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Instruction caches have traditionally been used to improve software performance. Recently, several
tiny instruction cache designs, including filter caches and dynamic loop caches, have been proposed
to instead reduce software power. We propose several new tiny instruction cache designs, including
preloaded loop caches, and one-level and two-level hybrid dynamic/preloaded loop caches. We eval-
uate the existing and proposed designs on embedded system software benchmarks from both the
Powerstone and MediaBench suites, on two different processor architectures, for a variety of differ-
ent technologies. We show on average that filter caching achieves the best instruction fetch energy
reductions of 60-80%, but at the cost of about 20% performance degradation, which could also af-
fect overall energy savings. We show that dynamic loop caching gives good instruction fetch energy
savings of about 30%, but that if a designer is able to profile a program, preloaded loop caching can
more than double the savings. We describe automated methods for quickly determining the best
loop cache configuration, methods useful in a core-based design flow.

Categories and Subject Descriptors: B.3.2 [Hardware]: Memory Structures—design styles; cache
memories.

General Terms: Design.

Additional Key Words and Phrases: Loop cache, filter cache, instruction cache, architecture tuning,
low power, low energy, fixed program, embedded systems.

1. INTRODUCTION

Reducing power of embedded processors is becoming increasingly important for
mobile applications. Much of the dynamic power of a typical embedded processor
is consumed by instruction fetching—for example, 30—50% in Lee et al. [1999a]
and Segars [2001]—since instruction fetching happens on almost every cycle,
involves switching of large numbers of high capacitance wires, and may involve
access to a power hungry set-associative cache.

Thus, several approaches have been proposed in recent years to reduce in-
struction fetch power. Some have focused on encoding the address and data bus
signals to reduce bus switching [Aghaghiri et al. 2001; Benini et al. 1998; Stan
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Fig. 1. Access power increase for different sized 32-bit wide memories in 0.18 micron CMOS
technology.

and Burleson 1995]. Others have focused on compressing [Govindarajan et al.
2001; Ishihara and Yasuura 2000] or buffering instructions [Bajwa et al. 19971,
also to reduce bus switching. Some work has looked at reducing the power of
the cache itself by deactivating several ways of a set-associative cache when
deactivation does not heavily impact performance [Albonesi 2000; Malik et al.
2000], or accessing items using multiple phases [Hasegawa et al. 1995], thus
trading off performance for reduced power.

Another class of approaches adds an unusually small, perhaps 16 to 128 word
(typically 64 to 512 byte) instruction cache, into the memory hierarchy. We will
refer to such caches as tiny caches!'. The extremely low power per access for
a tiny cache is achieved in part due to very short wires inside the cache. For
example, Figure 1 shows the increase in memory access power for 32-bit wide
memories, as reported by the Artisan [n.d.] memory compiler for the UMC 0.18-
micron technology. The x-axis shows the memory size, in terms of the number
of 32-bit words. The y-axis shows the power per read or write access. Our own
analysis using the CACTI model [Compaq n.d.] shows that for sizes under 128
words, the internal power is dominated by the sense amplifiers. At around 128
words is where the super-linearly increasing power due to the bitlines begins
to dominate; hence the knee in the curve of Figure 1.

Another reason for very low power per access to a tiny cache comes from
the fact that a tiny cache can be integrated very close to or even inside a mi-
croprocessor, resulting in shorter and hence lower power bus lines. For the
M*CORE embedded processor architecture, an access to a tiny cache (of 32
bytes) consumed about 100 times less power than access to an 8 KB four-way
set-associative L1 (level 1) cache [Lee et al. 1999a], using 0.25 micron CMOS
technology at 1.7 V. Since many embedded applications spend much of their
time in small loops that fit completely within a tiny cache, tiny caches can
prove highly effective in reducing power.

One such tiny cache design was proposed by Kin et al. [1997] and was called
a filter cache. A filter cache is a tiny direct-mapped cache introduced as the first
level of memory (level 0) in the instruction memory hierarchy. A 256 byte filter

1Tiny caches were used to improve performance of direct mapped caches in Jouppi [1990].

ACM Transactions on Embedded Computing Systems, Vol. 2, No. 4, November 2003.



Tiny Instruction Caches For Low Power Embedded Systems . 451

cache was shown in Kin et al. [1997] to have a hit rate of between 60—85% on
MediaBench benchmarks. Using a 32 KB direct-mapped cache for the L1 cache,
the filter cache was shown to reduce instruction access power by over 50%, but
at the expense of about 20% performance overhead. The energy*delay product
related to memory accesses was reduced by about 50%. To reduce the perfor-
mance overhead, Bellas et al. [1999] proposed using a profile-aware compiler
to map frequent loops to a special address region recognized by the processor
as loadable into the filter cache, resulting in less performance overhead along
with improved energy savings.

Lee et al. [1999a, 1999b] and Moyer et al. [1999] proposed a different tiny
cache, whose main distinguishing features from the filter cache are the absence
of tags and misses. A filter cache, being a direct-mapped cache, stores part of
the address of each instruction, and compares the tag with the desired address
to determine a cache hit or miss. Upon a miss, a microprocessor stall occurs
while the filter cache is filled from L1 cache. Tag accesses and comparisons
require some energy overhead, while stalls due to misses cause performance
and energy overhead. To eliminate the overheads, Lee proposed a tiny tagless
instruction cache whose controller would transparently fill the tiny cache when
a small loop was detected in the dynamic instruction flow. The controller de-
tected the small loop by detecting a control of flow change caused by any branch
instruction having a short negative offset, that is, a short backwards branch,
or sbb, instruction. An sbb could be any existing branch instruction—an sbb
was not a special or new instruction. A detected sbb would trigger the filling
of the tiny cache, which Lee called a loop cache?, during the next iteration
of the small loop. The fill occurs nonintrusively as the processor continues to
fetch and execute from regular instruction memory. Upon detecting the trig-
gering sbb again, the loop cache controller would switch instruction fetching
over to the loop cache. Fetches would continue from the loop cache until the
triggering sbb was encountered but not taken, meaning the loop was being
exited.

If the entire loop did not fit in the loop cache, then the cache would be filled
completely with the first part of the loop, and fetching would switch back and
forth between the loop cache and regular instruction memory.

Lee also explored a “warm-fill” version of the dynamic loop cache that con-
tinually filled the loop cache on every instruction fetch so that at any given
time, the last NV instructions were available in the cache, where N is the loop
cache size. However, Lee et al. [1999a] showed that this design yielded little
benefit—the power savings of being able to switch to loop cache fetching imme-
diately after detecting an sbb did not outweigh the power overhead for keeping
the loop cached filled.

Because filling of Lee’s loop cache is nonintrusive (i.e., no microprocessor stall
occurs), a control of flow change (cof)—that is, the case where the next instruc-
tion address is not the current address plus one—encountered within a loop
would mean that the loop cache would not get filled with the entire loop. Thus,

2Bellas et al. [1999] also used the term “loop cache” to describe their profile-assisted filter cache
approach.
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Fig. 2. Memory hierarchy roles for (a) a filter cache (b) a loop cache.

in Lee’s loop cache, a cof (other than the triggering sbb) encountered within a
small loop would immediately terminate the loop cache filling or fetching. In
other words, only loops with straight-line execution were supported.

Figure 2 illustrates the difference between a filter cache and a Lee-style loop
cache with respect to their placement in the memory hierarchy. A filter cache
is truly a first level of memory. In contrast, a loop cache is an alternative to
the first level of memory, filling nonintrusively, and only accessed when a hit is
guaranteed.

