
Functional Partitioning Improvements Over
Structural Partitioning for Packaging
Constraints and Synthesis: Tool
Performance

FRANK VAHID
University of California
THUY DM LE
IMA
and
YU-CHIN HSU
University of California

Incorporating functional partitioning into a synthesis methodology leads to several important
advantages. In functional partitioning, we first partition a functional specification into
smaller subspecifications and then synthesize structure for each, in contrast to the current
approach of first synthesizing structure for the entire specification and then partitioning that
structure. One advantage is the improvement in I/O performance and package count, when
partitioning among hardware blocks with size and I/O constraints, such as FPGAs or blocks
within an ASIC. A second advantage is reduction in synthesis runtimes. We describe these
important advantages, concluding that further research on functional partitioning can lead to
improved results from synthesis environments.

Categories and Subject Descriptors: B.5.2 [Register-Transfer-Level Implementation]:
Design Aids; Automatic synthesis; Hardware description languages; Optimization; J.6 [Com-
puter Applications]: Computer-Aided Engineering—Computer-aided design (CAD)

General Terms: Design

Additional Key Words and Phrases: Behavioral systhesis, functional partitioning, system-level
design

1. INTRODUCTION
Functional specifications, consisting of a machine-readable program-like
description of a system’s desired behavior, are now commonly developed

Authors’ addresses: F. Vahid, Department of Computer Science, University of California,
Riverside, CA 92521; email: vahid@cs.ucr.edu; T. D. Le, IMA, Irvine, CA; Y.-c. Hsu, Depart-
ment of Computer Science, University of California, Riverside, CA 92521.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1998 ACM 1084-4309/98/0400–0181 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998, Pages 181–208.

when building digital systems. Such specifications can be input to simula-
tors for early behavior verification, as well as to synthesis tools for
automatic structural design.

In addition, a functional specification can be functionally partitioned to
solve numerous problems, including exploring hardware/software tradeoffs,
satisfying hardware-part size and I/O constraints, and reducing synthesis
runtimes. Functional partitioning means distributing the specification’s
functions for implementation among some set of components. The first
problem has received much recent research attention, with the focus on
functionally partitioning a specification among software processors and
custom-hardware processors to achieve good cost and performance tradeoffs
[Antoniazzi et al. 1994; Eles et al. 1992; Ernst et al. 1994; Gupta and
DeMicheli 1993; Thomas et al. 1993; Vahid and Le 1996; Xiong et al. 1994].
The functional-partitioning solutions for the latter two problems have
received less attention but, as we will demonstrate, are very important in
synthesis environments.

The problem of satisfying hardware-part size and I/O (input/output)
constraints, including application-specific integrated circuit (ASIC) chips,
field-programmable gate array (FPGA) chips, or blocks within such chips,
has received much research attention for several decades [Johannes 1996].
The focus, though, has been on partitioning already designed structures,
such as the gate-level netlist implementation of a system. Such structural
partitioning is I/O dominated; in other words, when partitioners fail to
partition a design among a given set of parts, it’s usually because of an I/O
pin shortage rather than a gate shortage [Tessier et al. 1994]. While new
techniques multiplex wires to reduce I/O [Tessier et al. 1994], the problem
is still hard to solve once one has designed structure. Designers often solve
this I/O problem by manually performing functional partitioning, where a
system’s functions are first partitioned among parts and then each part’s
functions are implemented as structure. The existence of functional speci-
fications means that such functional partitioning can now be automated. In
fact, several research efforts have addressed such automation, hypothesiz-
ing that functional partitioning would excel over structural partitioning
[Lagnese and Thomas 1991; Gupta and DeMicheli 1990; Kucukcakar and
Parker 1991; Chen et al. 1994; Vahid and Gajski 1992]. This paper provides
empirical results for the hypothesis that functionally partitioning a specifi-
cation results in better satisfaction of hardware-part size and I/O con-
straints, and often yields better design performance than structural parti-
tioning.

For example, consider implementing the simple system whose functional
specification is shown in Figure 1 with some number of Xilinx XC4002PC64
FPGAs. Such FPGAs have 2000 gates (we assume this number represents
usable gates) and 64 I/O pins. (Note that the specification and the FPGAs
are very small and are used for illustrative purposes only). The traditional
approach for achieving an implementation consists of three steps. First, we
create a register-transfer (RT) level structural design to implement the
behavior, as shown in Figure 2. The design has a datapath with registers

182 • F. Vahid et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

(e.g., a, b, c), multiplexors (MUX), and an arithmetic-logic unit (ALU), and
also has a control unit that sequences data through the datapath. Second,
we attempt to implement the design on a single FPGA. However, we find
that the design requires 2650 gates, exceeding the 2000 gate constraint.
Third, we add another FPGA, and try partitioning the design among the
FPGAs in a manner satisfying FPGA size and I/O constraints. Figure 3

Table I. Component Gate Counts

Functional units Type Area (gate)

REG 32-bits 224
LESS 32-bits 190
ALU 32-bits 384
2-1 MUX 32-bits 97
3-1 MUX 32-bits 193
4-1 MUX 32-bits 288

Fig. 1. Example’s functional specification.

Functional Partitioning Improvements Over Structural Partitioning • 183

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

shows four possible two-way partitions, where each part is annotated by its
size and cut. A part’s size is the sum of its functional unit sizes, using the
component library of Table I. A part’s cut is the number of wires crossing
between the parts, representing the required I/O. Unfortunately, none of
the four partitions satisfies constraints. In Figure 3(a), we partitioned to
minimize the cut by putting the control unit into its own part, but this
partition has a part violating the 2000 gate FPGA size constraint. The
other partitions were created with more balanced part sizes, but these all
violate the FPGA I/O constraints.

Failing to successfully partition the design among two FPGAs, we repeat
the third step of adding an FPGA and repartitioning, until we finally find a
partition that meets the size and I/O constraints. From this example, one
can see that structural partitioning often requires many more parts than
the design’s gate count alone implies. For this example, gate count implies
two FPGAs, but we could not find a constraint-satisfying partition that
used less than four FPGAs.

Functional partitioning represents an alternative approach. In the third
step above, after adding an FPGA, we partition the functional specification
among two parts, rather than partitioning the original structural design. In
this example the specification’s three subroutines, P1, P2, and P3, serve as
the functional objects to be partitioned among FPGAs. There are three
possible functional partitions, as shown in Figure 4. For each partition, we
design an RT-level implementation for each part.

Note that the partition in Figure 4(b) satisfies constraints, so functional
partitioning led to a two FPGA solution. Alternatively, if the I/O con-
straints are violated, we simply create a bus between the two parts, and

Fig. 2. Example’s RT-level structural design.

184 • F. Vahid et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

modify the specification to time-multiplex the data transfers between the
two parts over a single 32-bit bus, as illustrated by Figure 5. The part sizes
increase slightly due to additional multiplexors and control. In contrast,
introducing such a bus after structural partitioning is extremely difficult.

Functional partitioning yields better performance than structural parti-
tioning in this example. For the structurally-partitioned design, the clock
period is determined by the MEBS [Hsu et al. 1994] behavioral synthesis
tool to be 43 nanoseconds, which includes an interchip delay of 7 nanosec-
onds, and 10 cycles are necessary for the behavior’s execution. For the
functionally-partitioned design, the clock period is determined to be only 32
nanoseconds, with 3 extra cycles needed for data transfers, for a total of 13
cycles. Thus, the total execution times tsp and tfp achieved by structural
and functional partitioning, respectively, are:

tsp 5 43 3 10 5 430ns

tfp 5 32 3 13 5 416ns

Fig. 3. Possible structural partitions: no two-FPGA partition found.

