
Scalable Object Detection Accelerators on FPGAs
Using Custom Design Space Exploration

Chen Huang and Frank Vahid*
Dept. of Computer Science and Engineering

University of California, Riverside, USA
{chuang,vahid}@cs.ucr.edu

*also with the Center for Embedded Computer Systems, Univ. of California, Irvine

ABSTRACT- We discuss FPGA implementations of object (such
as face) detectors in video streams using the accurate Haar-
feature based algorithm. Rather than creating one
implementation for one FPGA, we develop a method to generate
a series of implementations that have different size and
performance to target different FPGA devices. The automatic
generation was enabled by custom design space exploration on a
particular design problem relating to the communication
architecture used to support different numbers of image
classifiers. The exploration algorithm uses content information
in each feature set to optimize and generate a scalable
communication architecture. We generated fully-working
implementations for Xilinx Virtex5 LX50T, LX110T, and
LX155T FPGA devices, using various amounts of available
device capacity, leading to speedups ranging from 0.6x to 25x
compared to a 3.0 GHz Pentium 4 desktop machine. Automated
generators that include custom design space exploration may
become more necessary when creating hardware accelerators
intended for use across a wide range of existing and future
FPGA devices.

I. INTRODUCTION
Automated object detection, such as face detection, has been
studied extensively in recent decades. Methods have been
incorporated into products, such as modern cameras that
automatically focus by detecting faces, or video surveillance
systems that highlight vehicles. Many future applications need
fast accurate object detection, including domains such as
human computer interfaces, smart rooms, robot vision, and
automobile collision warning systems. Future applications
may need the object detection be done in real-time (30-60
frames/second) with a high detection ratio. High accuracy
requirements demand sophisticated algorithms such as the
Haar-feature based object detection algorithm [13] used in
this paper. However, current desktop processor
implementations of complex object detection algorithms
suffer from low detection speeds and high processor resource
utilization. A desktop processor implementation of a Haar-
feature based face detection algorithm achieves 3.5
frames/second on a Pentium 4 3.0 GHz machine for a low
resolution 320x240 video stream, based on our experiments.

The Haar-feature based object detection algorithm has
massive potential parallelism, such as the feature values of
each sub-window potentially being calculated in parallel.
Likewise, the image scaling process in the algorithm can be
executed in parallel with data buffer construction. The
algorithm also needs to execute the most computation-

intensive task, feature value calculation, iteratively for each
sub-window. These computation patterns are highly suitable
for FPGA implementation. With custom-designed circuits for
object detection in the FPGA, real-time object detection is
possible without assistance of a processor.

 We implemented the Haar-feature based object detection
algorithm on a series of Xilinx Virtex5 FPGAs with different
performance and resource requirements. We found the
bottleneck preventing the design from being scalable was the
communication architecture between the data buffer and the
classifiers, as the communication architecture consumed the
most FPGA resources. In this paper, we focus on the design of
efficient communication architectures for different numbers
of classifiers using content information of each feature set.
We formulated a feature mapping problem and developed a
tool to automatically explore and generate different designs
that can fit in FPGAs with different capacities. With growing
FPGA capacities and the tremendous variety of possible
implementations of an algorithm on FPGAs, such custom
design space exploration may become a common requirement
for implementing applications on FPGAs.

The paper is organized as follows. Section II reviews
previous work on object detection algorithms and custom
design space exploration. Section III introduces Haar-feature
based object detection. Section IV introduces the FPGA
implementation details, and Section V discusses the
communication architecture and a custom design space
exploration tool. Section VI presents experimental results and
Section VII concludes.

II. RELATED WORK
Object detection, especially face detection, has been an active
research area for many years. A color-based face detection
algorithm was proposed by Hsu [5]. The algorithm extracts
image areas with skin color. Rowley [11] introduced a neural
network based face detection algorithm that can detect rotated
faces. Viola and Jones [13] introduced a Haar-feature based
object detection algorithm, which has been implemented in
Intel’s OpenCV [9] image processing library. Our work uses
Viola and Jones’s algorithm for the FPGA implementation.

