
SIMTorrent: Sensor IMage Torrent
Anirban Banerjee

Department of Computer Science
University of California, Riverside

Email: anirban@cs.ucr.edu

WeeSan Lee
Department of Computer Science
University of California, Riverside

Email: weesan@cs.ucr.edu

Abstract— Network Reprogramming of sensor nodes is a ne-
cessity, with the explosion in the number of individual sensors
being deployed for live experiments as well as in testbeds.
Personalized physical reprogramming of large number of nodes
is impractical both in terms of manpower cost and the amount
of time expended for such purposes. We propose a network
reprogramming protocol specifically targeted at deployments
of heterogeneous varieties of sensor platforms. Our protocol
efficiently disseminates specific program images to the targeted
group of nodes for reprogramming. We achieve performance
improvements over Deluge, and quantify other benefits achieved
by employing our protocol. Current sensor image dissemination
protocols fail to handle deployments consisting of more than one
kind of sensor platforms, while the use of our protocol allows for
deployments consisting of heterogeneous mix of sensor platforms.

I. I NTRODUCTION

Simply put, wireless sensor networks (WSNs) are clusters
of small-embedded wireless devices cooperating on one or
a small number of sensing and reporting based tasks [1],
[2]. Some of the most crucial design aspects for WSNs are
power frugal operation [3] and unmanned deployment and
autonomous operational capabilities [4]. Sensors networks
today employ platforms which sport a plethora of sensing
devices, temperature, pressure, humidity, light, carbon dioxide
and others [3]. Deployments of these multifaceted sensing
devices is usually meant to gather ambient information about
the environment. Network Reprogramming [5] provides us
with the capability to change completely the program image
executing on the small sensing devices. This is imperative
if a large cluster of sensor needs to change its sensing
paradigm, parameters, or load a new image which will allow
it to adapt to the changing needs of the end user. Repro-
gramming nodes physically is impractical once deployment
has been activated, furthermore with increasing testbed sizes
in research organizations and universities there is a definite
need to develop an efficient bulk data dissemination protocol.
Moreover this protocol must be able to successfully program
remotely, heterogeneous clusters of nodes. Such ability allows
for network designers to employ different nodes, with different
sensing and processing capabilities, possibly made by different
manufacturers to cooperate with each other and perform the
needed sensing tasks seamlessly. A network reprogramming
protocol, which can handle heterogeneous clusters of sensor
nodes allows for gradual deployment of different varieties of
nodes, often needed as the sensing needs change, consider, for

example, a stage by stage deployment of sensors specifically
built to log data about ecological parameters, followed by
highly specialized sensor only built for logging voice data [3].
These two types of sensors may not share the same platform,
due to the obvious difference in the processing capabilities
needed in the two tasks. Harmonic extraction and cepstral
analysis of voice data requires at least 4,000,000 Samples
per second, well out of scope of 8051 based MCUs and
ATMEL128L based Mica’s [3].

The network programming protocol must be able to re-
program over the wireless interface, the specific types of nodes
for which the images are pumped into the network. These
images can be and are in most cases larger than the RAM
sizes, typically 4K or 8K, thereby there must be an intelligent
methodology which is able to fragment pages to be distributed
into packets; which we term as cells. Fragmentation sizes
for the packets may not be the same, the reason being that
the wireless links between nodes of heterogeneous varieties
may have different capabilities in terms of peak data rate,
modulation schemes, BER and others. Thus for each pair of
nodes, of different type there needs to be a generic method to
determine the best configuration for cell sizes depending on
the link parameters. Additionally issues relating to suppression
of image request messages and their aggregation are critical
from a performance point of view. SIMTorrent address these
issues and more in order to come up with a scalable, efficient
and simple to implement bulk data dissemination protocol.

