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Tag SNP selection is an important problem in computational biology and genetics be-
cause a small set of tag SNP markers may help reduce the cost of genotyping and
thus genome-wide association studies. Several methods for selecting a smallest possible
set of tag SNPs based on different formulations of tag SNP selection (block-based or
genome-wide) and mathematical models of marker correlation have been investigated in
the literature. In this paper, we propose a new model of multi-marker correlation for
genome-wide tag SNP selection, and a simple greedy algorithm to select a smallest pos-
sible set of tag SNPs according to the model. Our experimental results on several real
datasets from the HapMap project demonstrate that the new model yields more succinct
tag SNP sets than the previous methods.

1. Introduction

Single nucleotide polymorphisms (SNPs) represent the most frequent form of genetic
variations in the human genome. They play an important role in genome-wide as-
sociation studies that intend to help us understand the correlation between genetic
variations and human diseases. Assaying (or genotyping) all SNP markers in the
involved genomes would be desirable, but it is expensive and unnecessary. Since
SNPs are often not independent, a subset of SNPs may be sufficiently informative
and allow us to infer all the other SNPs. The tag SNP selection problem is thus to
find a smallest possible set of tag SNPs that would enable us to infer all the other
SNPs with a certain level of confidence [9]. Clearly, the smaller the tag SNP set,
the more genotyping cost it could help save.

Two frameworks for tag SNP selection have been studied in the literature: block-
based and genome-wide. The block-based tag SNP selection framework focuses on
haplotype patterns in a population.a The approach assumes that the chromosomes
can be partitioned into blocks separated by recombination hotspots, so that there
are few recombinations within a block. Then it attempts to identify a smallest
possible set of tag SNPs for each block so that all the possible halpotype patterns
formed by the SNPs in the block can be fully represented by the haplotype patterns
formed by the tag SNPs [14]. The genome-wide framework does not partition a

aRecall that humans are diploids and our chromosomes form pairs, each of which consists of a
paternal chromosome and a maternal chromosome. A haplotype refers to the set of SNPs from a
single chromosome. A pair of corresponding paternal and maternal haplotypes form a genotype.
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chromosome into blocks. Instead, it considers the correlation between SNP markers
across the entire genome [1]. Typically, a SNP marker has two states in a population.
The state with a higher frequency is called the major allele and the other is called
the minor allele. In the other words, the SNP markers are usually bi-allelic. It is
a common practice to consider only SNPs whose minor allele frequency (MAF)
is at least 5%. Genome-wide tag SNP methods generally follow two approaches.
Halldórsson et al. [3] define “informativeness” of SNPs and attempt to find the most
informative set of SNPs. The other approach, such as the one adopted by Carlson et
al. [1], usually evaluates the linkage disequilibrium (LD) between the states of two
SNP markers using the correlation coefficient r2, which indicates the dependency
between the two markers, and aims at finding a smallest set of tag SNPs such that
all the other SNPs are strongly linked to the selected tag SNPs in terms of the LD
coefficient r2 (more precisely, each of them is linked to some tag SNPs with an r2

coefficient above a certain threshold). The tag SNPs selected by this approach are
shown to be effective in disease association mapping studies, since the coefficient r2

is directly related to the statistical power of association mapping. Genome-wide tag
SNP selection based on the r2 LD statistics has gained popularity among researchers
in the SNP community [1, 2, 8, 12, 15, 18], because it has a comparable performance
at a lower computational cost than many other methods [17, 18]. In this paper, we
will be focused on genome-wide tag SNP selection using the r2 LD statistics.

Most of the existing tag SNP selection methods in this framework consider the
r2 coefficient between a pair of SNP markers [1, 11, 12, 15]. Hence, each of the
SNPs is guaranteed to be tagged by a single tag SNP selected. Recently, Hao et
al. [4, 5] extended the r2 statistics to describe the statistical correlation between
a group of (e.g. two or three) markers and another marker. We will simply refer
to this as the multi-marker correlation model. In this model, a SNP is tagged by
a group of tag SNPs if it is correlated to the group with an r2 coefficient above a
certain threshold. Hao et al. [4, 5] presented a greedy algorithm for selecting tag
SNPs to cover a certain (large) fraction of a given set of SNPs and showed that
the multi-marker correlation model is more effective than the traditional pairwise
correlation model in terms of reducing the number of required tag SNPs.

