
1Frank Vahid, Univ. of California, Riverside

Timing is Everything –
Why Embedded Systems Demand Early Teaching of

Structured Time-Oriented Programming
Frank Vahid*

Department of Computer Science and Engineering
University of California, Riverside, USA

*Also with the Center for Embedded Computer Systems, UC Irvine
http://www.cs.ucr.edu/~vahid

Collaborator: Tony Givargis, UC Irvine

This work was supported in part by the National Science Foundation (CNS-
0614957)

2Frank Vahid, Univ. of California, Riverside

Embedded Systems

• Ubiquitous

3Frank Vahid, Univ. of California, Riverside

Embedded Systems

Source: Study of Worldwide trends and R&D programmes in Embedded Systems by
FAST GmbH. ftp://ftp.cordis.europa.eu/pub/ist/docs/embedded/final-study-181105_en.pdf

0

5

10

15

1980 1990 2000

Year

N
um

be
r (

in
 b

ill
io

ns
)

World population

PCs

Microprocessors

4Frank Vahid, Univ. of California, Riverside

Moore’s Law

http://www.templehealth.org

Courtesy of Joe Kahn

1.5 yr

3 yr

4.5 yr

6 yr

7.5 yr9 yr10.5 yr12 yr

Corollary – Shrinking
2x / 18 months

Processors can go where no processor has gone before

Literally...

Of the approximately 150,000
U.S. patents granted per year,
roughly 10,000-20,000 are
embedded systems related

5Frank Vahid, Univ. of California, Riverside

0

0.5

1

1.5

2

2.5

3

3.5

$ (
Bi

llio
ns

)

2004 2009

Embedded
software

Embedded systems market: 14%
annual growth (16% for emb
sw) vs. 8% for PC hw and sw

Embedded Systems
– Software is Key

• Software is growing
• Software is hard
• Are we teaching embedded

systems software
development properly?

Source: Study of Worldwide trends and R&D programmes in Embedded Systems by
FAST GmbH. ftp://ftp.cordis.europa.eu/pub/ist/docs/embedded/final-study-181105_en.pdf

Source: Venture Development Corp, 2004

New NSF
program for
2009: Cyber-

Physical Systems.
$30,000,000

...All arguments of the study show that
requirements in embedded software are more
important than those in hardware, and that the
market of the future will be largely software
driven. In short, software is the key to
innovation.

6Frank Vahid, Univ. of California, Riverside

Current ES Courses Typically Senior-Level

Data-oriented
programming

Object-oriented
programming

Data structures

Digital systems

Compilers

Operating
systems

Embedded
systems

Real-time
systems

Architecture

...

Lower division

Upper division /
Graduate

Ti
m

e

7Frank Vahid, Univ. of California, Riverside

Current ES Courses –
Details, Details, Details

• Very practical courses – Learn
components, get them working,
build systems
– Microcontroller, timer, UART,

A2D, LCD, buttons, keypads,
stepper motors, ...

// ---
// configure output ports
// ---
ADCON0 = 0x00; /* disable A/D converter */
CM1CON0 = 0x00;
CM2CON0 = 0x00; /* disable comparators */
ANSELH = 0x00;
ANSEL = 0x00; /* configure pins as digital chanels */
TRISA = 0x08; /* all bits output except RA3. */
TRISB = 0xF0; /* Port B inputs*/
RABPU = 1;
WPUB4 = 1; // enable weak pull ups on RB4
IOCB4 = 1; // enable interrupt on change for RB4
TRISC = 0x00; /* PORTC all set to outputs */
PORTA = 0x00;
PORTB = 0x00;
PORTC = 0x00; /* initialize ports */
// ---
// Timer0 setup
// ---
CLRWDT(); // turn off watch dog timer
OPTION = 0x07; // setup prescaler
TMR0 = PRELOAD; // preload timer
T0IE = 1; //enable timer0 interrupts
// ---
// Setup button interrupts
// ---
RABIE = 1; //Enable change on PORTB interrupts
GIE = 1; //global interupts enabled

