square, and pairs, triplets, etc are
recursively mapped to finer grids. Middle) We can extract
counts of symbols from a SAX representation and record
them in the grids. Bottom) The recorded values can be
linearly mapped to colors, thus creating a square bitmap.

Once the raw counts of all subwords of the desired length
have been obtained and recorded in the corresponding
pixel of the grid, one more step is required. Since the time
series in a data collection may be of various lengths, we
normalize the frequencies by dividing it by the largest
value. The pixel values P thus range from 0 to 1. The final
step is to map these values to colors. In the example
above, we mapped to grayscale, with 0 = white, 1 = black.
However, it is generally recognized that grayscale is not
perceptually uniform [21]. A color space is said to be
perceptually uniform if small changes to a pixel value are

0 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

b

a
a

b

c c

b

c

0 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

b

a
a

b

c c

b

c

aa ab ba bb

ac ad bc bd

ca cb da db

cc cd dc dd

a b

c d

aaa aab aba

aac aad abc

aca acb

acc

0 2 3 0

0 1 2 1

1 1 0 3

0 1 0 0

5 7

3 3

abcdba
bdbadb

cbabca

3

7

Level 1 Level 2 Level 3

aa ab ba bb

ac ad bc bd

ca cb da db

cc cd dc dd

aa ab ba bbaa ab ba bb

ac ad bc bdac ad bc bd

ca cb da dbca cb da db

cc cd dc ddcc cd dc dd

a b

c d

a b

c d

aaa aab aba

aac aad abc

aca acb

acc

0 2 3 0

0 1 2 1

1 1 0 3

0 1 0 0

5 7

3 3

0 2 3 0

0 1 2 1

1 1 0 3

0 1 0 0

0 2 3 00 2 3 0

0 1 2 10 1 2 1

1 1 0 31 1 0 3

0 1 0 00 1 0 0

5 7

3 3

5 7

3 3

abcdba
bdbadb

cbabca

3

7

Level 1 Level 2 Level 3

approximately equally perceptible across the range of that
value. For all images in this paper, we encode the pixels
values to be [P, 1-P, 0] in the RGB color space.

Note that unlike the arbitrarily long, and arbitrarily shaped
time series from which they where derived, for a fixed L,
the bitmaps have a constant space and structure.

It is important to note that we do not suggest any utility in
viewing a single time series bitmap. The representation is
abstract, and we do not expect a user to be able to imagine
the structure of time series given the bitmap. The utility of
the bitmaps comes from the ability to efficiently compare
and contrast them.

4 Time Series Thumbnails
A unique advantage of the time series bitmap
representation is the fact that we can transparently
integrate it into the user graphical interface of most
standard operating systems.

Since most operating systems use the ubiquitous square
icon to represent a file, we can arrange for the icons for
time series files to appear as their bitmap representations.
Simply by glancing at the contents of a folder of time
series files, a user may spot files that require further
investigation, or note natural clusters in the data.

The largest possible icon size varies by operating system.
All modern versions of Microsoft Windows support 32 by
32 pixels, which is large enough to support a bitmap of
level 5. As we will see, level 2 or 3 seems adequate for
most tasks/datasets.

To augment the utility of the time series bitmaps, we can
arrange for their placement on screen to reflect their
structure. Normally, file icons are arranged by one of a
handful of common criteria, such as name, date, size, etc.

We have created a simple modification of the standard
Microsoft Windows (98 or later) file browser by
introducing the concept of Cluster View. If Cluster View
is chosen by the user, the time series thumbnails arrange
themselves by similarity. This is achieved by performing
Multi-Dimensional Scaling (MDS) of the bitmaps, and
projecting them into a 2 dimensional space. For aesthetic
reasons, we “snap” the icons to the closest grid point.

Figure 6 displays an example of Cluster View in
Microsoft Windows XP Operating System.

In this example, the Cluster View is obtained for five
MIT-BIH Arrhythmia Database files. It is evident in the
figure that eeg1.dat, eeg2.dat, and eeg3.dat belong to one
cluster whereas eeg6.dat and eeg7.dat belong to another.
In this case, the grouping correctly reflects the fact that
latter two files come from a different patient to first three.

