
Partitioning Sequential Programs for CAD
Using a Three-Step Approach

FRANK VAHID
University of California, Riverside

Many computer-aided design problems involve solutions that require the partitioning of a large
sequential program written in a language such as C or VHDL. Such partitioning can improve de-
sign metrics such as performance, power, energy, size, input/output lines, and even CAD tool run-
time and memory requirements, by partitioning among hardware modules, hardware and software
processors, or even among time-slices in reconfigurable computing devices. Previous partitioning
approaches typically preselect the granularity at which the program is partitioned. In this article,
we define three distinct partitioning steps: procedure determination, preclustering, and N -way
partitioning, with the first two steps focusing on granularity selection. Using three steps instead
of one can provide for a more thorough design space exploration and for faster partitioning. We
emphasize the first two steps in this article since they represent the most novel aspects. We illus-
trate the approach on an example, provide results of several experiments, and point to the need for
future research that more fully automates the three-step approach.

Categories and Subject Descriptors: B.5.2 [Register-Transfer-Level Implementation]: Design
Aids—Automatic synthesis; Hardware description languages; Optimization

General Terms: Design, Languages, Performance

Additional Key Words and Phrases: Partitioning, hardware/software partitioning, behavioral par-
titioning, functional partitioning, system level partitioning

1. INTRODUCTION

Sequential programs serve as input to many computer-aided design (CAD) tools.
A sequential program may be captured in a language such as C, C++, Java,
VHDL, Verilog, or SystemC. Partitioning a sequential program into several
smaller communicating programs has become an important solution for many
problems addressed by CAD tools.

Numerous hardware/software codesign tools, for example, partition a
program among a microprocessor and customized digital logic to improve
performance.1 Recently, researchers have found that such partitioning can also
reduce power or energy [Henkel 1999; Wan et al. 1998; Stitt and Vahid 2002].

1Please see Balboni et al. [1996], Eles et al. [1996], Ernst et al. [1994], Gupta and De Micheli [1993],
Knudsen and Madsen [1996], and Gajski et al. [1998].

Author’s address: F. Vahid, Dept. of Computer Science and Engineering, University of California,
Riverside, CA 92521; email: vahid@cs.ucr.edu, http://www.cs.ucr.edu/∼vahid.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 1084-4309/02/0700-0413 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002, Pages 413–429.

414 • F. Vahid

Partitioning a program before running behavioral or register-transfer syn-
thesis can also yield numerous advantages, such as reduced synthesis run-time,
reduced power or energy, improved performance, simplified physical design, or
satisfaction of packaging or module input/output constraints. For example, we
have demonstrated 40% power reduction with little change in performance,
by partitioning before synthesis [Hwang et al. 1999], obtained because sev-
eral smaller mutually exclusive processors consume less power per operation
than one big processor. Likewise, we have demonstrated reductions in otherwise
long synthesis run-times and improved input/output constraint satisfaction ob-
tained through such partitioning [Vahid et al. 1998].

Reconfigurable computing tools also partition a program to make better
use of a given amount of a field-programmable logic device through time-
multiplexing the mapping of functionality onto the device [Callahan et al. 2000].

We can thus see that partitioning a sequential program is an important prob-
lem in many areas of CAD. There has been extensive research in partitioning
multiple concurrent programs, called processes or tasks, among multiple pro-
cessing elements [Kalavade and Lee 1994; Wolf 1997], but that problem empha-
sizes scheduling and is thus quite different from partitioning a single program.
Approaches that focus instead on a single sequential program typically prede-
termine the granularity at which the program will be partitioned, using atomic
operations such as arithmetic/control operations [Lagnese and Thomas 1991],
finite-state machine states [Hwang et al. 1999], basic blocks [Ernst et al. 1994;
Balboni et al. 1996], or even procedures [Gajski et al. 1998], listed in order of
fine-grained to coarse-grained operation. Such approaches expand a program
into those atomic operations, and then apply an N -way partitioning algorithm
that assigns those operations among N groups, where what each group repre-
sents depends on the CAD problem being addressed.

Using such a one-step N -way partitioning approach with predetermined
granularity limits the potential quality of partitioning results. Henkel and
Ernst [1997] sought to overcome this limitation using a dynamically deter-
mined granularity, in which they hierarchically grouped blocks to form a hi-
erarchical set of operations. Their N -way partitioning algorithm, simulated
annealing, then moves randomly selected operations among hardware and
software groups; some of those operations may be fine-grained, others coarse-
grained.

Related work in the compiler domain [Hall et al. 1996; Ruf and Weise 1991;
Arnold et al. 2000; Cooper et al. 1993] tends to have a very different focus,
derived primarily from the fact that compilers are expected to have run-times
on the order of seconds, not minutes or hours. Partitioning for CAD assumes
that a much more thorough exploration of the solution space can be tolerated,
since CAD tool run-times on the order of hours are common.

We introduce a novel three-step partitioning approach, highlighted in
Figure 1, that overcomes the limitations of predetermined granularity. We tai-
lor this approach specifically to sequential program partitioning, although the
steps could be tailored to some other partitioning domains as well. A proce-
dure determination step creates, copies, merges, or eliminates procedures, to
find the best initial granularity for partitioning. A preclustering step pregroups

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Partitioning Sequential Programs for CAD • 415

Procedure
determination

Pre-clustering

N-way
partitioning

Pre-estimation

Online
estimation

Call graph

Partitioned call graph

Fig. 1. Three-step partitioning overview.

certain very close procedures to prune inferior regions of the solution space. An
N-way partitioning step assigns the remaining procedures to N groups. The
first two steps focus on selecting the appropriate granularity. Our results show
that those first two steps play a big role in the quality of results. As N -way par-
titioning has been widely studied, most of this article emphasizes the first two
steps, and experimental results illustrate the impact that various procedure de-
terminations and preclusterings can have on N -way assignment. We conclude
by pointing to the need for further research into automatic integration of these
three steps.

