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ABSTRACT- We discuss FPGA implementations of object (such 
as face) detectors in video streams using the accurate Haar-
feature based algorithm. Rather than creating one 
implementation for one FPGA, we develop a method to generate 
a series of implementations that have different size and 
performance to target different FPGA devices. The automatic 
generation was enabled by custom design space exploration on a 
particular design problem relating to the communication 
architecture used to support different numbers of image 
classifiers. The exploration algorithm uses content information 
in each feature set to optimize and generate a scalable 
communication architecture. We generated fully-working 
implementations for Xilinx Virtex5 LX50T, LX110T, and 
LX155T FPGA devices, using various amounts of available 
device capacity, leading to speedups ranging from 0.6x to 25x 
compared to a 3.0 GHz Pentium 4 desktop machine. Automated 
generators that include custom design space exploration may 
become more necessary when creating hardware accelerators 
intended for use across a wide range of existing and future 
FPGA devices. 

I. INTRODUCTION 
Automated object detection, such as face detection, has been 
studied extensively in recent decades. Methods have been 
incorporated into products, such as modern cameras that 
automatically focus by detecting faces, or video surveillance 
systems that highlight vehicles. Many future applications need 
fast accurate object detection, including domains such as 
human computer interfaces, smart rooms, robot vision, and 
automobile collision warning systems. Future applications 
may need the object detection be done in real-time (30-60 
frames/second) with a high detection ratio. High accuracy 
requirements demand sophisticated algorithms such as the 
Haar-feature based object detection algorithm [13] used in 
this paper. However, current desktop processor 
implementations of complex object detection algorithms 
suffer from low detection speeds and high processor resource 
utilization. A desktop processor implementation of a Haar-
feature based face detection algorithm achieves 3.5 
frames/second on a Pentium 4 3.0 GHz machine for a low 
resolution 320x240 video stream, based on our experiments. 

The Haar-feature based object detection algorithm has 
massive potential parallelism, such as the feature values of 
each sub-window potentially being calculated in parallel. 
Likewise, the image scaling process in the algorithm can be 
executed in parallel with data buffer construction. The 
algorithm also needs to execute the most computation-

intensive task, feature value calculation, iteratively for each 
sub-window. These computation patterns are highly suitable 
for FPGA implementation. With custom-designed circuits for 
object detection in the FPGA, real-time object detection is 
possible without assistance of a processor. 

 We implemented the Haar-feature based object detection 
algorithm on a series of Xilinx Virtex5 FPGAs with different 
performance and resource requirements. We found the 
bottleneck preventing the design from being scalable was the 
communication architecture between the data buffer and the 
classifiers, as the communication architecture consumed the 
most FPGA resources. In this paper, we focus on the design of 
efficient communication architectures for different numbers 
of classifiers using content information of each feature set. 
We formulated a feature mapping problem and developed a 
tool to automatically explore and generate different designs 
that can fit in FPGAs with different capacities. With growing 
FPGA capacities and the tremendous variety of possible 
implementations of an algorithm on FPGAs, such custom 
design space exploration may become a common requirement 
for implementing applications on FPGAs.  

The paper is organized as follows. Section II reviews 
previous work on object detection algorithms and custom 
design space exploration. Section III introduces Haar-feature 
based object detection. Section IV introduces the FPGA 
implementation details, and Section V discusses the 
communication architecture and a custom design space 
exploration tool. Section VI presents experimental results and 
Section VII concludes. 

II. RELATED WORK 
Object detection, especially face detection, has been an active 
research area for many years. A color-based face detection 
algorithm was proposed by Hsu [5]. The algorithm extracts 
image areas with skin color. Rowley [11] introduced a neural 
network based face detection algorithm that can detect rotated 
faces. Viola and Jones [13] introduced a Haar-feature based 
object detection algorithm, which has been implemented in 
Intel’s OpenCV [9] image processing library. Our work uses 
Viola and Jones’s algorithm for the FPGA implementation. 

