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Abstract. We previously developed building blocks to enable end-users to 
construct customized sensor-based embedded systems to help monitor and 
control a users' environment. Because design objectives, like battery lifetime, 
reliability, and responsiveness, vary across applications, these building blocks 
have software-configurable parameters that control features like operating 
voltage, frequency, and communication baud rate. The parameters enable the 
same blocks to be used in diverse applications, in turn enabling mass-produced 
and hence low-cost blocks. However, tuning block parameters to an application 
is hard. We thus present an automated approach, wherein an end-user simply 
defines objectives using an intuitive graphical method, and our tool 
automatically tunes the parameter values to those objectives. The automated 
tuning improved satisfaction of design objectives, compared to a default 
general-purpose block configuration, by 40% on average, and by as much as 
80%.  The tuning required only 10-20 minutes of end-user time for each 
application. 

1 Introduction 

Silicon technology continues to becomes cheaper, smaller, and consume less power, 
following Moore’s Law. This trend has not only enabled new complex computing 
applications such as military surveillance, health monitoring, and industrial equipment 
monitoring using what is commonly referred to as sensor networks [16], but opens up 
numerous possibilities for lower complexity applications within the embedded system 
domain. Such applications in the home might include a system to monitor if any 
windows are left open at night, an indicator to alert a homeowner that mail is present 
in the mail box, or an alarm that detects if a child is sleepwalking at night. In the 
office, employees may monitor which conference rooms are available, track 



temperatures at various locations within the building, or wirelessly alert a receptionist 
away from his/her desk. Furthermore, scientists may setup a system to activate a 
video camera at night when motion is detected near an animal watering hole, or to 
monitor weather conditions over several weeks. Numerous possible examples exist 
that span varied domains, professions, and age groups. In this paper, an end-user is an 
individual developing a sensor-based computing application, such as a homeowner, 
teacher, scientist, etc., who does not have programming or electronics expertise. 

With so many application possibilities, why aren’t these sensor-based systems 
more prevalent? The reason is that creating customized embedded systems today 
requires expertise in electronics and programming. For example, a homeowner may 
want to create a seemingly simple system to detect if the garage door is left open at 
night. He would first need to figure out how to detect nighttime and would thus need a 
light sensor. However, searching for “light sensor” in popular parts catalogs [4,9,15] 
will not yield the desired results. Instead, the homeowner would need a light 
dependent resistor or photoresistor, along with a handful of resistors, an opamp, 
and/or transistors, depending on the specific implementation. Figuring out how to 
connect these components will require reading a datasheets and schematics. Next, he 
would need a power supply, and must consider voltage levels, grounding principles, 
and electric current issues. The homeowner would also need to determine what type 
of sensor to use to detect if the garage door is open, to implement wireless 
communication (the homeowner probably doesn’t want a wire running from the 
garage to an upstairs bedroom or kitchen), to program microprocessors to send 
packets to conserve power, and so on. The seemingly simple garage-open-at-night 
system actually requires much expertise to build. Alternatively, an engineer could be 
hired to build a custom system, but the cost is seldom justifiable. Off-the-shelf 
systems [8,18] provide another option, but highly specific systems tend to be 
expensive due to low volume. Also, if the desired functionality is not found (e.g., a a 
system for two garage doors), customizing the system can be difficult or impossible. 

We aim to enable end-users with no engineering or programming experience to 
build customized sensor-based systems. Our approach is to incorporate a tiny cheap  
microprocessor with previously passive devices. We incorporate a microprocessor 
with buttons, beepers, LEDs (light emitting diodes), motion sensors, light sensors, 
sound sensors, etc., along with additional hardware, such that those devices can 
simply be connected with other devices using simple plugs. Interfacing to hardware 
and communication between blocks is already incorporated within each individual 
block. We refer to such devices as eBlocks – electronic blocks – which we developed 
in previous work [2,5]. eBlocks eliminate the electronics and programming 
experience previously required to build sensor-based systems. The user-created block 
connectivity determines the functionality of the system, as shown in Figure 1. 
Furthermore, because the same blocks can be used in a variety of applications, high 
volume manufacturing results in low block costs of a few dollars or less.   