Functional Partitioning Improvements Over Structural Partitioning • 185

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

In other words, functional partitioning yields improved performance
because, although additional clock cycles are needed to transfer data from
one part’s processor to another, the clock period is reduced, since each
processor is fully contained within a part, and hence the critical path does
not cross between parts, and this reduction offsets the additional cycles.
For larger examples, the number of clock cycles is larger, so the reduced
clock period can have an even greater effect.

Fig. 4. Possible functional partitions: two-FPGA partition found.

Fig. 5. Functional partitioning with bus: Permits even further I/O reduction.

186 • F. Vahid et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

Intuitively, functional partitioning excels over structural partitioning by
assigning each function to one part, rather than spreading a function over
several parts. Such isolation (1) reduces I/O; (2) prevents the critical path
from crossing parts, thus reducing the clock period; and (3) often yields
simpler hardware, thus further reducing the clock period. I/O is reduced
because I/O is only needed to transmit parameters between functions, and
the number of such parameters is typically small. The critical path doesn’t
cross between parts because a critical path is the longest register-to-
register transfer of a processor, but each processor is fully contained within
a part. Simpler hardware results because two small processors are each
simpler than one large processor. Perhaps more importantly, we have
complete control over I/O at the functional level, and can easily tradeoff
performance and I/O. In particular, data transfers between parts can be
easily time-multiplexed over one bus by inserting an addressed-protocol
behavior (or even an arbiter behavior), and transfers can be partially or
fully serialized. Another advantage is that each part’s behavior is readable
and late changes are often isolated to one part, leading some designers to
call this approach “partitioning for debug.”

These advantages come with some drawbacks. First, functional partition-
ing must be guided by estimates of size, I/O, and performance for possibly
thousands of examined partitions, but obtaining fast yet accurate size and
performance estimates can be hard. In contrast, in structural partitioning,
we can easily estimate size and and delay quickly and accurately by
summing object sizes and counting critical path cuts. However, sophisti-
cated estimation techniques for use with functional partitioning can help
alleviate this drawback [Vahid and Gajski 1995]. Second, a functionally-
partitioned system often (though not always, as we shall see) uses more
gates, since hardware units are not shared by functions on different parts.
However, structural partitioning is I/O dominated, and hence does not use
all the gates on a part in any case, so this increase is often not very
significant.

The problem of reducing synthesis runtime using functional partitioning
has also received only limited attention. Synthesis runtime, as well as
memory usage, may become excessive for large specifications. By function-
ally partitioning the specification into several smaller subspecifications and
applying synthesis to each independently, runtimes can be reduced by an
order of magnitude. An analogous problem and solution are presented in
Camposano and Brayton [1987] for partitioning logic equations before logic
synthesis; in this paper we describe results of partitioning a functional
specification before behavioral synthesis.

This paper is organized as follows. In Section 2 we discuss related work
in functional partitioning. In Section 3 we describe experiments that
demonstrate the superiority of functional over structural partitioning with
several examples. In Section 4 we demonstrate the improvement in synthe-
sis-tool performance achievable with functional partitioning. Section 6
provides conclusions.

Functional Partitioning Improvements Over Structural Partitioning • 187

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

2. RELATED WORK

In this section we summarize related efforts in functional partitioning, and
describe their relationship to our work; we refer the reader to Kirkpatrick
and Cheng [1991]; Fiduccia and Mattheyses [1982]; Kernighan and Lin
[1970]; Krishnamurthy [1984]; Sanchis [1989];Sechen and Chen [1988] for
information on structural partitioning. We first describe five features that
can be used to compare functional partitioning systems: computation
model, granularity, heuristics, estimation techniques, and design flow.

The computation model is the underlying model of the system’s input
specification (regardless of the input language). Possible models include
synchronous dataflow [Lee and Messerschmitt 1987]; hierarchical/concur-
rent finite-state machines [Harel 1987]; communicating sequential pro-
cesses [Hoare 1978; IEEE Inc., 1988]; program-state machines [Vahid et al.
1995]; and control/dataflow graphs (CDFGs) [Gajski et al. 1991].

Granularity is a measure of the complexity of each partitioning object
into which we decompose an input specification, where such objects might
be processes, procedures or functions, statement blocks, statements, or
even fine-grained arithmetic operations. These atomic objects are assigned
to parts during partitioning. Fine granularities yield more partitioning
choices, but require longer heuristic runtimes and result in less accurate
estimations [Vahid and Gajski 1995]. Many systems partition at the
granularity of arithmetic operations [Lagnese and Thomas 1991; Gupta
and DeMicheli 1990; Chen et al. 1992; Kucukcakar and Parker 1991].

Partitioning heuristics can be classified as either iterative-improvement
or constructive heuristics. Constructive heuristics start with no initial
partition, and build a partition. A common constructive heuristic is cluster-
ing, in which objects deemed by a closeness function to be “close”to one
another are merged until only a few objects remain. On the other hand,
iterative-improvement heuristics start with a complete partition, and mod-
ify the partition to try to find a better one as defined by some cost function.
Examples include group-migration [Kernighan and Lin 1970] and simu-
lated annealing [Kirkpatrick et al. 1983].

Estimation techniques are the methods used to quickly yet accurately
evaluate design metrics, like size, I/O, and performance, without actually
synthesizing a design. Since iterative-improvement heuristics usually ex-
amine far more partitions than constructive ones, they require faster
estimation techniques.

The design flow is the sequence of steps comprising the partitioning
process and the type of designer interaction. A designer might be allowed
much interaction, such as selecting closeness or cost functions, choosing
granularity, manually moving objects between parts, and iterating the
partitioning process.

Now that we have summarized the key features of partitioning systems,
we proceed to summarize several approaches. These approaches can be
broadly categorized into that of hardware/hardware partitioning and the

188 • F. Vahid et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

more recent hardware/software approach. We focus on hardware/hardware
approaches, since they are most closely related to the problems we address.

2.1 BUD

BUD [McFarland and Kowalski 1990] was designed to provide accurate
estimations of area and delay to guide high-level synthesis decisions. BUD
takes a single process as input and partitions the arithmetic operations
into groups. Each group represents a datapath component, so partitioning
accomplishes the synthesis allocation step. In addition, operations in a
group must execute sequentially because they use one component, so
partitioning essentially determines a scheduling also. After partitioning,
BUD quickly places the components and derives area and delay informa-
tion. Thus output is used to create the best design during synthesis.

BUD’s partitioning design flow consists of several steps. First, the input
process is converted to a CDFG. Second, the CDFG is decomposed into a set
of arithmetic and logical operations. Third, a cluster tree is built. A cluster
tree represents successive mergings of the closest operations until only one
object remains. Closeness of operations is measured with a closeness
function incorporating three closeness metrics: the minimal number of
functional units needed to perform the operations; the number of wires
shared by operations; and the parallelism of operations. Fourth, different
tree cutlines (i.e., different numbers of clusters) are evaluated using an
objective function that is a weighted sum of area and execution time, and
the best cut-line is chosen.