For bitmaps with same size, we define the distance
between them as the summation of the square of the
distance between each pair of pixels. More formally, for
two n× n bitmaps BA and BB, the distance between them

is defined as ∑∑
= =

−=
n

i

n

j
ijij BBBABBBAdist

1 1

2)(),(.

Figure 6. A snapshot of a folder containing cardiograms
when its files are arranged by “Cluster” option. Five
cardiograms have been grouped into two different clusters
based on their similarity.

5 Experimental Evaluation
In this section, we test our proposed approach with a
comprehensive set of experiments. We will show some
experiments that objectively measure the utility of our
approach on clustering, classification, and anomaly
detection. We note once again that the quality of
illustrations here suffers from monochromic printing and
small-scale reproduction. We urge the interested reader to
consult [10] for large-scale color reproductions and
additional details.

5.1 Clustering

We considered a four-class ECG clustering problem,
where each class corresponds to a different patient. Figure
7 shows the clustering obtained with level 3 bitmaps,
using parameters N = 150, n = 5. The results are correct,
in that each time series from a given patient is assigned to
its own sub-tree. For this problem, we found that we
could vary the N and n parameters by a factor of 4 (N > n)
and still obtain the correct clustering.

Figure 7. The clustering obtained by the time series
thumbnail approach on a homogeneous data collection.

5.2 Classification

For classification, we considered an ECG classification
problem. Our ECG dataset is a four-class problem derived
from BIDMC Congestive Heart Failure Database of four
patients. Each instance consists of 3,200 contiguous data
points (about 20 heartbeats) randomly extracted from a
long (several hours) ECG signal. Twenty instances are
extracted from each class (patient). We compared to the
ubiquitous Euclidean distance [12][13][15] and DTW
[11][20].

For both datasets, we measure the error rates, using the
one-nearest-neighbor with leaving-one-out evaluation
method. The results are summarized in Table 1.

Table 1: Classification error rates.
 Euclidean DTW Bitmaps

ECG 42.25 % 16.25 % 7.50 %

We also considered a Normal vs Arrhythmia problem that
appeared in [8]. Using Markov models, the authors
reported an error rate of 2%. With our technique, under
virtually any parameter settings, we achieve 0% error.
We can achieve perfect classification using one nearest
neighbor as above, or we can use MDS to project the data
into 2 dimensional space and achieve perfect
classification using a simple linear classifier, a decision
tree or SVD. Figure 8 shows the data projected into 2D
space, and the linear classifier learned.

Figure 8. The MIT ECG Arrhythmia dataset projected into
2D space using only the information from level-2 time series
bitmaps. The two classes are easily separated by a simple
linear classifier (gray line).

5.3 Anomaly detection

The time series bitmap distance measure allows the
creation of a simple anomaly detection algorithm.

We can create two concatenated windows and slide them
together across the sequence. At each time instance, we
build a time series bitmap for the two windows and
measure the distance between them. We report this
distance as an anomaly score. Figure 9 illustrates the idea
on some annotated ECG data. This approach easily
detects the single anomaly shown, and the rest of the
annotated anomalies in this dataset (not shown).

1

23

4

5
6

7

8
910

11

12

13 14

15

16
1718

19

20

21

22
23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

MIT ECG Arrhythmia Data

1

23

4

5
6

7

8
910

11

12

13 14

15

16
1718

19

20

21

22
23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

MIT ECG Arrhythmia Data

1

2

3

4

5

11

13

12

14

15

6

9

10

7

8

16

18

17

19

20

1

2

3

4

5

11

13

12

14

15

6

9

10

7

8

16

18

17

19

20

Figure 9. Using time series bitmaps as an anomaly detector.
Top) A subsection of an ECG dataset. A cardiologist annotated
a premature ventricular contraction at approximately the 1.4
mark. Middle) The score of our approach shows a strong peak
for the duration of the anomalous heartbeat. Bottom) The
bitmaps before and after the peak are very different.

At each “step” of the sliding window, we can
incrementally ingress a new data point, and egress an old
data point (updating only two pixels of each bitmap).
Hence, the time complexity is linear in the length of the
time series.

We have built an online version of this tool, which the
readers may investigate with their own datasets (or
several built-in examples). We encourage the interested
reader to experiment with the tool [10].

In the simple example above, both sliding windows are of
the same length. More generally, one may wish for the
trailing window to be larger, so that it retains more of a
“memory” of the previous data. We leave such
considerations for future work.