Many efforts implement different face/object detection
algorithms on FPGAs. Theocharides [12] implemented a
neural network based algorithm for face detection. Their
implementation was able to detect rotated faces and achieved
75% accuracy. Wei [14] implemented an AdaBoost [2]

algorithm to detect face biometrics on images with 120x120
pixels. Gao [3] re-trained the Haar face features to 16 features
per stage, which is more convenient for FPGA
implementation. Cho [1] implemented the entire Haar-feature
based face detection algorithm on a Xilinx Virtex5 FPGA.
They implemented two versions with 1 or 3 classifiers. Their
communication architecture between image buffer and
classifiers was not designed for scalability. Previous
implementations of object detection algorithms on FPGAs
focus on implementing one or a few designs for a certain
FPGA. However, the design space of the Haar-feature based
object detection algorithm is enormous. Our approach
formulates a custom exploration problem for the
communication architecture aiming to make the object
detection accelerator more portable to different FPGAs.

Custom exploration has been used in past work focusing
on automatic soft-core generators. Nordin [8] presented a
parameterized soft-core generator for the discrete fourier
transform (DFT) kernel, which yields implementations over a
range of different performance/cost tradeoff points. L’Insalata
[7] proposed an environment for automatic generation of fast
fourier transform (FFT) and inverse FFT cores, which focused
on low circuit complexity. The Xilinx ISE tool [15] provides
soft-core generators for on-chip memory, standard bus
interfaces, math functions, and much more. These soft-core
generators can tune basic parameters such as memory
bandwidth and depth. The ISE tool also provides a
parameterized MicroBlaze [16] soft-core processor. Previous
soft-core generators are often designed for computation
kernels or processors with straightforward parameter tuning,
while the Haar-feature based object detection in this paper is a
more complex application that leads to a larger design space,
and gives more optimization opportunities.

III. HAAR-FEATURE BASED OBJECT DETECTION ALGORITHM

A) Algorithm overview
The basic idea of the Haar-feature based object detection
algorithm is to detect an object in small sub-windows of an
image. For example, to detect a face in an image, the
algorithm examines all possible 20x20 sub-windows (called
examine windows) in an image, as illustrated in Figure 1.

 Suppose the image size is 320x240 pixels and the
examine window size is 20x20 pixels. The examine process
starts from the top left corner. Then the examine window
moves down along the Y axis 1 pixel at a time. When the

entire column has been examined, the examine window will
move along the X axis by 1 pixel to repeat the process for the
next column. The total number of examined windows is (240–
20)*(320–20) = 66,000. Desktop implementations often move
the examine window 2 pixels at a time; such interleaved
scanning is 4 times more efficient, while having a comparable
detection quality.

B) Image scaling
To detect objects of different sizes, the algorithm scales down
the image and repeats the search. The image scaling process is
illustrated in Figure 2. There are two faces in Figure 2 with
different sizes. The 20x20 examine window detects one face
in the original image. By scaling down the original image, the
algorithm can detect another face with the same 20x20
examine window. The algorithm scales down the image by a
constant scale factor until the height or width of the scaled
image is smaller than the examine window’s width.

C) Haar-feature and integral image
The most computation intensive part of the detection
algorithm is to determine whether the current 20x20 examine
window contains an object. The algorithm calculates Haar-
feature values to make the decision. Figure 3(a) shows two
Haar features within a 20x20 examine window, where each
feature contains 2 to 3 small rectangles. Each object type has
different Haar-features relating to its shape, e.g., two eye
features in a face are shown in Figure 3(a). Details about
Haar-features can be found in Viola and Jones [13]. The
feature sum equals to the pixel sum (sum of the image pixels’
grayscale) in the white rectangles minus the pixel sum of the
black rectangles. The feature value is determined by
comparing the feature sum to the feature threshold. The
feature set and threshold of an object are generated by training
a large number of images with the AdaBoost algorithm [2].