The variety of application possibilities results in a variety of application 
objectives. For example, one application may require high responsiveness and 
reliability, whereas another application may require long battery lifetime. One way to 
support the variety of objectives is to include software-configurable parameters in 
each eBlock. Thus, the same eBlock may operate at any of several voltage levels and 
frequencies, may communicate using any of several baud rates, may utilize any of 



several error detection/correction schemes, and so on, depending on the configuration 
settings in software. An end-user could then tune a block’s parameter values to 
optimize for particular design objectives. Existing sensor-based block platforms 
contain many such parameters [3,7,20]. Some parameters correspond to hardware 
settings, others to low-level software settings (such as low-layer network settings, 
sleep-mode settings, etc.). Other parameters may involve higher-level software 
settings, such as algorithmic-level choices impacting compression schemes or data 
aggregation methods. In this paper, we focus on the hardware and low-level software 
parameters, as those parameters most directly enable mass-produced blocks.  

However, tuning a block’s parameter values to an application’s design objectives 
is hard, beyond the expertise of most end-users. A block’s parameter space may 
consist of billions of possible configurations, and those parameters are heavily 
interdependent. Yet careful tuning of those parameters can have a large impact on 
design objectives. Adlakha et al [1] showed the impact and relationship of the 
parameters of a block’s shutdown scheme, network routing algorithms, and data 
compression schemes. Yuan and Qu [21] showed the relationship and impact of the 
parameters of processor type, encryption/decryption algorithms, and dynamic voltage 
scaling. Tilak et al [19] studied the impact of the parameters of sensor capability, 
number of sensors deployed, and deployment strategy (grid, random, and biased 
deployment) on design metrics of accuracy, latency, energy, throughput, and 
scalability. Heinzelman et al [6] showed the energy impacts of the parameters of 
different communication protocols, transmit/receive circuitry, message size, distance 
between blocks, and number of intermediate blocks. Martin et al [14] considers the 
effects of number of sensors and sampling rate on the accuracy and power 
consumption. Shih et al [17] examined the impact of different protocols and 
algorithms on energy consumption, including use of dynamic voltage scaling and 
sleep states. Some research on block synthesis [13] has appeared, emphasizing the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Sample applications built with eBlocks, (a) vineyard weather tracker and (b) 
endangered species monitor. 
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different but possibly complementary problem of mapping an application’s behavioral 
description onto a fixed or custom designed network of blocks.  

Many of these previously researched parameters can be incorporated into a block 
as software-configurable parameters. Most previous works have only studied the 
parameters and then indicated the need for careful tuning.  In this paper, we present a 
first approach to automating the support of such tuning. Essentially, our approach 
represents employment of established synthesis methodology to a problem until now 
investigated primarily as a networking problem. We refined the synthesis methods, 
especially that of objective function definition, to the problem. The contribution of the 
work is in enabling end-users, without engineering experience, to straightforwardly 
define design objectives, through our introduction of an intuitive graphical objective 
function definition approach for use by end-users, and our development of fast 
methods to automatically tune parameters according to those functions.  The net result 
is that these block-based embedded computing systems can better satisfy end-user 
requirements on battery lifetime, reliability, and responsiveness.  

We have also developed complementary computer-based tools that automatically 
generate an optimized physical implementation of an eBlock system derived from a 
virtual system function description [12]. End-users are able to specify optimization 
criteria and constraint libraries that guide the tool in generating a suitable physical 
implementation, without requiring the end-user to have prior programming or 
electronics experience. In contrast, this paper considers the resulting physical 
implementation and automatically tunes software parameters to meet high-level goals 
such as lifetime or reliability. 

Section 2 of this paper provides an overview of our approach. Sections 3, 4 and 5 
describe our approach’s steps of block characterization, application characterization, 
and exploration/feedback. Section 6 highlights results of experiments using our 
prototype tool implementing the approach. 

