694 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 6, JUNE 1995

SpecCharts: A VHDL Front-End
for Embedded Systems

Frank Vahid, Member, IEEE, Sanjiv Narayan, Member, IEEE, and Daniel D. Gajski, Fellow, IEEE

Abstract— VHDL and other hardware description languages
are commonly used as specification languages during system de-
sign. However, the underlying model of those languages does not
directly support the specification of embedded systems, making
the task of specifying such systems tedious and error-prone.
We introduce a new conceptual model, called Program-State
Machines (PSM), that caters to embedded systems. We describe
SpecCharts, a VHDL extension that supports capture of the PSM
model. The extensions we describe can also be applied to other
languages. SpecCharts can be easily incorporated into a VHDL
design environment using automatic translation to VHDL. We
highlight several experiments that demonstrate the advantages
of significantly reduced specification time, fewer errors, and
improved specification readability.

1. INTRODUCTION

ANGUAGE based methodologies are gaining popularity

in embedded hardware and software design. In such
approaches, one first precisely specifies a system’s desired
functionality using a program-like simulation language, from
which one then derives an implementation. The functional
specification is free of any implementation decisions, such as
the division of the system among hardware or software mod-
ules, the scheduling of concurrent processes into a single exe-
cution thread, or the mapping of operations to register-transfer
components. Such approaches are replacing implementation-
based approaches, in which one first derives an implementation
(such as a gate-level netlist or C code) from an informal
specification, and then one simulates or executes that imple-
mentation to verify its functionality.

Language-based approaches provide many advantages
through a design’s lifecycle. First, by creating a test-bench
early in the design process and simulating the functional spec-
ification, one can detect and easily correct functional errors.
Such corrections would be extremely difficult to make later
in the design process. Second, by precisely defining function-
ality, one can expect fewer difficulties when integrating the
system with other, concurrently-designed systems. Third, by
using a machine readable language, one can apply automated

Manuscript received April 22, 1994; revised December 2, 1994, This work
was supported by the National Science Foundation Grant MIP-8922851 and
the Semiconductor Research Corporation Grant 92-DJ-146. This paper was
recommended by Associate Editor M. McFarland.

F. Vahid is with the Department of Computer Science, University of
California, Riverside, CA 92521 USA.

S. Narayan is with the R&D group at Viewlogic Systems Inc., Marlboro,
MA 01752 USA.

D. D. Gajski is with the Department of Information and Computer Science,
University of California, Irvine, CA 92717 USA.

IEEE Log Number 9411258.

estimation and synthesis tools to reduce the design time or to
rapidly evaluate alternative implementations. Finally, by writ-
ing a functional specification void of implementation details,
one can easily redesign the system for another application,
without reverse engineering from an existing low-level design
implementation.

Many languages have been proposed for functional spec-
ification, including VHDL ({1], Verilog [2], CSP [3], and
Statecharts [4]. The best language to use for a particular
system depends largely on how well the language supports
capture of a good conceptual model for that system. A well-
known example of this relationship between a language and a
model is seen with C++ and the object-oriented model: C++
supports the capture of the object-oriented model, which in
turn has proven useful for many large software applications.
A good language should also be able to represent the system
through several stages of refinement, such that implementation
details can be successively captured in the language. Such
implementation details may include communication protocols
or a partitioning of the design among hardware and software
components.

Many systems are of a type currently referred to as em-
bedded systems. Although there is no widely-accepted def-
inition of an embedded system, we note that such a sys-
tem is typically designed to perform one particular func-
tion as part of a larger system. A large part of an embed-
ded system’s functionality consists of continually responding
to external events and conditions in real time. Embedded
systems often consist of software running on a standard
processor, custom hardware implemented on an ASIC, or
a combination thereof. Examples include automobile cruise
controllers, fuel-injection systems, aircraft autopilots, network
switches, video focusing units, Ethernet coprocessors, air-
craft collision avoidance systems, interactive television pro-
cessors, telephone answering machines, volume-measuring
medical instruments, microwave-transmitter controllers, fuzzy-
logic controllers, image-processing systems, MPEG decoders,
bus controllers, and robotic arm-tracking algorithms. After
examining instances of many of the above examples (the
last eleven, to be precise), we determined five characteristics
common to embedded systems: sequential and concurrent
behavior decomposition, state transitions, exceptions, se-
quential algorithms, and behavior completion.

Unfortunately, no existing language supports all five char-
acteristics. We say a language “‘supports” a characteristic if
there is a simple, direct mapping of the characteristic to a
language construct. A lack of support does not mean that

0278-0070/95%04.00 © 1995 IEEE

VAHID et al.: SPECCHARTS: A VHDL FRONT-END FOR EMBEDDED SYSTEMS

Human-written

VHDL tools Sy'romdosts Slmulator% Dobuwsr% Test-generator

|

Tool output

Fig. 1. SpecCharts as a front-end language in a VHDL design environment.

the characteristic cannot be described, but instead means that
the characteristic cannot be described easily. For example,
consider the program characteristic of recursion. We say that
the C language supports recursion, while assembly language
does not, even though C is mapped to assembly language
during compilation and hence, recursion can be described in
either language.

To overcome the lack of support of those characteristics,
we first developed a new conceptual model, called Program-
State Machines (PSM). The PSM model elegantly combines
the hierarchical/concurrent Finite-State Machine (FSM) model
with the programming language paradigm, to easily support
all embedded system characteristics. We then defined the
SpecCharts language to directly capture the PSM model.
Because we defined SpecCharts as an extension of the widely-
used VHDL language, one can easily integrate the language
into an existing VHDL environment (other languages, like
Verilog or C, can be similarly extended to support the PSM
model). It is easy to integrate because designers who are
familiar with VHDL can learn SpecCharts in just a few
hours, and because we can easily translate SpecCharts to
VHDL so that existing simulation and synthesis tools can
be applied. For example, Fig. 1 demonstrates that a system’s
SpecCharts specification can be translated to VHDL, after
which we could apply a VHDL simulator to see the system’s
input/output relationships, we could apply a VHDL debugger
to step through simulation cycles and examine intermediate
signal and variable values, we could apply a VHDL synthesis
tool to generate a custom hardware implementation, or we
could apply a VHDL to C translator to generate an embedded
software implementation.

This paper is organized as follows. In Section II, we
demonstrate the difficulty of specifying embedded system
characteristics using VHDL. In Section III, we introduce the
new PSM model, which easily represents embedded system
characteristics. We then introduce the SpecCharts language and
we show how its constructs easily capture a system described
as a PSM model. In Section IV, we provide an example
in SpecCharts. In Section V, we describe an algorithm for
translating SpecCharts to VHDL. In Section VI, we highlight
several experiments that demonstrate the advantages of re-
duced specification time and fewer errors achieved when using
SpecCharts for embedded system specification. In Section VII,
we discuss the status of the language and supporting tools, and
plans for future work. In Section VIII, we provide conclusions.

695

signal QR_activate, Q_complete, R_complete : boolean;

<S's > P
process; R : process ...
walt until QR_activate;
< R's com| >
R_embrmw
wait QR_activate=false;
R_complete <= faise;
end process;
(@) (b)

Fig. 2. Describing concurrent decomposition in VHDL. (a) Desired func-
tionality. (b) VHDL description.

II. EXISTING VHDL LIMITATIONS FOR EMBEDDED SYSTEMS

In this section, we will describe the five characteristics of
embedded systems. We will also demonstrate the difficulties
of capturing three of those five characteristics in VHDL.

A. Sequential and Concurrent Behavior Decomposition

To cope with the complexity of system functionality, we
usually need to hierarchically decompose functionality into
simpler pieces, or behaviors. Such behaviors may be either
sequential or concurrent to one another, and may themselves
be further decomposed. For example, Fig. 2(a) illustrates the
decomposition of system functionality into four behaviors,
P,Q,R, and S, each of which may be some arbitrarily
complex computation. First P is executed, followed by a
concurrent execution of @ and R, followed by S.

