CS 134 Game Creation and Design

Topics covered in Lecture
(Intro to midterm)

Introduction

- Basic Overview / Architecture
Spatial Data Structures

- Culling/Clipping
- Quad Trees
 - Height fields
 - Terrain LOD
- Oct Tree
- Potentially Visible Sets
- Portal Rendering
- Binary Space Partitioning
 - Viewpoint independent viewing

Animation

- State machines
- Sprites
- Mesh-driven
- Skeleton-driven
 - Pipeline
 - Storage
- Blending functions
 - Facial Animation - Blend Shapes
- Inverse Kinematics
Artificial Intelligence

- Abstract vs. practical AI
- State Machines
 - Hierarchical
 - Probabilistic
- Cognition Models
- Planning
 - Global vs. Local planning
 - Dijkstra
 - A*, modified A*
- Crowds and Flocking

Lighting

- Basic Phong shading
- Light Maps
 - Diffuse and limited specular
 - Resolution/storage
- Shadow maps
- Shadow volumes
- Ambient Occlusion (AO)
 - Computing
 - Comparison to radiosity
 - Screen-space AO
Texture Maps

- Common Optimizations
 - Mip maps
 - Compression
 - Caching
- Bump Maps
 - Tangent vs. Object space
 - How to “bake”
- Billboards
- Image-based rendering

Physics I

- Basic Introductions
 - Motivations
 - Applications
 - Definitions
- Forward vs Inverse Dynamics
- Common Forces
 - External Forces, Impulses
 - PD-Servos
Physics II

- Basic Integrators
 - Euler
 - Runge-Kutta 4
 - Leap Frog
- Integrator issues
 - Stability vs. Speed
- Adaptive time-stepping
- Control Structure
 - Hierarchical State Machines