2. PROBLEM STATEMENT

We are given a single sequential program, consisting of hundreds to thousands
of lines of code, describing a complex repeating sequential computation. This
program may include typical sequential program features such as loop and
branch statements, assignment statements, procedures, local and global vari-
ables, and so on. We do not currently consider programs with recursion or point-
ers, leaving those features for future work. Program execution starts with a
main procedure, which proceeds to execute its statements sequentially.

For example, Figure 2(a) shows a small part of a 720-line microwave trans-
mitter controller program. The key global variable and procedure declarations
are shown, followed by part of the main program. The program first initializes
and clears a liquid-crystal display (LCD), and then sequences through several
modes. Each mode is a procedure that calls several other procedures. We use
procedures and global variables as our starting granularity of operations for
partitioning. We say starting granularity because our partitioning steps may
decompose or merge these operations to favorably change the granularity. From
this point on, we refer to global variables as procedures themselves, with vari-
able accesses treated as procedure calls.

Partitioning assigns the procedures among N groups, where N can be 2
or more. Each group may represent functions to be mapped to a software
processor, hardware processor, time-slice on a programmable logic device, or
some other construct depending on the CAD problem being addressed. The

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

416 • F. Vahid

Mwt
Global variables:

level: byte;
Procedures:

LcdSend(byte); Mode1(); Mode2();
LcdUpdate(byte,byte); LcdInit();
Util(); XmitLevel(byte); XmitData(bit);

Main:
LcdInit();
LcdClear();
mode = 1;
loop

case (mode)
when (1) => Mode1();

if (cond_a) mode = 2;
when (2) => Mode2();

if (cond_b) mode = 3;
...

(a) (b)

Mwt

XmitLevel

LcdUpdate

LcdClear

LcdInit

Mode1

Mode2

LcdSend

XmitData Util

level

lbus

mbus

freq=1
bits=8

freq=48
bits=8

freq=1
bits=0

Fig. 2. Microwave transmitter example: (a) original sequential program; (b) initial call-graph with
some annotations.

groups can each represent a different type, as is the case in hardware/software
partitioning. These groups may exist on the same integrated circuit (IC) or
separate ICs. Program execution after partitioning is the same as before, ex-
cept that a procedure in one group that calls another procedure in a different
group requires communication of control and data information between those
groups. We do not restrict how procedures will be implemented internally in
a group after partitioning is completed; they could be inlined, implemented
as an independent component, and so on. Furthermore, subsequent schedul-
ing can introduce concurrency, either among procedures within a group, or
among procedures between groups, as long as data and timing dependencies are
observed.

We first convert the sequential program into a call graph representation,
where each node represents a procedure, and each edge represents a procedure
call. Note that this model, unlike the more traditional dataflow graph model
used in many earlier approaches, supports programs having procedures called
from many different places in the program, with arbitrarily deep nesting of
such calls. We can describe the call graph more specifically as follows.

The call graph is a directed acyclic graph CG = <F,E>. Each node in the set
F = { f 1, f 2, . . . , f n} corresponds to a procedure, and each node fi = {S}, where
S is the set of statements in that procedure. We refer to a node’s statements
as fi.S. Each edge in the set E = {e1, e2, . . . , em}, ei = <fsrc, fdst>, fsrc ∈ F ,
fdst ∈ F , fsrc 6= fdst corresponds to one or more calls from procedure fsrc to
procedure fdst.

When the call graph serves as input to a CAD tool, that tool will typically
heavily annotate the graph using profilers and other pre-estimators, and those
annotations will be used to speed up online estimators used during N -way par-
titioning [Gajski et al. 1998], as illustrated in Figure 1. The details of such anno-
tation and estimation are beyond the scope of this article. However, some basic
annotations that are relevant to our work include an extended edge definition
ei = <fsrc, fdst, freq, bits>, where freq is the frequency with which the procedure

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Partitioning Sequential Programs for CAD • 417

fsrc calls fdst during a fixed time of program execution, and bits is the number
of data bits transferred as parameters during each call. Figure 2(b) shows the
initial call-graph for the earlier example. A few edge annotations are shown.

3. PARTITIONING STEP 1: PROCEDURE DETERMINATION

A key trade-off in partitioning is the selection of the granularity of the proce-
dures input to N -way partitioning. Selecting fine-grained procedures results
in a large number of procedures, whereas coarse-grained means a smaller
number. For example, a hypothetical 1000-line program could be divided into
500 2-line procedures (let’s call this Case 1) or 2 500-line procedures (Case 2).
Fine-grained has the advantage of exposing more of the solution space to an
N -way partitioning algorithm. For example, an algorithm that explores n2

partitionings will examine 250,000 partitionings for Case 1 but only 4 for
Case 2. In contrast, coarse-grained has the advantage of enabling powerful
partitioning algorithms with high run-time complexity to still complete in
reasonable run-times. For example, an n2 algorithm requiring 100 millisec-
onds per partitioning will run for 25,000 seconds for Case 1 but only 0.4 sec-
onds in Case 2. Coarse-grained also has the advantage of enabling extensive
pre-estimation which in turn speeds up online estimation. For example, we
can pre-estimate the run-time for Case 2’s two procedures, and then sim-
ply add those times up during online estimation. However, we can do little
pre-estimation for Case 1, since the run-time of a large set of 2-line proce-
dures in one group will be mostly determined by interprocedural optimiza-
tions. This means online estimation will have to be even more complex to
achieve decent accuracy, thus further adding to run-time for the fine-grained
situation.