2.2 Aparty

Aparty [Lagnese and Thomas 1991] is an architectural partitioner in the
System Architect’s Workbench, intended to improve register-transfer de-
signs, particularly by reducing global routing wires. Aparty tries to solve
two of BUD’s limitation. One, the basic clustering technique in BUD
produces error in estimating the closeness values between two clusters as
clustering proceeds, because the closeness between clusters is estimated
rather than recomputed. Two, the closeness function in BUD combines
different metrics such as wires, sharable hardware, and parallel execution
into one number, but it may be very hard to balance the relative weights of
these metrics to achieve a good design.

Aparty solves these problems by performing clustering in multiple
stages, allowing each stage to use any combination of closeness metrics.
Aparty also defines several new metrics, including those based on control,
data, procedures/control, procedures/data, and operators. The partitioning
design flow consists of converting the input process into a CDFG and
decomposing the CDFG into arithmetic-level operations. Then the user
chooses a closeness function, applies clustering, and chooses the criteria for
selecting the best cutline, such as smallest area, minimum connections, or
shortest schedule length. Rough synthesis is used for estimation. The best
cut is made, resulting in a set of groups. The user can then repeat the

Functional Partitioning Improvements Over Structural Partitioning • 189

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

process by selecting a new closeness function and repeating clustering on
the groups, until a satisfactory design is achieved.

2.3 Vulcan I

Vulcan I [Gupta and DeMicheli 1990] is designed to partition a system for
chip-area, I/O, and latency constraints. First, Vulcan converts the input
process into a hierarchical CDFG, annotating each node with sizes and
latencies and edges with widths. Second, Vulcan partitions the hierarchical
CDFG at the coarsest granularity among chips using the group migration
and simulated annealing partitioning heuristics, trying to satisfy con-
straints. Estimates are computed by summing sizes and latencies and
computing cut sizes. Third, if constraints are violated, Vulcan decomposes
certain CDFG nodes, usually choosing the larger nodes, and repeats the
partitioning process.

2.4 Multipar

Multipar [Chen et al. 1992] is designed to maximize system performance
and minimize communication between hardware components by simulta-
neously considering scheduling and partitioning. Multipar converts the
input process into a CDFG, along with communication properties and
processor constraints. It then translates the CDFG into an integer linear
programming (ILP) formulation. To minimize the communication between
system components, Multipar performs as-soon-as possible and as-late-as
possible scheduling to determine the range and mobility of operations for
the ILP formulation. To partition a large CDFG, Multipar uses a simplified
ILP formulation and a recursive method. The scheduled CDFG is recur-
sively partitioned into two groups such that the two groups have balanced
area and minimal communication. The process stops when the groups are
small enough to accurately estimate the partitioned cost to satisfy the
constraints.

2.5 Chop

Chop [Kucukcakar and Parker 1991] explores system partition alterna-
tives. It uses probability methods to determine the implementation feasibil-
ity of partitions. The designer creates and modifies a partition, and Chop
evaluates the feasibility of the partition’s implementation. There are sev-
eral steps for evaluating a partition. First, Chop takes the input DFG with
a component library and initial partition. It uses BAD (behavioral area-
delay predictor) to generate to several possible implementations; at this
point Chop is not concerned with the feasibility of the generated implemen-
tations. Second, Chop searches for all possible combinations of generated
implementations to match the design characteristics of different modules,
such as area, performance, delay, etc. Third, Chop integrates the imple-
mentations into the system and evaluates different global feasible imple-
mentations with input constraints and chip sets. If the complete predicted
implementations don’t meet the constraints, then the designer can modify

190 • F. Vahid et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

the partition and repeat the process. Otherwise, no possible implementa-
tion is predicted.

2.6 Yorktown Silicon Compiler (YSC)

YSC [Camposano and van Eijndhoven 1987, Camposano and Brayton 1987]
is intended to improve logic-synthesis tool performance. YSC’s partitioning
scheme is very similar to BUD’s. There are three steps for partitioning a
process in YSC. First, the behavior is converted to a CDFG. Second,
closeness values are computed among CDFG operations, using the follow-
ing closeness metrics: the similarity of two operations, meaning they can
share some logic gates, the number of inputs and outputs shared by
clusters, the number of inputs and outputs connecting clusters, and the
cluster size. Third, YSC uses a hierarchical clustering algorithm to form
clusters, with a closeness threshold used to terminate clustering. Results
showed greatly reduced logic synthesis times when synthesizing each of the
clusters separately, as compared with synthesizing the entire behavior.

2.7 SpecSyn

SpecSyn [Gajski et al. 1994; Vahid and Gajski 1992] is a partitioner at the
procedure level. SpecSyn considers three design metrics: area, I/O, and
performance. It converts the input processes or program-state machines
into SLIF [Vahid and Gajski 1995] format, resembling a call graph where
the nodes are procedures and variables and edges represent accesses. The
SLIF is partitioned manually or automatically by clustering, group migra-
tion, or simulated annealing algorithms. Two types of estimators are used,
one to initially annotate the the SLIF and another to rapidly combine
annotations during iterative-improvement partitioning into metric values.
Partitioning can be repeated with different allocations of parts until the
constraints are satisfied. SpecSyn then generates a refined specification.

2.8 Hardware/Software Functional Partitioning

There are many efforts in hardware/software functional partitioning. Vul-
can II [Gupta and DeMicheli 1992] starts with an all-hardware implemen-
tation and uses a greedy heuristic to move threads of operations from
hardware to software to reduce hardware costs. Its cost function considers
the metrics of hardware size, software size, synchronization cost, and
communication frequencies. Cosyma [Ernst et al. 1993] starts with an
all-software implementation and migrates statement blocks to hardware by
using simulated annealing. Partif [Ismail et al. 1994] provides the designer
with a suite of specification transformations to manually partition a
specification. Ptolemy [Kalavade and Lee 1994] provides a custom parti-
tioning heuristic for simultaneously partitioning and scheduling tasks
among hardware and software processors. SpecSyn [Gajski and Gong 1994]
provides an environment for interactive exploration of different partitions
of functions (data, behavior, and communication) among various system
components (processors, memories, buses). Various heuristics are provided,

Functional Partitioning Improvements Over Structural Partitioning • 191

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

including clustering, group migration, and simulated annealing, along with
sophisticated estimators. Tosca [Antoniazzi 1994] uses clustering to parti-
tion a hierarchical-concurrent finite-state machine. Tabu-search is used to
partition procedures in Eles et al. [1996].

In much of the previous work described here, functional partitioning
researchers [Gupta and DeMicheli 1990; Kucukcakar and Parker 1991;
Vahid and Gajski 1992] predicted that functional partitioning is better
than structural partitioning. This work provides empirical results demon-
strating this hypothesis.

3. FUNCTIONAL VS. STRUCTURAL PARTITIONING FOR PACKAGE
CONSTRAINTS

3.1 Method

Figure 7 illustrates the difference between structural and functional parti-
tioning. Current automated tools satisfy package constraints by performing
structural partitioning. In structural partitioning, one first implements the
system with structure, consisting of a controller and datapath pair contain-
ing connected RT and gate-level objects. One then partitions the structure
among parts. In functional partitioning, the specification’s functions are
partitioned among parts. Inter-part communication is achieved using a
high-level transfer protocol such as a handshake. Each part’s functions are
then implemented as structure, optionally repeating the functional parti-
tioning within each part. (In hardware/software partitioning, a part’s
implementation is achieved by synthesizing either software or hardware for
each part).