This paper provides two main contributions. First, we
present SIMTorrent, a reliable data dissemination protocol
for heterogeneous sensor network deployments, specifically
targeted at distributing larger than RAM images, from one or
more source nodes to many different types of nodes in a multi-
hop sensor network. SIMTorrent is cluster aware; meaning that
it attempts to identify clusters of nodes which need a particular
image and cuts down on the requests for particular pages using
either aggregation or suppression as configured by the network
designer. SIMTorrent provides for hop-by-hop reliable data
transmission by employing TCP like, exponentially increasing,
ACK message windows, using a 16 bit CRC as the trigger
for identifying any bad cell reception. Second, we simulate
and present results of our protocol, to highlight the benefits
achieved by implementing it in a simulated sensor network.

In Section II we discuss extensively the related work that
has been part of this exciting research area. Followed by
the detailed Protocol overview and description in Section III.

Section IV enumerates our experimental results which con-
clusively prove the efficacy of our protocol, followed by
Section V, detailing out our intentions for extending our
efforts in order to include even more functionality in the
protocol specifications. Finally rounded up with conclusions
in Section VI.

II. RELATED WORK

The problem that we address in our research pivots on
reliable dissemination of data to a heterogeneous collection
of sensor nodes. The main highlights of our work, include,
a scheduling policy allowing for a common datum based
approach in order to reduce the number of transmissions
required for the generic ADVERTISE-REQ-RECEIVE hand-
shake mechanism. Furthermore we develop a gradient tree
based approach to get information from the sink to the nodes
for which the cells, of a particular image, are meant for. This
allows us to cut down on the interference effects generated
by flooding the cells through the network and engaging nodes
which need not be concerned in any manner with the transfer
of an image which it will not use. Naive data dissemination
in networks can lead to what is know as a broadcast storm
problem, where the contention level of the network as a whole
increases significantly and thereby reduces throughput of the
complete network in general [6]. It is in this respect that we
employ our REQ Suppression mechanism which reduces the
number of transmissions for image cells percolating to the lay-
ers of nodes to the sink. Experiments conducted in [7] refer to
irregular contours with respect to packet propagation and link
layer metrics. Deluge is a network reprogramming protocol
which achieves bulk data dissemination in sensor networks.
Deluge can only work with homogenous environments, and is
supported by the latest versions of TinyOS. Deluge borrows
ideas from protocols such as SPIN-RL [8], an epidemic based
algorithm for broadcast networks that make use of a 3-phase
handshake protocol. We co-agulate the handshake mechanism
in SIMTorrent by suppressing REQ messages from nodes
of similar type, to reduce network traffic over the gradient
tree. Trickle is another protocol, from which Deluge borrows
concepts [9]. We too borrow concepts from Deluge to support
our reliable data transmission paradigm, however we also
include concepts such as exponentially increasing windows
for the receiver to send a single ACK for a number of
cells received. This concept is similar to TCP windowing
mechanisms. Protocols such as Pump Slowly Fetch Quickly
(PFSQ) [10] and Reliable Multi Segment Transport [11] are
selective NACK based approaches for transport protocols
designed for wireless sensor networks. As the cost of end-
to-end recovery is extremely high, all these protocols base
themselves on a hop-by-hop data dissemination paradigm and
use 16 bit CRCs for error checking at each transmission. We
too adhere to the hop-by-hop paradigm, however we manage
to cut down on the number of ACKs by our exponential
windowing scheme. TinyOS [12], includes support for a XNP
[13] which provides for only a single hop solution to network
reprogramming needs of the user. It necessitates that all nodes

be within a bidirectional range of the source. MultiHop Over
the Air Programming (MOAP) presents a more comprehensive
approach to network programming providing multihop support
for network re-tasking of sensors [14]. SIMTorrent is more
complex than MOAP or Deluge for that matter, as it fragments
images meant for different types of nodes into different cell
sizes, unlike what is done in Deluge. The wireless link over
which the cells are going to be transmitted control the cell size
of the transmissions that are going to occur over that particular
channel. MOAP and Deluge do not include these concepts.