We refer to the Lee-style loop cache as a dynamically loaded tagless loop
cache, or dynamic loop cache for short. The dynamic loop cache has two key
advantages over the filter cache approach. First, no tag comparisons are nec-
essary, thus reducing power per access. Second, performance is not degraded,
since filling is done nonintrusively, and since there are no “misses,” as the loop
cache is only accessed when a hit is guaranteed. Some additional benefits in-
clude low power cache indexing since a simple wraparound counter can be used,
and no need for the profile-aware compiler used in Bellas et al. [1999].

Lee reports instruction fetch reductions of 38% [Lee et al. 1999b] on Mo-
torola’s Powerstone benchmarks, using a loop cache of size 64 bytes (32 2-byte
instructions). Larger loop caches yielded little further reduction, likely because
programs typically do not have straight-line loops containing more than 32 in-
structions. The instruction fetch reduction translated to about a 15% reduction
in total memory access power [Lee et al. 1999a] (considering both instruction
and data accesses) for their M¥*CORE architecture.

In this paper, we introduce a preloaded loop cache, which is a variation of
the dynamic loop cache. We also introduce a one-level hybrid loop cache and a
two-level hybrid loop cache, each of which combines features of dynamic and
preloaded loop caches. Furthermore, we highlight results of extensive experi-
ments that compare all of the aforementioned tiny cache designs on a variety of
benchmarks. We look at energy savings for all of the loop cache designs across
a variety of different technologies. We also present a method to estimate the
power savings of a loop cache configuration without the need to fully simulate
a benchmark, producing comparable results in a greatly reduced amount of
time.
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2. CACHE EVAULATION ENVIRONMENT

We begin by describing the environment we used to evaluate the different tiny
caches.

We considered, but rejected, two possible methods for evaluating a particu-
lar loop cache architecture. One method was through simulation of a system
model using a hardware description language, followed by power analysis of the
switching activity. However, we found that such simulation was too slow for our
purposes. We sought to examine hundreds of different cache configurations for
tens of benchmarks, meaning thousands of different instances. However, even
the fastest hardware description language-based simulations and power anal-
ysis, utilizing behavioral level models, required nearly an hour per instance.
The net result would have been several months of simulations, and no good
foundation for fast future evaluations.

A second method we considered utilized a higher-level instruction-set simula-
tion approach with a power-evaluation capability, such as Wattch [Brooks et al.
2000] (a power-extended version of SimpleScalar [Burger et al. 1996]). However,
even such an approach required tens of minutes per instance, which would have
required weeks of simulation. Even if this approach were fast enough, the ap-
proach would have two additional drawbacks. First, the approach would require
us to rerun all examples if we wished to change the implementation technology.
Second, the approach would limit us to evaluating results for just one particular
processor.

We therefore developed a trace-based approach similar to that commonly
used for traditional cache simulators like Dinero [Edler and Hill n.d.]. We ran
each benchmark once on an instruction set simulator to generate an address
trace for a particular microprocessor architecture. We developed a loop cache
simulator, lcsim, that processes a trace file and counts the following loop cache
related operations:

o I-mem fetches: the number of fetches the processor makes from regular
instruction memory.

o LC fills: the number of writes to the loop cache.
e LC fetches: the number of reads from the loop cache.

e LC detects: the number of address comparisons made within the loop cache
controller (necessary for loop cache extensions we will introduce).

We also modeled each loop cache controller in synthesizable VHDL and syn-
thesized the controllers using the Synopsys Design Compiler [Synopsys n.d.]
using the UMC 0.18 micron CMOS technology. However, rather than associat-
ing actual capacitance values with nets and letting power analysis tools output
power per operation by computing switching times capacitance, we instead mea-
sured the average switching activity alone for each loop cache operation. Using
this method, we could change the capacitance ratios to account for different
technologies, without having to rerun lcsim. We determined the average ca-
pacitance of a net within the loop cache controller, and this capacitance served
as a base value for which ratios were applied to determine the capacitance of
internal buses with respect to the cache.
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We used CACTI 3.0 [Compaq n.d.] to determine the energy per access for
tiny caches of various sizes, utilizing a 0.18 micron technology. To determine
the energy per access for a loop cache (which has no tag comparisons), we
computed the energy for a direct mapped cache using CACTI, and subtracted
the energy consumed by the tag comparisons. For the energy per access to main
memory, rather than picking a particular memory and only providing results
for that memory, we instead used different ratios so that different technologies
(including future ones) could be explored.

Figure 2 shows the position of the loop cache and the filter cache in a memory
hierarchy. We will refer to the first level of memory beyond the tiny cache,
whether that first level memory is an L1 cache or just main instruction memory,
simply as L1. For the loop cache, we are assuming that the access time to the
loop cache and the access time to L1 is the same—1 clock cycle. The filter cache
design assumes an access time of 1 clock cycle to the filter cache with a 4 cycle
miss penalty (needed to fill the filter cache with a line), as assumed in Kin et al.
[1997]. For our experiments, we assume no additional levels of cache.

For all cache designs, the cache size is reported as the number of instruc-
tions/entries that can fit in the cache. The size of each instruction is based on
the instruction set architecture. For the MIPS processor, each instruction is
4 bytes, and for SimpleScalar, each instruction is 8 bytes.

3. DYNAMICALLY LOADED TAGLESS LOOP CACHING

3.1 Instruction Fetch Reduction Results

We first sought to examine the effectiveness of a dynamically loaded tagless
loop cache for microprocessor architectures other than the M*CORE [Lee et al.
1999b], to see if similar results could be obtained. We examined the reduction
in instruction memory fetches for a MIPS (32-bit) processor and for the Sim-
pleScalar (64-bit, MIPS-based) processor [Burger et al. 1996]. We ran a subset of
the Powerstone benchmarks [Malik et al. 2000] on the MIPS using the LCC com-
piler, and a subset of MediaBench benchmarks [Lee et al. 1997] on SimpleScalar
using the gce compiler, as shown in Table I. Results are shown in Figure 3.

The dynamic loop cache results in an average reduction in L1 accesses of
about 30% for a loop cache with 32 instructions for the MIPS architecture, with
almost no improvement for larger sizes. These results match the M*CORE
results very closely. Our reduction of 30% is a bit less than the M*CORE reduc-
tion of 38%. The reason for the difference is that the M*CORE instruction set
contains predicated instructions, which eliminate many branch statements in
loops. Predicated instructions allow more loops to be supported by the dynamic
loop cache, which requires straight-line execution of a loop body. Since the MIPS
instruction set does not have predicated instructions, the loops compiled for the
MIPS contained more internal cofs, and therefore less loops could be supported
by the dynamic loop cache.