Functional partitioning requires estimations of performance, I/O, and
hardware size for any given set of functions, making such partitioning more
challenging to automate because obtaining accurate estimates is difficult.
In structural partitioning, on the other hand, one merely associates a size
and delay with each hardware object, and then sums sizes to obtain size
estimates and introduces delays for intercomponent communications to
obtain performance estimates. However, structural partitioning requires
that we assign functions to hardware objects before knowing about the
eventual partition. Since each function is implemented with many objects
and each object is shared by many functions, we have a situation where
finding a partition requiring a small amount of communication delays and
wires between components is very difficult. Intuitively, functional parti-
tioning would seem to solve this problem, since we can partition the
functions to minimize communication and then create intercomponent
buses to reduce I/O and maximally share hardware objects by the functions
assigned to a given component. In this section we describe experiments
that demonstrate this concept.

Four VHDL design descriptions are used in the experiments.

192 • F. Vahid et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

(1) 2p-fact — given a number n, computes the prime numbers p and q such
that n 5 pq; if there are no such p and q, outputs zero. It consists of
161 lines of VHDL.

(2) chinese — computes the “Chinese Remainder Theorem” [Cormen et al.
1989], which finds the value of x such that it satisfies three congruent
equations

x 5 a1modm1

x 5 a2modm2

x 5 a3modm3

such that the moduli, m1, m2, and m3 are pairwise relatively prime. It
consists of 168 lines of VHDL.

(3) 8-bits rsa — a simple version of the RSA encryptography system
[Cormen et al. 1989], performing encryption or decryption with public
and private keys. It consists of 169 lines of VHDL.

(4) vol — a volume-measuring medical instrument controller, which re-
peatedly receives sonar data from which it computes the volume of an
object. It consists of 229 lines of VHDL.
All examples are written at the algorithmic level, as opposed to a
state-machine or RT level.

3.1.1 Functional Partitioning. We first decompose the specification into
a set of functional objects to be assigned to system components. The objects’
granularity is that of procedures and variables. Arguments for this granu-
larity, as opposed to finer-granularities such as statements or arithmetic-
operations, can be found in Eles et al. [1992]; Thomas et al. [1993]; Gupta
et al. [1994]; and Vahid [1995]. Techniques in Vahid [1995] can be used to
group a procedure’s statements into subprocedures when a procedure is too
large.

We then partition the functional objects among two groups, using both
automated and manual techniques. We applied the prototype automated
partitioner in SpecSyn [Gajski et al. 1994]. SpecSyn creates an internal
model, extensively annotates that model with results from estimators,
builds complex equations for rapid metric estimation during partitioning,
and then inputs the model to a partitioning engine (GPP, General Purpose
Partitioner). We used the simulated annealing heuristic in this case. We
also independently partition the examples manually, using rough hand-
calculated estimates of size, performance and I/O to guide decisions. The
automated and manual partitions are usually very close, and on two
occasions the automated partitions were slightly better.

After choosing a partition, we manually rewrote the specification as two
processes, each process containing a subset of the original procedures and

Functional Partitioning Improvements Over Structural Partitioning • 193

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

variables. These processes communicated via global signals, where some
signals were used for data and others for control handshaking. The parti-
tioning, specification rewriting, and subsequent simulation of the new
specification required about one hour per example, and we typically per-
formed two iterations. (SpecSyn can automatically partition and rewrite
the specification in just a few minutes, so when the tool matures, iteration
time may be greatly reduced).

3.1.2 Structural Partitioning. We first synthesized the entire VHDL
specification to a controller block and a datapath of interconnected RT-level
objects. We chose to partition the structure at the RT-level, rather than the
gate level, in order to obtain reasonably equivalent granularities for
functional and structural partitioning. Going to the gate level would have
introduced an order of magnitude more objects, which might have pre-
vented partitioning heuristics from finding good solutions, thereby account-
ing for most of the difference between structural and functional partition-
ing approaches.

We then converted the RT-level structure to a hypergraph. We created a
hypergraph node for each RT object (each register, multiplexor, functional
unit, etc.). The controller block was assigned to its own node. We assigned a
weight to each node, corresponding to the size of each object when synthe-
sized into a Xilinx library; various object sizes are shown in Table II. We
assigned a weight to each hyperedge, corresponding to the number of bits
transferred over that edge; memory accesses were encoded as address bits
plus data bits. Finally, we input the hypergraph into GPP and applied
simulated annealing. The average hypergraph size was 115 nodes. The
simulated annealing cooling schedule was chosen so that GPP would run
for about 20 minutes to partition the hypergraph. The cost function was a
weighted sum of size and I/O violations. We ran four trials for each
hypergraph, in which we weighed the size term of the cost function by 1, 5,
15, and 20.

Table II. Size Library Partial List

Functional units type Area(gates)

REG 32-bits 224
REG 1-bits 7
ALU 32-bits 384
LESS 32-bits 190
MUL 32-bits 3230
2-1 MUX 32-bits 97
3-1 MUX 32-bits 193
4-1 MUX 32-bits 288
5-1 MUX 32-bits 384
6-1 MUX 32-bits 576

...

194 • F. Vahid et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

3.2 Experiments

We used the MEBS behavioral synthesis tool [Hsu et al. 1994] to synthesize
structure in both the functional and structural partitioning approaches.
MEBS converts a VHDL process into a finite-state machine (FSM) control-
ler and a connection of RT-level datapath components. MEBS invokes
Berkeley’s SIS [Brayton and Rudell 1987] tools to implement the controller
and can then map the structure into a Xilinx technology library for FPGA
implementation.

For both functional and structural partitioning, we used Xilinx XC4000
FPGAs as the implementation components. Size and I/O constraints for
these chips are shown in Table III. (We consider the gate listings as usable
gates. If usable gates are lower, we can use another package with more
usable gates, but the idea is the same.)

Results are shown in Table IV. The unpartitioned column shows the I/O
and size when synthesizing the entire example into one design (i.e.,
assuming implementation on a single part). The next three columns show
results of functional partitioning. The no bus column shows the I/O and size

Table III. Xilinx XC4000 FPGAs

Device XC4008 XC4010/10D XC4013 XC4025

Gate count 8,000 10,000 13,000 25,0000
Number of IO’s 144 160 192 256

Table IV. Functional vs. Structural Partitioning: I/O and Size

Sys. Unpartitioned Functional Partition. Structural Partition

no bus bus p.c. Resource Sharing

w 1 w 5 w 10 w 15

2p-fact
Chip 1 99/19697 199/7711 134/7117 102/6875 112/19396 210/15270 140/4854 355/12263
Chip 2 - 102/8398 38/8188 70/7836 14/301 112/4427 236/14843 389/7434
Violation 39/0 0/0 0/0 0/9396 50/5270 76/4843 424/2263
(160/10000)

rsa
Chip 1 132/22614 328/12786 164/11846 100/11604 101/814 169/4250 831/11887 692/13311
Chip 2 - 134/10705 38/9765 102/9249 262/21810 426/18374 832/1073 693/9313
Violation 136/0 0/0 0/0 70/8810 234/5374 1279/0 1001/311
(192/13000)

chinese
Chip 1 99/28471 502/1991 131/17284 99/17042 603/21424 603/21424 603/21424 603/21424
Chip 2 - 325/14211 37/11578 69/11820 699/7047 699/7047 699/7047 699/7047
Violation 315/0 0/0 0/0 790/0 790/0 790/0 790/0
(256/25000)

vol
Chip 1 110/17028 211/12040 191/12008 125/11766 157/13697 217/3772 207/12590 217/12906
Chip 2 - 133/10278 103/10246 135/10488 188/3331 154/13256 285/4438 263/4122
Violation 19/0 0/0 0/0 0/697 25/256 108/0 96/0
(192/13000)

Functional Partitioning Improvements Over Structural Partitioning • 195

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

of each chip after functional partitioning without any shared buses created
after partitioning. The bus column shows I/O and size when sequential
communications between the two chips are assigned to a single bus, thus
reducing I/O [Vahid 1997]. The p.c. (with port calling) column shows data
when accesses to external ports by a particular chip are distributed to the
other chip and transmitted over the bus by introducing functions that are
called to access ports, allowing better balancing of I/O between the chips
[Vahid 1997]. The last four columns show structural partitioning results.
The w1 column represents an even weighing of size and I/O in the cost
function used during partitioning. The w5 represents a weighing of the size
term by a factor of 5 more than the I/O term, thus striving for a better
balancing of size. The w10 and w15 columns represent factors of 10 and 15.