III. SIMT ORRENT

SIMTorrent is a hybrid Push-Pull based protocol, it operates
by an initial message flood to all nodes in the network in
order to inform them of a new image arriving at the sink.
This information is passed in the form of a Image Vector
(IV), containing concise data about, the image version number
and the type of node for which it is meant. This simplistic
mechanism provides us with a low overhead methodology
for aggregating reverse interest propagation by the nodes
that become interested in the image that as just arrived.
SIMTorrent handles heterogeneous collections of sensor nodes
in a network using a plethora of mechanisms. Whenever a new
image arrives at the sink in the network, an IV is propagated
through the deployment area in order to inform all the nodes
of this new piece of data. Nodes now ascertain if the image
type is the same as their platform type, if it is they discover on
the fly the version of the image that they are running in order
to decide whether to ask for that image or not. Nodes which
now decide to ask the image now broadcast REQ messages
to their neighbors in their respective transmission ranges. The
REQ Suppression mechanism makes sure that no more than
one message is transmitted through to the corresponding levels
of sensors. This is a basic aggregation strategy in order to cut
down on the number of REQ messages for the same image
percolating through the network. We address one of our main
goals reliable and energy efficient dissemination of program
images over the entire sensor network by using exponential
window like schemes for ACK responses from the receiving
nodes. This cuts down on nodes responding to each and every
cell reception. Furthermore we use a common datum based
scheduling policy to serve one or more nodes asking for pages
of the same image. We attempt to first bring all the nodes to a
common level that is by servicing the node which asks for the
lowest numbered pages, first, until it asks for pages common to
most other nodes. This allows us to use one local broadcast to
disseminate the cell for a particular image in one burst instead
of multiple transmissions, as in other network reprogramming
protocols.

A. Data Representation

To manage larger than RAM page sizes we dynamically
fragment and aggregate cells to form new bigger or smaller
cell sizes. The factors governing this policy range from the
RAM size of the target node, to the wireless data rate of
the link between the sender and the receiver. Of course, the

Image

3 4

A C

1 2 5 6 7

B

Page

Cell

Fig. 1. Hierarchical segmentation of data image

REQIT PR SL AID

Fig. 2. The REQ message. IT: specifies the image type, 2 bits are sufficient
for this field, since its purpose is to simply differentiate the type of node
characteristics it has vis--vis the other nodes. PR: specifies page range for
the particular image that it wants, 4 bits are reserved for this field. SL: this
specifies the whether the node was in Hibernate state, following some sleep
schedule prior to waking up. This bit allows us to inform the node receiving
the REQ to first search locally for the pages in the PR, since they could have
been passed onto it, or its neighbors while the sleep cycle was in effect. AID:
specifies the aggregator node which should employ REQ aggregation, in an
explicit manner.

image is divided up in logical partitions of fixed sizes called
a page; the page however may be broken up into cells for
actual transmission. A pictorial representation of this structure
is presented in Figure 1.

The total image is divided up in equi-sized blocks [3], [4]
called pages; the pages are sub divided into cells which are
actually transmitted over the radio links. We haveSpage =
NScell whereSpage defines the page size of the image being
disseminated andScell defines cell size used for transmission
over a particular link. Cell size is determined by the link over
which the cell has to be transmitted. Initial interest propagation
is carried out with the IV. Once interest has been identified
by nodes of requisite type, they reply back using the REQ
message, see Figure 2, this message contains the page range
the node is asking for and the image type it is asking for.
We assume for simplicity that any particular point in time
no attempts are being made to program sensors with multiple
versions of the same image. Obviously, it is quite logical to
assume that the network designer will not try to flood multiple
versions serially of the same image as there is absolutely
no benefit from doing so. Sensors do not evolve; they get
programmed in a one-shot effort.

Once the REQ messages reach the REQ suppres-
sor/aggregator node these messages are coagulated on the basis
of their PRs and their ITs and passed further through the
gradient tree formed. Once these REQ messages reach the
sink, image propagation is triggered off in full swing. Image
cells are passed onto the nodes which lie on the gradient tree,
which is identified by reading off the aggregated AID fields
from the REQ messages. The sink thereby has complete infor-

Fig. 3. The FSM modeling of the SIMTorrent protocol is simplistic
and inherently deadlock free. PU1: this specifies the state corresponding to
the PUSH phase 1, wherein the sink floods the IV. PL: this specifies the
corresponding state to the PULL phase wherein the gradient tree is generated
after stripping of the aggregated list of AIDs from the REQ messages at the
sink. PU2: specifies the PUSH phase 2 state wherein the actual data in the
form of cells is propagated through the network.

mation regarding the last suppressing/aggregating node which
has to receive the packet and hence unicast transmissions of
the needed Image cells is initiated.