Figure 3 shows almost no loop cache savings for MediaBench on Sim-
pleScalar. This lack of savings is due to the gcc compiler generating the loop exit
condition check and branch at the beginning of most loops. The cof taken at the
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Table I. Benchmark Descriptions

Size of Assembly
Benchmark (Bytes) Description
adpcm 7,648 Voice encoding
blit 4,180 Graphics application
compress 7,480 Data compression program
cre 4,248 Cyeclic redundancy check
des 6,124 Data encryption standard
engine 4,440 Engine controller
epic* 154,016 Image compression
fir 4,232 FIR filtering
g3fax 4,384 Group three fax decode
g721% 95,024 Voice compression
jpeg 5,968 JPEG compression
jpeg decode* 355,072 JPEG compression
mpeg decode* 197,328 MPEG compression
rawcaudio* 199,920 Voice encoding
summin 4,144 Handwriting recognition
ucbgsort 4,848 U.C.B quick sort
v42 6,396 Modem encoding/decoding
*MediaBench.
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Fig. 3. Instruction memory access reductions for MIPS and SimpleScalar processors using a
dynamically loaded tagless loop cache.

beginning of most loops terminates loop cache filling. Dynamic loop caching thus
requires a compiler that generates straight-line loops. We also point out that we
had to modify the default compiler flags that came with MediaBench, to turn
off loop unrolling. Loop unrolling and loop caching are clearly not compatible.

3.2 Energy Savings Results

We computed energy savings of a dynamic loop cache, using the methods de-
scribed in Section 2. Highlights of the data for each example are shown in
Tables II and III. Table II first lists several statistics about the execution of
each benchmark. L1 fetches is the number of reads from L1 cache, LC fills is
the number of instructions written into the loop cache, LC fetches is the number
of fetches from the loop cache, and LC hit rate is the percentage of instructions
fetched from loop cache instead of L1. Note that adding the L1 and LC fetch
numbers gives exactly the number of L1 fetches that would be required if there
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Table II. Loop Cache Operation Statistics for Powerstone and MediaBench
Benchmarks Using a 128-Instruction Dynamic Loop Cache

Benchmark L1 Fetches LC Fills LC Fetches | LC Hit Rate (%)
adpcm 42,013 6,573 21,878 34
blit 783 155 22,062 97
compress 124,622 23,779 13,951 10
cre 37,566 13,728 84 0
des 93,366 13,049 28,848 24
engine 324,435 37,478 86,172 21
fir 11,327 2,344 4,884 30
g3fax 447,317 24,843 680,706 60
jpeg 3,152,909 239,975 1,441,812 31
summin 849,295 422,094 1,060,492 56
ucbgsort 214,899 74,070 5,079 2
v42 2,298,426 474,389 144,125 6
epic* 95,299,112 | 18,585,747 39,748 0
g721%* 558,814,268 | 66,478,034 5,733 0
jpegdecode* 7,972,925 243,607 175,868 2
mpegdecode* | 419,972,712 | 36,785,194 8,259 0
rawcaudio* 16,372,340 295,832 4,702 0
*MediaBench.

Table III. Energy Savings for Powerstone and MediaBench Benchmarks Using a 128-Instruction
Dynamic Loop Cache

Energy (md) Without | Energy
Benchmark |L1 Bus|L1 Access | LC Bus | LC Access | LC ctrl | Total |LC (mJ) | Savings (%)
adpcm 0.00 0.58 | 0.00 0.01 0.00 0.59 0.9 34
blit 0.00 0.01 | 0.00 0.00 0.00 0.02 0.3 95
compress 0.01 1.71 | 0.00 0.01 0.00 1.73 1.9 10
cre 0.00 0.52 | 0.00 0.00 0.00 0.52 0.5 0
des 0.00 1.28 | 0.00 0.01 0.00 1.30 1.7 23
engine 0.02 4.46 | 0.00 0.02 0.00 4.50 5.7 21
fir 0.00 0.16 | 0.00 0.00 0.00 0.16 0.2 30
g3fax 0.02 6.15 | 0.00 0.13 0.00 6.31 15.6 59
jpeg 0.16 43.38 | 0.01 0.31 0.00 43.86 63.4 31
summin 0.04 11.68 | 0.01 0.27 0.00 12.01 26.4 54
uchgsort 0.01 2.96 | 0.00 0.01 0.00 2.98 3.0 2
v42 0.12 31.62 | 0.00 0.11 0.00 31.86 33.7 6
Powerstone average 30
epic* 491 | 1,311.07 0.19 3.74 0.01 |1,319.92| 1,316.5 0
g721%* 28.79 | 7,687.86 | 0.67 13.36 0.04 |7,730.72 | 8,095.1 5
jpegdecode* 0.41 109.69 | 0.00 0.08 0.00 110.19| 1125 2
mpegdecode* | 21.64 | 5,777.75 | 0.37 7.40 0.02 |5,807.18| 5,799.5 0
rawcaudio® 0.84 225.24 | 0.00 0.06 0.00 226.15| 226.2 0
Average 22
*MediaBench.

were no loop cache. Table III then lists energy consumed by various part of the
instruction memory hierarchy. L1 bus is the energy of the bus to L1 cache, L1
access is the energy of reading the L1 cache, LC bus is the energy of the bus
from the loop cache, LC access is the energy of writing and reading the loop
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cache, LC ctrl is the energy of the loop cache controller, and 7otal is the sum
of these energies, representing the total instruction fetch energy. Note that L1
accesses dominate the total energy. Finally, without LC is the instruction fetch
energy with no loop cache, and energy savings is the percent reduction in energy
obtained using the loop cache.

We see excellent savings for many of the Powerstone examples. Average over-
all energy savings for all benchmarks is 22%—lowered somewhat due to the low
savings of MediaBench on SimpleScalar. Average savings of Powerstone alone
was 30%.

3.3 Additional Experiments

We tried two dynamic loop cache variations, but they did not yield improve-
ments over the basic loop cache. Each variation could be given a list of loop
addresses that the loop cache controller would consider. In one variation, the
controller blocked those loops from filling the loop cache. In the other variation,
the controller would only fill the loop cache with those loops. The idea was to
reduce unnecessary fills of the loop cache—that is, fills that were not followed
by many fetches. However, neither variation showed significant improvement
over the basic loop cache. The lesson learned was that minimizing the power
within the loop cache itself is not a high priority, as that power is very small
compared to L1 fetching. To really improve a loop cache, we need to increase
the number of supported loops.

4. PRELOADED TAGLESS LOOP CACHING

4.1 Motivation

To improve upon dynamic loop caching, we examined the execution behavior of
the Powerstone benchmarks, a high-level summary of which is in Table IV. We
found that over 65% of the benchmarks’ execution time was spent in loops of
sizes less than 64 instructions. We also found that much of the remaining time
was spent in small subroutines. Further details of our analysis can be found in
[Villarreal et al.], as well as in [Villarreal et al. 2002].

Recall from Section 3 that a dynamically loaded tagless loop cache achieved at
most a 30% L1 fetch reduction no matter how large the loop cache size. Through
our analysis of the benchmarks, we found this reduction to be less than half
of the potential reduction of 65%. The main reason for the difference is that a
dynamic loop cache terminates loop cache filling or fetching when encountering
a cof in a loop, but more than half of the loops contained such cofs. There are
several reasons why a dynamic loop cache does not support cofs. First, filling
the loop cache in the presence of branches is difficult, because we usually will
not see all the loop instructions during an iteration of the loop, as the branches
cause some loop code to be skipped. Recall that the controller is nonintrusive,
and does not stall the processor to fill the loop cache, but rather just fills the
cache from the dynamic instruction stream. Second, quickly detecting whether
the cof exits the loop (i.e., jumps to an address outside the loop) is expensive in
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Table IV. Loop and Subroutine Characteristics for Selected
Powerstone Benchmarks

Benchmark Benchmark Characteristics

adpcm Many small, frequent loops with no cofs. Very high
frequency subroutines, some of which do not have
frequent internal loops

compress No high frequency loops with no cofs. High fre-
quency subroutines and loops with cofs.

cre No high frequency loops with no cofs. High fre-
quency subroutines and loops with cofs.
des Two large frequent loops—one with cofs and one

without. High frequency subroutines where the
majority of time is spent in internal loops.
engine Five frequent loops—two with cofs, three without.
Two very high frequency subroutines that contain
all of these loops.

fir Two frequent loops—one with cofs. A lot of frequent
subroutines

g3fax Two frequent loops with no cofs. Three frequent sub-
routines of which two contain frequent internal
loops.

jpeg Two very frequent subroutines—one with no inter-
nal loops, one with many internal loops. Many fre-
quent loops both with and without cofs.

summin Six frequent loops—three with cofs. Many subrou-
tines, all with frequent internal loops.

ucbgsort No loops without cofs. Four frequent subroutines—
three with internal loops.

v42 Many frequent loops and subroutines. Only one loop

with no cofs.

terms of power and hardware size. Third, supporting cofs within the loop cache
makes using a simple wraparound counter for indexing into the loop cache
much more difficult.