3.3 Analysis

3.3.1 I/O and Size. Functional partitioning led to better satisfaction of
I/O and size constraints.

Structural partitioning could not satisfy I/O and size constraints at the
same time. With an even weighing of those constraints, I/O was satisfied,
but sizes were grossly unbalanced and size violations were huge. With
heavier weighing of the size constraint, better size balancing was obtained
but at the cost of large I/O violations. Functional partitioning nearly
satisfied both constraints in all examples. In cases where the I/O constraint
was slightly violated, merging communications into buses eliminated the
violation [Vahid 1997]. Note that such merging after partitioning is very
difficult, if not impossible, in structural partitioning—since scheduling
communications over wires was already determined during design of the
structure. In functional partitioning, communication is still represented as
high-level data transfers, so we can merge transfers onto a single bus,
introduce arbiters (which is not necessary in our examples, since we only
merged sequential communication), and even serialize the data transfers.

We investigated the possibility that resource sharing in the datapath was
causing the excessive I/O in structural partitioning. In particular, if numer-
ous registers were being fed to a single input on a register or functional
unit, or if a single output of a functional unit was being fed to numerous
registers, then that input or output would be a net that would very likely
have to be cut during partitioning. On the other hand, if there were fewer
shared resources, then there would be fewer such nets. Thus, we resynthe-
sized the examples with no resource sharing—if such a design didn’t
improve I/O (at the expense of increased size, of course), then no partial
resource sharing option likely would. We found only tiny improvements in
I/O over all the cases. Therefore, resource sharing did not seem to be the
problem with structural partitioning.

When faced with such constraint violations during structural partition-
ing, the only alternative is to add more parts, leading to much higher-cost
designs. Thus we see that functional partitioning can lead to much lower-
cost designs by using far fewer parts.

196 • F. Vahid et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

3.3.2 Performance. Functional partitioning led to better performance
than structural partitioning. To analyze performance, we must look at two
factors: (1) the number of clock cycles, n, to execute the specification (say
on the average), and (2) the clock period, t. The performance is then
computed as n 3 t. In functional partitioning, we introduce more clock
cycles for data transfer, but the clock period stays the same. In structural
partitioning, the number of clock cycles stays the same, but we must extend
the clock period to account for each intercomponent delay (e.g., 7ns for the
Xilinx FPGA) that occurs during any register-to-register transfer. For the
examples, we optimistically assumed only one delay (7ns) increase in the
clock period. Because of the data-dependent nature of each example, we
simply report the case of each example requiring 500 clock cycles. Table V
summarizes results. tsp and t fp are the clock periods for structural and
functional partitioning, respectively, and tsp and tfp are the performance
times of each. h is the number of clock cycles for high-level data transfer for
the functional partition. Thus, we compute performance as:

tsp 5 n 3 tsp

tfp 5 ~n 1 h! 3 tfp

Functional partitioning led to significant speedups over structural parti-
tioning. Structural partitioning required a longer clock cycle. However, this
longer cycle was only partly due to the 7ns added for intercomponent delay.
Another factor adding to the longer cycle was the more complicated
hardware obtained when synthesizing one large structure instead of two
simpler ones. Functional partitioning, on the other hand, required only a
few extra clock cycles for handshaked intercomponent data transfer. Speed-
ups ranged from 1.02 to 1.63 over the performance achieved by structural
partitioning. Note that if we assume more intercomponent delays or con-
sider examples requiring more than 500 cycles, speedups become even
greater. In other words, functional partitioning results in better asymptotic
performance than structural partitioning.

Consider asymptotic performance in a more general manner. Consider
the ideal situation in which functional partitioning results in constant
communication clock cycles. This is achieved by avoiding splitting up any
loops when we functionally partition the specification. In particular, each

Table V. Functional vs. Structural Partitioning: Performance

Examples 2p-fac 8-bits RSA chin thm vol

tsp 78 ns 315 ns 74 ns 66 ns
tsp 39000 ns 157500 ns 37000 ns 33000 ns
t fp 47 ns 305 ns 66 ns 54 ns
h 10 clk cycles 7 clk cycles 6 clk cycles 4 clk cycles
tfp 23970 ns 154635 ns 33396 ns 27216 ns

Speed up 1.63 1.02 1.12 1.21

Functional Partitioning Improvements Over Structural Partitioning • 197

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

loop of the specification will be completely inside only one part of the
partition. On the other hand, constant communication clock cycles may not
be possible to achieve because we have to split a loop to balance the
partition area. In this case the functional partitioning might result in
linear communication clock cycles.

To illustrate the asymptotic performance of functional partitioning ver-
sus structural partitioning in the case of constant communication time, we
consider a specification with two loops, say A and B, where loop A has m1

iterations, with each iteration taking n1 clock cycles, and loop B has m2

iterations, with each taking n2 clock cycles. Suppose we want to partition
the specification between two parts, and we place loop A in part 1 and loop
B in part 2. The equations for the specification’s execution time after
functional partitioning and structural partitioning are shown in Figure

Fig. 6. Asymptotic comparison of functional vs. structural partitioning; (a) constant communi-
cation time; (b) linear communication time.

198 • F. Vahid et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

6(a), where h is the number of clock cycles for communication after
functional partitioning, and t fp and tsp are the clock periods obtained after
functional and structural partitioning, respectively. If the two loops have
only a few iterations, the communication overhead, h, results in a longer
execution time from functional partitioning. However, if the loops have
many iterations, then the smaller clock period, t fp, outweighs the commu-
nication overhead, leading to shorter execution time. The tradeoff point is
n $ ~t fp 3 h! / ~tsp 2 t fp!, where n 5 m1n1 1 m2n2.

Linear communication time arises when a loop must itself be split among
parts. For example, assume that loop A is larger than the size constraints
of parts 1 and 2, so we put half of loop A in one part and half in the other.
In this case the execution time equations are shown in Figure 6(b). Note
that we now have h cycles of communication overhead for each iteration of
A. tfp is less than tsp when the indicated relation between t fp and tsp holds;
in many examples, this relation does hold.

3.3.3 Notes on the Experimental Method. A few comments are necessary
on our experiments comparing functional and structural partitioning. The

Fig. 7. Method for functional vs. structural partitioning experiments.

Functional Partitioning Improvements Over Structural Partitioning • 199

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

goal of the experiments was to determine whether functional partitioning,
only recently enabled, led to a substantially better starting point than
structural partitioning, perhaps an order of magnitude better—and thus
worthy of investigation and development. To achieve a fair comparison, we
had to control other variables that could have led to differences in the
results, such as heuristic specialization and quantity of objects.