VHDL supports sequential decomposition using procedures,
but it only partially supports concurrent decomposition. In
particular, VHDL supports concurrent decomposition of a
system’s top-level functionality using processes, but does not
support concurrent decomposition of a process or procedure,
i.e., forking is not directly supported.

We can coerce description of a fork in VHDL by introducing
extra processes and extra signals, as shown in Fig. 2(b).
We create a signal for the fork QR activate, and we assert
the signal when control reaches the point in the VHDL
sequential statements where the fork should occur. We create
top-level processes, and R, for each of the fork’s concurrent
behaviors; each fork process executes only when the fork
signal is asserted. To implement a join, we add additional
control signals, Q_complete and R_.complete, and we assert
them at the end of each fork process. Execution of the
functionality proceeds as follows. The process Main first calls
procedure P, which returns when complete. Main then asserts
the signal OR.activate, which causes processes (@ and R to
execute. When 2 and R have completed their computations,
they assert the signals Q_complete and R_complete, after which
Main proceeds to call procedure S.

It should be noted that a person reading the VHDL descrip-
tion will initially be misled into believing that the system is
composed of three concurrent behaviors, Main, Q, and R. Only
after mentally executing the code and tracing the effects of the
signal assertions does that person discover that @ and R are
in fact forked subbehaviors of Main, so that () and R never
actually execute concurrently with procedure P or S in Main.

696 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 6, JUNE 1995

STATES is (P, Q, R, S);
yria.ble stab_vgv : STATE)S;

state_var .= P;
loop
case state_var is
when P =>
.P((-'-):
if {not (u or v)) then
wait until (u or v);
end if;
it (u) then
state_var :=
aisif (v) then
state_var := R;
end if;
when Q =>
state_var := P;
when R =>

if {not (w or x)) then
wait until (w or x);

(a) (b)

Fig. 3. Describing state-transitions in VHDL. (a) Desired functionality. (b)
VHDL description.

B. State Transitions

Embedded systems often contain many modes of function-
ality, referred to as states. The system may transition between
states in an unstructured manner. For example, Fig. 3(a)
illustrates a system that transitions between states P, Q, R,
and S based on some conditions.

VHDL does not support state transitions. In fact, it does
not support any unstructured jumping, since it is a structured
programming language that does not include explicit goto
statements. ;

One way to coerce the description of state transitions
in VHDL by using sequential program constructs is shown
in Fig. 3(b). We declare a state variable statevar as an
enumerated type with four possible values: P,Q, R, and S.
We create a case statement that decodes the state variable
and executes the appropriate branch. Each branch executes
the appropriate behavior, and then sets the state variable to the
appropriate next state based on the transition arc conditions (if
no arc condition evaluates to true, we wait until at least one
arc condition becomes true). The case statement is enclosed in
an infinite loop, so the statements repeat the following activity
forever: decode the current state, execute the current state’s
behavior, set the current state to the next state based on the
arc conditions, and again decode the current state.

Once again, note that a person reading the VHDL descrip-
tion will have to mentally execute the code to discern the
state-machine from the VHDL.

C. Exceptions

An embedded system often must react immediately to an
external event, such as an interrupt or a reset; such an event is
often called an exception. The exception requires termination
of the current behavior, even if the behavior is in the middle
of a computation, and requires execution of the appropriate
next behavior. For example, Fig. 4(a) illustrates a behavior P
that must be terminated immediately upon occurrence of event

Cp) - stmt1;
pls l::ﬁ'u wait until c1;
tminaf stmt2;
e P and 3
x ::Quh Q.* stmt3;
o wait on c2;
stmtd;
(a) (b)
P_loop : loop state_var := st;
stmty; P_loop : while' (notx) loop
wait until ¢1 or x; case (stai:]_:.) is
r (x) then ; stmt1;
oxitP_ g wait until c1 or x;
ond ; state_var = s2;
when s2 =
stmt2; Stme2;
s stmt3;
5'"?‘3, wait on c2, x;
wait on 2, X; state_var := s3;
() then when s3>
exit P_loop; stmtd:
end if; oxit P._loop
end ;
stmid; end loop P_toop:
oxit P_loop;
P_toop <Q statements>
ond loop P_loop;
<Q statements>

Fig. 4. Describing exceptions in VHDL. (a) Desired functionality. (b) VHDL
sequential statements for P. (c) P modified for immediate reaction to event
2. (d) P rewritten as a state-machine to reduce polling clutter.

z, after which behavior Q must be activated. To demonstrate
that behavior P can be a complex computation, we show a set
of VHDL sequential statements describing P in Fig. 4(b).

VHDL does not possess a construct to immediately de-
activate a process or procedure upon the occurrence of an
event.

We can coerce exception handling into VHDL by polling for
the exception throughout the behavior’s sequential statements,
and then jumping to the end of the statements if the exception
is detected through such polling. To accomplish such polling,
we modify the sensitivity list of all the wait statements in
the behavior. We follow each wait statement by a check to
see if the wait terminated due to the exception, in which case
we jump to the end of the behavior. Since there is no goto
statement in VHDL, the jump is achieved by enclosing the
behavior’s statements in a loop and using an exit statement.
For example, Fig. 4(c) illustrates how P’s statements can be
modified to terminate upon event .

Some expert VHDL writers reduce the clutter resulting from
polling by first dividing the behavior’s statements into groups,
and treating each group as a “state.” Hence, the behavior is
described as an FSM, as in the previous section, with the
enclosing loop modified to terminate on occurence of the
exception, as shown in Fig. 4(d).

Note that, in both approaches, a single exception requires
a major modification of the VHDL code. The modification is
greatly increased when there are multiple exceptions, possibly
with different priorities.

D. Sequential Algorithms

Many computations in an embedded system are easily
conceptualized as a sequential algorithm, i.e., as a sequence of
steps, some of which are performed conditionally and others
which are iterated. Sequential program statements, such as

VAHID et al.: SPECCHARTS: A VHDL FRONT-END FOR EMBEDDED SYSTEMS

if, case, loop, procedure, and assignment statements, easily
capture such algorithms.

VHDL fully supports sequential algorithms through its
extensive set of sequential statements.

E. Behavior Completion

A behavior may execute to a point where its computation is
complete, rather than repeating infinitely or being terminated
by an external event. After a behavior completes, we may then
want to execute another behavior. For example, one behavior
may apply some function to each element of an array, after
which another behavior should transmit this array over an
external port. In this example, the transition from the first
behavior to the second was dependent solely on the completion
of the first behavior, and not on some external event.

VHDL partially supports behavior completion. VHDL pro-
cedures are complete when a return statement is reached.
However, VHDL processes do not complete. We can coerce
description of process completion in VHDL by adding a new
signal, which is asserted when the end of the process is
reached, and can be monitored by other processes.

F. Limitations of Other Specification Languages

Several other languages have been developed for functional
specification, but none support all five embedded system
characteristics. Verilog [2] extends the sequential program-
ming paradigm with two additional constructs, fork/join and
behavior disable, which in turn support forking and exceptions.
However, Verilog does not support state transitions. Esterel
[5] makes similar extensions, but also does not support state
transitions. Communicating Sequential Processes, or CSP [3],
extends the programming paradigm with fork/join constructs,
but it does not support state transitions or exceptions. State-
charts [4] permits capture of a hierarchical/concurrent FSM
model. However, it does not support sequential algorithms
since it does not support general programming constructs.
Argos [5] shares these features and limitations of Statecharts.
SDL (Specification and Description Language) [6] permits
description of hierarchical dataflow diagrams with an FSM at
the leaf level. It supports state transitions inside processes and
behavior completion. However, it does not support exceptions
or sequential algorithms, and it does not support forking.