In this paper, we generalize the multi-marker correlation model in [4, 5] to
further improve its effectiveness. Comparing with the model in [4, 5], our model
is more natural and supports more succinct tag SNP sets. We will also present a
simple greedy algorithm to select a smallest possible set of tag SNPs according to
this multi-marker model, and compare its performance with those of the previous
methods on real HapMap data.

Genome-wide tag SNP selection methods can also be classified as haplotype-
based or haplotype-independent, depending on how the r2 statistics is obtained. For
genotype data, the r2 statistics is usually estimated using a maximum likelihood
approach [6, 10], which could be time consuming on a large set of SNPs. However,
when phased haplotypes are available, the r2 coefficients can be calculated very
easily and efficiently. The haplotype-based methods require phased haplotype data
while the haplotype-independent methods do not. In this work, we will consider
both types of data.
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The rest of the paper is organized as follows. In Section 2, we introduce a new
multi-marker correlation model and discuss how to calculate the r2 LD statistics un-
der the model for both haplotype and genotype data. Section 3 presents the simple
greedy algorithm for selecting tag SNPs. In Section 4, we discuss the implementa-
tion of the algorithm and test its performance on some real HapMap datasets. We
also compare the performance of our algorithm with those of the most recent algo-
rithms on genome-wide tag SNP selection given in [4, 5, 11]. Section 5 concludes the
paper with a few remarks. For the ease of reading, we defer some illustrative figures
and a detailed mathematical proof required in the calculation of the multi-marker
correlation coefficient r2 to Appendix A.

2. The New Multi-Marker Correlation Model

In this section, we propose a new multi-marker correlation model that generalizes
the model introduced in [4, 5]. We also discuss how to calculate the r2 statistics
under the new model for both haplotype and genotype data.

2.1. Multi-Marker Correlation on Haplotype Data

The statistical correlation between a group of k markers and another marker will
be referred to as k-marker correlation. For simplicity, we define below the 2-marker
correlation model. The generalization of the model to 3 or more markers is straight-
forward. Consider three bi-allelic SNPs A, B and C. Each of them has possible
alleles A/a, B/b and C/c, respectively. Here, the uppercase letters represent both
the SNPs as well their major alleles and the lowercase ones represent the minor
alleles. Given the states (i.e. alleles) of SNPs A and B, it might be possible for us to
infer the state of SNP C, if SNP C is correlated with both SNPs A and B. Clearly,
if Pr(C | AB) > 0.5, we would opt to predict the major allele C instead of the
minor allele c when the haplotype AB is observed.

For a fixed population of haplotype data and any haplotype h, let nh denote the
number of times that the haplotype h is observed in the population. Consider three
SNPs A, B and C again. For each haplotype h ∈ {AB, Ab, aB, ab}, if nhC > nhc,
then we would opt to predict allele C when observing haplotype h (assuming that
the SNP C is unassayed). We put all the haplotypes h ∈ {AB, Ab, aB, ab} such that
nhC > nhc into a major bucket and the others into a minor bucket. For example,
if nABC > nABc, nabC > nabc and nAbC < nAbC , naBC < naBc, then the major
bucket will contain haplotypes {AB, ab} while the minor bucket contains haplotypes
{Ab, aB}. This would suggest a prediction of the allele C when any of the haplotypes
{AB, ab} in the major bucket is observed.

To define the r2 correlation coefficient, we introduce a new bi-allelic (compound)
marker M that combines the SNPs A and B. The major and minor alleles of M are
M/m. We say that the marker M is in state (allele) M if any of the haplotypes in
the major bucket is observed, or otherwise it is in state m. Hence, the numbers of
observations of alleles M and m are defined as nM = nAB+nab and nm = nAb+naB .
We can define the r2 statistics between the two markers {A,B} and the marker C
as the usual r2 statistics between the new marker M and the marker C.
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Occasionally, we may have a tie between haplotype counts in the population,
such as nhC = nhc. In this case, we would have to decide whether to put the
haplotype h in the major bucket or the minor bucket. The following claim shows
that it is usually advantageous to put the haplotype in the minor bucket.

Claim 2.1. Consider three SNP markers with alleles A/a, B/b, and C/c, and the
correlation coefficient r2 between the markers {A, B} and the marker C. If h is an
observed haplotype on the markers A and B, and the numbers of observations satisfy
nhC = nhc, then putting h in the minor bucket leads to a higher r2 value most of
the time.