Heuristic specialization is the degree to which a heuristic is advanced for
either structural or functional partitioning. Comparing the most advanced
heuristics for each would not be a fair, as structural partitioning ap-
proaches have had decades to develop, while functional partitioning meth-
ods are just appearing, though advances are already being reported. For
example, much work in structural partitioning has focused on replication of
gates [Johannes 1996], while replication techniques for functional parti-
tioning are just appearing [Vahid 1997]. To control this variable, we used
the GPP partitioning engine for both approaches, rather than a specialized
netlist partitioner for structural partitioning. We point out that the number
of I/O achieved using GPP for structural partitioning roughly agrees in
magnitude to results described in structural partitioning literature, such as
Tessier et al. [1994]. In particular, in the above research, structural
partitioning between five or ten thousand gate parts requires between
several hundred and a thousand I/O (thus in turn requiring many more
parts than the gate count implies). While logic replication techniques
report good I/O reductions (18% in Hwang et al. [1995]), these reductions
are small compared to those achieved by functional partitioning.

Quantity of objects refers to the number of objects that the partitioning
heuristic must deal with. Partitioning heuristics are nonoptimal, and thus
the number of objects can greatly affect the quality of the results. Since
functional partitioning of coarse-grained functions yields hundreds of ob-
jects, we chose to partition a structure at the RT level, which also yields
hundreds of objects. If, instead, we partitioned structure at the gate level,
there would be thousands or tens of thousands of objects, likely leading to
inferior results. Perhaps a gate-level approach is better for comparison of a
statement or arithmetic-level functional partitioning approach (which we
do not advocate).

4. PARTITIONING FOR SYNTHESIS TOOL PERFORMANCE

4.1 Method

In this section, we evaluate improvements in synthesis tool performance
gained with functional partitioning. Note that the resulting partitioned
design may still be implemented on a single package.

We evaluate synthesis tool performance using three factors. (1) Synthesis
time: The CPU time (on a Sparc 10) required for the synthesis tool to
convert the functional specification into structure. As shown in Figure 8,
we compare the time for synthesizing the entire VHDL specification with
the sum of the times for synthesizing each specification after partitioning.

200 • F. Vahid et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

(2) Output size: The total size of the output structure, measured in
equivalent gates using the Xilinx XC4000 technology library. The sizes are
compared in a manner identical to synthesis times. (3) Memory use: The
maximum amount of memory used at any time by the synthesis tool.

Our experiments show that memory use is linearly proportional to the
size of the input, so we do not report memory use in subsequent tables. In
our examples, the maximum memory used during synthesis of any one
example is 300 Mb. Since this amount of memory is much less than our
available memory, partitioning did not yield significant improvements in
memory use. However, in cases where available memory is scarce, parti-
tioning could ensure that the maximum memory is not exceeded.

4.1.1 Examples. We use the same examples as in the previous section.
However, we want to measure the effect of input size on tool performance.
But if we compare tool performance on different examples of different sizes,
we cannot determine whether the variations in performance result from the
different sizes factor or from other factors arising from the different
computations in each example. For example, a large example might require
more synthesis time than a small example, not because of its size but
because of some small portion of the large example requiring substantial
scheduling and binding. To eliminate such additional factors, we created
large examples by duplicating smaller examples a number of times. The

Fig. 8. Method for synthesis tool evaluation experiments.

Functional Partitioning Improvements Over Structural Partitioning • 201

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

duplication method follows. First, we duplicated the ports, variables, and
procedures N 2 1 times, creating new identifiers for each duplicated
object. Then we duplicated the process’ statements N 2 1 times, where
each duplication accessed its own copy of ports, variables, and procedures.
We created four versions of each example, corresponding to an N of 1 (the
original version), 2, 3, and 4 (the largest version of the example, roughly
four times bigger than the original version).

4.1.2 Synthesis. We again used MEBS to perform synthesis. The MEBS
synthesis tool divides behavior synthesis into two subtasks: high-level
synthesis and logic synthesis. High-level synthesis involves a sequence of
subtasks: compilation, scheduling, allocation, and binding. MEBS’ logic
synthesis has three modes: no optimization, fast, and optimal. In this
experiment, we use only the fast mode and the optimal mode.

The number of hardware units, with respect to the technology library,
and synthesis times are reported upon the completion of the synthesis
process.

4.2 Results

Table VI compares the results of synthesizing the unpartitioned and
functionally partitioned examples using optimal mode logic synthesis. The

Table VI. Synthesis Time Speedups (Optimal Mode)

2P-FACT

Dup. Unpart. Functional part. Spd. Up

Part 1 Part 2 Total S. P.

1 00:48 00:32 00:05 00:37 1.3 1.5
2 191 hours 01:10 00:15 01:25 15.2 17.3
3 191 hours 01:21 00:31 01:52 12.5 15.7
4 191 hours 02:18 00:43 03:01 6.3 8.7

CHINESE THM

Dup. Unpart. Functional part. Spd. Up

Part 1 Part 2 Total S. P.

1 05:20 00:23 00:31 00:54 5.9 10.3
2 07:28 02:22 01:03 03:25 2.4 3.3
3 15:19 03:09 02:23 05:32 2.9 4.9
4 161 hours 03:25 04:58 07:49 2.1 3.2

VOL

Dup. Unpart. Functional part. Spd. Up

Part 1 Part 2 Total S. P.

1 00:15 00:06 00:02 00:08 1.9 2.5
2 01:03 00:12 00:05 00:17 3.7 5.25
3 05:26 00:35 00:22 00:57 5.7 9.3
4 09:06 01:29 01:06 02:35 3.5 6.1

202 • F. Vahid et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

Dup column represents the number of duplications for a given example, as
described earlier. The Unpart column represents the CPU times, in hours
and minutes, for synthesizing the unpartitioned example. The Part1 and
Part2 columns are the CPU times for synthesizing each part of the
functionally partitioned specification, and the Total column is the sum of
those two times. The S column shows the speedup obtained by partitioning.
The P shows the speedup if we assume that the two parts of the partitioned
specification can be synthesized in parallel. (Only three of the four exam-
ples are shown in each table, as the synthesis tool’s limitations at the time
of the experiments prevented completion of some duplicated examples.)

Table VII is identical to Table VI, except that it shows results using the
fast logic synthesis mode. Finally, Table VIII shows size results for the fast
logic synthesis mode. The last column of the table indicates the ratio of the
unpartitioned design size over the total size of the partitioned design from
the fast mode. (We do not have complete size data for the optimal synthesis
mode because several synthesis jobs did not complete in the 19 hours we
allocated for each example).

4.3 Analysis

4.3.1 Synthesis Time. Functional partitioning yields very substantial
and practical reductions in synthesis times. When using optimal logic

Table VII. Synthesis Time Speedups (Fast Mode)

2P-FACT

Dup. Unpart. Functional part. Spd. Up

Part 1 Part 2 Total S. P.

1 890s 12s 3s 15s 59.3 74.2
2 2675s 23s 9s 32s 83.6 116.3
3 3400s 786s 12s 798s 4.3 4.3
4 5500s 1414s 120s 1534s 3.5 3.8

8-bits RSA

Dup. Unpart. Functional part. Spd. Up

Part 1 Part 2 Total S. P.

1 1216s 7s 2s 9s 135.1 173.7
2 3759s 71s 4s 75s 52.9 52.9
3 4937s 610s 8s 618s 8.1 8.1
4 7597s 1314s 9s 1323s 5.8 4.4

VOL

Dup. Unpart. Functional part. Spd. Up

Part 1 Part 2 Total S. P.