We also see from Table IV that the benchmarks utilize numerous
subroutines—which are not supported by a dynamic loop cache. Sometimes
those subroutines contain the most frequent loops, but sometimes those sub-
routines are actually called by such loops.

4.2 Solving the Fill Problem—Preloaded Loop Storage

We considered several possible solutions to the fill problem mentioned above.
One possible solution was to stall the processor and fill the entire loop, but we
sought to avoid stalls. A second solution was to allow loop cache misses, adding
tags to the loop cache—this essentially reduces to a filter cache approach that is
only filled and activated with small loops. Both these approaches involve some
performance degradation—we leave them for future work.

We propose to solve the fill problem by storing the entire loop in the loop cache
before the program begins executing, during the microprocessor boot sequence.
Thus, once the program begins executing, the contents of the loop cache do not
change—the loop cache is preloaded.
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Preloading is possible in embedded systems, where the program executing
on the processor is typically fixed, that is, the program does not change for the
life of the system.

Obviously, this approach limits the number of loops that we can store in the
loop cache. Thus, we only want to store the most frequently executed loops,
meaning we must first profile the fixed program to detect those critical loops.
We have found that many programs spend most of their time in two or three
small loops [Villarreal et al. n.d.].

This approach has some parallels with the profile-guided compiler-based
filter cache approach in [Bellas et al. 1999]. The key differences are that a
preloaded loop cache is tagless and is missless.

4.3 Solving the Exit Problem—Exit Bits

A branch within a loop could jump to an address outside of the loop. Determining
whether an instruction causes a loop exit the loop cache during runtime is rather
costly. After an instruction is fetched, the microprocessor begins decoding and
executing that instruction. During this time, we must begin comparing the
target address of the branch instruction to the loop start and end addresses.
However, we do not necessarily know where the target address lies within the
instruction. There may be several forms of branch instructions, each with target
addresses of different sizes and in different operand fields. As we do not wish to
replicate the instruction decoder in the loop cache controller, we must instead
wait for the microprocessor to provide us with the target address. However, if
we begin the comparison at this point, the control lines may not be ready in
time to meet the timing for the next instruction fetch, requiring the addition
of extra cycles or the lengthening of the clock period—both highly undesirable.
There are some workarounds, but these can be expensive in terms of size and
power.

We propose a solution that involves pre-analysis of the loops before execution
of the program—as we are preloading the loops, we may as well pre-analyze
them too. We associate two extra bits with each word in the loop cache. Those
bits will be used by the loop cache controller to quickly determine whether a
cof should result in termination of loop cache operation:

¢ 00: means the instruction cannot possibly cause an exit from the loop. This
encoding applies when the instruction is not a jump. The encoding also applies
to an unconditional jump instruction whose target address is within the loop,
and for a conditional jump instruction whose target is within the loop and
whose next instruction is also within the loop.

* 01: means the instruction is a conditional jump that will exit the loop if the
jump is not taken. Note that this is only possible for the last instruction in
the loop.

* 10: means the instruction is a conditional jump that will exit the loop if the
jump is taken.

We thus require that the microprocessor output signals to the loop cache con-
troller indicating whenever a branch is executed or taken. The microprocessor
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in the M*CORE dynamically loaded loop cache [Lee et al. 1999b] already im-
plemented these signals.

Some branches have target addresses that we cannot determine statically,
such as branches using indirect addressing or some form of register offset ad-
dressing. For these, we conservatively treat the target address as being outside
the loop, giving such instructions an exit bit encoding of 10.

4.4 Indexing into the Loop Cache

A loop with straight-line code can be stepped through using a counter, as was
done in the dynamic loop cache. Branches that jump to addresses within the
loop pose a problem, though, as they would require the counter be loaded rather
than incremented.

One simple solution to this problem is to eliminate the counter. Instead, given
the loop’s starting address M in memory and starting address C in the loop
cache, we can derive the current loop cache address LPC from the processor’s
program counter (PC) as follows: LPC=PC —M + C. PC — M represents the
offset into the loop, which starts at C in the loop cache. We can precompute
— M+ C to reduce the hardware needed during program execution. If we call
that term the offset, then LPC =PC + offset. We will call this the PC offset
approach. The drawback of this approach is increased power compared to a
counter, due to the addition that must be performed.

We could also consider a counter approach to reduce power. We would initial-
ize the counter to C. As long as instructions are not cofs, we would increment
the counter after each loop cache fetch. However, when a cof occurs, we would
update the counter with the target address T as follows: counter =T — M + C.

In the counter approach, we could conceptually disable the PC during loop
cache operation. However, this requires additional modification of the micropro-
cessor internals, as well as restoring the PC when leaving loop cache operation.
We currently use the PC offset approach

4.5 Architecture

We now describe our basic preloaded loop cache, which incorporates all the
features of preloaded loop storage, exit bits, and the PC offset indexing, in
order to support a wider range of loops and subroutines.

The general structure of our basic preloaded loop cache is shown in Figure 4.
The main components include loop storage, a loop cache controller, and loop
address registers (LARs). The loop storage, like those in Bellas et al. [1999],
Kin et al. [1997] and Lee et al. [1999D], is a very small basic memory, perhaps
only 64 or 128 words. This small size enables tight integration with the micro-
processor and very low power per access. Furthermore, the loop storage, like
Lee et al. [1999b] and unlike Bellas et al. [1999] and Kin et al. [1997], contains
no tag storage or tag comparison logic, to further reduce power. Instead, the
loop cache controller is responsible for determining whether an instruction can
be fetched from the loop storage. In contrast to a dynamically loaded loop cache,
this storage holds multiple loops and subroutines simultaneously.
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Fig. 4. Architecture of a preloaded loop cache.

The loop address registers not only include the loop’s start and end addresses
in instruction memory, but also the loop’s starting address in the loop storage—
all of which are written into the registers during the program’s boot sequence.

4.6 Operation

The preloaded loop cache controller is responsible for filling the loop cache,
switching instruction fetches from program memory to the loop cache, and
switching instruction fetches from the loop cache to program memory.

The state machine describing the controller is shown in Figure 5. The Dis-
abled mode is the default state upon system reset. In the Disabled mode, the
loop cache does not operate and does not store anything. All instruction fetches
go to program memory. This state disables the comparators and loop address
registers. If the loop storage, comparators and loop address registers can be
put in a lower-power lossy state (to reduce static power consumption), then
that occurs in this mode as well.