Reproducible Results Statement: In the interests of competitive scientific
inquiry, all datasets used in this work are available at the following URL
[10]. This research was partly funded by the National Science
Foundation under grant IIS-0237918.
References
[1] Aach, J., & Church, G. (2001). Aligning gene expression

time series with time warping algorithms. Bioinformatics,
Volume 17.

[2] Agrawal, R., Lin, K. I., Sawhney, H. S., & Shim, K.
(1995). Fast similarity search in the presence of noise,
scaling, and translation in times-series databases. In
Proceedings of 21st International Conference on Very
Large Databases.

[3] Barnsley, M.F., & Rising, H. (1993). Fractals Everywhere,
second edition, Academic Press.

[4] Berndt, D., & Clifford, J. (1994). Using dynamic time
warping to find patterns in time series, AAAI Workshop on
Knowledge Discovery in Databases, pp. 229-248.

[5] Celly, B. & Zordan, V. B. (2004). Animated People
Textures. In proceedings of the 17th International

Conference on Computer Animation and Social Agents.
Geneva, Switzerland.

[6] Chiu, B., Keogh, E., & Lonardi, S. (2003). Probabilistic
Discovery of Time Series Motifs. In the 9th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining.

[7] Daw, C. S., Finney, C. E. A. & Tracy, E. R. (2001).
Symbolic Analysis of Experimental Data. Review of
Scientific Instruments. (2002-07-22).

[8] Ge, X., & Smyth, P. (2000). Deformable Markov model
templates for time-series pattern matching. In proceedings
of the sixth ACM SIGKDD, pp. 81-90.

[9] Jeffrey, H.J. (1992). Chaos Game Visualization of
Sequences. Comput. & Graphics 16, pp. 25-33.

[10] Keogh, E.
 http://www.cs.ucr.edu/~eamonn/CBMS05anonymous/
[11] Keogh, E. (2002). Exact indexing of dynamic time

warping. In Proceedings of the twenty-eighth International
Conference on Very Large Data Bases, pp. 406-417.

[12] Keogh, E., Chakrabarti, K., Pazzani, M., & Mehrotra
(2001). Locally adaptive dimensionality reduction for
indexing large time series databases. In Proceedings of
ACM SIGMOD Conference on Management of Data.

[13] Keogh, E. & Kasetty, S. (2002). On the Need for Time
Series Data Mining Benchmarks: A Survey and Empirical
Demonstration. In the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

[14] Keogh, E., Lonardi, S., & Ratanamahatana, C. (2004).
Towards Parameter-Free Data Mining. In proceedings of
the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

[15] Korn, F., Jagadish, H., & Faloutsos, C. (1997). Efficiently
supporting ad hoc queries in large datasets of time
sequences. In Proceedings of SIGMOD, pp. 289-300.

[16] Lin, J., Keogh, E., Lonardi, S., Lankford, J.P. & Nystrom,
D.M. (2004). Visually Mining and Monitoring Massive
Time Series. In proceedings of the 10th ACM SIGKDD.

[17] Lin, J., Keogh, E., Lonardi, S. & Chiu, B. (2003) A
Symbolic Representation of Time Series, with Implications
for Streaming Algorithms. In proceedings of the 8th ACM
SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery.

[18] Shneiderman, B. (2002). Inventing discovery tools:
combining information visualization with data mining.
Information Visualization 1(1): 5-12.

[19] Tanaka, Y. & Uehara, K. (2004). Motif Discovery
Algorithm from Motion Data. In proceedings of the 18th
Annual Conference of the Japanese Society for Artificial
Intelligence (JSAI). Kanazawa, Japan.

[20] Ratanamahatana, C.A., & Keogh, E. (2004). Everything
you know about Dynamic Time Warping is Wrong. 3rd
Workshop on Mining Temporal and Sequential Data, in
conjunction with the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

[21] Wyszecki, G. (1982). Color science: Concepts and
methods, quantitative data and formulae, 2nd edition. New
York, Wiley, 1982.

[22] Tsuruoka, Y. & Tamura, Y. (2001). Time Series Analysis of
Bio-Medical Signals. 14th IEEE Symposium on Computer-
Based Medical Systems (CBMS'01), Maryland, USA.