1 13s 11s 3s 14s 0.9 1.2
2 1260s 20s 79s 99s 12.7 15.9
3 1364s 35s 970s 1005s 1.3 1.4
4 1694s 51s 1138s 1189s 1.4 1.5

Functional Partitioning Improvements Over Structural Partitioning • 203

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

synthesis mode, speedups are excellent, sometimes over 10. We observe
reductions from over 8 hours down to just 1 to 2 hours, thus converting an
overnight job into one that can be done during a work day. When using fast
logic synthesis mode, we find even larger speedups, in some cases near 100,
although unpartitioned specification synthesis time was reduced compared
to optimal mode from roughly 10 hours to 1 hour. Note that as the example
size increased (denoted by the duplication amount), the speedups tends to
decrease. Thus, for large examples, it would likely be beneficial to partition
the specification into more than just two parts.

The observed improvements are likely due to polynomial-time heuristics
in the synthesis tools. Partitioning the specification thus has a nonlinear
effect on the tool’s CPU time. Optimal logic-synthesis time is dominated by
control unit synthesis, and thus strongly affected by the number of states
and transitions, whereas fast logic-synthesis time is dominated by data-
path binding and thus is affected by the number of operations.

4.3.2 Design Size. One concern is that partitioning will lead to much
larger designs caused by inability to share functional units across parts
and to extra hardware for communication between parts. However, Table
VIII shows that there is usually only a slight increase in size, roughly
10-20%. The biggest increase occurs in the vol example, since instead of

Table VIII. Size Outputs

2P-FACT

Dup. Unpart. Functional part. Ratio

Part 1 Part 2 Total

1 13312 6347 7431 13778 1.11
2 24271 8410 10279 18689 0.77
3 34160 11431 13628 25059 0.77
4 45033 14717 15219 29936 0.67

8-bits RSA

Dup. Unpart. Functional part. Ratio

Part 1 Part 2 Total

1 17275 14200 3558 17758 1.11
2 25655 21640 6525 28165 1.11
3 33435 28994 10814 398098 1.25
4 43182 34635 11690 46325 1.11

VOL

Dup. Unpart. Functional part. Ratio

Part 1 Part 2 Total

1 11996 11884 6856 18740 1.6
2 19489 19449 9861 29310 1.4
3 27911 23043 13989 37032 1.25
4 35661 29306 17806 47112 1.25

204 • F. Vahid et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

just one multiplier we need two multipliers, one for each part. In many
cases, the sizes are nearly equal, and in some cases, there was actually a
decrease in size, most likely attributable to simpler control logic and
multiplexing.

Finally, we note that synthesis tool documentation often encourages
specification writers to functionally partition the input manually, by writ-
ing processes that are no larger than some specified criteria.

4.3.3 Predictor. The number of states/transitions and functional units
seem to predict the synthesis time. When using optimal logic synthesis,
synthesis time is dominated by synthesis of the control unit. The number of
states and transitions increases the complexity of control units. Therefore,
we can use the number of states and transitions as the predictor for
synthesis time in optimal mode. On the other hand, when using fast logic
synthesis, most time was spend performing data path binding (in MEBS).
Thus the number of operations becomes the predictor for synthesis time.

5. FUTURE WORK

Functional partitioning can yield big advantages. But the problem is a
difficult one, and much research is needed in several key areas before
automated functional partitioners become truly practical.

First, fast and accurate estimators must be developed. These estimators
will likely need to be closely integrated with commercial synthesis tools, in
order to provide accurate prediction of synthesis results.

Second, good partitioning and transformation heuristics must be devel-
oped. We recently extended the Kernighan/Lin heuristic, which had proven
itself fast, yielding good results for structural partitioning, to the problem
of functional partitioning [Vahid and Le 1997]. We are also investigating
transformations that could lead to improved results, such as cloning of
shared procedures [Vahid 1997] or parallelization of sequential procedure
calls. Integration of partitioning and transformation should also be exam-
ined.

Third, techniques for interfacing functions on different components must
be developed. We are currently developing communication libraries for such
a purpose [Vahid and Tauro 1997]. Techniques for generating a highly
readable and refined specification must also be developed.

Many of the above problems were initially addressed in Gajski’s SpecSyn
tool [Gajski 1994] at UC Irvine.

6. CONCLUSIONS

We have shown the importance of functional partitioning in a synthesis
environment. Functionally partitioning a specification among hardware
blocks yields far better satisfaction of I/O and size constraints on those
blocks than does the current approach of structural partitioning, while also
yielding improvements in performance . Functionally partitioning a system
before synthesis can yield an order of magnitude improvement in synthesis

Functional Partitioning Improvements Over Structural Partitioning • 205

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

runtimes. These findings suggest the need for further investigation and
development of automated functional partitioning tools, in order to meet
packaging constraints, improve synthesis performance, as well as perform
hardware/software partitioning. Such tools can substantially improve the
usefulness of automated synthesis environments.

References

ANTONIAZZI, S., BALBONI, A., FORNACIARI, W., AND SCIUTO, D. 1994. A methodology for
control-dominated systems codesign. In Proceedings of the International Workshop on
Hardware-Software Co-Design, 2–9.

BRAYTON, R., RUDELL, R., SANGIOVANNI-VINCENTELLI, A., AND WANG, A. 1987. MIS: A
multiple-level logic optimization system. IEEE Trans. Comput.-Aided Des. Integr. Circuits
6 (Nov.), 1062–1080.

CAMPOSANO, R. AND BRAYTON, R. 1987. Partitioning before logic synthesis. In Proceedings of
the International Conference on Computer-Aided Design (ICCAD).

CAMPOSANO, R. AND VAN EIJNDHOVEN, J. 1987. Partitioning a design in structural
synthesis. In Proceedings of the International Conference on Computer Design.

CHEN, Y., HSU, Y., AND KING, C. 1992. MULTIPAR: Behavioral partitioning for synthesizing
application-specific multiprocessor architectures. In Proceedings of the European Confer-
ence on Design Automation, 14–18.

CHEN, Y., HSU, Y., AND KING, C. 1994. MULTIPAR: Behavioral partition for synthesizing
multiprocessor architectures. IEEE Trans. Very Large Scale Integr. Syst. 2, 1 (Mar.),
21–32.

CORMEN, T. T., LEISERSON, C. E., AND RIVEST, R. L. 1990. Introduction to Algorithms. MIT
Press, Cambridge, MA.

ELES, P., PENG, Z., AND DOBOLI, A. 1992. VHDL system-level specification and partitioning in
a hardware/software co-synthesis environment. In Proceedings of the International Work-
shop on Hardware-Software Co-Design, 49–55.

ELES, P., PENG, Z., KUCHCINSKI, K., AND DOBOLI, A. 1996. Hardware-software partitioning
with iterative improvement heuristics. In Proceedings of the International Symposium on
System Synthesis, 71–76.

ERNST, R., HENKEL, J., AND BENNER, T. 1994. Hardware-software cosynthesis for
microcontrollers. IEEE Des. Test (Dec.), 64–75.

FIDUCCIA, C. AND MATTHEYSES, R. 1982. A linear-time heuristic for improving network
partitions. In Proceedings of the Conference on Design Automation.

GAJSKI, D. D., DUTT, N. D., WU, A. C.-H., AND LIN, S. Y.-L. 1992. High-Level Synthesis:
Introduction to Chip and System Design. Kluwer Academic Publishers, Hingham, MA.