The controller transitions from Disabled to Configure when detecting a write
to a loop address register. Each written loop address triggers a transition to the
ConfigFill mode. In this mode, the loop cache is filled with instructions from
the start to end address of the triggering loop address register. The controller
includes a register to keep track of the next available address in the loop cache;
this register is cleared in the Disabled mode, and then updated during the
ConfigFill mode.

During this mode, the microprocessor must be suspended in order to enable
the loop cache controller to generate instruction fetches. However, the micro-
processor has not begun operation and thus this suspension does not affect
runtime performance, but instead only increases the boot time (and even then,
only slightly). We currently require that exit bits be written to a special register
in the loop cache—they can be determined during pre-analysis and included in
the boot routine. However, a microprocessor could be designed with a special
loop cache fill mode that carries this out, by fetching and decoding and filling
in exit bits, while executing the fetched instruction.
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Fig. 5. Basic preloaded loop cache operation.

Note that we assume that all locations between a loop’s starting address and
ending address contain code, and in particular, not data. Most architectures do
not mix code and data. For those that do, we require that at least the data do not
appear inside of a loop selected for loop cache storage, since otherwise our exit
bit determination could get confused by assuming that data are instructions.
Also, note that since we use the microprocessor’s fetch and decode logic, we can
support variable length instructions.

The loop cache controller returns to the Configure mode after the ConfigFill
mode finishes the filling the loop cache. The program’s boot sequence may con-
tain numerous iterations between Configure and ConfigFill, one per loop being
stored in the loop cache.

The writing of the loop address registers and the filling of the loop storage
take place during the microprocessor boot sequence. We assume part of the
boot sequence includes setting values for all of the configurable features of the
microprocessor architecture, including values related to voltage level, cache
way enable/disable, and loop addresses and exit bits for a preloaded loop cache.
These values can be stored in a configuration routine called as part of the
boot sequence. Thus, the configuration methodology we propose does require
recompilation of the program after profiling determines the best configuration
values, which we insert into the configuration routine; however, note that this
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methodology still uses a standard compiler and in particular does not require
a special compiler.

From the Configure mode, the controller transitions to the Idle mode when
detecting the setting of the activate flag in a loop cache configuration register.
The active flag simply enables the loop cache controller. In the Idle mode, fetches
continue to occur from program memory. However, the controller monitors the
address bus and on every cof, compares the next address with the loop address
registers checking for a transition to the Active state. Because a preloaded loop
cache supports subroutines, the controller cannot simply look for a start address
or end address—due to some code jumping directly to a statement within a
subroutine. Instead, the controller must check if the target of a cof is between
the start and end addresses of all the preloaded loops.

If a match is found, the controller stores the loop’s starting memory address
and starting loop storage address, and transitions to Active mode. In Active
mode, the controller disables the bus between the microprocessor and instruc-
tion memory, and instead fetches instructions from the loop cache. The address
of the instruction in the loop cache is obtained using the equation described in
Section 4.4.

4.7 Choosing the Loops to Preload

To select regions to put into the preloaded loop cache, we developed an ap-
proach for detecting the best loops/subroutines to include. We developed the
loop analysis tool LOOAN [Villarreal et al. n.d.] for the MIPS and SimpleScalar
architectures. The tool parses an assembly file and detects loops. A subroutine
map file is also read, which is output by many compilers. Knowing the locations
of all loops and subroutines, the tool parses a trace file and outputs statistics
on the percentage of overall execution time spent in each loop/subroutine, the
number of visits to each loop/subroutine, the iterations per visit, and so on.
We could sort the regions by percentage of overall execution, but that does not
take into consideration the size of the region. Some regions are so large that
even with a few iterations, the overall execution time is very large. Since stor-
age in the preloaded loop cache is limited, we seek to preload small regions
of code that have a large percentage of execution time. To achieve this, we
sort the loops in decreasing order by a metric that we refer to as the execu-
tion density of a region. The execution density is the ratio of execution time
over size.

Determining which loops to preload is equivalent to the fractional knapsack
problem. We take the region with the highest execution density and place as
much of that loop as possible into the preloaded loop cache—recall from Section
1 that if a loop does not fit completely into a loop cache, we can just load the first
part of the loop. A region is ignored if the region includes a subregion that has
already been captured, or if the region is a subregion of a previously captured
region of code. This packing of loops into the loop cache continues until the
loop cache is filled or the maximum number of regions that can be stored is
reached.
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Fig. 6. Average instruction memory fetch reductions for the preloaded loop cache with two to
six preloaded loops (PL two to PL six) running: (a) Powerstone on MIPS and (b) MediaBench on
SimpleScalar.

4.8 Instruction Fetch Reduction Results

The L1 fetch reductions due to the preloaded loop cache for Powerstone on
a MIPS can be seen in Figure 6(a), and for MediaBench on SimpleScalar in
Figure 6(b). We tested preloaded loop caches of sizes ranging from 16 to 512
instructions with two to six preloaded loops. We see steep improvements as the
loop cache size is increased up to about 256 instructions, where the improve-
ment begins to level off. We also note that most of the reductions come from the
first 2—3 loops.

For Powerstone on a MIPS, the L1 fetch reduction is as large as 92% for
a loop cache of size 512 instructions with six preloaded regions of code. This
makes sense since most programs spent most of their time in a small amount
of code. Recall that the dynamic loop cache did not achieve more than 30%
L1 fetch reduction regardless of the loop cache size, due to lack of support
for cofs.

A 512-instruction cache is a 2 KB cache, beginning to approach the size
of a typical L1 cache, where 8 KB to 32 KB sizes are common. Recall from
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Table V. Loop Cache Operation Statistics Powerstone and MediaBench Benchmarks Using
a 128-Instruction Preloaded Loop Cache Supporting up to six loops

Benchmarks L1 Fetches LC Detects LC Fetches LC Hit Rate (%)
adpecm 26,341 15,984 37,550 59
blit 229 510 22,616 99
compress 84,332 45,384 54,241 39
cre 306 3,678 37,344 99
des 54,577 6,150 67,637 55
engine 120,955 151,902 289,652 71
fir 3,960 6,234 12,251 76
g3fax 224,291 262,506 903,732 80
jpeg 3,601,272 1,156,248 993,449 22
summin 953 121,920 1,908,834 100
ucbgsort 20,952 183,174 199,026 90
v42 1,541,359 1,631,382 901,192 37
epic* 42,677,355 51,385,950 52,661,505 55
g721% 217,948,967 78,319,584 340,871,034 61
jpegdecode* 5,061,161 529,137 3,087,632 38
mpegdecode* 93,339,867 69,964,435 326,641,104 78
rawcaudio* 2,678,225 446,136 13,698,817 84
*MediaBench.

Figure 1 that power per access begins to increase steeply at a size around 128
or 256 instructions. For smaller loop cache sizes of 128 and 256 instructions, L1
fetch reductions for Powerstone were around 60% and 75%, respectively—still
significantly better than a dynamic loop cache.

For MediaBench programs, whose loops tend to be somewhat larger, L1
fetch reductions for loop caches sizes of 128 and 256 instructions were around
45% and 75%, respectively. Recall that a dynamic loop cache did not re-
duce L1 fetches for MediaBench on SimpleScalar, since the loops all began
with cofs.

4.9 Energy Savings Results

The loop cache operation statistics are shown in Table V, and energy results
are shown in Table VI. The column headings are the same as Table II, except
that the statistic LC fills is not shown since a preloaded loop cache does not get
filled during program execution, and that LC detects has been added, indicat-
ing the number of address comparison operations performed by the loop cache
controller.