Proof. See Appendix A. ¤

Since there are 4 possible haplotypes on markers A and B, there are 24 = 16
ways to fill the major bucket. After eliminating symmetric ways and the empty
set, there are 24/2 − 1 = 7 different ways to separate the 4 possible haplotypes
into two buckets. Note that, a split of the four haplotypes like {AB,Ab}/{aB, ab}
really represents the single-marker correlation between markers A and C. Therefore,
the seven different separations correspond to two single-marker and five 2-marker
correlations.

In [4, 5], Hao et al. proposed a very similar 2-marker correlation model to define
the correlation between markers {A,B} and marker C. However, they require that
one of the buckets must contain exactly one haplotype (unless the split actually
represents a single-marker correlation). For example, a split like {AB}/{Ab, aB, ab}
would be allowed but the split {AB, ab}/{Ab, aB} is not. Therefore, the 2-marker
correlation model in [4, 5] allows a total of 2 + 4 = 6 different splits, two of which
correspond to single-marker correlations. Clearly, our new model is more flexible
and gives us the opportunity to cover more SNPs with the same set of tag SNPs.
Therefore, it may help reduce the number of tag SNPs required. This flexibility
is even more obvious when we consider the correlation between a group of three
markers and another marker. To infer a fourth SNP D from three SNPs A, B and
C, our model allows 223

/2 − 1 = 127 possible splits of the 8 haplotypes on the
SNPs A, B, and C into the major and minor buckets (modulo symmetry). However,
because the model of Hao et al. in [4, 5] requires that one of the buckets must contain
exactly one haplotype, it only allows 3 + 3 · 4 + 8 = 23 different splits, including 3
splits corresponding to single-marker correlations and another 12 corresponding to
two-marker correlations.

2.2. Calculating r2 Values on Genotype Data

Obtaining r2 values from haplotype data is trivial. However, if the SNP data is in
the form of unphased genotypes, we cannot obtain r2 values directly since the above
definition is based on haplotype data. There are two ways to deal with genotype
data. One is to use some haplotype inference program such as PHASE [13, 16] to
convert the genotype data into a haplotype data. The other way is to estimate k-
marker haplotype frequencies directly from the population without phasing. The
former method is trivial. So, here we discuss the latter method.
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Hill [6] proposed in 1974 a maximum likelihood method to estimate the degree
of LD between two loci (i.e. markers) given the frequencies of diploid genotypes in a
random-mating population. Then he generalized the method to estimate haplotype
frequencies at several loci in 1975 [7]. This method has been used to estimate LD
r2 statistics for more than 30 years. For example, it was used in [10] to estimate the
LD among multi-allelic markers.

Hill’s method works as follows. For simplicity, let us only consider estimating
the frequency of 3-marker haplotypes. Consider a sample of population data from
N random-mating individuals. Let ng be the number of times that genotype g is
observed in the sample. Denote as fh the frequency of haplotype h. Let f̂h be the
maximum likelihood estimation of fh. For three SNPs A, B and C, the frequency
of haplotype ABC satisfies the following equation (due to Hardy-Weinberg equilib-
rium):

f̂ABC =
1

2N

(
2nAABBCC + nAABBCc + nAABbCC + nAaBBCC

+nAABbCc
f̂ABC f̂Abc

f̂ABC f̂Abc + f̂ABcf̂AbC

+nAaBBCc
f̂ABC f̂aBc

f̂ABC f̂aBc + f̂ABcf̂aBC

(1)

+nAaBbCC
f̂ABC f̂abC

f̂ABC f̂abC + f̂AbC f̂aBC

+nAaBbCc
f̂ABC f̂abc

f̂ABC f̂abc + f̂ABcf̂abC + f̂AbC f̂aBc + f̂Abcf̂aBC

)
.

We can set up equations for the frequencies of the other seven haplotypes on SNPs A,
B, and C similarly. Solving these equations can be done by a standard expectation-
maximization (EM) algorithm [6, 10]. The EM algorithm is iterative. It begins with
a random guess of the frequencies. The frequencies obtained at the left hand side
in Equation (1) will be repeatedly inserted into the right hand side to improve the
estimation. When the improvement is sufficiently small (e.g. smaller than a pre-
determined threshold, typically 10−15), the algorithm terminates and starts a new
round with another random guess. After a sufficient number of rounds, it outputs all
feasible solutions. We merge the solutions with distances smaller than a threshold
(e.g. ϵ = 10−4), and obtain the r2 value using these estimated 3-marker haplotype
frequencies.