Many efforts implement different face/object detection 
algorithms on FPGAs. Theocharides [12] implemented a 
neural network based algorithm for face detection. Their 
implementation was able to detect rotated faces and achieved 
75% accuracy. Wei [14] implemented an AdaBoost [2] 



algorithm to detect face biometrics on images with 120x120 
pixels. Gao [3] re-trained the Haar face features to 16 features 
per stage, which is more convenient for FPGA 
implementation. Cho [1] implemented the entire Haar-feature 
based face detection algorithm on a Xilinx Virtex5 FPGA. 
They implemented two versions with 1 or 3 classifiers. Their 
communication architecture between image buffer and 
classifiers was not designed for scalability. Previous 
implementations of object detection algorithms on FPGAs 
focus on implementing one or a few designs for a certain 
FPGA.  However, the design space of the Haar-feature based 
object detection algorithm is enormous. Our approach 
formulates a custom exploration problem for the 
communication architecture aiming to make the object 
detection accelerator more portable to different FPGAs. 

Custom exploration has been used in past work focusing 
on automatic soft-core generators. Nordin [8] presented a 
parameterized soft-core generator for the discrete fourier 
transform (DFT) kernel, which yields implementations over a 
range of different performance/cost tradeoff points. L’Insalata 
[7] proposed an environment for automatic generation of fast 
fourier transform (FFT) and inverse FFT cores, which focused 
on low circuit complexity. The Xilinx ISE tool [15] provides 
soft-core generators for on-chip memory, standard bus 
interfaces, math functions, and much more. These soft-core 
generators can tune basic parameters such as memory 
bandwidth and depth. The ISE tool also provides a 
parameterized MicroBlaze [16] soft-core processor. Previous 
soft-core generators are often designed for computation 
kernels or processors with straightforward parameter tuning, 
while the Haar-feature based object detection in this paper is a 
more complex application that leads to a larger design space, 
and gives more optimization opportunities. 

III. HAAR-FEATURE BASED OBJECT DETECTION ALGORITHM 

A) Algorithm overview 
The basic idea of the Haar-feature based object detection 
algorithm is to detect an object in small sub-windows of an 
image. For example, to detect a face in an image, the 
algorithm examines all possible 20x20 sub-windows (called 
examine windows) in an image, as illustrated in Figure 1. 

  Suppose the image size is 320x240 pixels and the 
examine window size is 20x20 pixels. The examine process 
starts from the top left corner. Then the examine window 
moves down along the Y axis 1 pixel at a time. When the 

entire column has been examined, the examine window will 
move along the X axis by 1 pixel to repeat the process for the 
next column. The total number of examined windows is (240–
20)*(320–20) = 66,000. Desktop implementations often move 
the examine window 2 pixels at a time; such interleaved 
scanning is 4 times more efficient, while having a comparable 
detection quality.  

B) Image scaling 
To detect objects of different sizes, the algorithm scales down 
the image and repeats the search. The image scaling process is 
illustrated in Figure 2. There are two faces in Figure 2 with 
different sizes. The 20x20 examine window detects one face 
in the original image. By scaling down the original image, the 
algorithm can detect another face with the same 20x20 
examine window. The algorithm scales down the image by a 
constant scale factor until the height or width of the scaled 
image is smaller than the examine window’s width. 

C) Haar-feature and integral image 
The most computation intensive part of the detection 
algorithm is to determine whether the current 20x20 examine 
window contains an object. The algorithm calculates Haar-
feature values to make the decision. Figure 3(a) shows two 
Haar features within a 20x20 examine window, where each 
feature contains 2 to 3 small rectangles. Each object type has 
different Haar-features relating to its shape, e.g., two eye 
features in a face are shown in Figure 3(a). Details about 
Haar-features can be found in Viola and Jones [13]. The 
feature sum equals to the pixel sum (sum of the image pixels’ 
grayscale) in the white rectangles minus the pixel sum of the 
black rectangles. The feature value is determined by 
comparing the feature sum to the feature threshold. The 
feature set and threshold of an object are generated by training 
a large number of images with the AdaBoost algorithm [2]. 