8Frank Vahid, Univ. of California, Riverside

Inside Book #1

• Ch. 1 Introduction to the HCS12 microcontroller 1
• Ch. 2 HCS12 assembly programming 29
• Ch. 3 Members and hardware and software development tools 77
• Ch. 4 Advanced assembly programming 125
• Ch. 5 C language programming 181
• Ch. 6 Interrupts, clock generation, resets, and operation modes 221
• Ch. 7 Parallel ports 255
• Ch. 8 Timer functions 327
• Ch. 9 Serial communication interface (SCI) 403
• Ch. 10 Serial peripheral interface (SPI) 433
• Ch. 11 Inter-integrated circuit (I[superscript 2]C) interface 489
• Ch. 12 Analog-to-digital converter 551
• Ch. 13 Controller area network (CAN) 593
• Ch. 14 Internet memory configuration and external memory expansion 653

Others are similar

9Frank Vahid, Univ. of California, Riverside

Details, Details, Details

200T i t t5 3
198The Bus5.2
197Introduction5.1
197Bus Concepts and Modes of Operation5
197HardwarePart 3
194Exercises
194Summary4.11
191Evaluation Boards and Emulation4.10
191Simulation4.9
188Documentation Files4.8
185Hex and Binary Files4.7
180Assembler Options and Preprocessor Directives4.6
177The Assembly Two-Pass Process4.5
168Pseudo-Operations4.4
167Code and Data Segments4.3
163Format of the Source Code4.2
162Introduction to Program Development4.1
162Cross Assembly and Program Development4
158Exercises
157Summary3.12
156The Kiss of Death: Stack Overflow3.11
155Software and CPU Control Interrupts3.10
146Hardware Interrupts and Resets3.9
144Interrupt Operation3.8
141Interrupt Vectors3.7
137Concept of Interrupts3.6
132Subroutine Operation3.5
124Modular Programming Using Subroutines3.4
117Using Subroutines3.3
114Using the Stack to Store Data3.2
112Introducing the Stack3.1
112The Stack, Subroutines, Interrupts, and Resets3
104Exercises
104Summary2.9
90Program Flow Control Using Looping and Branching2.8
74Microcontroller Arithmetic and the Condition Code Register2.7
65Basic Operations2.6
36The Instruction Set and Addressing Modes2.5
31Fetch/Execute Operation of the Central Processing Unit (CPU)2.4
28Using High-Level Languages2.3
21Source Code, Object Code, and the Assembler2.2
19Assembly and Other Programming Languages2.1
18Programming2
18SoftwarePart 2
16Microcontroller Memory Map1.5
13Memory Concepts1.4
8Top-Down View of Microcontroller Systems1.3
5History1.2
1What Is a Microcontroller? and What Is It Used For?1.1
1Microcontroller Concepts1
1Introducing Microcontroller TechnologyPart 1

Microcontroller Technology, Peter Spasov

10Frank Vahid, Univ. of California, Riverside

Details, Details, Details

1. Introduction What Is an Embedded System?
Variations on the Theme C: The Least
Common Denominator A Few Words About
Hardware.

2. Your First Embedded Program Hello, World!
Das Blinkenlights The Role of the Infinite
Loop.

3. Compiling, Linking, and Locating The Build
Process Compiling Linking Locating Building
das Blinkenlights.

4. Downloading and Debugging When in ROM -
Remote Debuggers Emulators Simulators and
Other Tools.

5. Getting to Know the Hardware Understand
the Big Picture Examine the Landscape Learn
How to Communicate Get to Know the
Processor Study the External Peripherals
Initialize the Hardware.

6. Memory Types of Memory Memory Testing
Validating Memory Contents Working with
Flash Memory.

7. Peripherals Control and Status Registers The
Device Driver Philosophy A Simple Timer
Driver Das Blinkenlights, Revisited

8. Operating Systems History and Purpose A
Decent Embedded Operating System Real-
Time Characteristics Selection Process

9. Putting It All Together Application Overview
Flashing the LED Printing "Hello, World!"
Working with Serial Ports The Zilog 85230
Serial Controller.

10. Optimizing Your Code Increasing Code
Efficiency Decreasing Code Size Reducing
Memory Usage Limiting the Impact of C++

11Frank Vahid, Univ. of California, Riverside

ACM Curricula

...“Currently, a dominant area within computing
engineering is embedded systems, the development of
devices that have software and hardware embedded in
them. For example, devices such as cell phones, digital
audio players, digital video recorders, alarm systems, x-
ray machines, and laser surgical tools all require
integration of hardware and embedded software and all
are the result of computer engineering.” (emphasis added)

No mention of embedded systems under
computer science topic.