There are two things that we have to be careful with when applying Hill’s
method. The first is that the method assumes the population was produced from
random mating and Hardy-Weinberg equilibrium holds. Therefore, datasets con-
sisting of related individuals (such as the CEU dataset in HapMap) would not be
suitable. The CEU data consists of family trios, not random-mating individuals.
The second is that errors caused by the EM algorithm may lead to wrong assign-
ment of haplotypes into the major and minor buckets. For example, Claim 2.1 says
that when nhC = nhc, it is advantageous to assign the haplotype h to the minor
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bucket instead of the major bucket. However, if fhC = fhc but f̂hC happens to be
slightly higher than f̂hc due to some error in the EM computation, we will assign
h to the major bucket without caution. This could lead to a reduced r2 value. To
avoid this, we assign h to the minor bucket as long as f̂hC < f̂hc + ϵ for some small
ϵ > 0.

3. The Greedy Algorithm for Selecting Tag SNPs

In this section, we first define some notations that will be useful in the algorithm,
and then describe the algorithm. For simplicity, we present the algorithm for the
2-marker correlation model first, and then generalize it to work for the multi-marker
model. At the end of the section, we analyze the time complexity of the algorithm.

3.1. Some Notations

In the rest of the paper, we call a group of three SNPs, which includes two potential
tagging SNPs si, sj and one SNP sk to be tagged, a triplet and denote it as (si, sj ◃
sk). Similarly, a quartet is a group of four SNPs including three potential tagging
SNPs and SNP to be tagged. The triplets are used in the 2-marker correlation model
and the quartets in the 3-marker correlation model. Each such triplet or quartet has
a correlation coefficient r2 value. We will only be interested in triplets and quartets
whose correlation coefficient values r2 are above a certain threshold. It is convenient
to think of the triplets or quartets as edges in a hypergraph. Let us regard SNPs
as vertices in the hypergraph. The tagging SNPs in a triplet or a quartet have
an outgoing edge to the SNP to be tagged. This edge can be also thought of as
an incoming edge of the tagged SNP from the tagging SNPs. Figure A1 shows an
example hypergraph with five triplets.

During a tag SNP selection process, a SNP has three possible states: uncovered,
covered and picked. A SNP is picked if it has been selected as a tag SNP. A SNP s
is covered if either s is picked or there is a triplet (si, sj ◃ s) where si, sj are picked.
In this case we say that SNPs si, sj cover s. A SNP is uncovered if it is not picked
nor covered. Sometimes, we may use the term partially covered. A SNP s is partially
covered if it is uncovered and there is a triplet (si, sj ◃ s) such that either si or sj

is picked but not both.

3.2. The Algorithm for the 2-Marker Correlation Model

An outline of our algorithm is shown in Figure A2. To avoid considering SNPs
that cannot possibly be linked, we set a window size of W bps (in terms of the
physical distance on a chromosome). For every triplet of SNPs within the window
size, we compute its r2 value as previously described. Then we run an iterative
greedy-based algorithm to select a set of tag SNPs as follows. We first initialize all
SNPs as uncovered. In each iteration, we pick an appropriate SNP, put it in the tag
SNP set, and then check if any uncovered SNPs are now covered due to the newly
selected SNP. We repeat this process until all SNPs are covered.
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So the main issue is how to pick an appropriate SNP in each iteration. Our
first preference is an uncovered SNP that has no incoming edges. A SNP without
incoming edges cannot be tagged by any other SNPs and has to be picked as a tag
SNP sooner or later. Therefore, we always check if there is such a SNP. If all SNPs
have incoming edges, we pick a SNP (covered or uncovered) that can cover the
largest number of uncovered SNPs. If there is a tie, the SNP that partially covers
the most uncovered SNPs is preferred. Note that, a covered SNP may also be picked
in the above if it covers many other SNPs.

After picking each SNP, we need update and remove some triplets that are no
longer useful. A triplet t = (si, sj ◃sk) should be removed if any one of the following
conditions holds:

(1) sk is covered, and therefore t is useless.
(2) si and sj are both picked. In this case, si and sj together tag sk. After changing

the state of sk to covered, t is no longer useful.
(3) There is another triplet t′ = (si, s

′
j ◃ sk) where s′j is picked. In this case, the

triplet t is superseded by the triplet t′ and thus redundant.