Figure 1: Movement of examine window.

Figure 2: Image scaling example

Figure 3: Haar-feature and integral image

 (a) Haar features (b) integral image

R1
P1 P2

P4 P3

…

…

……

X axis

Y
 axis

20x20
examine
window

0 320

240

Faces detected on
different scales

Original
image

Scaled
images

We utilized an existing Haar-feature set from the OpenCV
library [9]. To efficiently calculate the pixel sum of an
arbitrary rectangle, the algorithm uses an integral image as an
auxiliary data structure. In an integral image, each point stores
the pixel sum of a rectangle, starting from the top left corner
to this point. With the integral image, calculating the sum of
an arbitrary rectangle can be done in constant time, e.g.,
Sum(R1) = P4 – P2 – P3 + P1, as shown in Figure 3(b).

D) Decision cascade
Each object type has a corresponding Haar-feature set of
different sizes. For example, the frontal face feature set
contains 2135 Haar-features. However, for each sub-window,
the object detection algorithm may not need to calculate all
feature values, but rather decisions can be cascaded, as
illustrated in Figure 4.

The Haar features are divided into several stages. For
example, the frontal face has 22 stages. Each stage has 3 to
200 Haar-features. The algorithm calculates the feature value
for each feature within one stage and then sums the values to
get the stage sum. If the stage sum passes the stage threshold,
the algorithm continues to the next stage. Otherwise, the
algorithm terminates and rejects the current examine window.
If an examine window passes all stages, the algorithm accepts
the current window meaning that the object is found.

IV. DESIGNED ARCHITECTURE

A) Overview
The overall FPGA implementation is illustrated in Figure 5.
The frame grabber reads the video input from a standard VGA
interface. When an image frame has been grabbed, the image
scaler scales down the image by a constant scale factor and
notifies the buffer controller when the scale process is done.
The buffer controller then constructs an integral image for
each examine window in the scaled image. When an integral
image has been built, the buffer controller sends a buffer
ready signal to the classifier. The classifier reads the values in
the integral image and carries out the cascaded decision
process. If an object is found, the classifier will notify the
rectangle drawer to draw a rectangle around the object.

B) Image scaler
The image scaler scales the image down by a constant scale
factor of 1.2. The examine window size is 20x20 pixels and
the original image size is 320x240 pixels. The total number of
scaling processes is: Floor(log1.2240/20) = 13. We use the

bilinear scaling [4] approach in our implementation, which
needs 4 memory accesses to the original image per pixel.

C) Integral image
The integral image is the only data source needed by the
classifier. The desktop version of the algorithm first calculates
and stores the integral image of the entire image for later uses.
However, storing the entire integral image is too expensive on
an FPGA in terms of both size and performance. Our current
design only stores the integral image of the current 20x20
examine window. As the maximum value in the integral
image is 20*20*255 (255 for 8-bit grayscale) = 102,000, we
use a 20x20 17-bit register file to store the integral image.

During the object detection process, the examine window
moves within the image as in Figure 1. When the examine
window moves down by 1 pixel, every entry of the integral
image can be updated in parallel. For instance, Integral image
(i, j) = Integral image(i + 1, j) – Integral image(1, j), where i
is the row index and j is the column index. To support this
parallel updating process, this register file is implemented
with LUTs (lookup tables in the FPGA).

D) Classifier design
The classifier reads values from the integral image and
calculates Haar-feature values. The Haar feature contains two
or three rectangles. A datapath for a classifier is illustrated in
Figure 6.