12Frank Vahid, Univ. of California, Riverside

ES Education Goals

Disciplined
methods – requires
ABSTRACTIONS

Practical design –
requires RESOURCE

awareness

Need to find right order and balance

On Off

Led_o = 1; Led_o = 0;

for(;;){
if (debounce == 1)
{

while (debounce_done == 0);
if (data_val == 1) {

eb_status = YES;

}
else {

eb_status = NO;
}
update = 1;
debounce = 0;

13Frank Vahid, Univ. of California, Riverside

ES Education Goals

Resources

A
bs

tra
ct

io
ns

UndisciplinedUseless

Theoretical Expert

Current approach – Old
habits hard to break

Data-oriented programming

Microcontroller details

Abstractions Resources

Data-oriented
programming

Object-oriented
programming

Data structures

Digital
systems

Compilers

Operating
systems

Embedded
systems

Real-time
systems

Architecture

...

Lower division

Upper division
/ Graduate

Scientific American, April 28, 2008
In Abstract: Avoid Concrete Examples

When Teaching Math
New study indicates that extraneous

information in word problems may cover up
mathematical concepts

...
The results: students who learned using

symbols on average scored 80 percent; the
others scored between 40 and 50 percent

“Technique”

On Off

14Frank Vahid, Univ. of California, Riverside

Leads to Less-Than-Ideal Coders

• Higher-level discipline
lacking, leading to
– Unstructured code
– Error prone
– Hard to maintain
– Not formally verifiable
– Job security for original

program author

for(;;){
if (debounce == 1)
{

while (debounce_done == 0);
if (data_val == 1) {

eb_status = YES;
}
else {

eb_status = NO;
}
update = 1;
debounce = 0;

}
if(update == 1) {
//clear update flag
update = 0;
led_status();
sci_SendAlive();
sci_PutByte(BOOL | eb_status);
goto_sleep = 0;
sleep_cnt = 0;
tx_cnt = 0;

}
else if (send_alive == 1) {
sci_SendAlive();
send_alive = 0;

}

if (goto_sleep == 1) {
led_off();
while(!TXIF); //wait to finish send
sleep();

}

15Frank Vahid, Univ. of California, Riverside

Ouch
if(Flags.Bit.Uart_B == 1) //Set if interrupt occurs

{

INTCONbits.GIEH = 0;//Disable Global Ints

Flags.Bit.Uart_B = 0;

INTCONbits.GIEH = 1;

uart_chk_intB();

check_Rx_B();

}

/*** Check Uart B Tx (GMS Transmitter) Interrupt ***/
if(Flags.Bit.Uart_B_Command) {

if(uart_INTB==0)

{

Flags.Bit.Uart_B_Command = 0;

for(loop = 0; loop < tx_byte_count; loop++)

{

uart_write_Trans(msg_Tx_Out[0]);

}

}

}

/* One msec Timer */

if (Flags.Bit.Timeout == 1)
//1 msec interrupt

{

Flags.Bit.Timeout = 0;

one_msec_counter++;

/* Ten msec Timer */

if(one_msec_counter == 10)

{

one_msec_counter = 0;

ten_msec_counter++;

two_hund_msec_counter++;

if(two_hund_msec_counter == 20)

{

two_hund_msec_counter = 0;

}
/* One Second Timer */

if (ten_msec_counter == 100)

{

ten_msec_counter = 0;

one_sec_counter++;

...

Commercial code I
helped debug,
summer 2008

16Frank Vahid, Univ. of California, Riverside

Towards a Higher-Level ES Programming Discipline –
What Abstractions?

• Basic ES examples:
– Blinking tennis shoe

• When vibration detected, blink lights for 500 ms
in particular pattern

– Motion sensing light
• Detect motion of at least ½ sec duration, turn on

lamp for 10 sec
– Laser eye surgery device

• When button pressed, turn on laser for 300 ms

• Feature: Timed behaviors
– Detect input events or set output events for

specific time durations
– Desktop computing focuses instead on

transforming data (read file, transform, write)

“`If precise timeliness in a networked embedded system is absolutely essential,
what has to change?’ The answer, unfortunately, is `nearly everything.’” Ed Lee,
TR 2005-05, UCB.

17Frank Vahid, Univ. of California, Riverside

Time-Oriented Programming a Fundamental Topic

Data-oriented
programming

Object-oriented
programming

Time-oriented
programming

Data structures

Digital systems

Compilers

Operating
systems

Embedded
systems

Real-time
systems

Architecture

...