Note that, although the condition 3 seems optional and unnecessary, it is actually
important since keeping useless triplets in the algorithm may actually affect the final
result when useless triplets are involved in the partial coverage of SNPs (and ties
have to be broken in the algorithm).

Algorithm 3.1 MMTagger(for 2-Marker Model)
Require: set of triplets
1: while there are SNPs uncovered do
2: if there is a SNP s with no incoming edges then
3: s∗ ← s
4: else
5: s∗ ← a SNP that covers the most uncovered SNPs
6: Put s∗ in the tag SNP set /* s∗ is picked */
7: for each triplets t of form (s·, s· ◃ s∗) do
8: remove t and its corresponding edges
9: for each triplets t of form (s∗, si ◃ sj) or (si, s

∗ ◃ sj) do
10: if si is picked then
11: put sj into covered SNP set
12: remove all triplets of form (s·, s· ◃ sj) or (s·, s· ◃ sj)
13: else
14: remove all triplets of form (si, s· ◃ sj) or (s·, si ◃ sj)

Algorithm 3.1 illustrates the pseudocode of the algorithm. In the algorithm,
lines 2–5 pick the next SNP. The subsequent lines update the states of the SNPs
and remove useless/redundant triplets.
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3.3. Extension to the 3-Marker Correlation Model

The extension is straightforward. The outline in Figure A2 still works except that
we need now calculate r2 values for quartets. The above greedy algorithm can also
be kept the same, although we should modify the removal of useless/redundant
quartets slightly. The third condition should be changed to: if there is another
quartet q′ = (si, s

′
j , s

′
k ◃ sl) where s′j , s

′
k are picked, then we remove the quartet q.

It is also straightforward to extend the algorithm to the k-marker correlation
model, although calculating r2 values for groups of k SNPs from haplotype data
could be very demanding when k is larger than 4, not to mention doing the calcu-
lation for genotype data.

3.4. Time Complexity

Suppose that there are m SNPs s1, s2, . . . , sm on a chromosome sorted by their
positions. For simplicity, we assume that there are at most w SNPs within each
window of W bps. We need compute the r2 values of all possible triplets involving
three SNPs from the same windows. If the first SNP with the smallest index is
among s1, s2, . . . , sm−w, there will be

(
w−1

2

)
combinations for the second and the

third SNPs. If the first SNP is among sm−w+1, . . . , sm, then there are totally
(
w
3

)
combinations for all three SNPs. The time complexity of computing the r2 values is
therefore (m−w)

(
w−1

2

)
+

(
w
3

)
= O(mw2). Similarly, the time complexity to compute

r2 values of all possible quartets is O(mw3).
Assume that there are T triplets with sufficiently high r2 values. During the selec-

tion of tag SNPs, we maintain a data structure where each SNP has two linked-lists
to the triplets containing the SNP. One list contains all the triplets corresponding
to the outgoing edges and the other contains all the triplets corresponding to the in-
coming edges. For each SNP, we also keep track of the number of triplets containing
the SNP, and various other statistics on these triplets. Therefore, in each iteration
of the selection algorithm, we need only scan all the SNPs and use these numbers
to pick an appropriate one. To keep the data structure up-to-date, we need update
a triplet t = (si, sj , ◃sk) when

(1) si or sj is picked;
(2) sk is covered and t needs to be removed; or
(3) t is superseded by another triplet and needs to be removed.

If it takes O(1) time to retrieve each triplet that we need update, then the time
complexity will be reasonably low. In cases 1 and 2, we can access each of the
involved triplets in O(1) time given the data structure. To achieve O(1) access time
in case 3, we sort all the triplets in each linked list corresponding to outgoing edges
in preprocessing. As a result, if si is picked as a tag SNP, then (si, sj ◃ sk) will
supersede all triplets of the form (sh, sj ◃sk) for some h. These triplets (sh, sj ◃sk)
must be neighbors of (si, sj ◃ sk) on sj ’s outgoing linked list. Therefore, we can
access to each of these triplets in O(1) time. Since a triplet may be updated at
most 3 times, the time to select tag SNPs is O(T ). The preprocessing may take
O(T log T ) time.
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In practice, the algorithm spends most of its time on evaluating r2 values. There-
fore, we say that the time complexity of the algorithm is O(mw2) (or O(mw3)) for
the 2-marker correlation (or 3-marker correlation) models, respectively.