Figure 1: Movement of examine window. 
 

Figure 2: Image scaling example 

Figure 3: Haar-feature and integral image 
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We utilized an existing Haar-feature set from the OpenCV 
library [9]. To efficiently calculate the pixel sum of an 
arbitrary rectangle, the algorithm uses an integral image as an 
auxiliary data structure. In an integral image, each point stores 
the pixel sum of a rectangle, starting from the top left corner 
to this point. With the integral image, calculating the sum of 
an arbitrary rectangle can be done in constant time, e.g., 
Sum(R1) = P4 – P2 – P3 + P1, as shown in Figure 3(b).  

D) Decision cascade 
Each object type has a corresponding Haar-feature set of 
different sizes. For example, the frontal face feature set 
contains 2135 Haar-features. However, for each sub-window, 
the object detection algorithm may not need to calculate all 
feature values, but rather decisions can be cascaded, as 
illustrated in Figure 4. 

The Haar features are divided into several stages. For 
example, the frontal face has 22 stages. Each stage has 3 to 
200 Haar-features. The algorithm calculates the feature value 
for each feature within one stage and then sums the values to 
get the stage sum. If the stage sum passes the stage threshold, 
the algorithm continues to the next stage. Otherwise, the 
algorithm terminates and rejects the current examine window. 
If an examine window passes all stages, the algorithm accepts 
the current window meaning that the object is found.  

IV. DESIGNED ARCHITECTURE 

A) Overview 
The overall FPGA implementation is illustrated in Figure 5. 
The frame grabber reads the video input from a standard VGA 
interface. When an image frame has been grabbed, the image 
scaler scales down the image by a constant scale factor and 
notifies the buffer controller when the scale process is done. 
The buffer controller then constructs an integral image for 
each examine window in the scaled image. When an integral 
image has been built, the buffer controller sends a buffer 
ready signal to the classifier. The classifier reads the values in 
the integral image and carries out the cascaded decision 
process. If an object is found, the classifier will notify the 
rectangle drawer to draw a rectangle around the object.  

B) Image scaler 
The image scaler scales the image down by a constant scale 
factor of 1.2. The examine window size is 20x20 pixels and 
the original image size is 320x240 pixels. The total number of 
scaling processes is: Floor(log1.2240/20) = 13. We use the 

bilinear scaling [4] approach in our implementation, which 
needs 4 memory accesses to the original image per pixel.    

C) Integral image 
The integral image is the only data source needed by the 
classifier. The desktop version of the algorithm first calculates 
and stores the integral image of the entire image for later uses. 
However, storing the entire integral image is too expensive on 
an FPGA in terms of both size and performance. Our current 
design only stores the integral image of the current 20x20 
examine window.  As the maximum value in the integral 
image is 20*20*255 (255 for 8-bit grayscale) = 102,000, we 
use a 20x20 17-bit register file to store the integral image.   

During the object detection process, the examine window 
moves within the image as in Figure 1. When the examine 
window moves down by 1 pixel, every entry of the integral 
image can be updated in parallel. For instance, Integral image 
(i, j) = Integral image(i + 1, j) – Integral image(1, j), where i 
is the row index and j is the column index. To support this 
parallel updating process, this register file is implemented 
with LUTs (lookup tables in the FPGA).  

D) Classifier design 
The classifier reads values from the integral image and 
calculates Haar-feature values. The Haar feature contains two 
or three rectangles. A datapath for a classifier is illustrated in 
Figure 6.  

Each rectangle pixel sum can be calculated with 4 values 

Figure 4: Decision cascade (T=True, F=False) Figure 5: Overall architecture  

Figure 6: Classifier datapath 
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(4 corner pixels) from the integral image. The Rect sum 
component executes the following computation: Rect sum(a) 
= a1 – a2 – a3 + a4. Each rectangle sum is then multiplied by 
a weight factor. We noticed that there are only three 
conditions for the weight factors: (-1, 2, 0), (-1, 2, 2), (-1, 3, 0). 
We can use muxes and multiply by constant components to 
replace the expensive integer multiplier or DSP block. Then 
the feature sum of three rectangles is computed and compared 
with the feature threshold. If the feature sum is greater than 
the feature threshold, the classifier will return the Right value. 
Otherwise, the Left value will be returned. The Left and Right 
values are predefined parameters of each Haar feature. The 
classifier can calculate the feature value in one cycle (65 MHz) 
without pipelining. We thus eliminate pipeline registers to 
reduce the classifier’s size. 