Each rectangle pixel sum can be calculated with 4 values

Figure 4: Decision cascade (T=True, F=False) Figure 5: Overall architecture

Figure 6: Classifier datapath

Frame
grabber

Image
scaler

Buffer
controller

Integral
image

Classifier

Rectangle
drawer

Video in
Video out

(objects in rectangles)
Examine
window

S
1

S
2

S
3

S
n

Reject

……
Accept

F
F F F

T T T
T

Stages

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4

0

Feature threshold
>

Left value
Right value Feature value

m
ux

+
m

ultiply
by constant

(12 ports fed with the integral image)

-1 x2 x2 x3

+(Feature sum)

Rect sum Rect sum Rect sum

(4 corner pixels) from the integral image. The Rect sum
component executes the following computation: Rect sum(a)
= a1 – a2 – a3 + a4. Each rectangle sum is then multiplied by
a weight factor. We noticed that there are only three
conditions for the weight factors: (-1, 2, 0), (-1, 2, 2), (-1, 3, 0).
We can use muxes and multiply by constant components to
replace the expensive integer multiplier or DSP block. Then
the feature sum of three rectangles is computed and compared
with the feature threshold. If the feature sum is greater than
the feature threshold, the classifier will return the Right value.
Otherwise, the Left value will be returned. The Left and Right
values are predefined parameters of each Haar feature. The
classifier can calculate the feature value in one cycle (65 MHz)
without pipelining. We thus eliminate pipeline registers to
reduce the classifier’s size.

The cascade decision process described in Section III(D)
can be implemented via a stage sum register. The stage sum
register stores the sum of all feature values in that stage. If the
stage sum is greater than the stage threshold, the algorithm
continues on to the next stage. Otherwise, the algorithm stops
and returns a false.

V. COMMUNICATION ARCHITECTURE EXPLORATION
This section describes the communication architecture
between the integral image and the classifiers. We will first
describe a general communication architecture for a single
classifier. A more scalable data specialization communication
architecture for multiple classifiers will then be discussed.
Finally, we will introduce the Haar-feature mapping problem
for multiple classifiers and describe a design space
exploration algorithm.

A) General architecture for a single classifier
From the interface between the classifier and integral image
shown in Figure 6, note that data should be deliverable from
any integral image data entry to any classifier port. Thus, a
general communication architecture is shown in Figure 7.

The integral image has 400 entries and each entry of the
integral image contains 17 bits. Thus, to access any entry in
the integral image matrix, each port of the classifier needs a
17-bit 400-to-1 mux, which consumes about 2300 LUTs in a
Xilinx Virtex5 110T FPGA. Since each classifier has 12 ports
(Figure 6), one classifier needs twelve 400-to-1 muxes, which
takes 27,600 LUTs, or 40% of the total resources of the

LX110T FPGA having 69,120 LUTs. For smaller FPGAs that
cannot fit all 12 ports, we can put fewer 400-to-1 muxes by
using a time multiplexing technique. However, the data
bandwidth will decrease with time multiplexing.

Wiring for such muxes is a severe problem. Wire
congestion problems worsen when multiple such general
communication architectures exist for multiple classifiers
accessing the same integral image. As can be seen, simply
duplicating this general communication architecture for
multiple classifiers is not scalable.

B) Data-specialized architecture for multiple classifiers
Since features within one stage can be calculated in parallel,
we can deploy multiple classifiers to increase performance.
Instead of using general communication architecture, we can
map features to different classifiers. Note that each feature
only needs certain entries (feature rectangle location) of the
integral image to feed the classifier. By carefully mapping
these features to different classifiers, each port of the
classifiers may need only a small portion of the entire integral
image. In other words, we can group features that access the
same integral image entries into the same classifier to make
the communication architecture for multiple classifiers more
scalable. A feature mapping example is shown in Figure 8.

There are four classifiers in Figure 8, and each classifier is
assigned with a number of different features. Note that each
classifier’s port only needs values from a portion of the
integral image. The figure shows each portion as (rounded)
rectangles, but a portion can assume any shape. Since each
classifier accesses only a portion, each can use a mux smaller
than 400-to-1. For instance, classifier1’s port1 needs a 16-to-1
mux, while classifier3’s port7 needs a 9-to-1 mux. In general,
the more classifiers we have, the fewer features are needed to
be assigned to each classifier, which leads to smaller muxes
and fewer wires. The data-specialized architecture uses
content information within each feature (the feature
rectangles’ location) to optimize the communication
architecture, yielding a custom design for a certain feature set.
Detecting a different object (such as a vehicle rather than a
face) requires redesigning the communication architecture.