In summary, VHDL constructs do not easily support three
of the five embedded system characteristics discussed above,
so we must coerce those characteristics into existing language
constructs, as was shown above. Such coercion can mean that
specifying embedded systems with VHDL may be extremely
tedious, time-consuming, and error-prone, and the resulting de-
scription may be difficult to comprehend; the same conclusion
can be made in the case of other existing languages.

III. PROGRAM-STATE MACHINES AND SPECCHARTS

In this section, we introduce a new conceptual model, called
Program-State Machines, that supports embedded systems
characteristics. We also describe the SpecCharts language,
whose constructs support PSM capture.

697

A. PSM

The Program-State Machine (PSM) model is a combination
of the hierarchical/concurrent FSM model and the program-
ming language model. Briefly, the PSM model is an FSM
model where each leaf state may be described as an arbitrarily
complex program. As such, PSM subsumes the FSM model
and the programming language model. In other words, we
can describe any FSM as a PSM, simply by restricting the
leaf state programs to trivial assignments. Alternatively, we
can describe any program as a PSM, simply by creating only
one state that contains the program. Most importantly, we can
describe an infinite number of combinations of FSM’s and
programs. Therefore, the PSM model can be thought of as the
next step in the evolution of computation models, combining
the model traditionally used to describe hardware with the
model traditionally used for describing software, addressing
the fact that the border between hardware and software is
rapidly becoming blurred.

We define the PSM model more precisely as follows. A
PSM is a pair (I, Proot), Where I is the set of input/output
ports, and Pyoo¢ is @ program-state at which the hierarchy of
program-states comprising a PSM is rooted.

A program-state P is a three-tuple (decls, status, comp).
Decls consists of any program declarations, such as variables
and procedures, whose scope is P and any descendants. Status
is the current status of the program-state, where status €
{inactive, executing, complete}. The third and most important
part of a program-state is its computation comp, where comp
€ {leaf, concurrent, sequential}. Specifically, there are three
types of program-states.

1) Leaf program-state: A leaf program-state’s computa-
tion is described as an arbitrarily-complex sequence of
programming language statements.

2) Concurrently-composed program-state: A concurrently-
composed program-state’s computation is simply
described as a set of program-substates PSScon. =
{P;, P2, -}, where all the program-substates execute
concurrently with one another.

3) Sequentially-composed program-state: A sequentially-
composed program-state’s computation is also described
as a set of program-substates PSSseq = {P1, P2, -},
along with a list of transition arcs, T = {¢1,%2,--},
which determines the single program-substate that
should be executing at any given time. One of the
program-substates in PSS, is denoted as an initial
state (Pinit), to which control is transferred when the
parent state is first activated. A transition arc %; is a
four-tuple (src, cond, dest, type). The source program-
state, or origin, of the transition arc is represented by
src, where src € PSSgeq. The condition under which
the transition is effected is represented as a boolean
expression, cond. The destination program-state to
which control is transferred by the transition is denoted
as dest, where dest € {PSS,eq U complete}. Complete
refers to a special program-state that is akin to a final
state in a traditional finite-state machine. A transition
arc’s rype is either TOC (transition-on-completion) or

698 1EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 6, JUNE 1995

TI (transition-immediately). A TOC arc is traversed if
and only if the source program-state has finished its
computation and the arc condition is true. A TI arc
is traversed whenever the arc condition evaluates to
true, regardless of whether the source program-state has
actually finished its computations.

We now informally define the execution semantics of a PSM
model. We initially activate the root program-state by setting
P,oot-status 1o executing. Whenever a program-state is first
activated, we do one of the following.

o If the program-state is concurrently-composed, then
we activate all its program-substates, i.e., we set
P; .status = executing, VP; € PSS.onc.

s If the program-state is sequentially-composed, then
we activate its first program-substate, i.e., we set
(Pinic-status = executing) Pinit € PSSeeq.

« If the program-state is a leaf, then we begin executing its
statements.

Execution proceeds for all executing program-states, caus-
ing status changes of various program-states. There are two
causes of status changes: completions and exceptions.

Completion means that a program-state P has finished
its computation. A leaf program-state completes when its
last statement has been executed. A sequentially-composed
program-state completes when an arc transition to the special
complete program-substate occurs. A concurrently-composed
program-state completes when all its program-substates are
complete. In all three cases, completion for a program-state
P means that P.status changes from executing to complete.
The change of a program-state’s status to complete may in
turn cause a TOC arc transition in its parent program-state.
A TOC arc is traversed if and only if src.status = complete
and cond = true, and the transition is achieved by setting
src.status = inactive and dest.status = executing.

Exceptions occur whenever a TI arc condition be-
comes true and the arc’s source program-state is active,
i.e., src.status = executing | complete and cond = true. As
with TOC arcs, the TI transition is achieved by setting
src.status = inactive and dest.status=executing. The source
program-state computation terminates immediately when the
source is deactivated in this manner.

The PSM model is made fully deterministic by imposing the
following semantics. If more than one TOC arc pointing from a
particular program-substate could be traversed at a given time,
then the one closest to the front of the arc list is traversed;
likewise for TI arcs. TI arcs have priority over TOC arcs, and
TI arcs higher in the hierarchy have priority over TI arcs at
lower levels.

Note that the PSM model is modular. In particular, each
level of hierarchy can be developed without any knowledge
of higher or lower levels. Such modularity is made possible
due to the consistent definition of completion for any type
of program-state, and to the prohibition of arcs that cross
hierarchical levels (neither of which is true for Statecharts).

We see that the PSM model supports description of all five
of the embedded system characteristics discussed earlier. Be-
havior decomposition, including forking, is directly supported

since any program-state can consist of sequential or concurrent
program-substates. State transitions are supported by the TOC
and TI arcs. Exceptions are easily supported by the TI arcs.
Sequential program algorithms are supported by the sequential
statements in a leaf program-state. Behavior completion is
supported by the TOC arcs and by the definition of program-
state completion for all three types of program-states.

B. SpecCharts

The textual-version of the SpecCharts language is almost
identical to VHDL, with a few additional constructs. As in
VHDL, an entity specifies the system’s interface, an archi-
tecture specifies the system’s contents, and “use” clauses
can incorporate VHDL packages. However, we replace the
“process” and “block” VHDL constructs by a “behavior”
construct, which corresponds directly to a PSM program-state.
A behavior has the following syntax.
behavior ::= behavior identifier type
behavior_type is

[declarations]
begin

computation
end behavior

[behavior_identifier];
leaf | sequential subbehaviors |
concurrent subbehaviors

behavior_type

leaf computation = statements

concurrent_computation ::= behaviors

sequential_computation ::= subbehavior_definitions
behaviors

The three behavior _type possibilities correspond to the three
types of PSM program-states. The declarations in a behavior is
an optional list of VHDL declarations, such as types, subtypes,
procedures, functions, variables, signals, etc., whose scope
covers the start to end of this behavior (including descendant
subbehaviors). If the behavior_type is leaf, then the behavior’s
computation will consist of VHDL sequential statements, such
as loops, assignments, procedure calls, wait statements, etc.
If the behavior_type is concurrent subbehaviors, then the
behavior’s computation will consist of a set of concurrent
behaviors, where each behavior in behaviors is (recursively)
defined as earlier. If the behavior_type is sequential subbe-
haviors, then the behavior’s computation will consist of the
subbehavior definitions and behaviors, where:

subbehavior_definitions ::= {subbehavior_definition}

subbehavior_definition ::= subbehavior_identifier [:arcs];

arcs = {arc}

arc ::= (arctype, condition,
next_identifier)

arctype = TOC | TI

behaviors ::= {behavior}

The subbehavior definitions simply lists the subbehaviors
of the current behavior and any transitions between those
subbehaviors. Each subbehavior definition has its own arcs,
each of which has that subbehavior as its source. Each arc has
a type (either TOC or TI), a condition, and the identifier of the
next subbehavior to which the arc points (or complete). The

VAHID et al.: SPECCHARTS: A VHDL FRONT-END FOR EMBEDDED SYSTEMS

main type seq is
R

behavior Q

(a) ®)

Fig. 5. Describing concurrent decomposition in SpecCharts. (a) Desired
functionality. (b) SpecCharts description.

ior main type sequenti is
) U, S‘:OC v, R
g;,w.l’) 0C, x, 8);

(a) (b)

Fig. 6. Describing state-transitions in SpecCharts. (a) Desired functionality.
(b) SpecCharts description.

subbehavior definitions are followed by the list of behaviors,
recursively defined using the earlier behavior definition, where
there must be exactly one behavior for each subbehavior
definition.