Lower division

Upper division /
Graduate

Resources

A
bs

tra
ct

io
ns

UndisciplinedUseless

Theoretician Expert

18Frank Vahid, Univ. of California, Riverside

Time-Oriented Programming

• Requires
– Clean hardware abstraction (avoid swimming in details)
– Good computation models (it’s not about C)

19Frank Vahid, Univ. of California, Riverside

Time-Oriented Programming –
Abstraction 1: “Clean”

Microcontroller

• Desktop prog. – Starts clean
– No OS install, hw setup, etc. -

- Intentionally simplified
• Embedded prog. – Start clean

– No complicated configuration
of pins, timers, clock, etc.

– No electrical issues like high
impedance, pull up resistors,
etc.

– Hard for instructors to resist
sharing expert detail
knowledge

• e.g., “Virtual Microcontroller”
(Sirowy et al WESE’08) Microcontroller

A1

A2

A3

A4

A5

A6

A7

A0

B1

B2

B3

B4

B5

B6

B7

B0

Program Memory

Clock

Timer

TmrInt

Microprocessor

Control
unit

Memory

Arithmetic
-logic unit

CPU

In
pu

ts O
utputs

20Frank Vahid, Univ. of California, Riverside

#define Door1_i A0
#define Door2_i A1
#define Avail_o B0
#define Occup_o B1

void TimerISR()
{
}

void main(void)
{

B0=B1=B2=B3=B4=B5=B6=B7=0;
TimerSet(10); TimerOn();
while (1) {

Avail_o = !Door1_i || !Door2_i;
Occup_o = Door1_i && Door2_i;

}
}

TimerSet(1000); TimerOn();

Clean Microcontroller –
Idealized Timer and ISR

• Expose key resources, simplified

Microcontroller

B1
B2
B3
B4
B5
B6
B7

B0
Program
Memory

Clock

Timer

TmrInt
Microprocessor

void TimerISR()
{
}

1
101000

Note:
Flashing
speed not
to scale

21Frank Vahid, Univ. of California, Riverside

Virtual Microcontroller Environment/Simulator

• Single environment for
– Code
– Compile
– Simulate
– Debug
– Waveforms

22Frank Vahid, Univ. of California, Riverside

Time-Oriented Programming –
Abstraction 2: Computation Model

• Sequential program model (C)
unwieldy for time/event
behavior

• Synchronous State Machines
(synchSM) –
– Timed and event behavior
– Actions
– Transitions each clock tick

• Period – basis of timed
behavior

• Blinking LED example
– The “Hello World” of ES

... // Blinking LED
while (1) {

Led_o = 1;
while (!TimerFlag); // wait 1 s
TimerFlag = 0;
Led_o = 0;
while (!TimerFlag); // wait 1 s
TimerFlag = 0;

}

On Off

Led_o = 1; Led_o = 0;

System: BlinkingLed
Period: 1 s;
Outputs: Led_o;

Initial state
indicator

SMClk

1 s

animation
done

X

State On Off On Off On Off

Led_o

Period “Off” state’s
actions

Led_o

Related abstraction: Timing diagrams

23Frank Vahid, Univ. of California, Riverside

Swim in SynchSM
Abstraction for a While

... // Three LEDs
while (1) {

L0_o=1; L1_o=0; L2_o=0;
while (!TimerFlag);
TimerFlag = 0;
L0_o=0; L1_o=1; L2_o=0;
while (!TimerFlag);
TimerFlag = 0;
L0_o=0; L1_o=0; L2_o=1;
while (!TimerFlag);
TimerFlag = 0;

}

S1 S2

System: ThreeLeds
Period: 1 s;
Outputs: L0_o, L1_o, L2_o;

SMClk 1 s
X

S0

L0_o=1;
L1_o=0;
L2_o=0;

L0_o=0;
L1_o=1;
L2_o=0;

L0_o=0;
L1_o=0;
L2_o=1;

L0_o
L1_o
L2_o

L0_o

L1_o

L2_o

State S0 S1 S2 S0 S1 S2

24Frank Vahid, Univ. of California, Riverside

Keep Swimming...

S1 S2

System: ThreeLedsDir
Period: 1 s;
Inputs: D_i; // Direction
Outputs: L0_o, L1_o, L2_o;

S0

L0_o=1;
L1_o=0;
L2_o=0;

L0_o=0;
L1_o=1;
L2_o=0;

L0_o=0;
L1_o=0;
L2_o=1;

D_i

D_i D_i

!D_i !D_i

!D_i

D_i = 1 – top to bottom sequence
D_i = 0 – bottom to top sequence

L0_o
L1_o
L2_o

SMClk

L0_o

L1_o

L2_o

D_i

State S0 S1 S0 S2 S1 S0

D_i

25Frank Vahid, Univ. of California, Riverside

And Swimming...