The feature storage is also different in the specialized
architecture. In the general architecture, the feature rectangle
positions are stored in BRAM. In the specialized architecture,

Figure 7: General communication architecture

Figure 8: Data specialization architecture

A classifier port

……

20 x 20 Integral image

1 2 3 400

400-to-1 mux

CF1_port1 CF2_port9 CF3_port7 CF4_port2

Integral im
age

16-1 mux 24-1 mux 9-1 mux 24-1 mux

the mux selection values for each step are stored.

C) Custom exploration for feature mapping
Since the feature mapping determines the communication
architecture in the specialized architecture, a good feature
mapping can greatly reduce the mux size and number of wires.
We developed a custom exploration tool for the feature
mapping problem. The tool searches the design space of
possible communication architectures for different feature sets.
The tool can also be applied for different numbers of
classifiers, to tradeoff design size and performance.

The search space of the feature mapping problem is
enormous. An object usually has more than 1000 Haar
features, which are divided into several stages. The algorithm
needs to map Haar features within each stage into different
classifiers. A simple feature mapping example is illustrated in
Figure 9. The example maps 26 features of 3 stages into 4
classifiers. Since each feature can be mapped to any one
classifier and all classifiers are functionally equivalent, the
total possible number of equivalent mappings is mn/m!, where
m is the number of classifiers and n is the number of features.
The total number of possible mappings grows exponentially
with the number of features. Thus, a brute force search
solution is not feasible for the feature mapping problem.

We applied a simulated annealing [10] heuristic for the
feature mapping problem. The heuristic’s objective is to
minimize the total number of wires of all the classifiers and to
minimize the total delay of all classification stages. The two
objects are illustrated in Figure 9. The total stage delay is the
sum of the maximal delay of each stage. Since each classifier
may be assigned with different numbers of features, the stage
classification time is determined by the classifier with the
most features. The total stage delay reflects the performance.
Different feature mappings will result in different wire
numbers and corresponding mux sizes for each classifier port.
The total number of wires reflects the size of the entire
communication architecture. Thus the heuristic optimizes the
cost function: Cost = total number of wires * total stage delay.

The simulated annealing based design space exploration

heuristic has two operations for generating neighbor solutions:
Swap and Migrate, illustrated in Figure 9. Two classifiers
exchange one of their features within one stage by the Swap
operation. For instance, exchanging features 22 and 26 within
stage 3 is a Swap operation. The Swap operation is a balanced
operation, which will not change the total stage delay. The
Migrate operation moves a feature from one classifier to
another within a stage. For example, moving feature 22 from
CF2 to CF1 is a Migrate operation. The Migrate operation is
an unbalanced operation, which may change the total stage
delay. The simulated annealing search heuristic is as follows:

Step 1: Generate a random initial solution and calculate
current cost: CostC. Define current temperature: T = CostC.
Define best cost: CostB = CostC.
Step 2: Generate N neighbors by Swap operation and store the
best Swap neighbor.
Step 3: Generate N neighbors by Migrate operation and store
the best Migrate neighbor.
Step 4: Compare the best neighbors from Step 2 and Step 3
and choose the neighbor with smaller cost CostN. If CostN <
CostB, then CostB = CostN and store the best solution.
Step 5: Define: D = CostN – CostC. If D < 0, accept the
neighbor, else use possibility exp(-D/T) to accept it.
Step 6: Decrease T (T=T*0.999 in our experiments) and go
back to Step2 until the ending condition is satisfied (100,000
iterations in our experiments).