We have also defined a graphical syntax for the language,
since state-transitions are often more easily visualized graph-
ically. Each behavior is drawn as a rectangle with rounded
corners. Subbehaviors are drawn inside their parent’s rectan-
gle. Concurrent subbehaviors are separated by dotted lines,
while sequential subbehaviors are connected with transition
arcs. A TI arc is drawn from a source subbehavior’s perimeter,
while a TOC arc is drawn from a small square within the
perimeter. Priority of arcs is ordered clockwise, starting from
the top center of the subbehavior’s rectangle. The special
complete sequential subbehavior is represented by a small
square. Finally, the initial sequential subbehavior is pointed
to by a small triangle. Examples of the graphical SpecCharts
syntax are found in the next section. Note that there is a
one-to-one mapping between textual and graphical constructs,
so the only difference between the two forms is aesthetic.
We have found that experienced SpecCharts writers prefer
a textual description during development of a specification
(perhaps using informal graphical sketches before creating the
text), so as to minimize the amount of “sizing-and-placing-
and-routing” necessary when creating a graphical description.
Once the specification is finalized, time can then be spent to
create an equivalent graphical description for documentation
purposes. However, the preference of text versus graphics will
vary greatly from designer to designer.

The above completely defines a textual and graphical syntax
for the extensions to VHDL made by the SpecCharts language.
Note that the above syntax is the only syntax that a VHDL
designer must learn in order to start capturing specifications
with textual SpecCharts; in other words, only a few simple syn-
tactical extensions lead to a substantial increase in descriptive

699

behavior A type sequential subbehaviors is

bs“g‘:;(ﬂ.)(.o):

behavior P type leaf Is

<D,

"H P is active
and x occurs, w;m“ \
Yorminate P and until c1;
X acwmeQr stmi2;
Co) walt on c2;
stmt4;
end P;
behavior Q type
(a) (b)

Fig. 7. Describing exceptions in SpecCharts. (a) Desired functionality. (b)
SpecCharts description.

Embedded system

characteristic |~ SPecCharts VHDL Verlog Estrel “(amog) CSP SDL
Behavior
yos parial yoo yoo yo. you parial
State
transitions you o o no yos no you
Exceptions yos no yos yoo you o no
mmm you you yo pastial n~ yos o
Behaviol
4 you m::m yos you no you no

Fig. 8. Comparison of SpecCharts features with other languages.

abilities. In particular, Figs. 5, 6, and 7 show how easily
we can capture behavior decomposition, state-transitions, and
exceptions with SpecCharts, for the examples of Figs. 2, 3,
and 4. Note the straightforward correspondence between these
characteristics and the SpecCharts descriptions, as opposed
to the very indirect correspondence of the characteristics
with the earlier VHDL descriptions. Fig. 8 summarizes the
embedded system characteristics supported by SpecCharts,
VHDL, Verilog, Esterel, Statecharts, Argos, CSP, and SDL.

1IV. EXAMPLE

In this section, we use an example to demonstrate the ease
with which a complex embedded system can be captured using
SpecCharts. We also show how several precise functionality
issues are discovered and described during the specification
process. The example is a part of the telephone answering
machine controller found in [7]. We show how an informal
English specification of the controller system’s functionality
is straightforwardly mapped to a precise SpecCharts specifi-
cation.

Part of the English specification for the answering machine
controller indicates that, when the machine is responding to
the telephone line, it performs one of three tasks: “Monitoring
the line for rings,” where rings are counted until the required
number are detected; “Normal answering activity,” where
the announcement is played and the message is recorded;
and “Remote-operation answering activity,” where the caller
(assumed to be the machine’s owner) can listen to the recorded
messages by pressing a sequence of buttons on a remote phone.
We refer to this line response behavior as RespondToLine,
and we decide that RespondToLine is best undersiood by
decomposing it into two major subbehaviors called Monitor
and Answer, as shown in Fig. 9. The normal versus remote-
operation distinction will be specified later in the Answer
behavior.

700 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 6, JUNE 1995

Fig. 9. The RespondToLine behavior in SpecCharts.

When the appropriate number of rings is detected, Monitor
completes and Answer is activated. Thus, we add a TOC arc
from Monitor to Answer. The English description states that
after the message is recorded, “The machine hangs up and
again monitors for rings.” Thus we add a TOC arc from
Answer to Monitor. The English specification also mentions
the following: “If ‘on/off’ is pressed after the machine has
answered, any current activity is terminated and the machine
monitors the phone line. Such functionality is useful for
screening calls, since one can listen to a message and then
pick up the phone and press ‘on/off’ to turn the machine
‘off” and begin speaking with the caller.” This functionality is
captured as a TI arc from Answer to Monitor with the condition
falling(machine_on). The machine_on signal introduced into
the specification is “true” if the current state of the machine
is “on.”

We decide that if the phone begins ringing but the caller
hangs up before the call is answered, the behavior Monitor
should start over again. We capture this behavior as a TI arc
from Monitor pointing back to itself, which is transitioned
if a hangup is detected, causing Monitor to start again.
Equivalently, we could have specified this hangup behavior as
part of Monitor itself. The TI arc solution results in a simpler
Monitor behavior.

The functionality of the answering activity is described as
follows: “Once the machine has answered the line, it plays the
announcement. When the announcement is complete, a beep
is produced and the message on the phone line is recorded
until a hangup is detected, or until a maximum message time
expires. The machine hangs up and again monitors for rings.
If a hangup is detected while playing the announcement, the
machine immediately hangs up, and does not proceed to record
a message. If button-tone ‘1’ is detected, either while playing
the announcement or while recording a message, the machine
immediately enters remote-operation mode.”

We thus decompose Answer into four subbehaviors: PlayAn-
nouncement, RecordMsg, Hangup, and RemoteOperation, as
shown in Fig. 10(a). As long as no exceptions occur, we
perform the first three in order, transitioning on completion
using TOC arcs. One exception that can occur is a hangup
during PlayAnnouncement. In such a case, we transition im-
mediately to Hangup using a TI arc. A hangup occurring
during RecordMsg is not considered an exception, but a normal
completion. Another exception is the occurrence of fone =
“0001” during PlayAnnouncement or RecordMsg. Such an oc-
currence requires an immediate transition to RemoteOperation,
as indicated by TI arcs from each of PlayAnnouncement and
RecordMsg. After RemoteOperation is complete, we transition
to Hangup. Completion of Hangup is always followed by
transition to behavior Answer’s completion point.

fising(hangup)

1 (racoii

R s

)

RemoteOperation

(a)
behavior RecordMsg type leat is

in
behavior PlayAnnouncement loaf is "'Em (1 8);
or ey e W fhangup =) thon

n
. tape_rec <= 1"

mﬂ :n-n 1d'oma ="1 wait until hangup='1' for 100 s,
ann_play <= '0’; ProduceBeep(1 s);

; ! nuM_msgs <= num_msgs + 1;

' tape_rec <="0';

endif,
end;

(1) ©
Fig. 10. The Answer behavior in SpecCharts.

behavior CheckCode type leat is

n
code_ok <= true;
for (iin 1 1o 4) loop
wait until tone /= "1111* and tone’event;
if (tone /= uw_';odo(l)) then
90;

(@) (b)

Fig. 11. The RemoteOperation behavior in SpecCharts.