In earlier work [Gajski et al. 1998], we performed N -way partitioning directly
on the initial call graph, but we then observed the significant dependency that
the programmer’s use of procedures had on quality. We thus sought to decrease
this dependency. We developed a new partitioning step, which we called proce-
dure determination, whose goal is to divide the sequential program into a set
of procedures best suited for N -way partitioning. It generally strives to cre-
ate procedures such that: (1) procedures are as coarse-grained as possible, to
enable powerful N -way algorithms and extensive pre-estimation, and (2) state-
ments are grouped into a procedure only if their separation would yield inferior
solutions.

We now briefly describe the set of transformations that we have devel-
oped to support procedure determination. Additional transformations that
form the core of compiler front-end processing, such as loop unrolling, con-
stant propogation, and the like, could also be included in this step [Hall et al.
1996].

3.1 Procedure Inlining

Procedure inlining is a well-known transformation that replaces a procedure
call by the procedure’s contents. Inlining updates our call graph as follows, as
illustrated in Figure 3(a).

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

418 • F. Vahid

Given a node f 1 and a statement s ∈ f 1.S calling f 3, replace s by f 3.S
(replacing parameters appropriately), calling the new node f 1a. For the edge
ei connecting f 1 and f 3, reduce ei.freq by the frequency of s. If this reduction
makes ei.freq zero, delete ei from the call graph. If deleting this edge results
in f 3 having no incoming edges, delete f 3.

An advantage of inlining is that it can make granularity coarser, since in-
lined procedures may themselves be deleted, whereas calling procedures get
more complex. Another more subtle advantage is call differentiation: estima-
tions will be more accurate since different parameter values from different call
locations can be differentiated for each inlined set of procedure statements.
For example, a particular procedure might always be called from one loca-
tion with parameter value 10 and from another location with value 10,000.
When inlined, these are constants that can be propagated separately through
the inlined procedure statements, yielding perhaps very different performance
estimates.

A disadvantage of inlining is growth in code size. This occurs when a proce-
dure is called from more than one location. This growth is even worse for deeply
nested procedure call hierarchies, since the growth is multiplicative. For exam-
ple, suppose procedure A calls B from 5 locations, B calls C from 5 locations, and
C calls D from 5 locations. Assume all procedures had 10 statements originally.
Then C will be of (approximate) size 10 + 5∗10 = 60 after inlining D. B will
be of size 10 + 5∗(60) = 310, and A will thus be of size 10 + 5∗(310) = 15, 500
lines, much more than the original 40 lines. Furthermore, inlining prevents sep-
aration of procedures that perhaps should have been partitioned to separate
groups.

Thus, inlining must be done reservedly. We currently assume inlining is done
manually. Automated heuristics in the compiler community have focused on
reducing procedure call overhead or on call differentiation while limiting code
size growth [Arnold et at. 2000]. Inlining for partitioning has very different
goals, so future work on heuristics for such inlining might include factors such
as a called procedure’s size, the static number of call locations, the dynamic
frequency of calls, the nesting level of calls in the call hierarchy, the variation
in parameter values among the calls, and the differences between the calling
procedures themselves.

3.2 Procedure Cloning

The procedure cloning transformation makes a copy of a procedure for exclusive
use by a particular caller. More specifically, cloning updates the call graph as
follows, as illustrated in Figure 3(b).

Given a node f 3 that has at least two incoming edges, and a node f 2 that
is the source of one of those edges e, copy f 3 to a new node f 3a, setting e’s
destination to f 3a. Copy all of f 3’s outgoing edges, and set the copies’ source
to be f 3a.

This transformation is a compromise between inlining and not inlining. A
multiply called procedure when inlined might lead to multiplicative growth in
code size, but if not inlined might become a communication bottleneck. Cloning
eliminates the bottleneck while avoiding excessive growth.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Partitioning Sequential Programs for CAD • 419

(a)

f1

f2

f3

f1a

f2a

f3

(b)

f1

f2

f3

f3f1

f2 f3a

(c)

f1a

f2a

fn

f1

f2

(d)

f1a f1b

f1

(e)

f1 e1

f1 e1e1a

Fig. 3. Procedure determination: (a) inlining; (b) cloning; (c) redundancy exlining; (d) computation
exlining; (e) port calling.

We can distinguish certain types of cloning heuristics during the granularity
selection step. One is max-cloning, in which cloning is repeated until no pro-
cedure has more than one accessor; that is, all call graph nodes have only one
incoming edge. If max-cloning is done after N -way partitioning, then we can
restrict max-cloning to only those nodes with at least one same-part accessor
and one different-part accessor; such postpartition max-cloning can find good
cloning candidates, which can in turn yield improvements during a subsequent
N -way partitioning. A second type of cloning is best-cloning, in which only those
nodes deemed by some cost function as good cloning candidates are cloned. A
good candidate would in general be small, and would be accessed by procedures
that themselves have little else in common. In either case, after partitioning
(including possible iterations among the three steps) is completed, clones in the
same group would be uncloned (merged back together).