The cascade decision process described in Section III(D) 
can be implemented via a stage sum register. The stage sum 
register stores the sum of all feature values in that stage. If the 
stage sum is greater than the stage threshold, the algorithm 
continues on to the next stage. Otherwise, the algorithm stops 
and returns a false. 

V. COMMUNICATION ARCHITECTURE EXPLORATION 
This section describes the communication architecture 
between the integral image and the classifiers. We will first 
describe a general communication architecture for a single 
classifier. A more scalable data specialization communication 
architecture for multiple classifiers will then be discussed. 
Finally, we will introduce the Haar-feature mapping problem 
for multiple classifiers and describe a design space 
exploration algorithm.    

A) General architecture for a single classifier 
From the interface between the classifier and integral image 
shown in Figure 6, note that data should be deliverable from 
any integral image data entry to any classifier port. Thus, a 
general communication architecture is shown in Figure 7. 

The integral image has 400 entries and each entry of the 
integral image contains 17 bits. Thus, to access any entry in 
the integral image matrix, each port of the classifier needs a 
17-bit 400-to-1 mux, which consumes about 2300 LUTs in a 
Xilinx Virtex5 110T FPGA. Since each classifier has 12 ports 
(Figure 6), one classifier needs twelve 400-to-1 muxes, which 
takes 27,600 LUTs, or 40% of the total resources of the 

LX110T FPGA having 69,120 LUTs. For smaller FPGAs that 
cannot fit all 12 ports, we can put fewer 400-to-1 muxes by 
using a time multiplexing technique. However, the data 
bandwidth will decrease with time multiplexing.   

Wiring for such muxes is a severe problem. Wire 
congestion problems worsen when multiple such general 
communication architectures exist for multiple classifiers 
accessing the same integral image. As can be seen, simply 
duplicating this general communication architecture for 
multiple classifiers is not scalable.  

B) Data-specialized architecture for multiple classifiers 
Since features within one stage can be calculated in parallel, 
we can deploy multiple classifiers to increase performance. 
Instead of using general communication architecture, we can 
map features to different classifiers. Note that each feature 
only needs certain entries (feature rectangle location) of the 
integral image to feed the classifier. By carefully mapping 
these features to different classifiers, each port of the 
classifiers may need only a small portion of the entire integral 
image. In other words, we can group features that access the 
same integral image entries into the same classifier to make 
the communication architecture for multiple classifiers more 
scalable. A feature mapping example is shown in Figure 8.   

There are four classifiers in Figure 8, and each classifier is 
assigned with a number of different features. Note that each 
classifier’s port only needs values from a portion of the 
integral image. The figure shows each portion as (rounded) 
rectangles, but a portion can assume any shape. Since each 
classifier accesses only a portion, each can use a mux smaller 
than 400-to-1. For instance, classifier1’s port1 needs a 16-to-1 
mux, while classifier3’s port7 needs a 9-to-1 mux. In general, 
the more classifiers we have, the fewer features are needed to 
be assigned to each classifier, which leads to smaller muxes 
and fewer wires. The data-specialized architecture uses 
content information within each feature (the feature 
rectangles’ location) to optimize the communication 
architecture, yielding a custom design for a certain feature set. 
Detecting a different object (such as a vehicle rather than a 
face) requires redesigning the communication architecture.  

The feature storage is also different in the specialized 
architecture. In the general architecture, the feature rectangle 
positions are stored in BRAM. In the specialized architecture, 

Figure 7: General communication architecture 

Figure 8: Data specialization architecture 
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the mux selection values for each step are stored.  