2 Approach Overview  

Figure 2 provides an overview of our proposed approach for tuning a parameterized 
block to an application’s design objectives. A block designer provides a block 
configuration tool, including pre-characterization of the block parameters, as a 
support tool to the end-user, along with other support tools like programming and 
debug environments (such as the TinyOS and NesC environments provided with a 
particular sensor block type [7]). An end-user characterizes application design 
objectives to the tool by modifying the default objectives, and then asks the tool to 
tune parameters to the objectives. The tool applies an exploration heuristic and finds 
parameter values best satisfying the objectives. Based on the values, the end-user may 
choose to modify the objectives – in case not all objectives could be met, the end-user 
may wish to modify the objectives – resulting in an iterative use of the tool. Once the 
end-user is satisfied, the tool outputs a set of parameter values (known as a 
configuration) for the blocks. The block support tools download those parameter 
values into the blocks, along with block programs and possible data, and those values 
configure the block’s hardware and software components upon startup/reset of the 



block in a deployed network. Presently, all blocks would have the same configuration, 
but future directions may support different configurations for different blocks.  

We now describe the approach’s parts in more detail, and indicate how we 
addressed each part in our prototype tool. We developed the tool with eBlocks in 
mind, but the approach can be applied and/or generalized for other block types.   

3 Block Characterization by the Block Designer 

A block designer must characterize the block for the block-tuning tool. Such 
characterization consists of creating three items: computation/communication 
parameter definitions, equations relating parameter configurations to design metrics, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 2: Block tuning tool overview. A block designer performs block characterization once. 

An end-user performs application characterization by customizing objective functions, 
optionally refines the block characterization by reducing possible parameter values, and then 
executes the parameter space exploration heuristic. The tool provides feedback on objective 
function achievement, based on which the end-user may choose to refine objective functions 
and re-iterate. Once done, the tool incorporates the chosen parameter values into the block’s 

startup/reset software.  
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and a parameter interdependency description. Note that these items are created by a 
block designer, who is an engineering expert, and not by end users.  

3.1 Computation/Communication Parameter Definitions 

The block designer must define the list of block parameters and the possible values 
for each parameter. The physical block we used supported the following parameters:  

 Microcontroller Supply Voltage (V) = {3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 
4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5} 

 Microcontroller Clock Frequency (Hz) = {32k, 100k, 200k, 300k, 400k, 455k, 
480k, 500k, 640k, 800k, 1M, 1.6M, 2M, 2.45M, 3M, 3.6M, 4M, 5.3M, 6M, 7.4M, 
8M, 8.192M, 9M, 9.216M, 9.8304M, 10M, 10.4M, 11.06M, 12M, 13.5M, 14.74M, 
16M, 16.384M, 16.6666MHz, 17.73M, 18M, 18.432M, 19.6608M, 20M} 

 Communication Baud Rate (bps) = {1200, 2400, 4800, 9600, 14.4K, 28.8K} 
 Data Packet Transmission Size = {4 bits, 1B, 2B, 4B} 
 Data Timeout = {0.2s, 0.3s, 0.4s, 0.5s, 0.6s, 0.7s, 0.8s, 0.9s, 1s, 1.25s, 1.50s, 1.75s, 

2s, 2.5s, 3s, 3.5s, 4s, 4.5s, 5s, 6s, 7s, 8s, 9s, 10s, 20s, 30s, 40s, 50s, 1m, 2m, 3m, 
4m, 5m, 6m, 7m, 8m, 9m, 10m, 15m, 20m, 25m, 30m} 

 Alive Timeout = {0.1s, 0.2s, 0.3s, 0.4s, 0.5s, 0.6s, 0.7s, 0.8s, 0.9s, 1s, 1.25s, 1.50s, 
1.75s, 2s, 2.5s, 3s, 3.5s, 4s, 4.5s, 5s, 6s, 7s, 8s, 9s, 10s, 20s, 30s, 40s, 50s, 1m, 2m, 
3m, 4m, 5m, 6m, 7m, 8m, 9m, 10m, 15m, 20m, 25m} 

 Error Check/Correct (ECC) Strategy = {none, crc, parity, checksum1, checksum2, 
hamming1, hamming2} 

The supply voltage, clock frequency, and baud rate possible values came from the 
databook of the physical block’s microcontroller, in this case a PIC device, and were 
all software configurable in the physical block.  