We run the feature mapping exploration algorithm for 2, 4,
8, and 16 classifiers. The algorithm requires about 30 minutes
per run on a 3.0 GHz Pentium 4 machine, for a total of 2
hours. The exploration tool automatically generates
synthesizable VHDL code for the communication portion.
The tool first allocates muxes of different sizes for each
classifier port and then schedules the mux selection values
according to the feature calculation order. The mux selection
values for each step are stored into BRAM. The synthesis and
implementation time for each version on the FPGA takes 1 to
3 hours. Since the exploration algorithm only needs to run
once for each version, we chose simulated annealing
parameters to yield many iterations and hence good results.

VI. EXPERIMENTAL RESULTS
We implemented the Haar-feature based object detection
algorithm for frontal face detection and for eye detection. The
Haar-feature sets and corresponding parameters for those
objects come from the OpenCV library [9]. The architectures
were fully implemented including real-time video capture,
FPGA processing, and display of detected objects on an LCD
monitor. A demonstration video is available [6].

A) Design scalability and mapping to different FPGA devices
We created the exploration tool to automatically output
synthesizable VHDL code for the communication portion for
different numbers of classifiers and manually wrote
synthesizable VHDL for rest of the architecture. We
implemented 8 different FPGA versions for face detection:
1/12, 1/4, 1/2, 1, 2, 4, 8, and 16 classifiers (CF). 1/12 CF
means we only implemented one 400-to-1 mux, using time

Figure 9: Example feature mapping and neighbor generation

Stage and feature

CF1 CF2 CF3 CF4

Stage 3 Stage 2 Stage 1

Total stage delay

 1 2 3 4
 5

 6 7 8 9
 10 11 12

 13 14 15 16
 17 18 19 20
 21 22 23 24
 25 26

Total wire number Feature
Swap Migrate

Classifier

multiplexing. 1/12, 1/4, 1/2 and 1 classifier versions each
utilize the general communication architecture. The 2, 4, 8
and 16 CF versions each uses the data-specializatized
architecture. The FPGA resource utilization (for frontal face)
in LUTs is shown in Figure 10.

The FPGA resource utilization can be divided into two
parts: Static components and Communication components.
The communication components include muxes, wires
between the integral image and classifiers and the classifier
data-paths. The static components include video input/output
interface, image scaler, integral image buffer, buffer
controller, and others components except the communication
components. Figure 10 shows that the communication
components consume most FPGA resources for larger designs.
Note also that the communication components’ sizes increase
linearly with the number of classifiers for the general
communication architecture. The communication
components’ sizes for the data specialized architecture grows
much slower. For instance, the communication components’
size of 16 CF is only about 2 times of the communication size
of 2 CF, as opposed to growing linearly with CF number
when using the general communication architecture. The data-
specialized architecture utilizes the content information of
each feature to reduce the number of wires and mux size,
which is more scalable than the general communication
architecture. The FPGA resource utilizations for eye detection
exhibited similar results and are omitted here for space.

We can map these designs to different FPGA devices. For
instance, the Xilinx Virtex5 LX50T FPGA with 29,000 LUTs
can implement 1/12 or 1/4 CF designs. The 155T FPGA with
97,000 LUTs can implement 8 and 16 CF designs. The 110T
FPGA with 69,000 LUTs can implement mid-sized designs.

B) Timing analysis of major components
The major components (image scaler, buffer controller, and
classifier) that determine design performance can execute in
parallel, but they are synchronized with each other. The
timing information of each component is shown in Figure 11.

The design uses a 65 MHz global clock for the buffer
controller and classifier components. The image scaler runs
with a 130 MHz clock. We analyzed the necessary operating
cycles for each component to execute one image frame.

Since the scaling factor is 1.2, the scaled image’s size is
only 1/1.22 = 0.694 of the original image. The total number of

pixels the scaler needs to calculate for a 320x240 image is:
320 * 240 * (0.694 + 0.6942 + 0.6943 +…) ≈ 174,181. The
calculation time for 1 pixel is 6 cycles. The total scaling cycle
number per frame is 522,545 (normalized to 65 MHz clock).