C) Custom exploration for feature mapping 
Since the feature mapping determines the communication 
architecture in the specialized architecture, a good feature 
mapping can greatly reduce the mux size and number of wires. 
We developed a custom exploration tool for the feature 
mapping problem. The tool searches the design space of 
possible communication architectures for different feature sets. 
The tool can also be applied for different numbers of 
classifiers, to tradeoff design size and performance.  

The search space of the feature mapping problem is 
enormous. An object usually has more than 1000 Haar 
features, which are divided into several stages. The algorithm 
needs to map Haar features within each stage into different 
classifiers. A simple feature mapping example is illustrated in 
Figure 9. The example maps 26 features of 3 stages into 4 
classifiers. Since each feature can be mapped to any one 
classifier and all classifiers are functionally equivalent, the 
total possible number of equivalent mappings is mn/m!, where 
m is the number of classifiers and n is the number of features. 
The total number of possible mappings grows exponentially 
with the number of features. Thus, a brute force search 
solution is not feasible for the feature mapping problem.  

We applied a simulated annealing [10] heuristic for the 
feature mapping problem. The heuristic’s objective is to 
minimize the total number of wires of all the classifiers and to 
minimize the total delay of all classification stages. The two 
objects are illustrated in Figure 9. The total stage delay is the 
sum of the maximal delay of each stage. Since each classifier 
may be assigned with different numbers of features, the stage 
classification time is determined by the classifier with the 
most features. The total stage delay reflects the performance. 
Different feature mappings will result in different wire 
numbers and corresponding mux sizes for each classifier port. 
The total number of wires reflects the size of the entire 
communication architecture. Thus the heuristic optimizes the 
cost function: Cost = total number of wires * total stage delay.   

The simulated annealing based design space exploration 

heuristic has two operations for generating neighbor solutions: 
Swap and Migrate, illustrated in Figure 9. Two classifiers 
exchange one of their features within one stage by the Swap 
operation. For instance, exchanging features 22 and 26 within 
stage 3 is a Swap operation. The Swap operation is a balanced 
operation, which will not change the total stage delay. The 
Migrate operation moves a feature from one classifier to 
another within a stage. For example, moving feature 22 from 
CF2 to CF1 is a Migrate operation. The Migrate operation is 
an unbalanced operation, which may change the total stage 
delay. The simulated annealing search heuristic is as follows: 

Step 1: Generate a random initial solution and calculate 
current cost: CostC. Define current temperature: T = CostC. 
Define best cost: CostB = CostC. 
Step 2: Generate N neighbors by Swap operation and store the 
best Swap neighbor. 
Step 3: Generate N neighbors by Migrate operation and store 
the best Migrate neighbor. 
Step 4: Compare the best neighbors from Step 2 and Step 3 
and choose the neighbor with smaller cost CostN. If CostN < 
CostB, then CostB = CostN and store the best solution. 
Step 5: Define: D = CostN – CostC. If D < 0, accept the 
neighbor, else use possibility exp(-D/T) to accept it.  
Step 6: Decrease T (T=T*0.999 in our experiments) and go 
back to Step2 until the ending condition is satisfied (100,000 
iterations in our experiments).  

We run the feature mapping exploration algorithm for 2, 4, 
8, and 16 classifiers. The algorithm requires about 30 minutes 
per run on a 3.0 GHz Pentium 4 machine, for a total of 2 
hours. The exploration tool automatically generates 
synthesizable VHDL code for the communication portion. 
The tool first allocates muxes of different sizes for each 
classifier port and then schedules the mux selection values 
according to the feature calculation order. The mux selection 
values for each step are stored into BRAM. The synthesis and 
implementation time for each version on the FPGA takes 1 to 
3 hours. Since the exploration algorithm only needs to run 
once for each version, we chose simulated annealing 
parameters to yield many iterations and hence good results. 

VI. EXPERIMENTAL RESULTS 
We implemented the Haar-feature based object detection 
algorithm for frontal face detection and for eye detection. The 
Haar-feature sets and corresponding parameters for those 
objects come from the OpenCV library [9]. The architectures 
were fully implemented including real-time video capture, 
FPGA processing, and display of detected objects on an LCD 
monitor. A demonstration video is available [6].   