Playing the announcement consists of three simple steps,
which are captured as the three sequential statements shown in
Fig. 10(b). They control the operation of the recording device
of the machine.

Recording a message is also very simple. The steps required
are captured as sequential statements as shown in Fig 10(c).
After a one-second beep, the message is recorded until a
hangup occurs or until the 100 s message limit elapses. A
second beep is produced to indicate the end of the message
and the number of messages is incremented.

Note that the description accounts for the possibility that
the caller may hang up during the one second beep. If the
caller does hang up, then hangup will be ‘1, so the behavior
completes without executing the statements that record and
increment the number of messages.

The description of remote operation begins as follows: “The
first step in the remote-operation mode is to check a user-
identification number. The next four button-tone numbers that
are pushed are compared to four numbers stored internally. If
they do not match, the machine hangs up the phone. If they
do match, the machine enters the basic-commands mode, in
which it can be instructed to perform any of several basic
commands.”

We thus decompose RemoteOperation into two sequential
subbehaviors, CheckCode and RespondToCmds, as shown in
Fig. 11(a). After checking the entered four-digit code with the
stored user identification number, we transition to Respond-
ToCmds only if the code was correct. We introduce a boolean
signal code_ok, which behavior CheckCode will set to “true”
only if the code was correct. Two TOC arcs are used. One

VAHID et al.: SPECCHARTS: A VHDL FRONT-END FOR EMBEDDED SYSTEMS

(= B

ystomOn (i ~> (FespondTaMachineBution W
’j
)

power-'1" power='0"

@pondToUno > riing)
m(m_m)?
(Answer
h 4
Fra D e N e L
‘m—'noot'l [} *
(RemoteOperation M
hangup='1
code_ok ot code_ok
RespondToCmds
L 4 10n8="0010"
@nrusgscm- [MecCmds]
hangup="1" ’m
ResotTape

Fig. 12. The answering machine controller specification.

causes transition from CheckCode to RespondToUserCom-
mands only if code_ok is “true.” The other causes transition
from CheckCode to RemoteOperation’s completion point if
code_ok is “false.” If a hangup occurs during CheckCode, a TI
arc transitions to RemoteOperation’s completion point.

The behavior for CheckCode can be described using the
statements in Fig. 11(b). From the program we see that, if the
next four button tones match those stored in user_code, code_ok
will be “true,” otherwise it will be “false.” Note that even if
an incorrect tone is detected, the algorithm continues until all
four tones sound. This continuation prevents the machine from
hanging up immediately after an incorrect button is pressed,
which would inform an unauthorized user which button tone
was incorrect.

We omit the details of specifying the entire system for
brevity. Fig. 12 shows the SpecCharts specification for the
complete telephone answering machine controller, excluding
the leaf behaviors’ program statements. Note the easy capture
of the five characteristics of embedded systems. Sequential
decomposition is abundant, both through the use of sequential
subbehaviors and through procedures. Concurrent decompo-
sition, though not shown above, is also easily handled; in
fact, the Monitor behavior is composed of two concurrent
subbehaviors in the complete example. State-transitions are
captured directly, such as when describing the four states and
multiple arcs of the Answer behavior. Exceptions are extremely
simple to specify using TI arcs, such as the hangup exception
in the Answer behavior. Sequential algorithms are described
straightforwardly, such as in the CheckCode behavior. Fi-
nally, completion is fully supported, such as the activation of
RecordMsg following the completion of PlayAnnouncement.

701

V. TRANSLATION TO VHDL

In this section, we describe translation of SpecCharts to
VHDL. We discuss the requirements of such translation, detail
our algorithm, and discuss simulation and synthesis of the
generated VHDL.

A. Requirements

We have chosen to translate SpecCharts to VHDL, rather
than developing a suite of tools that directly supports Spec-
Charts, for several reasons. First, VHDL simulators are widely
used, so they have become fast and reliable, and designers
have much experience with them. Second, VHDL is required
documentation for many projects, in which case using Spec-
Charts and translating can yield well-structured, error-free
VHDL code more quickly than writing VHDL by hand. Third,
several other powerful tools have evolved that take VHDL as
input, such as synthesis and verification tools. In summary,
the SpecCharts language is intended to enhance, not replace,
a VHDL design environment; translating to VHDL achieves
this goal.

Our requirements for translation include readability, simu-
lation efficiency, and synthesizability. Readability is important
because the VHDL will likely be read by humans, when
debugging the specification during simulation, when designing
an implementation manually or through synthesis, and when
fulfilling VHDL documentation requirements. Simulation effi-
ciency must be considered, since very slow simulations of the
generated VHDL would probably lead designers to hand-write
the VHDL. Synthesizability is important because we want to
be able to generate small and fast hardware using synthesis
tools.

B. VHDL Translation Algorithm

Although the generated VHDL will be less readable than the
original SpecCharts (as demonstrated in the previous sections),
the translation scheme presented in this section keeps the
VHDL as readable as possible and ensures that each portion
of the generated VHDL can be correlated with the SpecChart.

Several translation schemes have been published for trans-
lating a variety of specification languages to VHDL [8]-[14].
These languages support a very different model than Spec-
Charts or support only a subset of the embedded-system
characteristics outlined in Section II. As a result, the translation
schemes do not address the requirements for translation of
SpecCharts to VHDL.

In our translation scheme, each behavior is always consid-
ered to be either inactive, executing, or complete. We map
each SpecCharts behavior to its own process with these three
distinct sections. For every subbehavior S of a composite
(sequential or concurrent) behavior B, two control signals
S_active and S_complete are defined. These control signals
are asserted and deasserted by the process representing the
composite behavior in order to activate or deactivate the
processes of its descendant subbehaviors.

Fig. 13 outlines a recursive algorithm for translating a
hierarchical behavior to equivalent VHDL constructs. For a
more detailed algorithm, refer to [15]. The input is the root

702 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 6, JUNE 1995

BehaviorToVhdl (B)
Output block start with label B_block and declarations B.declarations

If IsCompositeBehavior(B)
For each S in B.subbehaviors
Output boolean signal declarations S_active, S_complete
BehaviorToVhd1(S) /# recursive call */

/* Create the behavior’s process statements */

/* The INACTIVE section */
stmts = NULL;
Append(stmts, ‘‘wait until B_active;’’)
/* The EXECUTING section */

1f IsCompositeBehavior(B)

Append(stmts, ‘loop’’)
Append(stmts, CreateWaitOnArcsStmts (B.arcs)
Append(stute, CreatelfStmtsForArcsa(B.arcs))
Append(stmts, ‘‘end loop;’’)

Else if IsLeafBehavior(B)
Append(stmts, B.statements)

/+ The COMPLETE section /
Append(stmts,

CreateCompleti

(8))

InsertPolling(stmts, ‘‘B_active’’)
Append (stmts, CreateSignalShutoffStmts(atmts))

Output process with label B and statements stmts
Output the end of B_block

Fig. 13. Behavior to VHDL translation algorithm.