The current implementation of the integral image moves
along the Y axis 1 pixel/window and moves along the X axis
4 pixels/window. This design is convenient for BRAMs with
4 bytes bandwidth. The buffer controller builds 1/4 of all
possible sub-windows and is computationally comparable to
the interleaved desktop version. The total number of sub-
windows is ((320 – 20) * (240 – 20) / 4) * (1 + 0.694 +0.6942
+…) ≈ 53,922. The total number of cycles of the buffer
controller is 593,142 with 11 cycles/window speed. Note that
the scaler and buffer controllers have comparable cycle
numbers per frame. The design has some overlapping
execution optimizations among components (omitted in the
paper) that can almost hide the execution time of the scaler.

The classifier’s execution time for one examine window
depends on how many features the classifier calculates
(cascade decision process) plus the 3-cycle pipeline filling
time. For example, the classifier needs to execute 6 to 2138
cycles to determine a face in a window (1 classifier design).
The overall detection time/window is max (11, classification
time), where 11 is the integral image construction time. If we
ignore the classification time, the system performance upper
bound is determined by the buffer controller, which is 65M /
0.593M ≈ 110 frames/sec.

C) Performance analysis
We compared the performance in terms of frames/second of
different implementations for face and eye detection. A
desktop version on a Pentium4 3.0 Ghz machine with 4 GB
memory is compared to different FPGA implementations. The
desktop version utilized the same fixed-point version of the
object detection algorithm as the FPGA implementation for a
fair comparison. The results are presented in Figure 12. The

Figure 10: FPGA resource utilization

0

10000
20000

30000
40000

50000
60000

70000
80000

90000

1/12
CF

1/4 CF 1/2 CF 1 CF 2 CF 4 CF 8 CF 16 CF

D
es

ig
n

si
ze

 (n
um

be
r o

f L
U

TS
)

Comms

Static

Figure 11: Timing info of components

Figure 12: Performance comparison of different implementations

0

20

40

60

80

100

120

Desk
top

1/12 C
F

1/4 C
F

1/2 C
F

1 C
F

2 C
F

4 C
F

8 C
F

16 C
F

Pe
rfo

rm
an

ce
 (f

ra
m

e/
se

c.
) Face(complex)

Face(simple)

Eye

General comms. Data specialization.

LX50T.

LX110T.
LX155T. Image

scaler
Buffer
controller

Classifier

130 Mhz
6 cycles/pixel

65 Mhz
11 cycles/window

65 Mhz
(3+examined features/#CF)
cycles/window

results are measured by detecting a static 320x240 image
repeatedly, because the VGA input rate is 60 Hz, which could
become a bottleneck for some implementations. Two face
images are tested in the experiments. The simple image has
only one face, while the complex image has 12 faces. The eye
image contains one eye.

Note that eye detection is faster than face detection,
because the eye only has 1066 features while the face has
2135 features. The average classification time for an eye is
less than a face. The simple face image detection speed is on
average 25% faster than the complex face image, because a
successful face detection needs to pass all stages, which takes
more cycles.

The desktop face detection speed is 3.5 frames/second,
while the desktop eye detection speed reaches 15 frames/sec.
The performance of desktop version is between 1/12 CF and
1/4 CF FPGA version. The largest 16 CF FPGA
implementation is about 25 times faster than the desktop
implementation for face detection and 7.3 times faster for eye
detection. The detection results of the FPGA implementations
are the same as the fixed-point desktop version.

Comparing the performance of different FPGA
implementations, we note that performance increases almost
linearly with the classifier number from 1/12 CF to 2 CF. For
larger designs from 4 CF to 16 CF, the performance increases
more slowly and the frame/second cannot surpass 110
frame/sec, because the buffer controller becomes a bottleneck.