A) Design scalability and mapping to different FPGA devices 
We created the exploration tool to automatically output 
synthesizable VHDL code for the communication portion for 
different numbers of classifiers and manually wrote 
synthesizable VHDL for rest of the architecture. We 
implemented 8 different FPGA versions for face detection: 
1/12, 1/4, 1/2, 1, 2, 4, 8, and 16 classifiers (CF). 1/12 CF 
means we only implemented one 400-to-1 mux, using time 

Figure 9: Example feature mapping and neighbor generation 
 
 

Stage and feature 

CF1 CF2 CF3 CF4       

Stage 3          Stage 2    Stage 1 

Total stage delay 

         1            2              3              4 
                       5                             

         6            7              8              9 
         10          11                           12 

         13          14            15           16 
         17          18            19           20 
         21          22            23           24 
         25                          26              

Total wire number Feature 
Swap Migrate 

Classifier  



multiplexing. 1/12, 1/4, 1/2 and 1 classifier versions each 
utilize the general communication architecture. The 2, 4, 8 
and 16 CF versions each uses the data-specializatized 
architecture. The FPGA resource utilization (for frontal face) 
in LUTs is shown in Figure 10.  

The FPGA resource utilization can be divided into two 
parts: Static components and Communication components. 
The communication components include muxes, wires 
between the integral image and classifiers and the classifier 
data-paths. The static components include video input/output 
interface, image scaler, integral image buffer, buffer 
controller, and others components except the communication 
components. Figure 10 shows that the communication 
components consume most FPGA resources for larger designs. 
Note also that the communication components’ sizes increase 
linearly with the number of classifiers for the general 
communication architecture. The communication 
components’ sizes for the data specialized architecture grows 
much slower. For instance, the communication components’ 
size of 16 CF is only about 2 times of the communication size 
of 2 CF, as opposed to growing linearly with CF number 
when using the general communication architecture. The data-
specialized architecture utilizes the content information of 
each feature to reduce the number of wires and mux size, 
which is more scalable than the general communication 
architecture. The FPGA resource utilizations for eye detection 
exhibited similar results and are omitted here for space.    

We can map these designs to different FPGA devices. For 
instance, the Xilinx Virtex5 LX50T FPGA with 29,000 LUTs 
can implement 1/12 or 1/4 CF designs. The 155T FPGA with 
97,000 LUTs can implement 8 and 16 CF designs. The 110T 
FPGA with 69,000 LUTs can implement mid-sized designs.  

B) Timing analysis of major components 
The major components (image scaler, buffer controller, and 
classifier) that determine design performance can execute in 
parallel, but they are synchronized with each other. The 
timing information of each component is shown in Figure 11. 

The design uses a 65 MHz global clock for the buffer 
controller and classifier components. The image scaler runs 
with a 130 MHz clock. We analyzed the necessary operating 
cycles for each component to execute one image frame.  

Since the scaling factor is 1.2, the scaled image’s size is 
only 1/1.22 = 0.694 of the original image. The total number of 

pixels the scaler needs to calculate for a 320x240 image is: 
320 * 240 * (0.694 + 0.6942 + 0.6943 +…) ≈ 174,181. The 
calculation time for 1 pixel is 6 cycles. The total scaling cycle 
number per frame is 522,545 (normalized to 65 MHz clock). 

The current implementation of the integral image moves 
along the Y axis 1 pixel/window and moves along the X axis 
4 pixels/window. This design is convenient for BRAMs with 
4 bytes bandwidth. The buffer controller builds 1/4 of all 
possible sub-windows and is computationally comparable to 
the interleaved desktop version. The total number of sub-
windows is ((320 – 20) * (240 – 20) / 4) * (1 + 0.694 +0.6942 
+…) ≈  53,922. The total number of cycles of the buffer 
controller is 593,142 with 11 cycles/window speed. Note that 
the scaler and buffer controllers have comparable cycle 
numbers per frame. The design has some overlapping 
execution optimizations among components (omitted in the 
paper) that can almost hide the execution time of the scaler.  