behavior from the SpecCharts file, and all output is writ-
ten to a VHDL file. Procedure CreateWaitOnArcsStmts(arcs)
creates a wait statement that determines if an arc transition
should occur, i.e., if a subbehavior S has completed and a
TOC arc condition from S is true, or if a subbehavior S
is active and a TI arc condition from S is true. Procedure
CreatelfStmtsForArcs(arcs) creates an if-then-else statement
with a branch for each arc. The statements in each branch deac-
tivate the current subbehavior and activate the arc’s destination
subbehavior. (For concurrent subbehaviors, all subbehaviors
are activated, and transition to complete occurs when all have
completed.) Procedure CreateCompletionHandshakeStmts(B)
creates a set of statements that first indicates completion of
behavior B to its parent behavior by asserting the B_complete
signal, waits until the parent deactivates B through deassertion
of the B_active signal, and then deasserts B_complete. Proce-
dure InsertPolling(stmts, active_sig) inserts polling code into
statements stmts causing a jump to the end of the statements if
active_sig is deasserted, as discussed in Section II-C. Procedure
CreateSignalShutoffStmis(stmts) creates statements that shut
off the drivers for all signals written in stmts. This is necessary
because processes for inactive behaviors must be completely
ignored, so they should not drive a value for a signal. More
information on VHDL signal drivers can be found in [1].
Procedure Append(l, m) appends list m to the end of list [.
Starting with the topmost (root) behavior in the hierarchy,
the algorithm traverses the behavior hierarchy in depth-first
order, outputing VHDL as each behavior is visited. The VHDL
code for each behavior is enclosed in a block, so nested
blocks maintain the hierarchy of the SpecCharts and the correct
scoping of declarations. The algorithm generates a process in
each block, containing three sections.
* Inactive In this section, the behavior is waiting to be
activated via assertion of a control signal by the parent
behavior.

o Executing In this section, a composite behavior is ac-
tivating/deactivating appropriate subbehaviors via control
signals, while a leaf behavior is executing its VHDL code.

e Complete After indicating completion to the parent be-
havior via a control signal, the behavior is waiting to
be deactivated via deassertion of a control signal by its
parent.

Note that the algorithm inserts polling code that causes the
process to jump to its end whenever the behavior is deacti-
vated.

The above algorithm satisfies two of the translation re-
quirements specified earlier. First, the VHDL is very readable
(relative to other possible VHDL descriptions of the same
functionality). It is readable because the PSM model’s program
states can still be discerned since each is now represented
as its own process, the PSM model’s arcs are kept separate
from computations, and hierarchy is maintained. An added
advantage is that we can easily find the relevant VHDL process
for a given SpecCharts behavior, and vice versa. Second,
the VHDL simulates efficiently; although we have found that
the two signals added per behavior does tend to slow the
simulation, this slowing is negligible for most cases. As an
added advantage, the recursive aspect of the translation scheme
makes it easy to implement. However, we need to modify the
translation scheme to get good results from synthesis, as will
be discussed shortly.

C. Simulation of the Generated VHDL

The generated VHDL consists of an entity and architecture
for the system. Thus, we can use the same techniques for
simulating the generated VHDL as we would any other entity.
For example, we can create another VHDL file that instantiates
the entity as a component, assigns values to the component’s
inputs, and monitors its outputs. In addition, we can monitor
the B_active and B_complete signals, generated during trans-
lation, to examine the dynamic transitioning between PSM
program-states.

The translation technique must be modified for some ex-
amples that rely on the delta-delay semantics of a signal.
Specifically, note that SpecCharts supports VHDL declara-
tions, so that we can declare a signal in SpecCharts. Signals
differ from variables in that they not only possess a value,
but they possess that value at a particular simulation time.
When we assign a value to a signal using an assignment
statement, we must specify the time in the future at which
the signal should get the new value; the smallest such time
is an infinitely small unit of time, called a delta. However,
note that our translation scheme introduces new control signals
B_active and B_complete, which themselves are updated in
delta time. For correct functionality, all updates of control
signals must by completed before any updates of regular
signals, since the control signals determine which behaviors
should be active; otherwise, a regular signal might get updated
in a behavior B, but then after the control signals are all
updated we might find that the behavior B should have been
deactivated and so the regular signal update should not have
occurred.

VAHID et al.: SPECCHARTS: A VHDL FRONT-END FOR EMBEDDED SYSTEMS

In more general terms, the delta-time required for the control
signals introduced during translation may interfere with the
delta-time of regular signals declared by the designer. The
simple solution to this problem is to shift the time in which
regular signals are updated to a larger unit of time. Therefore,
delta-time updates for regular signals are shifted to a higher
time scale, which is smaller than other time scales used in
the specification and simulation results are then shifted back.
See [16] for details of this approach. The same problem and
solution applies to many of the above referenced translation
schemes.

D. Synthesis from the Generated VHDL

The VHDL generated by the translation scheme may present
inefficient hardware when VHDL synthesis tools are used, be-
cause synthesis tools typically assume that one controller and
one datapath are required to implement each VHDL process.
Since the generated VHDL contains one process per behavior,
synthesis from the VHDL may result in an excessive number
of controllers and datapaths. The simple solution to this
problem is to automatically flatten the hierarchical behaviors
into sequential statements of one leaf behavior before applying
the above translation algorithm. For sequential behaviors, such
flattening is performed in two steps. First, we eliminate all
program-states, except for leafs, by replicating each arc at
higher hierarchical levels to depart from each descendant leaf
behavior. There is thus an increase in the number of arcs
roughly equal to the number arcs times the number of leafs;
note that this is not an exponential increase. Second, we con-
vert the resulting state-transitions to sequential programming
constructs, as described in Section II-B. Flattening sequential
behaviors before synthesis is very commonly done, since in
such cases the designer usually uses hierarchy only for ease
of description, but really wanted a single controller/datapath
implementation for the design. Flattening improves synthesiz-
ability at the cost of less readability (due to loss of hierarchy);
however, the resulting VHDL is still well-structured, so prob-
ably more readable than handwritten VHDL.

We usually do not want to flatten concurrent behaviors, since
we actually want a separate controller for each concurrent be-
havior. Flattening concurrent behaviors leads to an exponential
increase in behavior size, so we must reserve such flattening
for very small behaviors.

VI. RESULTS

The earlier sections should have provided some intuitive
sense of the benefits of using SpecCharts to capture embedded
system specifications. Without SpecCharts, specification cap-
ture time may be longer, comprehension of the system’s func-
tionality may be reduced, and functional errors may be more
abundant. In this section, we describe several experiments
that demonstrate these issues quantitatively. The experiments
compare the use of SpecCharts to VHDL for the specification
of embedded systems.

A. Specification Capture

The goal of this experiment was to demonstrate that using
SpecCharts for specification capture reduces the specification

703

time and the number of errors in the specification. Two groups
of modelers were given an English description of an example
system. One group was asked to specify the system in VHDL,
and the other in SpecCharts. The specification time required
and the number of errors in the specifications of these two
groups were then compared.

The example was an aircraft traffic-alert and collision-
avoidance system [17]. This system was chosen since it
represents an existing embedded system, and secondly because
its documentation was available from an outside source, thus
reducing the possibility of experimenter bias. Because of
time limitations, only a subset of the system’s functionality
was selected for specification. Three modelers specified the
selected subset in VHDL, and three in SpecCharts.

The VHDL modelers required an average of 2.5 times longer
than SpecCharts modelers to capture the specification of the
system. In addition, two of the VHDL specifications possessed
a major control error, resulting in very slow system reactions
to external events. This problem was pointed out to the VHDL
modelers, who then attempted to fix their specifications. Only
one modeler was able to remedy the problem in the allotted
time. SpecCharts proved to be more effective because of its
support of state transitions and exceptions.