Cloning cannot be performed for nodes representing global variables, since
the variable’s value must be consistent across all accessors. More generally, any
procedure with state should not be cloned (such as a procedure with a static
local variable).

Cloning has been done in the compiler community for purposes of more ac-
curate profiling information; see the above discussion on call differentiation
[Cooper et al. 1993; Hall et al. 1996; Ruf and Weise 1991]. Our approach is
different in its goals and thus its methods; details are to be found in Vahid
[1999a].

3.3 Procedure Exlining for Redundancy Elimination

We have also developed a transformation called procedure exlining, which, as
its name implies, is the inverse of inlining. We distinguish between two types
of exlining: redundancy and computation exlining. Redundancy exlining seeks
to replace two or more near-identical sequences of statements from different
procedures by calls to one procedure [Vahid 1995]. It updates the call graph as
follows, as illustrated in Figure 3(c).

Given f 1 and f 2 and a sequence of statements T , T ⊂ f 1.S, T ⊂ f 2.S,
create a new procedure fn such that fn.S = T . Replace f 1 by f 1a, which is
identical to f 1 except that T is replaced by a single statement that calls fn; do
the same for f 2. Add an edge from f 1a to fn, and another from f 2a to fn.

Advantages and disadvantages of redundancy exlining are the inverse of
those for inlining.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

420 • F. Vahid

The above definition of redundancy exlining is actually too strict; most
redundant sequences of statements will not match exactly, but rather ap-
proximately. Differences could be simply due to different variable names or
inconsequential statement reorderings. Automatically detecting redundant
statement sequences is a hard problem; we use a manual but computer-assisted
approach. We first encode each statement by its type and accessed symbols, and
then use an existing approximate pattern matching [Wu and Manber 1992]
tool to find candidate matches. The user then determines whether candidate
matches should be exlined, and manually creates a new procedure. Parame-
ters and branches inside the new procedure’s statements may be necessary to
account for real differences between the approximate matching sequences of
statements.

3.4 Procedure Exlining for Distinct Computation Isolation

This second type of procedure exlining seeks to divide a large sequence of state-
ments into several smaller procedures such that statements within a procedure
are tightly related and would thus never be separated in a good N -way par-
titioning solution. Computation exlining modifies the call graph as follows, as
illustrated in Figure 3(d).

Given f 1 and a sequence of statements T , T ⊂ f 1.S, create a new procedure
f 1b such that f 1b.S=T. Replace f 1 by f 1a, which is identical to f 1 except
that T is replaced by a single statement that calls f 1b. Add an edge from f 1a
to f 1b.

Computation exlining provides for finer granularity, at the expense of more
nodes.

In our approach to computation exlining, we use statements as our unit; an
approach at the arithmetic-operation level is described in Lagnese and Thomas
[1991]. We first convert the statements to a tree, where each node represents a
statement, and each nonleaf node represents a hierarchical statement such as
a loop or procedure call. We add special edges to the tree to indicate nodes that
can be legally grouped, and then define tree transformations for the addition
of a new procedure.

The distinct-computation exlining problem is thus to insert procedure nodes
into this tree such that a cost function is minimized. We use a weighted sum
cost function consisting of several terms. Procedure size is the variation from a
user-provided desired number of statements per procedure. Control transfer is
the number of transfers of control to procedures over the entire tree, obtained
from pre-estimation annotations. Data transfer is the amount of data trans-
ferred to or from procedures over the tree. Hardware size is the total size of
hardware assuming each procedure is synthesized independently, thus encour-
aging grouping of statements that can share hardware.

We developed three heuristics for solving this problem. A naive heuristic
simply inserts a procedure node for every hierarchical statement that is not al-
ready a procedure. A clustering heuristic merges closest nodes until a closeness
threshold is no longer exceeded, where closeness is defined as a weighted
sum of the above metrics defined between the two nodes. A simulated an-
nealing heuristic inserts and deletes procedure nodes according to a controlled

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Partitioning Sequential Programs for CAD • 421

Mwt

XmitLevel

LcdUpdateLcdInit

Mode2

LcdSend

XmitData Util

level

lbus

mbus

freq=1
bits=8

freq=48
bits=8

lbusa
LcdClear

Mode1a

Mode1b

Utila

mbusa

Fig. 4. Microwave transmitter example after the first partitioning step of procedure determination.

randomized process. The naive heuristic was obviously fastest but gave poor re-
sults. Clustering and simulated annealing both yielded good results, with the
former being faster but at the expense of lower quality. Further exlining details
can be found in Vahid [1995].

3.5 Port Calling

The port calling transformation seeks to allow us to distribute external in-
put/output (I/O) ports among groups irrespective of which procedures access
those ports. It accomplishes this by inserting new procedures responsible for
I/O port access, and replacing direct port access in procedures by calls to these
new procedures. Port calling modifies the call graph as follows, as illustrated
in Figure 3(e).

Modify f 1.S to call e1a, with a parameter indicating read or write, rather
than reading or writing e1 directly. Replace the edge from f 1 to e1 by one from
f 1 to e1a, and another from e1a to e1.

Thus, when the new node is moved to a group during N -way partitioning,
the port follows it. An accessing procedure accesses the port by calling the new
node’s procedure, which results in a data transfer over a bus between the parts;
this bus can be shared and be a fixed size, so no extra wires are needed between
the parts for the transfer. This transformation is similar in concept to extended
parallel I/O.