GAJSKI, D. D., VAHID, F., NARAYAN, S., AND GONG, J. 1994. Specification and Design of
Embedded Systems. Prentice-Hall, Inc., Upper Saddle River, NJ.

GUPTA, P., CHEN, C.-T., DESOUZA-BATISTA, J. C., AND PARKER, A. C. 1994. Experience with
image compression chip design using unified system construction tools. In Proceedings of
the 31st Annual Conference on Design Automation (DAC’94, San Diego, CA, June 6–10,
1994). ACM Press, New York, NY, 250–256.

GUPTA, R. K. AND DE MICHELI, G. 1993. Hardware-software cosynthesis for digital
systems. IEEE Des. Test 10, 3 (Sept.), 29–41.

GUPTA, R. AND DEMICHELI, G. 1990. Partitioning of functional models of synchronous digital
systems. In Proceedings of the International Conference on Computer-Aided Design,
216–219.

GUPTA, R. AND DEMICHELI, G. 1992. System-level synthesis using re-programmable
components. In Proceedings of the European Conference on Design Automation, 2–7.

HAREL, D. 1987. Statecharts: A visual formalism for complex systems. Sci. Comput.
Program. 8, 3 (June 1), 231–274.

HOARE, C. 1978. Communicating sequential processes. Commun. ACM 21, 8, 666–677.

206 • F. Vahid et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

HSU, Y., LIU, T., TSAI, F., LIN, S., AND YU, C. 1994. Digital design from concept to prototype in
hours. In Proceedings of the Asia-Pacific Conference on Circuits and Systems.

HWANG, L. AND GAMAL, A. E. 1995. Min-cut replication in partitioned networks. IEEE Trans.
CAD 14 (Jan.), 96–106.

ISMAIL, T. B., O’BRIEN, K., AND JERRAYA, A. 1994. Interactive system-level partitioning with
PARTIF. In Proceedings of the European Conference on Design Automation (EURO-DAC
’94, Grenoble, France, Sept. 19–23, 1994). IEEE Computer Society Press, Los Alamitos, CA.

JOHANNES, F. 1996. Partitioning of VLSI circuits and systems. In Proceedings of the 33rd
Conference on Design Automation.

KALAVADE, A. AND LEE, E. 1994. A global criticality/local phase driven algorithm for the
constrained hardware/software partitioning problem. In Proceedings of the International
Workshop on Hardware-Software Co-Design, 42–48.

KERNIGHAN, B. AND LIN, S. 1970. An efficient heuristic procedure for partitioning
graphs. Bell Syst. Tech. J. (Feb.).

KIRKPATRICK, S., GELATT, C. D., JR., AND VECCHI, M. P. 1983. Optimization by simulated
annealing. Science 220, 4598 (May), 671–680.

KIRKPATRICK, Y. AND CHENG, C. 1991. Ratio cut partitioning for heirarchical designs. IEEE
Trans. CAD 10, 7 (July), 911–921.

KRISHNAMURTHY, B. 1984. An improved min-cut algorithm for partitioning VLSI
networks. IEEE Trans. Comput. (May).

KUCUKCAKAR, K. AND PARKER, A. 1991. CHOP: A constraint-driven system-level
partitioner. In Proceedings of the Conference on Design Automation, 514–519.

LAGNESE, E. D. AND THOMAS, D. E. 1991. Architectural partitioning of system level synthesis
of integrated circuits. IEEE Trans. CAD 10, 7 (July), 847–860.

LEE, E. AND MESSERSCHMITT, D. 1987. Synchronous data flow. Proc. IEEE 75, 9, 1235–1245.
MCFARLAND, M. AND KOWALSKI, T. 1990. Incorporating bottom-up design into hardware

synthesis. IEEE Trans. CAD 9, 9 (Sept.).
SANCHIS, L. A. 1989. Multiple-way network partitioning. IEEE Trans. Comput. 38, 1 (Jan.),

62–81.
SECHEN, C. AND CHEN, D. 1988. An improved objective function for mincut circuit

partitioning. IEEE Trans. CAD.
TESSIER, R., BABB, J., DAHL, M., HANONO, S., AND AGARWAL, A. 1995. The virtual wires

emulation system: A gate-efficient asic prototyping environment. In Proceedings of the
Third International ACM Symposium on Field-Programmable Gate Arrays (FPGA ’95,
Monterey, CA, Feb. 12–14, 1995). ACM Press, New York, NY.

THOMAS, D., ADAMS, J., AND SCHMIT, H. 1993. A model and methodology for hardware/software
codesign. IEEE Des. Test, 6–15.

VAHID, F. 1997. I/O and performance tradeoffs with the FunctionBus during multi-FPGA
partitioning. In Proceedings of the International Symposium on Field-Programmable Gate
Arrays (FPGA), 27–34.

VAHID, F. 1997. Port calling: A transformation for reducing i/o during multi-package
functional partitioning. In Proceedings of International Symposium on System Synthesis.

VAHID, F. 1997. Procedure cloning: A transformation for improved system-level functional
partitioning. In Proceedings of the European Conference on Design and Test, 487–492.

VAHID, F. 1995. Procedure exlining: A transformation for improved system and behavioral
synthesis. In Proceedings of the Eighth International Symposium on System Synthesis
(Cannes, France, Sept. 13–15, 1995). ACM Press, New York, NY, 84–89.

VAHID, F. AND GAJSKI, D. D. 1995. Incremental hardware estimation during hardware/
software functional partitioning. IEEE Trans. Very Large Scale Integr. Syst. 3, 3 (Sept.),
459–464.

VAHID, F. AND GAJSKI, D. 1995. SLIF: A specification-level intermediate format for system
design. In Proceedings of the European Conference on Design and Test (EDTC), 185–189.

VAHID, F. AND GAJSKI, D. D. 1992. Specification partitioning for system design. In
Proceedings of the 29th ACM/IEEE Conference on Design Automation (DAC ’92, Anaheim,
CA, June 8-12). IEEE Computer Society Press, Los Alamitos, CA, 219–224.

Functional Partitioning Improvements Over Structural Partitioning • 207

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

VAHID, F. AND LE, T. 1997. Extending the Kernighan/Lin heuristic for hardware and software
functional partitioning. J. Des. Autom. Embedded Syst. 2, 2, 237–261.

VAHID, F. AND LE, T. 1996. Towards a model for hardware and software functional
partitioning. In Proceedings of the International Workshop on Hardware-Software Co-
Design, 116–123.

VAHID, F., NARAYAN, S., AND GAJSKI, D. 1995. SpecCharts: A VHDL front-end for embedded
systems. IEEE Trans. CAD, 694–706.

VAHID, F. AND TAURO, L. 1997. An object-oriented communication library for hardware-
software co-design. In Proceedings of the International Workshop on Hardware-Software
Co-Design, 81–86.

XIONG, X., BARROS, E., AND ROSENSTIEL, W. 1994. A method for partitioning UNITY language
in hardware and software. In Proceedings of the European Conference on Design Automa-
tion (EURO-DAC ’94, Grenoble, France, Sept. 19–23, 1994). IEEE Computer Society Press,
Los Alamitos, CA, 220–225.

IEEE STANDARDS OFFICE, 1988. IEEE Standard VHDL Language Reference Manual. IEEE
Standards Office, New York, NY.

Received: January 1996; revised: October 1996; accepted: July 1997

208 • F. Vahid et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