B. Specification Comprehension

The goal of this experiment was to show that a SpecCharts
specification is easier to comprehend than a corresponding
VHDL specification. One group of modelers was given the
VHDL specification of a system and another the SpecCharts
specification; each group was asked several questions about
the system’s functionality. The number of correct answers and
the time required by each group to understand the system
functionality were then compared.

The example chosen was a portion of an Ethernet coproces-
sor [18], for which an HDL specification was available from
an outside source. We manually created a functionally equiv-
alent SpecCharts specification. Three modelers were given
the VHDL description, and three were given the SpecCharts
specification. The time each person took to understand the
specification was measured. After the specification was under-
stood, fourteen questions were asked about the system, such
as “What happens when the Enable signal goes low?” “How
many preamble bytes are transmitted for any given data?”
“What is the purpose of variable v?7”

The modelers who were given the VHDL specification took
three times as long to understand the general behavior. In
addition, they averaged two incorrect answers to the ques-
tions, whereas the persons given the SpecCharts description
answered all questions correctly.

C. Specification Quantification

To quantify the several differences between SpecCharts,
VHDL, and Statecharts specifications, a single system was
specified in all three languages. Several different character-
istics of each specification were then measured. The exam-
ple chosen was a telephone answering machine. An English
description was captured in SpecCharts, VHDL, and State-
charts. Two VHDL versions were created. One maintained the

704 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 6, JUNE 1995

VHDL

VHDL
(fat) Statecharts

Fig. 14. Comparison of SpecCharts, VHDL, and Statecharts.

ned from
Design attribute D“g“,'.gg..,'"’"‘ Mwmn
Control transistors 3130 2630
Datapath transistors 277 2251
Total transistors 5407 4881
Total pine 38 38

Fig. 15. Design quality from SpecCharts versus English specifications.

hierarchy by using nested blocks and processes communicating
via control signals, as discussed in Section V-B. The other
flattened the hierarchy into a single program-state machine,
as discussed in Section V-D, which was then described as a
single process.

Fig. 14 shows the results of this experiment. The flat VHDL
has fewer program-states since only leaf program-states exist.
This reduction is achieved at the expense of almost four times
as many arcs, an increase required for the following reasons. In
the hierarchical model, an arc at a higher level in the hierarchy
can describe concisely a transition to another state, regardless
of which descendent leaf state the system is in. In the flattened
model, such an arc must be replicated to point explicitly from
each leaf state to the correct next state. Immediate transitions,
moreover, require polling throughout the code, as described
earlier. Furthermore, arcs are represented using sequential
statements. These three reasons result in over four times as
many words in the flat VHDL as in SpecCharts.

The hierarchical VHDL does not require any additional arcs,
but does require adding 84 control signals (two per program-
state) for implementing control among the many processes.
Writing and reading these signals, along with the polling
required for immediate transitions and the representation of
arcs with sequential statements, result in almost four times
as many words as in SpecCharts. Clearly, the higher the
number of lines and words in a specification, the greater
the specification time, comprehension time, and occurrence
of errors. With regard to leaf program-states, both VHDL
versions require about four times as many statements per
leaf program-state as SpecCharts. The increase is significant
because it impairs the readability of the leaf program-state,
defeating the leaf’s purpose of modularizing the functionality
into easily understood portions.

The consequence of the lack of programming constructs
in Statecharts can be clearly seen in this example. Because
the programming constructs in the leaf behaviors must be
described using states and arcs, the Statecharts description
contains almost twice the number of states and three times
as many arcs as the SpecCharts description. Using states and
arcs to describe the programming constructs can be quite
tedious and unnatural, compared to using sequential program

Specc Generated n
Example Poc'a® VDL ines | paar
22910 | 359 408 35
ans 526 1667 14

cc 114 615 37
draco 253 432 35
mwt 708 1785 97
vart 262 364 13

Fig. 16. Translation results.

constructs. For example, a simple for loop must be described
using several states and arcs. Note that, since Statecharts is
only defined graphically, lines and words are undefined.

D. Design Quality

The goal of this experiment was to demonstrate that design-
ing from SpecCharts does not produce a lower design quality
than designing from English. We compared the number of
transistors in a design derived from an English specification
with the number derived from a SpecCharts specification.

The example chosen was the answering machine described
in this chapter. An English specification was given to two
designers. One designer generated a datapath and controller
directly from this specification. The other designer first spec-
ified the system with SpecCharts, flattened the hierarchy
automatically, and then generated a datapath and controller
from the flattened SpecCharts specification. In both cases, a
synthesis tool was used to synthesize controller logic from an
FSM description of the controller.

Results are shown in Fig. 15. Design time for each person
was roughly the same, about 30 person-hours. Note that the
number of transistors in the final design obtained from Spec-
Charts is not greater than that obtained from English. In this
case, the number is actually smaller, since fewer control states
are used in the design. The reason for the reduction in states
is as follows. The English-specification designer captured the
functionality using an FSM. The FSM served as the only
precise specification of functionality. The designer had to keep
this FSM readable in order to mentally verify the correctness
of the machine’s functionality. This readability requirement
prevented him from grouping many states into a single state,
since such a grouping would have made mental verification
more difficult. On the other hand, the SpecCharts designer
verified the functionality using the SpecCharts specification.
When translating to an FSM, readability of the FSM was not
an issue. States were grouped during this translation, resulting
in less control logic (the grouped states were not actually fully
equivalent, so a synthesis tool could not have made the same
grouping).

E. Translation

Finally, we conducted experiments to ensure that SpecCha-
rts to VHDL translation times, generated lines of VHDL, and
simulation efficiency were within reason for practical use.
Fig. 16 summarizes translation time and resulting VHDL lines
of code for numerous examples; descriptions of all of the
examples can be found in [19]. The variation in the ratio of
SpecCharts lines to VHDL lines across examples results from
variations in the number of levels of hierarchy and the number

VAHID et al.: SPECCHARTS: A VHDL FRONT-END FOR EMBEDDED SYSTEMS

of arcs in the examples. The greater the number of levels of
hierarchy or number of arcs that exist, the larger the generated
VHDL will be relative to the SpecCharts.

To test the simulation efficiency, we obtained two VHDL
models of a peripheral interface example manually specified by
an industry source. The handwritten VHDL models contained
388 and 531 lines, respectively, while the VHDL model
generated from SpecCharts contained 432 lines. We simulated
all three models using the industry test vectors, consisting of
23000 lines of VHDL code; simulation times (on Zycad’s
VHDL simulator version 1.0 running on a Sparc2) were 220 s,
250 s, and 550 s, respectively. While the simulation of the
VHDL generated from SpecCharts is slower, it is not slower
by an order of magnitude, which in turn might have required
the development of a custom SpecCharts simulator.

VII. STATUS AND FUTURE WORK

A parser and VHDL translator have been implemented for
the textual SpecCharts language. The implementation consists
of 20 000 lines of C code, and includes several automated
transformations, such as flattening the hierarchy, procedure
inlining, and the time-shift discussed in Section V. It also
includes a graphical tree display of the hierarchy (i.e., it
displays the behaviors graphically, but not the arcs), such
that the designer can click on any subbehavior’s node to
popup a text editor for that subbehavior. Several queries are
also supported, such as indicating which nodes access which
symbols. The tool has been released to over 20 companies and
universities, and is currently being used in several industry and
university projects. SpecCharts also serves as input, along with
VHDL, to the SpecSyn system-design tool [20], [21].