Port calling makes the granularity finer, by isolating port access behavior as
distinct from accessing procedures’ behaviors. Further details can be found in
Vahid [1999b].

3.6 Example

Figure 4 illustrates sample call-graph modifications made during granularity
selection on the earlier example. Computation exlining is used to split proce-
dure Mode1 because it is large and accesses two different sets of procedures:
those accessing an external LCD, and those accessing a transmitter. Such exlin-
ing separates the original procedure’s statements into a procedure Mode1a that
accesses the LCD and a procedure Mode1b that accesses the transmitter. Pro-
cedure inlining is used to eliminate the very small procedure LcdClear, which

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

422 • F. Vahid

consists of just one statement calling LcdSend with a particular parameter
value. Procedure cloning is used to make a copy of procedure Util called Utila,
for exclusive use by LcdUpdate, thus providing a good separation between the
LCD and transmitter procedures. Port calling inserts nodes lbusa and mbusa,
so that the corresponding ports can be moved freely among parts. Note: because
level is a variable, its node can’t be cloned, as discussed in Section 3.2.

4. PARTITIONING STEP 2: PRECLUSTERING

It is hoped that the first partitioning step, procedure determination, has cre-
ated a coarse-grained set of procedures for N -way partitioning with as few
procedures as possible, but still exposing the regions of the solution space in
which all good solutions would exist. However, we can still prune away regions
of the remaining solution space that we are confident would not include a good
solution, but that instead represent regions that could not be pruned during
procedure determination. We can do this by grouping certain procedures that
we are confident should never be separated in a good partitioning. We call this
preclustering.

Consider, for example, procedures LcdUpdate and LcdSend in Figure 4.
These two procedures communicate heavily, with a frequency of 48 calls for the
given interval, communicating 8 bits on each call. Those 48 calls come not from
a loop that loops 48 times, but rather 48 separate calls, each with its own set
of parameters. LcdSend contains 20 statements. Thus, inlining LcdSend into
LcdUpdate would have increased code size significantly, by about 48∗20 = 960
lines—more than the entire original program itself. Thus, inlining is not per-
formed. Cloning would not help, nor would the other transformations. Yet we
are confident that separating these two procedures would never be a good idea,
because of their heavy communication, as well as their similarity in terms of re-
laxed timing constraints and similar functionality, consisting mostly of control
statements, with no significant difference in, say, arithmetic operations (such
as a multiply in one procedure but not the other). Thus we choose to cluster
LcdUpdate and LcdSend. Likewise, we cluster XmitLevel and XmitData, since
they both are accessed by Mode1b and since both access mbusa. The resulting
call graph after preclustering is shown in Figure 5.

Designers will often want to manually precluster certain procedures. For
automated preclustering, we use a hierarchical clustering heuristic. The pro-
cedures created after granularity selection are each converted to a graph node,
and edges are created between every pair, weighed by the closeness of the nodes.
The closest pair of nodes is merged into a new (hierarchical) node, and the merg-
ing repeats until no pair of nodes exceeds a minimum closeness threshold. The
closeness between this new node and other nodes can be recomputed, or simply
approximated as the minimum, maximum, or average of all edges being re-
placed. Closeness is defined using a weighted sum of several normalized close-
ness metrics. We must take care to define these metrics as a normalized number
(between 0 and 1), because leaving such normalization to the user through the
selection of weights, as many previous approaches require, is an extremely dif-
ficult if not impossible user task. The connectivity metric measures the size

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Partitioning Sequential Programs for CAD • 423

XmitLevel

LcdUpdateLcdInit

Mode2

LcdSend

XmitData Util

level

lbus

mbus

freq=1
bits=8

freq=48
bits=8

lbusa

Mwt

Mode1a

Mode1b

Utila

mbusa

Fig. 5. Microwave transmitter example after the second partitioning step of preclustering.

of data shared among the two sets of nodes (irrespective of the frequency of
access to those data), normalized by dividing by the total size of all data ac-
cessed by either set. Communication is the number of bits transferred between
two sets of nodes, normalized by the bits transferred between either set and any
other node; this metric requires profiling information. Common accessors can
be used when profiling information does not exist; it measures the number of
procedures that access nodes in both sets, divided by the number of accessors of
either set. Sequential execution is the number of pairs of procedures, one in each
set, that cannot execute concurrently, divided by the number of possible pairs.
Shared hardware is a measure of the hardware that can be shared by two sets
of nodes B1, B2, computed as size(B1)+ size(B2)− size(B1+B2), divided by the
minimum of size(B1) and size(B2). Note that several of these metrics are sim-
ilar in nature to those for logic-operation clustering and arithmetic-operation
clustering [Lagnese and Thomas 1991].

The user influences automated preclustering by providing weights that mul-
tiply each normalized metric value before being summed into a single closeness
value, and by providing a minimum closeness threshold indicating the mini-
mum closeness value two nodes must have to be merged.

Note in Figure 1 that pre-estimation should be performed again after proce-
dure determination, to appropriately annotate all nodes and edges in the new
call graph.