4. Experimental Result

We have implemented the above algorithm as a C program, simply called MMTag-
ger. In this section, we compare MMTagger with the program LRTag in [11] and the
program MultiTag in [4] on real datasets from the HapMap project. The following
is a brief summary of the features of the three programs to be compared.

• LRTag [11] uses the traditional single-marker correlation model and works for
a single population as well as multiple populations. The algorithm is based on
a powerful combinatorial optimization technique called Lagrangian relaxation.
According to the extensive tests in [11], LRTag outperforms other state-of-the-
art single-marker programs such as FESTA [15] and LD-Select [1] in terms of
the number of selected tag SNPs. It requires the pairwise r2 statistics as the
input.

• MultiTag [4] uses a multi-marker correlation model which is more restricted
than our model. It is a greedy algorithm. The input to MultiTag must be a
population haplotype data.

• MMTagger is a greedy algorithm using a more general multi-marker correla-
tion model. Its input is a population data, either in the form of haplotypes or
genotypes.

In order to compare these three programs, we need phased haplotype data. We
downloaded the CEU ENCODE region data from the HapMap projectb and use
the first 5 of the 10 sample datasets. For LRTag, we need a preprocessing step to
calculate the pairwise r2 values. For both MMTagger and MultiTag, we use a window
size W of 100K bps so that SNPs farther than W bps apart are not considered as
correlated. To make it fair, we also apply this restriction when calculating r2 values
for LRTag.

Table 1 shows the numbers of the tag SNPs selected by LRTag, MultiTag and
MMTagger using different parameters. The reduction of tag SNPs by using the
multi-marker correlation models is obvious. However, the running time of the pro-
grams based on the multi-marker correlation models (MultiTag and MMTagger) is
much longer. LRTag requires only pairwise r2 values, but MultiTag and MMTagger
need r2 values for each group of three or four SNPs. In general, MMTagger selected
fewer tag SNPs than MultiTag. In fact, the improvement is quite significant when
the threshold for r2 is 0.9 or larger.

When comparing the performance of MultiTag and MMTagger, we should also
take into account the running time and memory usage. We thus downloaded the
entire chromosomal data of the Japanese and Chinese populations from HapMapc

and used chromosomes 19, 21 and 22 as our test data.

bhttp://www.hapmap.org/downloads/phasing/2005-03 phaseI/ENCODE/
chttp://www.hapmap.org/downloads/phasing/2006-07 phaseII/phased/
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Table 1. Numbers of tag SNPs selected in CEU ENCODE region

Region ENm010 ENm013 ENm014 ENr112 ENr113

# SNP 459 731 874 868 1035
r2 ≥ 0.8

LRTag 119 88 134 148 133
2-marker MultiTag 75 57 80 87 75
2-marker MMTagger 72 52 78 85 73
3-marker MultiTag 68 53 75 78 64
3-marker MMTagger 62 48 75 68 59

r2 ≥ 0.9
LRTag 148 121 172 204 190
2-marker MultiTag 100 76 111 118 122
2-marker MMTagger 92 73 100 109 115
3-marker MultiTag 91 66 102 101 100
3-marker MMTagger 79 58 85 81 81

r2 ≥ 0.95
LRTag 192 148 196 268 247
2-marker MultiTag 127 96 131 157 156
2-marker MMTagger 117 92 122 141 149
3-marker MultiTag 120 83 119 138 145
3-marker MMTagger 97 66 102 107 112

Hao [4] mentioned two different methods to implement his greedy algorithm and
handle a large number of input SNPs: (1) Preprocess and compute all r2 values,
and (2) Calculate r2 values on the fly while selecting tag SNPs. The former method
would lead to heavy memory load and/or file I/O load. The latter method may
lead to redundant r2 value computation. MultiTag employs the latter method. In
our implementation of MMTagger, we choose the former method to speed up the
computation.

Table 2. MMTagger vs. MultiTag

Chromosome # SNP mode r2 program
# SNPs Time Memory
Selected (hours) (M bytes)

2-marker 0.9
MultiTag 9600 26hrs 30–35

JPT+CHB
28931

MMTagger 9145 2mins 125
chr19

3-marker 0.95
MultiTag N/A >700hrs 30–35

MMTagger 10032 <1hr 657

2-marker 0.9
MultiTag 7115 42hrs 30–35

JPT+CHB
28914

MMTagger 6766 2mins 187
chr21

3-marker 0.95
MultiTag N/A >700hrs 30–35

MMTagger 7404 <1hr 1210

2-marker 0.9
MultiTag 7557 93hrs 30–35

JPT+CHB
26595

MMTagger 7221 2mins 183
chr22

3-marker 0.95
MultiTag N/A >700hrs 30–35

MMTagger 7788 3hrs 1216

Note: Both programs were run on a desktop PC with dual AMD Athlon(tm) processors of 2.1 GHz.

