
Chapter #1

Propagating Constants Past Software to Hardware
Peripherals in Fixed-Application Embedded Systems

Greg Stitt, Frank Vahid
Department of Computer Science and Engineering, University of California, Riverside

Abstract: Many embedded systems include a microprocessor that executes a single
program for the lifetime of the system. These programs often contain constants
used to initialize control registers in peripheral hardware components. Now
that peripherals are often purchased in intellectual property (core) form and
synthesized along with the microprocessor onto a single chip, new
optimization opportunities exist. We introduce one such optimization, which
involves propagating the initialization constants past the microprocessor to the
peripheral, such that synthesis can further propagate the constants inside the
peripheral core. While constant propagation in synthesis tools is commonly
done, this work illustrates the benefits of recognizing initialization constants
from the software as really being constants for hardware. We describe results
that demonstrate 2-3 times reductions in peripheral size, and 10-30% savings
in power, on several common peripheral examples.

Key words: Cores, system-on-a-chip, embedded systems, synthesis, low power, constant
propagation, platforms, tuning, intellectual property.

1. INTRODUCTION

Embedded system designers are increasingly composing their designs
from pre-designed intellectual-property cores, integrating those cores into a
single chip model as shown in Figure 1, and then fabricating a chip [3]. A
core is a description of a system-level component, like a microprocessor,
memory, or peripheral component like a direct-memory access (DMA)
controller or universal asynchronous receiver/transmitters (UART). Cores
come in three forms. A soft core is a synthesizable hardware description

1

2 Chapter #1

language (HDL) model. A firm core is a structural HDL model. A hard core
is a technology-specific layout. Many commercial core libraries now exist,
e.g., [4], and core standards are evolving rapidly [9].

Micro-
processor

Program
memory

Peripheral

Core library

cont_reg2

Reset()
cont_reg1 = 0x00
cont_reg2 = 0xFF

Peripheral
cont_reg1

Figure 1. Core-based embedded system design.

A designer gains many advantages from building a system from standard
cores, such as a standard DMA controller or UART. Most importantly, the
designer gains improved time-to-market due to familiarity with the standard
core and compatibility with development tools. Such standard cores typically
come with parameters [8]. Some are pre-fabrication parameters, which are
set by a designer before synthesis, thus influencing the synthesis results.
Such parameters are typically achieved using generics or constants in a
hardware description language (HDL), but can also be achieved using
module generators, which generate unique HDL models depending on the
parameter selection. For example, a JPEG decompression core might by
synthesizable to have either 12 or 16-bit resolution. Synthesizing for 12-bit
resolution would yield a smaller core.

Other parameters, in contrast, are post-fabrication parameters, set only
after the core has been synthesized. Such parameters’ settings are typically
stored in registers or non-volatile memory inside the core. They are more
commonly referred to as software configurable parameters. For example, a
DMA controller will have a base register to indicate the starting address in
memory from which the controller should move data, and a block size
register to indicate the number of words that should be moved. An arbiter

#1. Propagating Constants Past Software to Hardware Peripherals
in Fixed-Application Embedded Systems

3

core might have a register whose setting determines whether arbitration uses
a fixed or rotating priority scheme.

We make the observation that an embedded system typically runs a
single program that never changes – the application is fixed. In fact, in many
cases that program cannot be changed, because it may be burned into ROM
(using mask-programmed ROM) that appears with the microprocessor and
peripherals on a single chip to reduce chip cost, size and power (at the
expense of less flexibility).

A typical embedded system will execute a boot program upon system
reset, and this program will, among other things, set these software
configurable parameters in the system’s peripherals, as shown in Figure 1.
However, if the embedded system’s program never changes, then those
register values never change during the execution of the embedded system.
For example, a particular embedded system may use a DMA controller to
repeatedly send data directly from an array, of size 48 and starting from
memory location 100, to a display device. The system's boot program may
set the DMA controller base register to 100, and the block size register to 48.
These values will never change for the life of the embedded system.