B. The Protocol

SIMTorrent is based on a hybrid push-pull based mecha-
nism. At the very beginning as a new image is supplied to
the sink it floods an IV throughout the entire network, This
is the first phase push operation wherein the IVs leave the
sink and inform all the nodes via a hop-by-hop propagation
of the type of image available at the sink. This is followed by
a Pull operation, the REQ messages are targeted back at the
nodes which initially informed the interested nodes about the
presence of the new image at the sink. The REQ cell defines
the detailed description of the needs of the node, i.e. PR and
IT, SL etc. Once the REQ messages have been aggregated and
have been passed on to the sink, the sink determines which
cells of the image it needs to disseminate in the network
and does so. The gradient tree is actually a reverse interest
propagation for the nodes which identify he image as being
useful for itself or are acting as aggregator/suppressor nodes.
There are therefore three basic stages for FSM modeling of
the entire protocol, as presented in Figure 3. The basic ideas
used in SIMTorrent are further depicted in Figure 4.

The nodes in the sensor network need to maintain some
local routing information about their surroundings and this is
achieved in SIMTorrent via exchange of 1-hop neighbor info
among neighboring nodes which leads to a 2-hop neighbor-
hood vision at each node and thereby provides a low-overhead
mechanism for expanding the extremely limited 1-hop routing
topology view which is of little use. Once all nodes have their
2-hop neighborhood information they can participate in the
suppression/aggregation processes in two distinct manners.

Suppression: Nodes that are interest in the IV that they
receive transmit REQ messages to their neighbors from whom
they received the IV, via a local broadcast. Multiple nodes in
turn receiving these REQ messages wait for a random backoff
period in order to attempt to piggyback REQ messages from

Fig. 4. 4A: depicts the PU1 state as depicted in the previous figure.
In this state the IV is propagated throughout the network. 4B depicts the
identification of neighbors of same type who are interested in the image and
would like to send REQ messages. 4C depicts the gradients tree via which
aggregation/suppression of REQ messages can occur and can finally reach the
sink.

Fig. 5. Represents the aggregation/suppression of REQ messages from the
”interested” nodes towards the sink.

nodes which still might be processing the IV. The first node
whose timer expires is aggregates the REQ messages it has
heard so far and passes them on to the nodes from which it
heard the IV in the same recursive manner.

Aggregation: Nodes interested in the IV, having already
exchanged 1-hop neighbor tables and having a 2-hop view of
the neighborhood, now designate a specific node from which
they all heard the IV. This selection can be done on the basis
of parameters like link quality, or low downtime values. An
explicit AID is marked in the REQ message to let the chosen
aggregator node know about its special purpose. All interested
nodes unicast REQ messages to the aggregator henceforth.
Note that since nodes now have 2-hop views, a maximum of 3
nodes (in a grid layout) in the immediately upper/closer to the
sink level can be chosen by individual nodes. We explain this
in detail in the next section. This is depicted well in Figure 5.

Another major feature of SIMTorrent is its capability to
delegate authority to each pair of communicating nodes to
decide optimum cell size. Nodes communicating with each
other can easily ascertain the capabilities of the link among
them by reading off the IT field in the REQ message. We
assume that the parameters that correspond to each type
of sensor e.g. RAM size, Flash memory capacity, Radio
Channel data rate are stored inside the nodes, thereby all the

Fig. 6. Represents cells of different sizes being transmitted over links between
different types of nodes with varied capabilities. This is essential in order to
optimize the RAM size, Flash memory size, computational capabilities of
different types of sensors.

suppressor/aggregator node needs to do is read off the IT filed
in the REQ message to know which kind of node it’ll be
passing the cell to and thereby dynamically fragment incoming
cells to create smaller cell sizes or coagulate incoming cells to
form larger chunks to reduce transmissions. This methodology
has not been employed by any other network reprogramming
protocol that we know of. This is represented in Figure 6.