• Add variables Wait
L_o=0;

ButPush
L_o=0;
i=0;

LaserOn
L_o=1;
i=i+1;

!P_i

P_i

P_i

!P_i

!(i<3)

i<3

P_i L_o

System: LaserSurgery (LS)
Period: 100 ms;
Inputs: P_i; Outputs: L_o;
Variables: int i;

P_i L_o

WaitL_o=0;

ButPushL_o=0;

Laser1L_o=1;

Laser2L_o=1;

Laser3L_o=1;

!P_i
P_i

P_i
!P_i

1

1

1

System: LaserSurgery (LS)
Period: 100 ms;
Inputs: P_i; Outputs: L_o;

Previous synchSM

26Frank Vahid, Univ. of California, Riverside

And Swimming...

• Add C statements
– If, for, switch, ...
– Expressivity on par with C

System: Toggle (TG)
Period: 100 ms;
Inputs: T_i;
Outputs: C_o(8);
Variables: int Count;

C_o

from pes_ch3_TurnstileCtr.sm

8
092T_i

Init
Count = 0;

C_o = Count;

WaitT1

WaitT0

Count
Count++;

C_o = Count;

1

!T_i

T_i

T_i

!T_i

1

27Frank Vahid, Univ. of California, Riverside

Capture/Simulator Tool Needed

• SM simulators available in various
tools, but not particularly accessible

• Solution – Easy-to-use synchSM
simulator

28Frank Vahid, Univ. of California, Riverside

But We Have to be Practical

• Implement model in C
• Standard template

– No creativity involved
– Obvious via automatic generation

from synchSM too

#define Led_o B0

int BL_Clk=0;
void TimerISR()
{

BL_Clk = 1;
}

void main(void)
{

enum BL_StateType {BL_On, BL_Off} BL_State;
B0=B1=B2=B3=B4=B5=B6=B7=0;// Init outputs
TimerSet(1000); // 1 second
TimerOn();

BL_State = BL_On;
while (1) {

switch (BL_State) { // State actions
case BL_On:

Led_o = 1;
break;

case BL_Off:
Led_o = 0;
break;

} // State actions

while (!BL_Clk); BL_Clk = 0;

switch (BL_State) { // Transitions
case BL_On:

BL_State = BL_Off;
break;

case BL_Off:
BL_State = BL_On;
break;

} // Transitions
} // while(1)

} // main

On Off

Led_o = 1; Led_o = 0;

System: BlinkingLed (BL)
Period: 1 s;
Outputs: Led_o;

29Frank Vahid, Univ. of California, Riverside

Train Students in this
“Mindless” Translation

void main() {
enum states {TL_S0, TL_S1, TL_S2} TL_State;
B0=B1=B2=B3=B4=B5=B6=B7=0; // Init outputs

TimerSet(1000); // 1 second
TimerOn();

TL_State = TL_S0; // Initial state
while(1) {

switch(TL_State) { // State actions
case TL_S0:

L0_o=1; L1_o=0; L2_o=0;
break;

case TL_S1:
L0_o=0; L1_o=1; L2_o=0;
break;

case TL_S2:
L0_o=0; L1_o=0; L2_o=1;
break;

} // State actions

while(!TL_Clk); TL_Clk = 0;

switch(TL_State) { // Transitions
case TL_S0:

TL_State = TL_S1;
break;

case TL_S1:
TL_State = TL_S2;
break;

case TL_S2:
TL_State = TL_S0;
break;

default:
TL_State = TL_S0;

} // Transitions
} // while(1)

} // main

#define L0_o B0
#define L1_o B1
#define L2_o B2

int TL_Clk = 0;

void TimerISR(){
TL_Clk = 1;

}
...

S1 S2

System: ThreeLeds (TL)
Period: 1 s;
Outputs: L0_o, L1_o, L2_o;

S0

L0_o=1;
L1_o=0;
L2_o=0;

L0_o=0;
L1_o=1;
L2_o=0;

L0_o=0;
L1_o=0;
L2_o=1;

L0_o
L1_o
L2_o

St
at

e
ac

tio
ns

Tr
an

si
tio

ns

30Frank Vahid, Univ. of California, Riverside

Multiple Behaviors

• Capture TWO synchSMs
– Execute concurrently

• Communication methods
• ...