We see much improved loop cache hit rates, especially for MediaBench on
SimpleScalar, but also for Powerstone on MIPS, resulting in an average instruc-
tion fetch energy savings of 66%. This savings is triple that of the dynamic loop
cache on all the benchmarks, and more than double that of the dynamic loop
cache on the Powerstone benchmarks alone.

Figure 7 compares the energy savings of the dynamic and preloaded loop
caches on each example for a 128-instruction loop cache. We see that the
preloaded loop cache is superior to every benchmark.
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Table VI. Energy Savings for Powerstone and MediaBench Benchmarks Using a 128-Instruction
Preloaded Loop Cache Supporting up to six loops

Energy (md) Energy without| Energy
Benchmark |L1 Bus|L1 Access|LC Bus|LC Access|LC ctrl| Total LC (md) Savings (%)
adpem 0.00 0.36 | 0.00 0.01 0.00 0.37 0.9 58
blit 0.00 0.00 | 0.00 0.00 0.00 0.01 0.3 98
compress 0.00 1.16 | 0.00 0.01 0.00 1.17 1.9 39
cre 0.00 0.00 | 0.00 0.01 0.00 0.01 0.5 98
des 0.00 0.75 | 0.00 0.01 0.00 0.77 1.7 55
engine 0.01 1.66 | 0.00 0.05 0.00 1.73 5.7 70
fir 0.00 0.05 | 0.00 0.00 0.00 0.06 0.2 75
g3fax 0.01 3.09 | 0.00 0.17 0.00 3.27 15.6 79
jpeg 0.19 49.54 | 0.00 0.18 0.00 49.92 63.4 21
summin 0.00 0.01 | 0.01 0.35 0.00 0.38 26.4 99
uchgsort 0.00 0.29 | 0.00 0.04 0.00 0.33 3.0 89
v42 0.08 21.21| 0.00 0.17 0.00 21.46 33.7 36
epic* 2.20 587.13 | 0.53 10.59 0.08 | 600.53 1,316.5 54
g721%* 11.23 | 2,998.42 | 3.42 68.52 0.33 |3,081.92 8,095.1 62
jpegdecode* 0.26 69.63 | 0.03 0.62 0.00 70.54 112.5 37
mpegdecode™| 4.81 | 1,284.12 | 3.28 65.66 0.31 |1,358.18 5,799.5 77
rawcaudio® 0.14 36.85| 0.14 2.75 0.01 39.89 226.2 82
Average 66
*MediaBench.
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Fig. 7. Percentage of instruction fetch energy saved by dynamic and preloaded caches on Power-
stone and MediaBench (*) programs running on a MIPS or SimpleScalar architecture, respectively,
using a 128-instruction loop cache.

5. COMBINING THE DYNAMIC AND PRELOADED TAGLESS
LOOP CACHES—HYBRID LOOP CACHING

5.1 Motivation

Technology constraints could in some cases limit us to a loop cache smaller
than 128 instructions. For example, Lee found that for a particular 0.25
micron, 1.75 V technology, a 16-instruction loop cache was energy optimal.
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Fig. 8. Percentage of instruction fetch energy saved by dynamic and preloaded caches on Power-
stone and MediaBench (*) programs running on a MIPS or SimpleScalar architecture, respectively,
using a 32-instruction loop cache.

A 32-instruction loop cache had slightly worse energy, while a 64-entry loop
cache had significantly worse energy.

Figure 8 compares the dynamic and preloaded loop caches on our benchmarks
(for the same technology as reported in the previous section), this time utilizing
a 32-instruction loop cache. We see that sometimes a dynamic loop cache is
better, while sometimes a preloaded loop cache is better. This data motivated
us to design a loop cache that could behave as either a dynamic loop cache,
preloaded loop cache, or both—a hybrid loop cache. We considered two possible
hybrid loop caching—a one-level scheme and a two-level scheme.

5.2 One-Level Hybrid Loop Cache

In the one-level hybrid loop cache, part of the loop storage is reserved for dy-
namic loop caching, while the rest of the loop storage holds preloaded loops.
The preloaded part thus need not store loops that are supported by dynamic
loop caching.

5.3 Two-Level Hybrid Loop Cache

In the two-level hybrid loop cache, a second level of loop storage is added, which
stores preloaded loops. The first level loop storage by default acts like a dynamic
loop cache. However, if loops are preloaded into the second level (along with
start/end addresses in the loop address registers and the exit bits), then if a
cof occurs, the target address is checked against the loop address registers. If
a match occurs, then the first level loop storage is filled with the appropriate
loop from the second level. Thus, the first level loop storage could be filled from
L1 when a short backwards branch is detected, or from the second level loop
storage when an address in a preloaded range is detected. In either case, once
filled, fetching switches over to the first level loop storage. Fetching terminates
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Fig. 9. Instruction memory fetch reductions for the one-level hybrid loop cache supporting up to
six preloaded loops, with increasing dynamic partition sizes (DP) running: (a) Powerstone on MIPS
and (b) MediaBench on SimpleScalar.

if a cof is encountered while in dynamic loop cache mode, or based on a cof and
exit bits while in preloaded loop cache mode.

5.4 Results

Figure 9 shows results for both the Powerstone and the MediaBench bench-
marks for the one-level hybrid loop cache. We examined total loop cache sizes
ranging from 32 to 128 instructions, with dynamic portions starting at a size
of 16 entries and not exceeding one half of the total loop cache size. Our re-
sults show that even with a very small total cache size of 32 instructions with a
dynamic portion of 16 instructions, the one-level hybrid loop cache reduces L1
fetching by 50% for both benchmark suites (the dynamic or preloaded caches
each reduced L1 fetches by 30% to 40% for a size of 32).

We also see that for each total cache size, the largest reduction in L1 fetching
occurs with a dynamic portion of 16 instructions, following closely the results
of a purely dynamic loop cache. Also, the L1 fetch reduction tops off at approxi-
mately 60% and 70% for Powerstone and MediaBench, respectively, with a total
cache size of 128 instructions and a dynamic portion of size 16.
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Fig. 10. Instruction memory fetch reductions for a two-level hybrid loop cache with first level (FL)
sizes from 16 to 128 instructions, running: (a) Powerstone on the MIPS and (b) MediaBench on
SimpleScalar.

Table VII. Average instruction fetch energy savings
for Powerstone running on MIPS for a dynamically
loaded loop cache, and one-level and two-level hybrid
loop caches with no preloaded loops

Main Loop Cache Size (%)

16 32 64 128
Dynamic 30 30 30 29
One-level hybrid 30 30 30 29
Two-level hybrid 29 29 29 28

Results for the two-level hybrid loop cache design can be seen in Figure 10 for
both the Powerstone and MediaBench benchmark suites, with first level (FL)
sizes ranging from 16 to 128 instructions and second level sizes ranging from
32 to 256 instructions. We see that, for the benchmarks studies, the two level
scheme does not seem to perform as well as the other loop caching methods.

A nice feature of both hybrid loop caching schemes is that they can be used
as a dynamic loop cache only, if desired. This feature is useful in case the de-
signer does not wish to or is not able to preload loops. Table VII shows that
the instruction fetch reductions for a hybrid cache operating as a dynamic loop
cache only are essentially the same as the reductions for a pure dynamic loop
cache.
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Fig. 11. Percentage of instruction fetch energy saved by a dynamically loaded loop cache, a
preloaded loop cache with six loops, a two-level hybrid loop cache with a second level of 128 entries,
a one-level hybrid cache with a dynamic portion of 16 entries, and a filter cache with a line size
of two instructions for (a) Powerstone on MIPS and (b) MediaBench on SimpleScalar, for different
(first-level) loop cache sizes.