SIMTorrent also employs a common datum scheduling
policy explicitly meant to cut down on the number of transmis-
sions while servicing multiple nodes from a common source.
Existing network reprogramming protocols like Deluge [3],
[4] use a round-robin policy. We employ a common datum
based approach, in which we first service the node that asks
for the lowest numbered cell, and keep servicing it until its
cell number being requested is the same as that of the cell
numbers being requested by the other members interested in
that image. Once we reach this state we can use one local
broadcast to service more than one node in one shot. This
reduces the number of effective transmissions for the same
cell that needs to reach a number of nodes interested in the
image. Also, one of the novel features of SIMTorrent is to
handle sleep cycles and allow for dissemination of cells after
the quorum of nodes that was in hibernate state comes back
on. This is achieved by asking all the nodes which want to
follow a sleep schedule to select a leader among them, again
based on the 2-hop neighborhood information that the nodes
possess due to exchange of 1-hop local information. Now, each
of these chosen nodes are responsible for caching pages in its
local/on-board memory for the nodes that are sleeping. This
is a rudimentary approach, which we intend to improve upon,
however it is still sufficient to allow for nodes to sleep and
yet on waking up to probe a known node for cells that might
be in its cache.

IV. EXPERIMENTAL RESULTS

In this section, we will present the simulation results we
gathered from the SIMTorrent simulator [15]. It is a simplified,
home-grown and discrete simulator written in C++. Although
it does not have RTS/CTS mechanism built-in, it does imple-
ment a simple error model based on the number of neighbors
each node has, ie. the more neighbors a node has, the more
likely the transmitted packets to its neighbor nodes will be
dropped due to bandwidth contention.

All the simulations were set to run for 30 minutes. We

 0

 5000

 10000

 15000

 20000

 25000

 2 4 6 8 10 12

A
ve

 #
 o

f R
E

Q
 s

en
t p

er
 n

od
e

Grid Size (NxN)

Effect of REQ Suppression

Suppression OFF
Suppression ON

Fig. 7. REQ Suppression

simulated only 3 types of node, each with image size of
2000 bytes. Each node type was assigned randomly at run-
time. Each simulation had different grid size ranged from
2x2 up to 12x12 with different combination of performance
optimizations. In each simulation, all nodes reliably received
a completed image based on their node types/platforms.

We first show that SIMTorrent’s performance based on
the effect of REQ Suppression, Local Recovery, On-demand
Packet Caching and Push Model individually. And then, we
combine all optimizations together and show that it performs
better than any individual one.

A. REQ Suppression

As mentioned in Section III, when each nodes receive a
REQ message, it randomly backs off and listens to its neighbor
to see if the same REQ is being transmitted. If it does, the node
simply ignore the REQ message, otherwise, it would go ahead
and broadcast the message to its neighbors. This mechanism
would avoid transmitting relundant REQ messages overheard
by its neighbors.

Figure 7 shows the average number of REQ sent by each
node with and without REQ Suppression in various topology.
At first glance, the differences seem insignificant, however,
if each node can suppress small amount of REQs, overall,
the total saving of the number of REQs in the networks can
be huge. For example, in the case of 12x12, each node with
REQ Suppression mechanism sent 1267 less messages on
average comparing to those without. In other words, the sink
node would have received 1267 * (12 * 12 - 1)1, which is
about 182K, more REQs if there were no REQ Suppression
mechanism in place.

B. Local Recovery

All REQs are broadcasted and eventually the REQs go all
the way and reach the sink node which in turn replies the REQs
by unicasting DAT packets to the requested nodes. However,

1We need to exclude the sink node itself.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 2 4 6 8 10 12

A
ve

. C
om

pl
et

io
n

T
im

e
(i

n
m

s)
 p

er
 n

od
e

Grid Size (NxN)

Effect of Local Recovery

Local Recovery OFF
Local Recovery ON

Local Recovery ON (homogeneous)

Fig. 8. Local Recovery

it is extremely inefficient to do so. If a REQ reach some
intermediate nodes that happen to have the requested pages and
cells, they could serve the REQ immediately instead of further
propagating the REQ to the sink. Figure 8 shows that Local
Recovery indeed shortens the average completion time. In the
case of 12x12, nodes with Local Recovery enabled finishes
about 2 minutes earlier on average for each node.