The data packet size, data timeout, alive timeout, and error check/correct 
strategies were all user-specified settings in the basic support software of the physical 
block. Data packet size is the number of bits in a data packet – in our block, the 
choice impacted the range of integers transmittable. Data timeout is the maximum 
time between successive data packets – shorter timeouts result in faster 
responsiveness as blocks are added/removed to/from a network. Alive timeout is the 
maximum time between short (and hence low power) “I’m alive” messages used by 
the blocks to indicate that the block is still functioning, again impacting 
responsiveness. The error checking/correcting (ECC) strategies are extra bits placed 
in data packets to detect or forward-error-correct incorrectly received bits. The parity 
strategy uses sends a single parity bit for every 8-bit data packet. The crc strategy 
transmits an extra packet containing the remainder of the data packets and a CRC-3 
generating polynomial. The checksum1 strategy transmits an extra packet consisting 
of the corresponding sum of the data packets. The checksum2 ECC strategy negates 
the extra packet before transmission. The hamming1 ECC strategy considers the data 
as a matrix and generates row and column parity error checking packets. The 
hamming2 strategy embeds parity bits within the packets at every power of two-bit 
location (bit 1, 2, 4, etc.). All these methods are standard methods.  



A set of values, one for each parameter, defines a block configuration. We 
presently require the block designer to explicitly list possible values for a parameter. 
A similar method would allow a block designer to specify the value range along with 
the step size between successive values for a parameter. However, a block designer 
must be careful to avoid introducing unnecessarily-fine granularity to a parameter’s 
values, as such granularity increases the configuration space to be explored by the 
tool, and may increase the number of interdependency tables (discussed in the next 
section). For the same reasons, we require that the block designer explicitly quantize a 
parameter’s possible values, rather than merely specifying the parameter’s range.  

3.2 Parameter Range Interdependency Tables 

Not every parameter configuration is valid. For example, a particular voltage setting 
may limit the range of possible clock frequencies.  Likewise, a particular frequency 
may limit the range of possible baud rates. A block designer indicates such 
interdependencies using tables. For a given parameter, the block designer may 
optionally create a table providing, for any parameter value, lower and upper bounds 
for any other parameter. The exploration tool will use these tables to exclude invalid 
configurations from consideration. 

3.3 Equations Relating Parameter Configurations to Design 
Metric Values 

The block configuration tool must map a given parameter configuration to specific 
values for each design metric supported by the tool. Our tool presently supports the 
design metrics of lifetime, reliability, block latency, connect responsiveness, and 
disconnect responsiveness, defined in Section 4.1. We derived equations from 
datasheet information, textbooks, and previous findings, and thus we do not claim 
those equations as a contribution of this work. Highly accurate equations can become 
rather complex if all parameter values are carefully considered. While verifying and 
improving the accuracy of those equations is an important direction of investigation, 
that direction is largely orthogonal to the development of our overall methodology.  

3.4 Parameter Value Reductions 

A block designer performs the three above-described block characterization subtasks 
only once, and then incorporates the characterizations into the tool. A fourth, optional, 
block characterization subtask may be performed by an end-user to reduce the number 
of possible configurations and hence speedup the exploration step. In this fourth task, 
the end-user reduces the number of possible values for a given parameter, either by 
restricting the parameter’s range, or by reducing the granularity of steps between 
successive parameters. Our present tool allows the end-user to manually exclude 



particular parameter values from consideration. However, the tool does not allow the 
end-user to add new values, because such new values would require new range 
interdependency tables, and because the equations mapping configurations to design 
metric values might not be valid for new values outside the range defined by the block 
designer. If an end-user deletes all but one possible value for a parameter (the tool 
requires that at least one value remain for each parameter), that parameter ceases to 
act as a parameter during exploration, being fixed at the chosen value.  

4 Application Characterization by the End User 

The previous section discussed block characterization, a job performed once by a 
block designer, and incorporated into the block configuration tool. Different end-users 
will then use this tool to tune the block to different applications. The end-user must 
characterize the application for the tool so that the tool can tune to that application. 
Thus, application characterization will be performed many times.  

Application characterization consists of specifying the design metric objective 
functions and specifying the overall objective function. Our tool provides default 
functions targeted to general-purpose block use, so the end-user can merely customize 
particular functions that should deviate from the defaults. 