6. COMPARING TINY CACHE ENERGY SAVINGS

We now compare the above-mentioned loop caches to a more traditional tiny
cache (i.e., a filter cache). Figure 11 shows the average instruction fetch energy
reductions for the Powerstone and the MediaBench benchmarks. We see that
for a small loop cache of size 32 instructions, a one-level hybrid loop cache
works best. However, for larger loop caches, a filter cache seems to be the best
option. Not only does the filter cache save the most energy, but the filter cache
also requires no preloading. Compared to the other tiny cache requiring no
preloading, namely, a dynamic loop cache, the filter cache achieves more than
double the energy savings (for Powerstone).

However, recall that one of the advantages of loop caching over filter caching
was the absence of misses, meaning no performance overhead. Figure 12 pro-
vides the average performance penalty incurred for different sizes of filter
caches. Because a filter cache’s line size can have a significant impact on hit
rate, we provide data for different line sizes too. We see very significant perfor-
mance penalties incurred by the filter cache, with the lowest penalty still being
20%.
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Fig. 12. Average performance penalties for the filter cache with varying line sizes (LS) assuming
a four cycle miss penalty for (a) Powerstone on MIPS and (b) MediaBench on SimpleScalar.

This performance penalty impacts energy. The data in Figure 11 only con-
sider instruction fetch energy. That data do not consider the energy of other com-
ponents of a system—such as the energy of the microprocessor itself, energy of
the clock distribution network, or the static energy consumption of the L1 cache.
During filter cache stalls, those other components will be consuming energy. The
energy consumed by those other components varies greatly among different sys-
tems, so we do not present that particular data here—but we will be reporting
the overall impact of various L1 and tiny caching methods across a range of
systems in future work. The extra energy of those other components due to
misses likely outweighs the instruction fetch energy savings of a filter cache.

Among the loop caching methods, we conclude that the one-level hybrid loop
cache is likely the best choice. The one-level hybrid achieves far greater savings
than a pure dynamic loop cache. The one-level hybrid also performs essentially
the same (slightly better) than a preloaded loop cache, but has the advantage
of being able to operate in a dynamic-only mode—in case the designer does not
preload loops.

7. CONSIDERING DIFFERENT TECHNOLOGIES

We sought to determine the dependency of energy savings on the particular
implementation technology as well as layout styles. A key difference among
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Fig. 13. Instruction access energy savings for various power ratios for Powerstone running on

MIPS (see Figure 11 for legend).

technologies and styles is the power ratio of L1 accesses to internal net switch-
ing in the controller, and of loop cache access (fill or fetch) to that of internal
switching. In general, deep submicron technologies tend to increase this ratio
[ITRS 1999]. We thus considered a number of ratios of increasing magnitude,
ranging from 50:1 [Sias et al. 2001] to 400:1 for L1 access to internal net ratio,
and from 2:1 to 8:1 for loop cache access to internal net ratio.

Results are shown in Figure 13 for Powerstone running on the MIPS and
in Figure 14 for MediaBench running on SimpleScalar. The y-axis shows the
percent instruction fetch energy savings compared to no loop cache. The x-axis
lists the ratios for internal net power to loop cache access and to L1 access—so
1:2:50 means a loop cache access net is twice as power costly as an internal
net, and an L1 net is 50 times as power costly as an internal net. 1:2:50 was
the ratio we used in all the earlier data. While we did observe some fluctuation
in total instruction fetch energy savings, we do see that the main results are

relatively stable across different ratios.
8. ESTIMATION-BASED EXPLORATION

8.1 Motivation

A designer of an embedded microprocessor platform might run simulations
like those above, for the particular benchmarks of interest and the particular
technology being used, to pick the best tiny caching method. For our benchmarks
and technology, for example, we might choose to include a one-level hybrid loop

cache of size 128 instructions.
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Fig. 14. Instruction access energy savings for various power ratios for MediaBench running on
SimpleScalar (see Figure 11 for legend).

However, many microprocessors are now available as cores, synthesized onto
part of a chip along with other cores, by an embedded system designer. This
provides the opportunity to tune the tiny cache (as well as the rest of the memory
hierarchy) to the particular program that will be running on the microprocessor.
While the embedded system designer might be willing to setup and perform
simulations like those above, a core provider would likely be better off providing
a tool that quickly and automatically chooses the best tiny cache configuration
for a given program.

We therefore developed a faster method than loop cache simulation for ex-
ploring the loop cache configuration space [Cotterell and Vahid 2002]. As pre-
viously mentioned, lcsim follows the paradigm of traditional cache simulators,
like Dinero [Edler and Hill n.d.]. Thus, we could look into traditional cache
simulation speedup methods, like examining multiple configurations per pass
[Sugumar and Abraham 1991] or compacting the trace size using statistical
methods [Wu and Wolf 1999]. However, we found that due to the nature of loop
caches, a faster and simpler estimation method was possible. In short, we could
apply simple equations and algorithms to the loop statistics in order to generate
adequately accurate loop cache statistics.

As shown in Figure 15, in the estimation-based approach for analyzing var-
ious loop caches, the loop cache simulator from our simulation methodology
was replaced with an equation-based estimator. The loop cache simulator uti-
lizes the program instruction trace as well as the loops to be cached, which
are read each time the simulator is run, resulting in long simulation times. In
the estimation approach, LOOAN [Villarreal et al. n.d.] reads the program’s
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Fig. 15. Simulation and estimation-based loop cache configuration synthesis methods.

instruction trace once and the estimation methodology uses the information
generated to determine the loop cache statistics for each loop cache. Further-
more, LOOAN was modified to output the addresses at which function calls
were made to create a more complete picture of the executing program. Once
these data are generated, we then use the various estimation techniques de-
scribed below to statically analyze each benchmark. The goal of each estimation
technique is to determine the loop cache statistics—the number of instruction
memory fetches, detection operations (i.e., checking to see if we should execute
from the loop cache or not), number of instructions filled into loop cache, and
the number of instructions fetched from the loop cache—without running the
time-consuming lcsim at all.

To determine the number of various operations, we take the loop hierarchy
provided by LOOAN and iterate through each loop. Then, for each loop, we
accumulate the estimated number of fills, fetches, and detects corresponding
to only the loop we are currently investigating. The estimation method varies
according to the cache type being considered. We now discuss the estimation
strategy for two loop cache designs: the dynamically loaded loop cache and the
preloaded loop cache.

8.2 Dynamically Loaded Loop Cache

In the dynamically loaded loop cache, we are interested in the number of times
we fill the loop cache with an instruction, the number of times we fetch an in-
struction from the loop cache, and the number of L1 fetches. Since the dynam-
ically loaded loop cache contains no preloaded loops, there are no loop address
registers we must compare addresses with, thus no detect operations.