The reason that prevents SIMTorrent to take full advantage
of Local Recovery is because of nodes’ heterogeneity. In other
words, a node might be surrounded by other types of nodes, in
which case, Local Recovery is completely useless. To further
confirm this, we also plotted a 3rd line (in blue) which showed
that the average completion time is significantly shorter in a
homogenerous sensor networks.

C. On-demand Packet Caching

In order to avoid forwarding duplicated packets (including
REQs and DATs), SIMTorrent implements Packet Caching on
each node. However, since sensor nodes are typically small
and thus resource constrained, they usually equipped with very
limited amount of RAM, so, how to utilize the cache in an
efficient manner is extremely important to SIMTorrent. In our
simulation, we use 1 page size (ie. 1104 bytes)2 as the cache
size for each node.

In SIMTorrent, we first implement FIFO caching replace-
ment policy. ie. when the cache becomes full, the first one in
the cache is replaced by the new one regardless the type of the
packet. We also implement On-demand Packet Caching which
always tries to replace the one with the same type. Intuitively,
this should be very helpful if a node is surrounded by one
type of neighbors more than others. However, Figure 9 shows
it otherwise.

D. Push Model

As mentioned in Section III, SIMTorrent is a hybrid Push-
Pull based protocol. Not only it pushes the IV (Image Vector)

2Like Deluge, each page is divided by 48 cells, each cells has a data payload
of 23 bytes.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 2 4 6 8 10 12

C
om

pl
et

io
n

T
im

e
(i

n
m

s)

Grid Size (NxN)

Effect of On-Demand Caching

On-Demand OFF
On-Demand ON

Fig. 9. On-demand Packet Caching

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 2 4 6 8 10 12

C
om

pl
et

io
n

T
im

e
(i

n
m

s)

Grid Size (NxN)

Effect of Push Model

Push Model OFF
Push Model ON

Fig. 10. Push Model

to all the nodes, then each nodes decide individually which im-
age it would like to download, it also tries to push more DAT
packets to its requesting neighbors in order to achieve higher
throughput. Figure 10 shows that the average completion time
per node is shorter when SIMTorrent tries to pushone more
DAT packet whenever available. The figure also shows that
the Push Model optimization only kicks in after 8x8.

Figure 11, on the other hand, shows that the number of
REQs sent per each node with Push Model enabled is less
than those that are not. Again, this figure shows the average
number of REQs sent by each node.

E. Put them all together

In Previous subsections, in order to see how significant each
optimization is, we showed those individually. Figure 12, on
the other hand, shows all optimizations into action together
which improves the performance even more.

 0

 5000

 10000

 15000

 20000

 25000

 2 4 6 8 10 12

A
ve

 #
 o

f R
E

Q
 s

en
t p

er
 n

od
e

Grid Size (NxN)

Effect of Push Model

Push Model OFF
Push Model ON

Fig. 11. Push Model (REQ)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 2 4 6 8 10 12

C
om

pl
et

io
n

T
im

e
(i

n
m

s)

Grid Size (NxN)

Effect of Req. Suppression, Local Recovery, On-Demand Caching & Push Model

REQ Suppression ON
Local Recovery ON

On-demand Caching ON
REQ Suppression + Local Recovery + On-demand caching

Fig. 12. REQ Suppression + Local Recovery + On-demand Caching + Push
Model

V. FUTURE WORK

As a natural extension of our research effort, we would
attempt to include other better caching strategies in SIMTor-
rent. This would allow for nodes which would wake up from
”sleep cycles” to probe only a specific set of neighbors instead
of making a local broadcast to get cells which might have
been distributed while they were asleep. We intend to analyze
SIMTorrent over a much larger topology, and attempt to break
out of the grid model to a more generic non-symmetric graph
based model. Also, we would like to determine how many
DAT packets should be pushed in order to achieve better
throughput without increasing too much bandwidth contention.
Furthermore we will attempt to investigate scenarios using
simulations consisting of multiple sinks pumping in images
at the same time into the network.