4.1 Design Metric Objective Function 

A design metric objective function maps a design metric’s raw value to a normalized 
value between 0 and 1 representing the “goodness” of the value, with 1 being the 
worst and 0 being best. An end-user specifies a design metric objective function for 
each design metric by defining the range of the X-axis and then by drawing a plot that 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: End-user specifies the “goodness” of a lifetime value by assigning normalize values 
between 0 (best) and 1 (worst) to various lifetimes. (a) End-user determines a lifetime of 0 

years is inadequate, sets goodness to 1, (b) lifetime of 2 years is adequate, sets goodness to 0.1, 
(c) intermediate goodness are automatically determined by the tool, (d) lifetime of 3.5 meets 

system requirements, sets goodness to 0, (e) intermediate goodness determined by tool.  
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maps each X-axis value to a value between 0 and 1, as shown in Figure 3. Our present 
tool captures the function as a table rather than plot, but the concept is the same.  The 
end-user currently captures “goodness” as a piecewise linear function, however, the 
end-user can ideally specify “goodness” in any format desired (e.g. linear, quadratic, 
exponential) limited only by the formats supported by the capture methodology. 

Our tool presently supports capture of the following design metric objective 
functions: 

 Lifetime – the number of days a block can run powered by the block’s battery. 
 Reliability – the mean time in days between undetected corrupt data packets. 
 Block Latency – the time in seconds for a single block to process an input event and 

generate new output. 
 Connect Response – the time for newly connected blocks to receive good input and 

behave properly. 
 Disconnect Response – the time for newly disconnected blocks to behave as 

disconnected. 
Initially, in developing eBlocks, the above design metrics were most relevant. 
However, more design metrics are certainly possible. An end-user developing systems 
intended to monitor a battlefield for troop movements would likely be interested a 
design metric describing security. Alternatively, an end-user developing systems 
intended to process video or audio data would likely be interested in a design metric 
describing throughput of the system. The end-user determines which designs metric 
are important for their particular application and chooses which design metrics they 
want to consider in determining a block configuration. 

Figure 4 illustrates example definitions of objective functions for these design 
metrics. The functions correspond to the default functions that our tool provides, 
intended for a general application. For example, the function for lifetime indicates that 
a lifetime of 0 years is the worst possible and of 2 years is nearly the best possible, 
with linear improvement in between. Lifetime improvements from 2 years to 3.5 years 
are only slightly better than 2 years, and improvements beyond 3.5 years are not 
important according to the function. As another example, the function for mean time 
between corrupted packets indicates goodness improvement from 0 days to 1 day, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Default design metric objective functions for general purpose block usage. 
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with reduced improvement beyond 1 day. The function for block latency says that 0 
second latency is the best, quickly degrading up to 0.06 seconds. Latencies beyond 
0.06 seconds are very bad. Although all the functions shown are piecewise linear, the 
functions can also be non-linear.  

Providing the ability to custom define each design metric’s objective function is 
an important part of our approach. We observed that traditionally-used standard 
functions, such as those based on mean-square error, penalty, or barrier functions 
[11], do not readily capture the end-user’s true intent – Figure 6, discussed later, 
illustrates this point. 

Notice that the end-user need not know how those metrics are related to a block’s 
parameters, and in fact need not even be aware of what block parameters exist.  The 
end-user merely customizes the design metric objective functions. 

4.2 Overall Objective Function 

The end-user also configures an overall objective function, which captures the relative 
importance of the individual design metrics in a function that maps the individual 
metric values to a single value. We currently define the default overall objective 
function as a weighted sum of the individual design metric normalized values: 

Foverall = (A * Flifetime) + (B * Freliability) + (C * Flatency) + (D * Fconnect_resp.) + 

(E * Fdisconnect_resp.) 

The end-user customizes the values of the constants A, B, C, D and E to indicate the 
relative importance of the metrics, as shown in Figure 5.  A more-advanced end-user 
can instead use a spreadsheet-like entry method to redefine the overall objective 
function as any linear or non-linear function of the design metric function values.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: End-users utilize a web-based interface to specify the relative importance of each 
design metric. Individual weights are assigned by setting the corresponding slide switch to the 

desired position. Each design metric weight is then combined into an overall objective 
function.   
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A key feature of our approach is the separation of defining design metric 
objective functions, and weighing those functions’ importance in an overall objective 
function. This separation enables an end-user to focus first on what metric values are 
good or bad – e.g., a lifetime below 6 months is bad for one application, below 2 
years for another application – and then separately to focus on the relative importance 
of those metrics – e.g., lifetime may be twice as important as latency in one 
application, but one third as important for another application. Hence, the 
orthogonality of the definition of metric values as good or bad, and of the relative 
importance of metrics, is supported by our approach.  