Previously, when systems were built using discrete off-the-shelf
integrated circuits, such software configuration was necessary. However,
since today’s systems are being built with cores, we now have an
optimization opportunity that did not previously exist. Specifically, for an
embedded system whose program does not change, the values to which the
software configurable peripheral parameters are being set are really
constants. As compiler writers are well aware, constants provide excellent
optimization capability, through the well-known compiler optimization
known as constant propagation and constant folding[1][10]. Such
propagation consists of replacing a variable holding a constant by the
constant itself. This replacement can result, for example, in branch
conditions that always evaluate to false, resulting in turn in dead code that
can then be eliminated. It can also enable compile-time evaluation of
expressions.

Such dead code resulting from constant propagation is especially
common when propagating constants into subroutines through the
subroutine’s parameters. While the subroutine may have been designed to
handle a variety of sets of parameters, a particular program may only call the
subroutine with certain constant values for those parameters, resulting in
much dead code in the subroutine.

We can think of a peripheral core as similar to a subroutine, in fact, as a
subroutine that has been implemented using additional hardware. The core
may have been designed to handle a variety of sets of software configurable

4 Chapter #1

parameters. However, a particular program may only use the core with
certain constant values for those parameters, resulting in much dead code in
the core. We therefore propose a deeper propagation of constants than
performed by compilers. In particular, we propose to propagate those
constants beyond the microprocessor's program, to the microprocessor's
peripheral cores – essentially propagating those constants all the way to
peripheral hardware. Those constants would then be fed into the synthesis
tool being used to synthesize the cores. The synthesis tool could then
perform constant propagations and dead code elimination during synthesis,
where the code here refers to the core's HDL description. Most commercial
synthesis tools already include such compiler optimizations, but those
optimizations are only applied to the pre-fabrication parameter constants.
We will show that much benefit would come from enabling the synthesis
tool to recognize the post-fabrication parameter values as constants also.

The end result of such propagation is that the synthesized core will be
optimized for the particular program that is using the core, something we
refer to as architecture tuning [8]. By optimized, we mean that the core will
have fewer gates, and consume less power, than a standard version of the
same core. Reducing size is important since such reduction can increase
chip yield and reduce chip cost, and many embedded systems are extremely
cost sensitive, especially those being manufactured in high volumes.
Reducing power is important since many embedded systems operate on
batteries or draw power from very limited sources, and so power reduction is
an important design criterion.

In the following sections, we introduce the concept of propagating
constants past software to hardware peripheral cores. After an introductory
example, we’ll describe common core parameters that are candidates for
constant propagation, discuss methods for achieving such propagation, and
highlight experiments showing the size and power reductions possible. The
results motivate future work on developing tools that introduce some
cooperation between the compilers and the synthesis tools being used in
developing a system-on-a-chip from cores.

2. EXAMPLE

As a simple illustration of propagating constants to hardware, let us
consider a trivially simple peripheral core that has two parallel ports. Each
port can be configured to be an input port or an output port. A VHDL
description of part of the core is shown in Figure 2(a). The core description
declares a control register cont_reg with two bits. The first bit makes port A
an output port when set to 0, and an input port when set to 1. Likewise, the

#1. Propagating Constants Past Software to Hardware Peripherals
in Fixed-Application Embedded Systems

5

second bit makes port B an input or output port. The VHDL description
begins with initialization of the control register during a reset. Next, it would
describe the synchronous monitoring of the bus for an address corresponding
to the control register, and the writing of the control register in this case –
this code is omitted from the figure. Next, the VHDL description describes
the control logic for the tri-state buffers that implement the port direction
functionality. Finally, other behavior of the core would be described.

Synthesis converts this soft core to hardware structure, shown in Figure
2(b). Note that logic is generated to handle the bus monitoring and the
control of the four required buffers.

Now, consider the situation where this core is used in an embedded
system and controlled by a microprocessor executing a fixed C program. We
might see the following assembly code embedded in the reset routine of the
C program:

OUT cont_reg, #"00000010"

Assuming cont_reg is the address of the control register in the

microprocessor’s I/O address space, then this code would write the constant
“00000010” onto the peripheral bus, resulting in a 0 being written into
cont_reg(0) and a 1 into cont_reg(1). The peripheral core would thus be
configured with port A as an output port, and port B as an input port. The rest
of the C program would then access these ports appropriately.