5. PARTITIONING STEP 3: N-WAY PARTITIONING

The goal of N -way partitioning is to assign procedures among a set of N groups.
Common heuristics include simulated annealing, extended versions of the
Kehrnighan/Lin algorithm, Tabu search, hierarchical clustering, genetic evolu-
tion, dynamic programming, integer linear programming, and greedy heuris-
tics, varying in time and space complexity and quality of results. This step has
been widely studied and thus we omit details here. We point out that existing
N -way partitioning algorithms need no modification to account for the first step,
since the first step creates a new call graph. The second step requires very mi-
nor modification to N -way partitioning algorithms, to ensure that the clustered

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

424 • F. Vahid

XmitLevel

LcdUpdateLcdInit

Mode2

LcdSend

XmitData Util

level

lbus

mbus

freq=1
bits=8

freq=48
bits=8

lbusa

Mwt

Mode1a

Mode1b

Utila

mbusa

Group1

Group2

Fig. 6. Microwave transmitter example after third step of N -way partitioning.

nodes are treated as one node, but they cannot be merged into a new call graph
node because even clustered nodes represent distinct procedures with different
pre-estimation annotations used by the online estimators. See Figure 6.

6. EXPERIMENTS

We have conducted initial experiments to illustrate the impact that individual
transformations and clustering can have on subsequent N -way partitioning.
We have also conducted experiments in which we iterated among one trans-
formation (procedure cloning) and N -way partitioning, and others in which we
tried combining those two steps into one. Results show the advantages of the
first two steps preceding the third, and thus demonstrate the importance of in-
cluding the three steps in a partitioning approach, and also the need for further
study on iterating and combining the steps. The experiments were performed
using the SpecSyn system exploration tool from UC Irvine, which can read in a
sequential program along with processor technology files, and performs parti-
tioning and estimation using an extensive set of data structures and algorithms.
Further details on SpecSyn can be found in Gajski et al. [1998].

6.1 Procedure Determination Experiments

We performed procedure cloning on five examples: a telephone answering ma-
chine, an Ethernet coprocessor, a fuzzy-logic controller, a set-top box, and a mi-
crowave transmitter controller. These examples ranged in size from 300 to 1000
lines of behavioral VHDL code, averaging 700 lines. The partitioning problem
was to perform hardware/software partitioning among a microcontroller and
a field-programmable gate array (FPGA), using simulated annealing as the
N -way partitioning algorithm, with a cost function seeking to minimize execu-
tion time while also minimizing hardware size and input/output pins. We com-
pared results of N -way partitioning applied to the call graph without cloning,
to results of N -way partitioning applied to the call graph created after max-
cloning. The average improvement in performance achieved was a rather good
30%, due to less communication between hardware and software resulting from

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Partitioning Sequential Programs for CAD • 425

-6 0 %

-4 0 %

-2 0 %

0 %

2 0 %

4 0 %

C lo n in g P o rt c a ll in g E x lin in g

P e rfo rm a n c e

H w S iz e

H w IO

R u n tim e

Fig. 7. Average improvements obtained by various procedure determination transformations fol-
lowed by N -way partitioning (among hardware and software) using simulated annealing.

each having their own clones of critical procedures. Hardware size increased by
40% (over the original average of 8000 gates), hardware I/O by 20%, software
size by 2%, and N -way partitioning run-time by 17%—all increases due to hav-
ing more nodes in the call graph. Thus, cloning is clearly an excellent means
for improving performance.

We performed port calling on the same five examples, without cloning, with
the results as summarized in Figure 7. The average improvement in FPGA
input/output lines was 23%, accompanied by an average performance improve-
ment of 6%, with no penalty in hardware size or run-time. Thus, port calling
demonstrated its effectiveness in reducing input/output requirements.

To examine the impact of procedure exlining, we needed to use other ex-
amples, since the above examples were written by us and already highly pro-
cedurized. Thus, we obtained three externally developed examples: an image
processor, an MPEG decoder, and an encrypter. Their sizes were 800, 2200,
and 800 lines of behavioral VHDL code, respectively. Exlining (for distinct com-
putations) had the biggest impact on the MPEG example, increasing the 8
original procedures to 48 procedures. This finer granularity enabled N -way
partitioning to obtain 30% less hardware (originally 27,000 gates) and 10 less
input/output pins while still meeting timing constraints. The encryption exam-
ple’s performance did not change, but synthesis run-time was reduced by 75%,
and hardware size by 18%. The image processor example was sped up slightly
when exlining preceded N -way partitioning.

Average results for cloning, port calling, and exlining are summarized in
Figure 7.

6.2 Preclustering Experiments

We experimented extensively with the preclustering step to determine its im-
pact on run-time and partition quality. One set of experiments consisted of
evaluating the run-time and resulting partition quality of simulated anneal-
ing when preceded by different amounts of clustering. A subset of the results
is shown in Figure 8 for three of the examples. Clustering was done using a
closeness function that was a weighted sum of connectivity, communication,
and shared hardware. The X -axis shows the number of nodes after precluster-
ing; note that we intentionally set preclustering’s termination criteria to be the
number of final nodes, in increments of five. The rightmost x-value of each ex-
ample represents the number of nodes without preclustering. The Y-axis shows
the partition cost after N -way partitioning is applied on the preclustered graph.
The cost is a weighted sum of performance, hardware size, and hardware I/O,

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

426 • F. Vahid

Ethernet coprocessor

0.00

0.25

0.50

0.75

1.00

5 35 65 95 125
Numnodes

N
o

rm
al

iz
ed

co
st

&
ti

m
e

Interactive
TV

0.00

0.25

0.50

0.75

1.00

52 20 35 50 65 80

Cost
Runtime

Microwave transmitter

0.00

0.25

0.50

0.75

1.00

5 10 15 20 25

Fig. 8. Impact of different degree of clustering followed by N -way partitioning simulated annealing
on three examples.