The classifier’s execution time for one examine window 
depends on how many features the classifier calculates 
(cascade decision process) plus the 3-cycle pipeline filling 
time. For example, the classifier needs to execute 6 to 2138 
cycles to determine a face in a window (1 classifier design). 
The overall detection time/window is max (11, classification 
time), where 11 is the integral image construction time. If we 
ignore the classification time, the system performance upper 
bound is determined by the buffer controller, which is 65M / 
0.593M ≈ 110 frames/sec. 

C) Performance analysis 
We compared the performance in terms of frames/second of 
different implementations for face and eye detection. A 
desktop version on a Pentium4 3.0 Ghz machine with 4 GB 
memory is compared to different FPGA implementations. The 
desktop version utilized the same fixed-point version of the 
object detection algorithm as the FPGA implementation for a 
fair comparison. The results are presented in Figure 12. The 

Figure 10: FPGA resource utilization 
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results are measured by detecting a static 320x240 image 
repeatedly, because the VGA input rate is 60 Hz, which could 
become a bottleneck for some implementations. Two face 
images are tested in the experiments. The simple image has 
only one face, while the complex image has 12 faces. The eye 
image contains one eye.  

Note that eye detection is faster than face detection, 
because the eye only has 1066 features while the face has 
2135 features. The average classification time for an eye is 
less than a face. The simple face image detection speed is on 
average 25% faster than the complex face image, because a 
successful face detection needs to pass all stages, which takes 
more cycles.  

The desktop face detection speed is 3.5 frames/second, 
while the desktop eye detection speed reaches 15 frames/sec. 
The performance of desktop version is between 1/12 CF and 
1/4 CF FPGA version. The largest 16 CF FPGA 
implementation is about 25 times faster than the desktop 
implementation for face detection and 7.3 times faster for eye 
detection. The detection results of the FPGA implementations 
are the same as the fixed-point desktop version.  

Comparing the performance of different FPGA 
implementations, we note that performance increases almost 
linearly with the classifier number from 1/12 CF to 2 CF. For 
larger designs from 4 CF to 16 CF, the performance increases 
more slowly and the frame/second cannot surpass 110 
frame/sec, because the buffer controller becomes a bottleneck.  

Compared to Cho’s [1] implementation of the same 
algorithm with 320x240 pixels on the same FPGA, the major 
difference is that we utilized custom exploration for the 
communication architecture, while their implementation only 
considered a general communication architecture. Our 1 CF 
version achieves similar performance using 28% less FPGA 
LUTs compare to their 1 classifier version (45,713 vs. 64,143). 
Compared to their triple classifier version, our 16 CF version, 
made possible by our scalable communication architecture 
having extensive exploration to reduce mux/wiring size, is 
about 4x faster, while using 8% less FPGA LUTs (77,059 vs. 
84,232). The working platform is illustrated in Figure 13; a 
rectangle indicating a detected face can be observed. 

VII. CONCLUSIONS 
We showed how to effectively implement Haar-feature based 
object detection accelerators on a modern series of FPGAs. 
As the design’s communication architecture was the largest 
consumer of FPGA resources, we focused on designing a 
scalable communication architecture between the design’s 
data buffer and its classifiers. We created a custom design 
space exploration algorithm based on simulated annealing to 
reduce the size of the communication architecture by using 
feature content information. The exploration was specific to 
Haar-based object recognition and not something that could 
be expected to appear in a general high-level or system-level 
synthesis tool. Other parameters of the Haar-based design 
could have also been explored. An IP (intellectual property) 
soft core for object detection utilizing a static or possibly 
parameterized VHDL or Verilog description would not cover 
the tremendous difference among generated designs described 
in the paper. As such, custom generators, including custom 
design space exploration, may become increasingly necessary 
for complex applications to be useful across a range of FPGA 
devices.    
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Figure 13: The working platform boxes detected faces in real-time. 
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