Compared to Cho’s [1] implementation of the same
algorithm with 320x240 pixels on the same FPGA, the major
difference is that we utilized custom exploration for the
communication architecture, while their implementation only
considered a general communication architecture. Our 1 CF
version achieves similar performance using 28% less FPGA
LUTs compare to their 1 classifier version (45,713 vs. 64,143).
Compared to their triple classifier version, our 16 CF version,
made possible by our scalable communication architecture
having extensive exploration to reduce mux/wiring size, is
about 4x faster, while using 8% less FPGA LUTs (77,059 vs.
84,232). The working platform is illustrated in Figure 13; a
rectangle indicating a detected face can be observed.

VII. CONCLUSIONS
We showed how to effectively implement Haar-feature based
object detection accelerators on a modern series of FPGAs.
As the design’s communication architecture was the largest
consumer of FPGA resources, we focused on designing a
scalable communication architecture between the design’s
data buffer and its classifiers. We created a custom design
space exploration algorithm based on simulated annealing to
reduce the size of the communication architecture by using
feature content information. The exploration was specific to
Haar-based object recognition and not something that could
be expected to appear in a general high-level or system-level
synthesis tool. Other parameters of the Haar-based design
could have also been explored. An IP (intellectual property)
soft core for object detection utilizing a static or possibly
parameterized VHDL or Verilog description would not cover
the tremendous difference among generated designs described
in the paper. As such, custom generators, including custom
design space exploration, may become increasingly necessary
for complex applications to be useful across a range of FPGA
devices.

ACKNOWLEDGMENTS

This work was supported in part by NSF CNS-1016792.

REFERENCES
[1] Cho, J., Mirzaei, S., Oberg, J., and Kastner, R. 2009. Fpga-based face

detection system using Haar classifiers. FPGA 2009.
[2] Collins, M., Schapire, R. E. and Singer, Y. 2002. Logistic Regression,

AdaBoost and Bregman Distances. Mach. Learn. 48, 1-3 (Sep. 2002),
253-285.

[3] Gao, C., and Lu, S. Novel FPGA based Haar classifier face detection
algorithm acceleration. FPL 2008.

[4] Gribbon, K. T. and Bailey, D. G. 2004. A Novel Approach to Real-
time Bilinear Interpolation. In Proceedings of the Second IEEE
international Workshop on Electronic Design, Test and Applications

[5] Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K. Face Detection in Color
Images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 696-706, May 2002.

[6] Huang, C. Object detection demo video, 2011,
http://www.youtube.com/watch?v=gkQVanU5P5U.

[7] L'Insalata, N. E., Saponara, S., Fanucci, L., Terreni, P. Automatic
Generation of Low-Complexity FFT/IFFT Cores for Multi-Band
OFDM Systems. DSD 2007.

[8] Nordin, G., Milder, P. A., Hoe, J. C., and Püschel, M. Automatic
generation of customized discrete fourier transform IPs. DAC 2005.

[9] OpenCV. opencv.willowgarage.com/
[10] Quinlan, J. R. 1993 C4.5: Programs for Machine Learning. Morgan

Kaufmann Publishers Inc.
[11] Rowley, H., Baluja, S., Kanade, T. Neural Network-Based Face

Detection. CVPR 1996.
[12] Theocharides, T., Link, G., Vijaykrishnan, N., Irwin, N.J., Wolf, W.

Embedded Hardware Face Detection. 17th International Conference on
VLSI Design, 2004.

[13] Viola, P., Jones, M. Rapid Object Detection using a Boosted Cascade
of Simple Features. CVPR 2001.

[14] Wei, Y., Bing, X. and Chareonsak, C. FPGA implementation of
AdaBoost algorithm for detection of face biometrics. BioCAS 2004.

[15] Xilinx ISE. http://www.xilinx.com/tools/webpack.htm
[16] Xilinx MicroBlaze. http://www.xilinx.com/tools/microblaze.htm

Figure 13: The working platform boxes detected faces in real-time.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