Table 2 illustrates a head-to-head comparison between MultiTag and MMTagger.
Note that, for the memory usage, we were able to insert some code into MMTagger
to obtain the precise maximum memory used by the program. However, we were
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not able to get the precise memory usage numbers for MultiTag and could only
provide a rough estimate. The following gives a detailed comparison between the
two programs.

• MMTagger is able to achieve a smaller tag SNP set than MultiTag mostly
because our multi-marker correlation model is more general and flexible.

• MMTagger’s heuristic to always pick uncovered SNPs with no incoming edges
first may also be a factor in its improved performance. This heuristic can be
easily incorporated into MultiTag.

• MMTagger may pick a SNP that has been covered if it covers many other
SNPs. However, MultiTag always picks an uncovered SNP. Modifying MultiTag
to allow covered SNPs to be picked would cost its more time since it calculates r2

values on the fly. However, this does not impact the running time of MMTagger
much because it pre-calculates all r2 values.

• MMTagger is much faster than MultiTag. Its running time mostly depends on
the window size W , since it spends most time on calculating the r2 values. The
running time of MultiTag depends on both the window size W and the number
of tag SNPs selected. Hence, it requires more time for higher r2 thresholds since
more tag SNPs would be required. Hao [4] reported that the program took about
300 hours to process the human chromosome 2 data on a typical workstation
(Intel Xeon 2.80 GHz CPU and 512 MB memory).

• MMTagger requires much more memory. Its memory usage grows when the r2

threshold decreases, as more triplets/quartets would be qualified. To run the
program on a large chromosome such as human chromosome 2, it require about
4 GB of memory for the 3-marker correlation model when the r2 threshold
is 0.9. However, MultiTag’s memory usage is pretty reasonable even for large
chromosomes and low r2 thresholds.

• MMTagger and MultiTag use the window size W in slightly different ways.
MMTagger requires that all SNPs in a triplet/quartet should be in the same
window, while MultiTag requires that a covered SNP and each of its tagging
SNPs should not be farther than W . Therefore, the distance of the two tagging
SNPs of a triplet may actually be as far as 2W in MultiTag.

As observed before, the 2-marker correlation model improves on the single-
marker correlation model significantly. A similar significant improvement from the
2-marker model to the 3-marker model is also shown in Table 2. Although it is
likely that the 4-marker model will show further improvements, we are not able
to extend the results to the 4-marker model because MMTagger would require too
much time and memory on any realistic datasets. For the same reason, MultiTag
was only implemented for the 2-marker and 3-marker models in [4, 5]

5. Conclusion

We have introduced a new multi-marker correlation model that generalizes a previ-
ous result in the literature. A greedy algorithm is designed to select tag SNPs based
on the model. Our experimental results on real datasets from the HapMap project
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demonstrate that the algorithm produces the most succinct tag SNP sets compared
with the previous algorithms.
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Appendix A. The Missing Proof and Figures

Proof of Claim 2.1: Let us consider the frequency table as shown in Table A1, where A
is a SNP to be covered/tagged and M is a compound marker representing several (e.g. two
or three) SNPs. Let nAM denote the number of times that the haplotype AM is observed
in the population, nA = nAM + nAm, and n the total number of haplotypes.

Table A1. Number of obser-
vations of each haplotype

A a
M nAM naM nM

m nAm nam nm

nA na n

For any haplotype h on M, if nAh > nah, we would put h in the major bucket, otherwise
we put it in the minor bucket. However, when nAh = nah, it seems that we could put h
in either the major bucket or the minor bucket. We show in the following that putting h
in the minor bucket leads to a bigger r2 value between M and A. By definition of the r2

statistics,

r2 =
(pAM − pApM )2

pApapMpm

=
(nAM · n − nAnM )2

nAnanMnm

=
(nAMnam − nAmnaM )2

(nAM + nAm)(naM + nam)(nAM + naM )(nAm + nam)