5 Configuration Space Exploration and Feedback 

Configuration space exploration searches the space of valid parameter values for a 
configuration that minimizes the value of the overall objective function. For each 
possible configuration, the exploration tool applies the block designer specified 
design metric evaluation equations to obtain raw values for each design metric, which 
the tool then inputs to the end-user specified design metric objective functions to 
obtain normalized values, and which the tool finally combines into a single value 
using the end-user specified overall objective function.  

One search method is exhaustive search, which enumerates all possible parameter 
value configurations and chooses the configuration yielding the minimized objective 
function value. For the parameter ranges and values defined earlier in the paper, the 
search space (after pruning invalid configurations caused by parameter 
interdependencies) consists of over 100 million configurations. Searching that space 
exhaustively is feasible, requiring 3-4 minutes on a 3 GHz Pentium processor. 
However, for blocks with more parameters or more values, exhaustive search may be 
infeasible. We thus investigated faster methods. 

As our parameter search problem resembles an integer linear program, we 
considered integer linear program solution methods (optimal or heuristic), but a 
problem is that such an approach limits the objective functions to linear functions. 
Instead, an end-user might desire a non-linear function, to greatly penalize values over 
a certain amount for squaring, for example. 

We also considered greedy or constructive approaches that used some knowledge 
of the problem structure to efficiently traverse the search space. However, we sought 
to keep the exploration tool independent of the particular block parameters and 
objective functions.  Greedy or constructive heuristics that don’t consider problem 
structure may perform poorly. However, the block-designer-specified equations and 
parameter interdependency descriptions can improve the design of such heuristics. 
We leave this direction for future investigation.   

Ultimately, we chose to use an iterative improvement approach, namely the 
simulated annealing heuristic [10]. The heuristic has the advantage of being 
independent of block parameters and objective functions. Furthermore, the heuristic 
provides a simple means for an end-user to tradeoff exploration time with 
optimization amount. The end-user can indicate allowable runtime, from which the 
tool can derive an appropriate annealing cooling schedule. We presently utilize a 



cooling schedule that executes for just a few seconds on a 3 GHz Pentium, while 
yielding near-optimal solutions. The time complexity of the simulated annealing 
heuristic is in general not known, depending heavily on the cooling schedule and 
problem features. Yet in practice, a specific cooling schedule yields roughly similar 
runtimes for the same general problem, as occurred in our case.  

For the chosen best configuration, the tool provides feedback to the end-user in 
two forms. One form is the value of the overall objective function and the relative 
contribution of each design metric objective function value to the overall value end-
user specified design metric objective function, for each design metric. Based on this 
information, the end-user may actually choose to refine his/her design metric or 
overall objective function definitions, iterating several times until finding a 
satisfactory configuration.  

The block configuration tool converts the final configuration into software that 
appropriately fixes the sensor block parameters to the configuration’s values. The tool 
achieves such fixing primarily by setting constant values for global variables uses by 
the microcontroller’s startup/reset code. Many of those global variables actually 
correspond to special microcontroller or peripheral built-in registers, such a 
microcontroller registers that select clock frequency or baud rate, and a register in a 
digital voltage regular that controls supply voltage to the microcontroller. Other 
variables are used by software routines to choose among data structures and/or 
functions, such as for the error check/correct routine.  

6 Experiments 

We implemented our approach in a prototype tool, consisting of 8,000 lines of Java 
code, and interfacing with Excel spreadsheets to support equation capture and plot 
displays. We considered four different applications, all but the “Vineyard” example 
being derived from actual projects involving the physical blocks. Those applications’ 
design metric objective functions appear in Figure 6. 