Pre-clustering plus group migration

0
10
20
30
40
50
60
70
80
90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Clustering closeness threshold

C
o

st

Cn

Cm

CnCm

CnCmHs

Pre-clustering plus greedy

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 9. Impact of different degrees of clustering followed by N -way partitioning with group mi-
gration and greedy improvement, showing average results over five examples.

with lower cost being better. The Y-axis also represents the run-time of N -way
partitioning. Both cost and time are normalized to numbers between 0 and 1,
by dividing by the maximum value of each, so that we can display them on the
same plot. By comparing the cost points with the rightmost cost point of each
example, we see that preclustering does not improve partition quality signifi-
cantly, because simulated annealing is a powerful algorithm. However, we do
see that preclustering done to just the right amount can reduce the algorithm’s
run-time by between 25 and 50%, without loss of quality. This can be impor-
tant if we will be running N -way partitioning numerous times, perhaps to try
mapping to different target processors. The maximum run-time for the three
examples shown was 2100, 1700, and 64 seconds on a Sparc20.

If we do indeed plan to run N -way partitioning numerous times, then we
might use a faster N -way partitioning algorithm, such as group migration
[Gajski et al. 1998] (generalized Kehrnighan/Lin) or a greedy algorithm. Those
algorithms are significantly faster: while simulated annealing required on the
order of 1000 seconds per example, group migration required 100 seconds, and
greedy only 10 seconds. Preclustering followed by N -way partitioning using
group migration or greedy algorithms should yield better quality partitions
compared to the case when no preclustering is performed before N -way parti-
tioning using those algorithms. Figure 9 shows the average results for the pre-
vious five examples, when preceding group migration or a greedy algorithm by

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Partitioning Sequential Programs for CAD • 427

-6 0 %

-4 0 %

-2 0 %

0 %

2 0 %

4 0 %

N -w a y /C lo n e /N -w a y In te g ra te d N -w a y /C lo n in g
P e rfo rm a n c e

H w S ize

H w IO

R u n t im e-1 3 0 %

Fig. 10. Average improvements when iterating/combining some of the partitioning steps.

clustering. Here, we experimented with a termination criterion ranging from a
closeness threshold of 0.1 to 0.9, plotted on the X -axis. For each possible thresh-
old, we also experimented with 32 different combinations of closeness metrics,
with the figure showing 4 of them: connectivity only (Cn), communication only
(Cm), connectivity and communication (CnCm), and connectivity and commu-
nication and hardware sharing (CnCmHs). The Y-axis shows overall cost, de-
fined as above as a weighted sum of performance, hardware size, and hardware
I/O, with lower cost being better. We see that the closeness function combin-
ing connectivity and communication seems to work best for these examples.
A closeness threshold of 0.9 means nodes will only be merged if they are ex-
tremely close, so little merging will be done. A threshold of 0.1 means objects
with nearly any relationship will be merged. We see that a threshold of 0.9 has
little impact on N -way partitioning (except in one case), and that a threshold
of 0.1 makes results worse, since too much merging is done. We also see that
a threshold of 0.3 seems to give the best results (this is true for each of the
five individual examples, so the average is a good representation). However, we
would have expected the costs to decrease from 0.9 to 0.3, whereas it increases
slightly and in fact jumps up at 0.4, so further investigation is necessary to
understand the causes. Nevertheless, we can conclude from the data that a
good preclustering can indeed improve the quality of subsequent fast N -way
partitioning heuristics.

6.3 Iterating/Combining the Three Steps

We have conducted some initial experiments that involve iterating and combin-
ing the three partitioning steps outlined in this article. One set of experiments
involved performing N -way partitioning (using simulated annealing) on the
original call graph of the above five examples, followed by max-cloning, and
followed again by N -way partitioning. Recall that max-cloning performed on
an already partitioned call graph only clones a procedure if it is accessed from
within its own group and from another group. Results are shown in Figure 10,
labeled N -way/Clone/N -way. Notice that we still obtain excellent performance
improvement of 22%, this time with hardware size improvement rather than
penalty, but at the expense of longer run-time since N -way partitioning must
be run twice.

Another set of experiments consisted of iterating even further, by follow-
ing the above N -way/Clone/N -way with another iteration of max-cloning and
N -way partitioning. However, improvements were very minor, so we do not plot
those data in a figure.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

428 • F. Vahid

A third set of experiments involved actually combining cloning with N -way
partitioning. Our simulated annealing N -way partitioning originally consisted
of a step that randomly selected a node to move from one group to another.
We expanded this step to also consider with some probability to clone or un-
clone a random node rather than moving a node. We experimented with several
probabilities and found that a small probability, like 0.05, worked best. Results
are shown in Figure 10, labeled Integrated N -way/Cloning. We see again ex-
cellent performance improvement of 26%, with only a minor run-time penalty
of 15%.

Future experiments could include extending the iterated approach with more
procedure determination transformations. Likewise, we could extend the com-
bined approach by adding more transformation alternatives to the simulated
annealing move step, with each transformation possibly having different prob-
abilities.

In addition, clustering could be inserted into the iterations, using closeness
metrics that take into account whether two nodes are in the same group after
N -way partitioning. Furthermore, clustering could be combined with N -way
partitioning, by adding the clustering or declustering of close nodes as yet an-
other alternative during simulated annealing’s move step. Note that this com-
bined method is very similar to the “dynamic granularity” approach taken by
Henkel and Ernst [1997], which showed excellent results.