On Off

Led_o = 1; Led_o = 0;

BlinkingLed (BL)
Period: 1 s;
Outputs: Led_o;

S1 S2

ThreeLeds (TL)
Period: 1 s;
Outputs: L0_o, L1_o, L2_o;

S0

L0_o=1;
L1_o=0;
L2_o=0;

L0_o=0;
L1_o=1;
L2_o=0;

L0_o=0;
L1_o=0;
L2_o=1;

L0_o
L1_o
L2_o

Led_o

System: BlinkingLedAndThreeLeds

31Frank Vahid, Univ. of California, Riverside

Again, Use C Template

• Do one SM’s
actions, then the
other SM’s
actions

• Wait on clock tick
(assuming same
period, so use
one clock)

• Do one SM’s
transitions, then
the other SM’s
transitions

void main() {
enum BL_states {BL_On, BL_Off} BL_State;
enum TL_states {TL_S0, TL_S1, TL_S2} TL_State;
B0=B1=B2=B3=B4=B5=B6=B7=0; // Init outputs
TimerSet(1000); // 1 second
TimerOn();
BL_State = BL_On; // Initial state
TL_State = TL_S0; // Initial state
while(1) {

// State actions
switch (BL_State) {

case BL_On:
Led_o = 1;
break;

case BL_Off:
Led_o = 0;
break;

}
switch(TL_State) {

case TL_S0:
L0_o=1; L1_o=0; L2_o=0;
break;

case TL_S1:
L0_o=0; L1_o=1; L2_o=0;
break;

case TL_S2:
L0_o=0; L1_o=0; L2_o=1;
break;

} // State actions

while(!BL_TL_Clk);
BL_TL_Clk = 0;

// Transitions
switch (BL_State) {

case BL_On:
BL_State = BL_Off;
break;

case BL_Off:
BL_State = BL_On;
break;

}
switch(TL_State) {

case TL_S0:
TL_State = TL_S1;
break;

case TL_S1:
TL_State = TL_S2;
break;

case TL_S2:
TL_State = TL_S0;
break;

default:
TL_State = TL_S0;

} // Transitions
} // while(1)

} // main

#define Led_o B0

#define L0_o B1
#define L1_o B2
#define L2_o B3

int BL_TL_Clk = 0;
void TimerISR(){

BL_TL_Clk = 1;
}

Thus, SynchSM’s processed in a round-robin
manner

from pes_ch4_BlinkingLedAndThreeLeds.c

32Frank Vahid, Univ. of California, Riverside

Leads Naturally to Parallel Programming and RTOS Concepts

• “Natural” behavior decomposition
– Synch concurrency easier to initially learn than asynch

• Communication methods among SMs
• Multitasking

– Diff periods, priorities
• C coding with schedulable blocks
• Task periods, deadlines, etc
• synchSM serves as perspective for parallel and real-time concepts

– Better RTOS understanding and usage
– Structured code in absence of RTOS

• Like surgeon who learns with scalpel

• By the way, also leads naturally to RTL design
– FPGAs

33Frank Vahid, Univ. of California, Riverside

Other Models and
Approaches

• Synchronous dataflow
• Kahn process networks
• Esterel, Statecharts

Peter Marwedel’s Intro ES course (prereqs: programming, SMs):
• Introduction
• Models of computation
3 FSM+shared memory: StateCharts
4 FSM+message passing: SDL; Petrinets
5 Data flow: Kahn process networks, SDF, Labview
6 Imperative programming: Java, ADA, CSP, MPI
7 Discrete event models: VHDL, SystemC
8 ...

Statecharts XML (SCXML)

...

UML Statecharts
Polis CFSMs

34Frank Vahid, Univ. of California, Riverside

Summary

• Early time-oriented programming
becoming essential
– Sequential habits are hard to break
– Clean microcontroller good starting

point
– SynchSM one good computation

model
• Explicit time management
• Basis for RTOS concepts
• Models in C

• Introducing time-oriented
programming courses EARLY in
computing curricula will be a
challenge
– (OO precedent – “Objects first”)
– A “time first” approach

Data-oriented
programming

Object-oriented
programming

Time-oriented
programming

Data structures
Lower division

Resources

A
bs

tra
ct

io
ns

UndisciplinedUseless

Theoretician Expert