The Educational Science Kit application utilizes eBlocks to introduce middle-
school students to simple engineering concepts. Students combine and configure 
blocks to create customized sensor-based embedded systems in their classrooms. For 
the purposes of this paper, the students are not the end-users – rather, the end-user is 
the person putting eBlocks into the kit for student use. Acting as that end-user, we 
defined the design metric objective functions shown in Figure 6(a). The reliability 
function (mean time between corrupted packets) differs from its general case version 
in Figure 4, as reliability is less important because the systems being built in 
classrooms don’t monitor or control important situations. In contrast, the block 
latency and connect response functions both demand higher performance than for the 
general case, as the students basic usage of the blocks will involve repeated 
adding/deleting of blocks, and students might be confused by long latencies or slow 
response. For the overall objective function, we weighed lifetime with 0.1 
(unimportant), reliability with 0.5, throughput with 0.5, connect response with 1, and 
disconnect response with 1 (important). 



The Vineyard Weather Tracker application is a long-life application deployed in 
a vineyard to track temperature, rainfall, and average hours of sunlight. Compared to 
the general case of Figure 4, Figure 6(b) shows that longer latency is acceptable 
because the items being monitored are not rapidly changing, and that slower 
disconnect and connect responses are also acceptable as blocks won’t be 
disconnected/connected frequently. For the overall objective function, we weighed 
lifetime with 1 (important), reliability with 0.5, latency with 0.5, disconnect response 
with 0.1, and connect response with 0.1 (unimportant). 

The Mosquito Control application reads data from a mosquito trap and meters out 
insecticide accordingly. Figure 6(c) shows that lifetime beyond 6 months is not 
necessary because the mosquito season lasts only 6 months, after which all blocks will 
be reclaimed and stored, with all batteries replaced the following season. We weighed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 6: End-user defined design metric objective functions for four different applications. 
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lifetime with 0.5, reliability with 1, latency with 0.5, and disconnect/connect 
responses with 0.2. The weights indicate that reliability is most important, as 
improper output of insecticide should be avoided.  

The Endangered Species Monitoring system detects motion near a feeding site 
and video-records the site for a specified duration, for later analysis by environmental 
scientists estimating the population of endangered species. Figure 6(d) shows that the 
key difference from the general case is that lifetime less than 1.5 years is 
unacceptable, as the feeding site is in a remote location that is hard to access, and thus 
batteries should not have to be replaced frequently. We assigned lifetime a weight of 
1, reliability 0.8, latency 0.8, and disconnect/connect responses weights of 0.1 each. 

Using our tools, characterized each applications requires only 10 minutes.   
For each application, we executed our automated tuning tool, for both the end-

user application characterizations in Figure 6, and the general case of Figure 4. To 
verify that the tool was effectively finding good configurations, we also executed 
exploration using exhaustive search. The tool’s execution time averaged 10 seconds 
per application, while exhaustive search averaged over 3.5 minutes, both 
methodologies running on the same 3 GHz Pentium computer. Figure 7 summarizes 
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Figure 7: Normalized overall objective function results comparing the various application 
configurations obtained utilizing exhaustive search (Opt) verses simulated annealing (SA): 
General (Gen), Educational Science Kit (Edu), Vineyard Weather Tracker (Vin), Mosquito 

Control (Msq), and Endangered Species Monitor (Edg). 

Table 1: Configurations achieved by heuristic exploration for various applications. Numbers 
in parentheses indicate values obtained by exhaustive search, where those values differed from 

heuristically-obtained values.    

 Applications 

 General 
Vineyard Weather 

Tracker 
Educational 
Science Kit 

Mosquito Control 
Endangered 

Species Monitoring 
Voltage (V) 3.1 (3) 4.8 (3.0) 3.5 (3.0) 3.1 (3.0) 3.1 (3.0) 
Frequency (MHz) 2.45 11.06 (9) 2 (1.6) 2 (0.64) 3 (2.45) 
Baudrate 9600 14400 4800 9600 9600 
Data Packet (bytes) 4 (2) 1 2 1 2 (4) 
Data Timeout (sec) 1.25 (1) 0.2 20 1.75 (0.9) 7 
Alive Timeout(sec) 0.3 0.1 2.5 (5) 0.1 0.7 (0.3) 
ECC Strategy crc none hamming1 none hamming2 

Gen Edu Vin Msq Edg 

lifetime 
 reliability 
 latency 
 connect 
 disconnect 



results, showing that the tool’s simulated annealing heuristic found near optimal 
results for all the applications. The figure also shows the relative contribution of each 
design metric objective function to the overall objective function, showing similar 
achievements between heuristic and exhaustive exploration. Table 1 shows the 
specific configurations found by the heuristic and exhaustive exploration methods. 
The differing values obtained by the two methods show that different parameter 
configurations can yield similar overall objective function values.  