There are some language extensions that could be made
straightforwardly. One extension is the creation of a fourth
program-state type, a concurrent leaf, which would contain
VHDL concurrent signal assignments only, without any se-
quential program constructs. Adding such a type would enable
direct support for the dataflow characteristic, which is not
found in PSM, but is still useful for some embedded sys-
tems and especially for signal-processing systems. Another
extension is the refinement of the concept of a concurrently-
composed behavior’s completion. Rather than defining its
completion as the completion of all subbehaviors (a standard
join), we can define the behavior’s completion as the com-
pletion of a subset of those subbehaviors (a selective join);
we have found that selective joins would be useful for several
examples. In fact, we can define the behavior’s completion as
the completion of all subbehaviors in the subset (a selective
AND-join), or as the completion of at least one subbehavior
in the subset (a selective OR-join). A third extension could
easily be made to the allowable condition on a TI arc. Note
that a TI arc with condition “cond” is equivalent to a VHDL
“wait until cond” statement being fired off at the same time the
arc’s source substate is activated; when the wait statement’s
condition is satisfied, the arc is traversed. Because of this
equivalence to a wait statement, we can associate a timeout
clause (“for T”’) and a sensitivity clause (“on s1, s2, - - -”*) with
each arc (see [1] for details of these clauses), just as allowed in

705

a VHDL wait statement, thus permitting powerful yet concise
specifications of exception conditions.

We plan to enhance the SpecCharts tool set as follows. First,
since current synthesis tools place restrictions on acceptable
VHDL input, we plan to develop translators for various synthe-
sis tools. Second, since current synthesis tools and compilers
do not modify the the overall organization of a specification,
such as the process-level parallelism, we plan to include a
suite of automated specification transformations, such as those
that convert sequential behaviors to concurrent ones, and vice
versa. Other future work may include a graphical capture
tool for SpecCharts, including a graphical simulation tool that
highlights active behaviors.

VIII. CONCLUSION

Increasing system complexity and reduced time-to-market
requires new solutions to system design problems, especially
the problem of functional specification. Existing languages
don’t support direct specification of common embedded sys-
tem characteristics, so we developed a new conceptual com-
putation model, PSM, and a language based on that model,
SpecCharts. PSM combines the common hardware models
and software models into one, so it addresses the fact that
today’s embedded systems include both software and custom
hardware. SpecCharts supports this model by building on a
popular standard language, VHDL, so it fits in well with
current methodologies. Using SpecCharts to specify embed-
ded systems can lead to fewer functional errors and easier
integration of system modules, which in turn result in fewer
design iterations, faster time-to-market, and improved product
support and enhancement over a product’s lifetime.

REFERENCES

[1] IEEE Standard VHDL Language Reference Manual.
1988.

[2] D. Thomas and P. Moorby, The Verilog Hardware Description Lan-
guage. Norwell, MA: Kluwer, 1991.

[3] C. Hoare, “Communicating sequential processes,” Commun. ACM, vol.
21, no. 8, pp. 666677, 1978.

[4] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Programming 8, 1987, pp. 231-274.

[5]1 N. Halbwachs, Synchronous Programming of Reactive Systems.
well, MA: Kluwer, 1993.

[6] F. Belina, D. Hogrefe, and A. Sarma, SDL with Applications from
Protocol Specifications. Englewood Cliffs, NJ: Prentice—Hall, 1991.

[7] D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design
of Embedded Systems. Englewood Cliffs, NJ: Prentice-Hall, 1994.

[8] N. Dutt, J. Cho, and T. Hadley, “A user interface for VHDL behav-
ioral modeling,” in Proc. Int. Symp. Comput. Hardware Description
Languages and Their Applicat., 1991, pp. 375-393.

[9] O. Pulkkinen and K. Kroniof, “Integration of SDL and VHDL for

high-level digital design,” in Proc. European Design Automation Conf.

(EuroDAC), 1992, pp. 624-629.

B. Lutter, W. Glunz, and F. Rammig, “Using VHDL for simulation

of SDL specifications,” in Proc. European Design Automation Conf.

(EuroDAC), 1992, pp. 630-635.

R. MacDonald and R. Waxman, “Operational specification of the

SINCGARS radio in VHDL,” in AFCEA-IEEE Tactical Commun. Conf.,

1990, pp. 1-17.

T. Tikanen, T. Leppanen, and J. Kivela, “Structured analysis and VHDL

in embedded ASIC design and verification,” in Proc. European Conf.

Design Automation (EDAC), 1990, pp. 107-111.

A. Arsenault, J. Wong, and M. Cohen, “VHDL transition from system

to detailed design,” in VHDL Users’ Group, Apr. 1990.

A. Jerraya, P. Paulin, and D. Agnew, “Facilities for controllers modeling

and synthesis in VHDL,” in VHDL Users’ Group, Apr. 1991.

New York: [EEE,

Nor-

[10]

(1]

[12]

[13]
[14]

706

[15]

[16]

[17]

[18}

[19

[20]

[21]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 6, JUNE 1995

S. Narayan, F. Vahid, and D. Gajski, “Translating system specifications
to VHDL,” in Proc. European Conf. Design Automation (EDAC), 1991,
pp. 391-394.

F. Vahid and D. Gajski, “Obtaining functionally equivalent simulations
using VHDL and a time-shift transformation,” in Proc. Int. Conf.
Computer-Aided Design, 1991, pp. 362-365.

N. Leveson, M. Heimdahl, H. Hildreth, and J. Reese, “Requirements
specification for process-control systems,” Dept. of ICS, Univ. of
California, Irvine, Tech. Rep. 92-106, 1992.

R. Gupta and G. DeMicheli, “System-level synthesis using re-
programmable components,” in Proc. European Conf. Design Automa-
tion (EDAC), 1992, pp. 2-7.

S. Narayan, F. Vahid, and D. Gajski, “Modeling with SpecCharts,” Dept.
of ICS, Univ. of California, Irvine, Tech. Rep., pp. 90-20, 1990.

D. Gajski, F. Vahid, and S. Narayan, “A system-design methodology:
Executable-specification refinement,” in Proc. European Conf. Design
Automation (EDAC), 1994, pp. 458-463.

D. Gajski, S. Narayan, L. Ramachandran, F. Vahid, and P. Fung,
“System design methodologies: Aiming at the 100-hour design cycle,”
to appear in IEEE Trans. VLSI Syst., 1995.

Frank Vahid (M’89) received the B.S. degree in
electrical engineering from the University of Illinios
at Urbana-Champaign, in 1988. He received the
M.S. and Ph.D. degrees in computer science from
the University of California, Irvine, in 1990 and
1994, respectively, where he was an SRC Fellow.
He is currently with the Department of Computer
Science at the University of California, Riverside
as an Assistant Professor. His research interests
include embedded-system specification and design,
hardware/software co-design, functional partition-

ing, and behavioral synthesis.

Sanjiv Narayan (M’89) received the B.S. degree in
computer science in 1988 from the Indian Institute
of Technology, New Delhi and the M.S. and Ph.D.
degrees in information and computer science in
1994 from the University of California at Irvine.

He is a Member of the R&D Group at View-
logic Systems, Inc. in Marlboro, MA. His research
interests include system specification and design,
hardware description languages, and behavioral syn-
thesis.

Dr. Narayan was the recipient of the Director’s
Gold Medal at the Indian Institute of Technology and was a Chancellor’s
Fellow at UC-Irvine.

Daniel D. Gajski (M'77-SM’83-F"94) received the
Dipl. Ing. and M.S. degrees in electrical engineering
from the University of Zagreb and the Ph.D. degree
in computer and information sciences from the
University of Pennsylvania, Philadelphia.

After ten years of industrial experience in digital
circuits, telecommunications, supercomputer design,
and VLSI structures, he joined academia as a Pro-
fessor in the Department of Computer Science at
the University of Illinois at Urbana-Champaign,
and was the founder of the lab for supercomputer
research. Presently, he is with the Department of Information and Computer
Science at the University of California, Irvine as a Professor. His interests
are in CAD environments, ASIC and system design methodology, high-level
synthesis, and hardware-software co-design.