VI. CONCLUSION

Our protocol, SIMTorrent is a hybrid Push-Pull based design
which involves a plethora of techniques to reduce the number

of effective transmissions that are needed for the dissemination
of program images over a sensor network. SIMTorrent can
handle heterogeneous node deployment scenarios, and features
REQ suppression/aggregation, common datum scheduling and
TCP like exponential window based ACK scheme. All these
features allow for SIMTorrent to save on the number of
transmissions as proved by our simulation results. We show
conclusively the benefits achieved by using SIMTorrent over
a more generic protocol which does not use these enhance-
ments.

REFERENCES

[1] Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., and Cayirci, E, “A Survey
on Sensor Networks, IEEE Communications Magazine,” Vol. 40, No. 8,
pp. 102-116, August 2002.

[2] D. Estrin, D. Culler, K. Pister, G. Sukhatme. “Connecting the Physical
World with Pervasive Networks”, IEEE Pervasive Computing archive,
Vol. 1, No. 1, pp. 59-69, January 2002.

[3] S. Neema, A. Mitra, A. Banerjee , W. Najjar, D. Zeinalipour-Yazti,
D.Gunopulos, V. Kalogeraki. “NODES: A NOVEL SYSTEM DESIGN
FOR EMBEDDED SENSOR SYSTEMS”, SPOTS Track, IPSN 2005.

[4] A. Talukder, R. Bhatt, L. Chandramouli, T. Sheikh, R. Pidva, and S.
Monacos, “Autonomous Resource Management and Control Algorithms
for Distributed Wireless Sensor Networks”, To appear in The 3rd
ACS/IEEE International Conference on Computer Systems and Appli-
cations - January 2005.

[5] Jonathan W. Hui and David Culler, “The Dynamic Behavior of a Data
Dissemination Protocol for Network Programming at Scale”, The 2nd
ACM Conference on Embedded Networked Sensor Systems (SenSys’04),
November 3-5, 2004.

[6] S., Y. Ni, Y. C. Tseng, Y. S. C and J. P. Sheu, “The broadcast storm
problem in a mobile ad hoc network”, Proc. Of 5th Annual ACM/IEEE
International Conf. on Moble Computing and Networking, PP 151-162,
ACM Press 1999.

[7] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin and S.
Wicker, “Complex behavior at scale: An experimental study of low power
wireless sensor networks”. Technical Report UCLA/CSD TR02-0013,
UCLA 2002.

[8] J. Kulik, W. R. Heinzelman, and H. Balakrishnan. “Negotiation-based
protocols for disseminating information in wireless sensor networks”.
Wireless Networks, 8(2-3):169-185, 2002.

[9] P. Levis, N. Patel, S. Shenker, and D. Culler. “Trickle: A self-regulating
algorithm for code propagation and maintenance in wireless sensor
networks”. Technical report, University of California at Berkeley, 2004.

[10] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy. “PSFQ: A reliable
transport protocol for wireless sensor networks”. In Proceedings of the
1st ACM International Workshop on Wireless Sensor Networks and
Applications, pages 1-11. ACM Press, 2002.

[11] F. Stann and J. Heidemann. “RMST: Reliable data transport in sensor
networks”. In Proceedings of the First International Workshop on Sensor
Net Protocols and Applications, pages 102-112, Anchorage, Alaska, USA,
April 2003. IEEE.

[12] University of California, Berkeley. Tinyos. http://www.tinyos.net/, 2004.
[13] J. Jeong, S. Kim, and A. Broad. “Network Reprogramming”. University

of California at Berkeley, Berkeley, CA, USA, August 2003.
[14] T. Stathopoulos, J. Heidemann, and D. Estrin. “A remote code update

mechanism for wireless sensor networks”. Technical report, UCLA, Los
Angeles, CA, USA, 2003.

[15] SIMTorrent, http://www.cs.ucr.edu/˜weesan/sensornetworks/simtorrent-
0.0.1.tar.gz, 2005.