Figure 8 shows the more important results that compare the use of the general 
block configuration to the configuration obtained through our tuning approach (using 
the heuristic exploration). The results show that the general block configuration works 
well for the latter two applications (Mosquito Control, and Endangered Species 
Monitor). However, the general configuration does not work well for the first two 
applications (Educational Science Kit, and Vineyard Weather Tracker) – tuning 
significantly improves the overall objective function value for those applications.  

Figure 9 summarizes the percent improvement of overall objective function 
values for the tuned blocks compared to the generally configured blocks.  

 

 

 

 

 

 

Figure 8: Percent improvement in overall objective function utilizing customized block 
configuration verses general block configuration across various applications: Educational 

Science Kit (Edu), Vineyard Weather Tracker (Vin), Mosquito Control (Msq), and 
Endangered Species Monitor (Edg). 

 
 
 
 
 
 
 
 
 

 
Figure 9: Normalized overall objective function results comparing the general configuration 
(Gen) verses the application specific configuration across various applications: Educational 

Science Kit (Edu), Vineyard Weather Tracker (Vin), Mosquito Control (Msq), and Endangered 
Species Monitor (Edg). 
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Figure 10 illustrates the type of feedback provided by the block-tuning tool to the 
end-user. Figure 10(a) provides the overall objective function value achieved by 
exploration, along with the relative contribution of each design metric to that value. 
Further, Figure 10(b) shows the configuration’s raw values and their mapping to 
normalized values for each design metric. Note that the overall objective function 
value is not just a sum of the normalized design metric values, because of weights 
assigned by the end-user in the overall objective function. Based on the feedback, the 
end-user may decide to refine a particular design metric objective function, perhaps 
deciding that tolerating poorer performance on one metric (e.g., connect response) is 
acceptable in the hopes of improving another metric (e.g., lifetime). Alternatively, the 
end-user might modify the weights in the overall objective function.  

Notice that the end-user need not have any awareness of what parameters exist on 
the block (e.g., voltage, baud rate), nor of the values of those parameters for a 
particular configuration (e.g., 3 V, 2400 baud). The tuning approach instead presents 
the end-user with an abstraction that only deals with objective functions. Such 
abstraction enabled the end-user to perform all necessary tuning steps, including 
application characterization, exploration, and feedback analysis, in just 10 minutes. 

 

7 Conclusions 

We presented an approach that enables end-users to automatically tune parameterized 
building blocks to meet end-user defined application goals such as battery lifetime, 
reliability, responsiveness, and latency. The block tuning approach consisted of the 
key steps of block characterization by the block design, and then application 
characterization, exploration, and feedback involving the end user. Our approach 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10: Goal of the tool is to minimize the overall objective function value. Tool provides 
feedback of the tool to the end-user after exploration illustrating the configuration’s (a) overall 

objective function value achieved along with the relative contribution of each design metric 
and (b) the raw values and their mapping to normalized values for each design metric. 
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provides an abstraction of the block to the end-user such that the end-user need only 
deal with characterizing the application through definition of intuitive graphical 
objective functions, requiring on the order of 10 minutes for a given application. The 
objective function definition approach separates definition of individual design metric 
objective values from definition of the relative importance among those metrics. 
Furthermore, experiments show that our tool can tune blocks in just a few seconds to 
near-optimal values, and that the tuned blocks exhibit greatly superior performance 
for two of the four applications we examined, compared to a block configured for 
general-purpose use. Our work represents use of established synthesis methodology, 
with some refinement, to a problem considered primarily in the networking domain. 
The work’s contribution is in enabling end-users with domain experience, but without 
engineering experience, to effectively utilize mass-produced computing blocks 
intended to monitor and control the user’s environment.   

Future work will involve expanding the parameters and design metrics supported 
by the tool, requiring careful attention to design of accurate evaluation equations. 
Another direction involves allowing an end-user to characterize the network structure 
and environment, in which case the tuning tool might determine different 
configurations for different blocks in the network. Future directions involve higher-
level parameters relating to algorithmic and high-layer networking choices.  
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