7. CONCLUSIONS

We have described three steps that together form a good basis for partitioning
of a sequential program for purposes of CAD. Each step uses different meth-
ods and has somewhat different goals. We have focused on the first two steps
of procedure determination and preclustering, which represent the more novel
aspects of our work. We have shown the significant impact that these first two
steps can have on the resulting quality and run-time of the widely studied
third step, N -way partitioning. We have also provided results from some ex-
periments showing the benefits of iterating or combining some of these steps.
Results showed that improvements of 20 to 25% in performance, hardware size,
hardware I/O, or run-time were possible in different cases. We believe this work
illustrates the benefits of the three steps and the potential gains to be made, and
thus provides the basis and motivation for future work investigating further
the three steps and their integration.

REFERENCES

ARNOLD, M., FINK, S., SARKAR, V., AND SWEENEY, P. F. 2000. A comparative study of static and
profile-based heuristics for inlining. SIGPLAN Not. 35, 7, (July), 52–64.

BALBONI, A., FORNACIARI, W., AND SCIUTO, D. 1996. Partitioning and exploration strategies in the
Tosca co-design flow. In Proceedings of the International Workshop on Hardware-Software Co-
Design, 62–69.

CALLAHAN, T. J., HAUSER, J. R., AND WAWRZYNEK, J. 2000. The Garp architecture and C compiler.
IEEE Comput. (April).

COOPER, K., HALL, M., AND KENNEDY, K. 1993. A methodology for procedure cloning. Comput. Lang.
19, 2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

Partitioning Sequential Programs for CAD • 429

ELES, P., PENG, Z., KUCHCINSKI, K., AND DOBOLI, A. 1996. Hardware-software partitioning with
iterative improvement heuristics. In Proceedings of the International Symposium on System
Synthesis, 71–76.

ERNST, R., HENKEL, J., AND BENNER, T. 1994. Hardware-software cosynthesis for microcontrollers.
IEEE Des. Test Comput. (Dec.), 64–75.

GAJSKI, D. D., VAHID, F., NARAYAN, S., AND GONG, J. 1998. SpecSyn: An environment supporting the
specify-explore-refine paradigm for hardware/software system design. IEEE Trans. VLSI Syst.
6, 1, 84–100.

GUPTA, R. AND DE MICHELI, G. 1993. Hardware/software cosynthesis for digital systems. IEEE
Des. Test Comput. (Oct.), 29–41.

HALL, M., ANDERSON, J., AMARASINGHE, S., MURPHY, B., LIAO, S., BUGNION, E., AND LAM, M. 1996.
Maximizing multiprocessor performance with the SUIF compiler. IEEE Comput. 29, 12 (Dec.),
84–89.

HENKEL, J. 1999. A low power hardware/software partitioning approach for core-based embedded
systems. In Proceedings of the Design Automation Conference (DAC).

HENKEL, J., AND ERNST, R. 1997. A hardware/software partitioner using a dynamically determined
granularity. In Proceedings of the Design Automation Conference.

HWANG, E., VAHID, F., AND HSU, Y. C. 1999. FSMD Functional Partitioning for Low Power. In
Proceedings of the Design Automation and Test in Europe (DATE) Conference (March), 22–28.

KALAVADE, A. AND LEE, E. 1994. A global criticality/local phase driven algorithm for the con-
strained hardware/software partitioning problem. In Proceedings of the International Workshop
on Hardware/Software Codesign, 42–48.

KNUDSEN, P. AND MADSEN, J. 1996. PACE: A dynamic programming algorithm for hardware/
software partitioning. In Proceedings of the International Workshop on Hardware-Software Co-
Design, 85–92.

LAGNESE, E. AND THOMAS, D. 1991. Architectural partitioning for system level synthesis of inte-
grated circuits. IEEE Trans. Comput-Aid. Des. 10 (July), 847–860.

RUF, E. AND WEISE, D. 1991. Using types to avoid redundant specialization. SIGPLAN Not. 26, 9
(Sept.), 321–333.

STITT, G. AND VAHID, F. 2002. The energy advantages of microprocessor platforms with on-chip
configurable logic. IEEE Des. Test Comput., Nov.-Dec.

VAHID, F. 1995. Procedure exlining: A transformation for improved system and behavioral syn-
thesis. In Proceedings of the International Symposium on System Synthesis (September), 84–89.

VAHID, F. 1999a. Procedure cloning: A transformation for improved system-level functional par-
titioning. ACM Trans. Des. Autom. Electron. Syst. 4, 1, 70–96.

VAHID, F. 1999b. Techniques for minimizing and balancing i/o during functional partitioning.
IEEE Trans. CAD 18, 1 (Jan.), 69–75.

VAHID, F., LE, T. D. M., AND HSU, Y. C. 1998. Functional partitioning improvements over structural
partitioning for packaging constraints and synthesis-tool performance. ACM trans. Des. Autom.
Electron. Syst. 3, 2, 181–208.

WAN, M., ICHIKAWA, Y., LIDSKY, D., AND RABAEY, J. 1998. An Energy conscious methodology for
early design exploration of heterogeneous DSP’s. In Proceedings of the IEEE Custom Integrated
Circuits Conference (CICC), 111–117.

WOLF, W. H. 1997. An architectural co-synthesis algorithm for distributed, embedded computing
systems. IEEE trans. VLSI Syst. 5, 2 (June), 218–229.

WU, S. AND MANBER, U. 1992. Fast text searching allowing errors. Commun. ACM 35, 10, 83–91.

Received December 1998; revised May 2001; accepted February 2002

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