On the first iteration of each loop, the loop cache controller sees an sbb that
triggers filling the loop cache on the second iteration. The loop cache will con-
tinue to fill until a cof is detected. Thus, to estimate the number of fill instruc-
tions, we first check whether this loop would iterate at least two times, since
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otherwise the loop cache would never be filled with this loop. We then want to
see how many instructions from this loop would be filled into the loop cache.
We determine where the first cof will occur. This cof can originate from the sbb
that trigged the fill, an sbb from a subloop, or a function call. The cof may also
correspond to a jump, but this information is not provided in the static analysis.
If the current loop contains subloops, the loop cache controller will fill to the
end of the first subloop. Similarly, if the loop contains a function call, the func-
tion call map previously generated from LOOAN is used to determine the exact
instruction from which the function call originates. The smallest of the three
aforementioned addresses is determined and from it we subtract the start ad-
dress of the loop we are interested in. We then check to see if the start address
minus the above computed address is larger than the loop cache size. If it is, we
set the number of instructions filled on a given iteration to the loop cache size.
This calculation is the number of instructions that will be filled into the loop
cache. Therefore, each time this particular loop is called, it will fill that many
instructions, so we then multiply this number by the number of times the loop
is executed.

The dynamic loop cache fetches instructions starting with the third iteration
of the loop. Once again, the loop cache controller will stop fetching when a cof'is
detected. To calculate the number of fetches, we check to see that the average
number of iterations is greater than or equal to three. If not, this loop will never
be fetched from the loop cache. The number of instructions fetched per iteration
is determined using the same method used above to determine the number of
instructions to fill. Thus, we multiply the number of instructions fetched within
the loop by the iteration average minus two. Additionally, this behavior occurs
every time the loop is executed, hence, we multiply the fetches per execution
by the number of times the loop is called.

Finally, we fetch an instruction from L.L1 memory when it is not fetched from
the loop cache. Using the output from LOOAN indicating the total number of
instructions executed, we obtain the number of L.1 fetches by subtracting from
the total number of instructions executed the number of fetch operations we
previously determined.

8.3 Preloaded Loop Caches

The preloaded loop cache scheme requires that we select loops beforehand via
profiling. These loops are never replaced, thus the number of dynamic fills for
this type of caching scheme is always zero (fills occur before regular program
execution).

Since loops are preloaded, only those loops will contribute to the number of
fetches. In addition, we must wait for a cof to trigger the controller to compare
the address with the loop address registers to see if the loop is preloaded. Since
cofs caused by jump instructions are not provided in the static analysis, there
are only two cases for which we can determine when a cof occurs. The first
case is when the loop executes its first iteration. The loops sbb will trigger a
detect operation and on the second iteration, the corresponding instructions
are fetched from the loop cache. Thus, the number of fetches contributed by
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this loop is equal to the number of times the loop is executed, multiplied by the
number of average iterations minus one. The second potential cof occurs when
a function is called from within the loop. There is a cof to call the function and
a cof to return from the function. Upon returning to the loop from the function
call, the cof will trigger fetching starting from the location following the function
call. Thus, in this situation the number of fetches contributed by this loop is
equal to the total number of instructions executed. However, to account for the
above situation, the number of executions multiplied by the difference between
the function call address and the starting address of the loop is subtracted from
the total for this loop.

The number of detect operations corresponds to the number of cofs in the
given program. There exists a cof at the end of a loop, when calling a function,
and when returning from a function. Thus for every loop we find, we add a
detect operation to represent the sbb at the end of the loop. For every function
call we add two detect operations.

Once we have gathered the various statistics we are interested in for each
of the cache configurations considered, we feed this information into another
program, which calculates the power of each loop cache design. The relative ca-
pacitance values can be varied in this stage so that the power values outputted
correspond to the desired technology.

8.4 Results

In evaluating our simulation-based and estimation-based approaches, we need
to analyze the results for each with respect to accuracy and fidelity between
the two approaches. To determine the accuracy of the estimation method, we
first ran each of the benchmarks through the loop cache simulator to obtain
the power savings for each cache configuration over a configuration without a
cache. Next, each benchmark was run through the loop cache estimator to obtain
the power savings of each cache configuration over a configuration without
a cache.

We then compared the average power savings reported for each cache config-
uration over all benchmarks using the simulation-based method versus the av-
erage power savings reported for each cache configuration over all benchmarks
using the estimation-based method. This comparison is shown in Figure 16
(these data utilize net ratios of 1:8:100, as discussed in Section 7). Cache con-
figurations 1 through 8 are for the dynamic loop cache and configurations 9
though 48 are for the preloaded loop cache. For the dynamic loop cache, the esti-
mation method reported approximately 15% more power savings than reported
by the simulation-based results. For the preloaded loop cache, the estimator
reported—1% to 3% difference in power savings. On average, the estimation
methodology had an average accuracy of 2%.

While the relative accuracy of the estimated power savings is important, in
order for this approach to be viable, there must be fidelity between the choices
selected under each approach as the best loop cache configuration. Therefore,
to ensure any inaccuracies from estimation do not compromise the fidelity, for
each benchmark we selected the loop cache configuration chosen as the best
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estimation approach (black bars).

by both the simulation-based approach and the estimation-based approach.
Figure 17 shows the power savings for the cache configuration selected by the
simulation-based approach versus the power savings using the cache configura-
tion selected by the estimation-based approach across all benchmarks. In most
cases, the cache configuration selected as best by the estimation method saves
as much power as the cache configuration selected as best by the simulation
methodology. The worst difference in performance of the loop cache obtained
from estimation versus simulation is for the summin benchmark, where the
estimation approach selects a cache configuration that is 10% less than the
optimal configuration. However, on average the cache configuration obtained
through estimation is less than 1% away from the optimal reported by the
simulation method.

We have shown that through estimation we have good accuracy and pre-
serve fidelity. Now we describe the speedup obtained by using estimation
rather than simulation. Table VIII shows the breakdown of time spent in
various areas of the simulation based approach for each benchmark. In ad-
dition, the breakdown of time spent in various areas of the estimation-based
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approach for each benchmark is also shown. All simulations and estima-
tions were executed on a 500 MHz Sun Ultra60 workstation. Table VIII
shows that the majority of time for the simulation-based method is spent
running the loop cache simulator (lcsim). Thus, by decreasing this time by
using estimation, a significant speedup is achievable. For the larger exam-
ples, jpeg, summin, and v42, the simulation-based approach required approx-
imately 30 min, 15 min, and 21 min, respectively. However, by using the
estimation-based method the times required were reduced to approximately
17 s, 8 s, and 12 s, respectively. While many of the other benchmarks did not
require a very long time for simulation due to their small size, the estima-
tion approach still resulted in significant speed up. Overall, the speedup using
estimation ranges from 9 to 109 across various Powerstone benchmarks, with
an average speedup of 67. For the larger examples in MediaBench, we found
that the simulation-based method takes tens of hours, while estimation still
requires only seconds to minutes.

9. CONCLUSIONS

Adding a tiny instruction cache to the instruction memory hierarchy can sig-
nificantly reduce the energy related to instruction fetching. The traditional
method of using a tiny direct-mapped cache incurs significant performance
overhead. Loop caches eliminate such overhead by only storing code known
to be a small loop. We showed that dynamically loaded loop caches can re-
duce fetches to regular instruction memory by about 30%, while preloaded loop
caches achieve about a 60-70% reduction, for Powerstone and MediaBench
benchmarks. We found a hybrid dynamic/preloaded loop cache to work best on
average. The instruction fetch reductions translate to instruction fetch energy
savings of 60-70%. We showed that the results apply across a variety of tech-
nologies and architectures. We demonstrated a method to quickly determine
the best loop cache size and type for a given program. Loop caches can thus
be used as part of an energy saving methodology to help reduce overall system
energy.
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