
Prolog in AI
Towers of Hanoi, Searching

CS171: Expert Systems

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 2

Topics:

� Towers of Hanoi
� Searching a maze
� Searching directed graphs

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 3

Towers of Hanoi

� Stack of n disks arranged from largest on the bottom
to smallest on top placed on a rod

� Two empty rods: goal and an auxiliary rod
� Minimum number of moves to move the stack from

one rod

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 4

Towers of Hanoi

A CB

2

3

1

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 5

Towers of Hanoi

hanoi(N) :- move(N, left, centre, right).

move(0, _, _, _) :- !.
move(N, A, B, C) :- M is N-1,

move(M, A, C, B), % 1
inform(A, B), % 2
move(M, C, B, A). % 3

inform(X,Y) :-
write([move, disk, from, X, to, Y]), nl.

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 6

Searching a maze

� Let’s say we have a simple maze like the one below:

door(a, b).
door(b, e).
door(b, c).
door(d, e).
door(c, d).
door(e, f).
door(g, e).

� Goal is to find a path from a room to another room.

abe

d c

g

f

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 7

Searching a maze

� Since door(a, b) is the same as door(b ,a), the maze
can be modeled with an undirected graph.

� Using the standard approach: we are either in the
goal room (base case), or we have to pass through
a door to get closer to the goal room (recursive
case).

� To avoid going in circles (b-c-d-e or a-b-a-b), we
need to remember where “we have been so far”
(does this phrase sound familiar?)

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 8

Searching a maze

� So, the solution would be something in the lines of:
go(X, X, T).
go(X, Y, T):- door(X, Z),

not(member(Z, T)), go(Z, Y, [Z|T]).
go(X, Y, T):- door(Z, X),

not(member(Z, T)), go(Z, Y, [Z|T]).
� Or, using the semicolon (logical or):

go(X, Y, T):- (door(X, Z) ; door(Z, X)),
not(member(Z, T)), go(Z, Y, [Z|T]).
go(Z, Y, [Z|T]).

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 9

Searching a maze

� Let’s add a twist to the story: in one of the rooms
(we do not know exactly which one), there is phone
which is ringing. We need to get to the room in
which the phone is, and pick it up (this actually
sound like an AI problem :-).

� So, we ask the question:
?- go(a, X, []), phone(X).

� This follows the “generate and test” paradigm: we
first generate a solution to the problem of how to get
the room, then check if the phone is in the room.

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 10

� Let’s say we have a directed graph as the one below:

edge(g, h).
edge(g, d).
edge(e, d).
edge(h, f).
edge(e, f).
edge(a, e).
edge(a, b).
edge(b, f).
edge(b, c).
edge(f, c).
edge(d, a).

� Again, goal is to find a path from a node to another node.

Searching a graph

a
b

d

c

e

g

f

h

e

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 11

Searching a graph

� The simplest solution is:

cango(X, X).
cango(X, Y):- edge(X, Z), cango(Z, Y).
or
cango(X, Y):- edge(X, Y).
cango(X, Y):- cango(Z, Y), edge(X, Z).

� However, the graph has loops (a-e-d), so Prolog
might never be able to resolve this.

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 12

Searching a graph
� We can use a solution similar to the maze search.

However, let’s say we are also interested in the
route from X to Y:

route(Start, Dest, Route):-
go(Start, Dest, [], R),
rev(R, [], Route).

go(X, X, T, [X|T]).
go(Place, Dest, T, R):- edge(Place, Next),

not(member(Next, T)),
go(Next, Dest, [Place|T], R).

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 13

Searching a graph

� This algorithm performs breadth-first search.
� You can of course make this more complex

by adding weights to the edges.
� Searching is actually a big topic in AI:

� breadth-first search
� depth-first search
� best-first search (uses a heuristic do decide what

is the “best” way to go)
� A* search (uses the sum of the path so far and

the heuristic to estimate the path left)

Vladimir Vacic, Christos Koufogiannakis, University of California at Riverside 14

Reference

� Clocksin, W.F., and Mellish C.S.
Programming in Prolog. 4th edition. New
York: Springer-Verlag. 1994.