We take the partial derivative of r2 with respect to nAM and obtain

∂r2

∂nAM
=

(nAMnam − nAmnaM )

nAnanMnm
·(

2nam − (nAMnam − nAmnaM )(2nAM + nAm + naM )

(nAM + nAm)(nAM + naM )

)
By simplifying the equation, we get

∂r2

∂nAM
= c

(
2nam − X(nA + nM )

nAnM

)
∂r2

∂nAm
= c

(
−2naM − X(nA + nm)

nAnm

)
∂r2

∂naM
= c

(
−2nAm − X(na + nM )

nanM

)
∂r2

∂nam
= c

(
2nAM − X(na + nm)

nanm

)

where c =
(nAM nam−nAmnaM )

nAnanM nm
, X = (nAMnam − nAmnaM ).

Suppose that nAh = nah. If we put haplotype h in the major bucket, then the r2 value

would change by approximately nAh · ∂r2

∂nAM
+nah · ∂r2

∂naM
. If we put h in the minor bucket,
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then the r2 value would change by approximately nAh · ∂r2

∂nAm
+ nah · ∂r2

∂nam
. Let

∆M =
∂r2

∂nAM
+

∂r2

∂naM

= c

(
2nam − 2nAm − X

(
1

nA
+

1

na
+

2

nM

))
∆m =

∂r2

∂nAm
+

∂r2

∂nam

= c

(
2nAM − 2naM − X

(
1

nA
+

1

na
+

2

nm

))

We have

∆m − ∆M = 2c(nAM − naM + nAm − nam) + cX

(
2

nM
− 2

nm

)
= 2c(nA − na) + 2cX

(
1

nM
− 1

nm

)
We need check if ∆m − ∆M ≥ 0 holds. By multiplying both side with nM nm

2c we get

1

2c
nMnm(∆m − ∆M )

= (nA − na)nMnm + (nAMnam − nAmnaM )(nm − nM )

= (nAM + nAm − naM − nam)(nAM + naM )(nAm + nam)

+(nAMnam − nAmnaM )(nAm + nam − nAM − naM )

= nAM (nAM + naM )nAm + nAmnAM (nAm + nam)

−naM (nAM + naM )nam − namnaM (nAm + nam)

= nAMnAm · n − naMnam

= n(nAMnAm − naMnam)

where n = nAM + nAm + naM + nam. Therefore, ∆m ≥ ∆M if and only if nAMnAm ≥
naMnam. When the latter inequality holds, putting the haplotype h in the minor bucket
will result in a higher r2 value.

Since nAM + nAm = nA > na = naM + nam, nAMnAm tends to be greater than
naMnam in practice. Moveover, even when nAMnAm < naMnam, putting the haplotype
h in the minor bucket would increase nAm and nam at the same time, and hence result in a
greater increase in nAMnAm than in naMnam since nAM is usually larger than naM . This
could help improve the r2 value in the long run. Therefore, putting h in the minor bucket
may still be better in this case. For example, suppose nAM = 100, nAm = 0, naM = 5,
and nam = 20 before haplotype h is considered. If nAh = nah = 1, then putting h in the
major (or minor) bucket results in r2 = 0.7261 (or r2 = 0.7235, respectively). However, if

nAh = nah = 3, then putting h in the major (or minor) bucket leads to r2 = 0.6628 (or

r2 = 0.6631, respectively).
Note that, the tag SNP selection program MultiTag in [4, 5] considers all the possible

splits of the haplotypes in question and picks the one that results in the highest r2 value.
So, ties between haplotype counts are not an issue. However, we cannot afford doing this
in our tag SNP selection program MMTagger (to be introduced in Section 4) because our
multi-marker correlation model allows for many more possible splits. Trying all such splits
would be very inefficient. Since the above analysis shows that putting haplotype h in the
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s1
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s9
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s8

Fig. A1. An example with five triplets: (s1, s3 ◃ s2), (s1, s3 ◃ s4), (s3, s6 ◃ s5), (s6, s8 ◃ s7) and
(s6, s8 ◃ s9).

minor bucket is generally better when we have a tie nAh = nah, MMTagger always puts
h in the minor bucket when such a tie arises. �

All triplets (quartets)
above a given threshold

01000101000

00010001001

00000000010

10001000100

Sample Data Selected tag SNP set

Phase 1:

Select tag SNPs
Phase 2:Evaluate

r   values2

Fig. A2. An outline of our algorithm.