Now, suppose we could somehow propagate the constant “10” into the
VHDL description of the core, before the core were synthesized, letting the
synthesis tool know that cont_reg would be written by that constant and only
that constant. If we did this in a way that our synthesis tool could make use
of that information, then the synthesis tool would find much dead code in the
VHDL description. First, the control register would not be needed, since a
constant can be derived directly from power and ground in hardware.
Second, the logic to monitor the bus for the control register address and then
write the register would not be needed. Third, each buffer control signal if
statement would have one branch that was always true and the other always
false. Finally, the reset code of the core would not be needed. After all of
this dead code is eliminated, the synthesis tool would output the structure
shown in Figure 2(c). The resulting structure in this case requires less
hardware, and would also consume less power due in part to elimination of
the bus monitoring.

6 Chapter #1

 if (cont_reg(0) = '0') then
 A_out <= '1';
 A_in <= '0';
 else

A_in <= '1';
A_out <= '0';

 end if;
 if (cont_reg(1) ='0') then
 B_out <= '1';
 B_in <= '0';
 else
 B_in <= '1';
 B_out <= '0';
 end if;
end if;
-- Other behavior omitted
end process;

signal cont_reg:
UNSIGNED(1 downto 0);

-- declarations for A, B and
 buffers omitted.
process(clk, reset)
begin
if (reset) then
 cont_reg = "00";
 A_out <= '1'; A_in <= '0';
 B_out <= '1'; B_in <= '0';
end if;
if rising_edge(clk) then
 -- Code to detect write request
 -- from bus to cont_reg, and
 -- to update cont_reg, omitted

(a)

(b)

(c)

A B

1 1

A B cont_reg

logic

bus

Figure 2. A simple example of propagating constants to hardware (a) soft core, (b)
synthesized core structure, (c) synthesized core structure after propagating constants

cont_reg(0)=0 and cont_reg(1)=1.

#1. Propagating Constants Past Software to Hardware Peripherals
in Fixed-Application Embedded Systems

7

3. PARAMETERS IN CORES

We examined a number of common peripheral cores, and found many
software configurable parameters that could be candidates for constant
propagation. Some common peripheral cores include the Intel 8255A
(programmable peripheral interface), the 8237A (DMA controller), and the
M16550A (UART – Universal Asynchronous Receiver-Transmitter).

Figure 3 is the block diagram of the 8255A. The 8255A interfaces with a
microprocessor on one side, and provides three configurable ports on the
other side. Its software configurable parameters include mode of operation,
number of ports in use, and direction of each port (input or output). These
parameters are set by a microprocessor by writing an 8-bit control word into
a control register in the 8255A.

CPU interface

and control
logic

A

B

C

8255A

To
microprocessor

Figure 3. The Intel 8255A parallel peripheral interface.

The 8237A includes even more software configurable parameters,
including the number of channels, the type of priority scheme (fixed or
rotating) being used to arbitrate between channels, whether each channel
operates in single transfer mode or block transfer mode, the starting address
and block size for each channel, etc. There are thus several control registers
in the 8237A.

Likewise, the UART’s parameters include the baud rate, parity type,
mode of communication, etc.

In general, peripheral cores tend to have several types of configurable
parameters, related to features such as:

8 Chapter #1

– Size of internal data or external data bus
– Number of channels or ports
– Modes of operation
– I/O direction
– Rate of data transfer
– Resolution

Supporting numerous parameters is necessary in order for a peripheral to
be applicable in a variety of systems and thus to sell in large quantities.
While some parameters appear in a core as user-settable constants or
generics, others appear as software configurable control registers. Such
software configurability is used in peripherals for several reasons. One
reason is that, before the advent of cores, software configuration was the
only way to configure a peripheral integrated circuit (IC). A core may thus
be modeling a widely-used standard peripheral that was defined in the time
of ICs, such as UART and DMA controller cores. A second reason is that,
even for cores representing new peripherals, the core designer does not know
if the peripheral will be controlled by a microprocessor whose application
will not change. If the core were used in a system whose application did
change, then constant or generic-based parameters would not be appropriate.
Thus, support of software configurable parameters is very common, but
results in extra hardware size as well as power consumption.

4. PROPAGATING CONSTANTS FROM
SOFTWARE TO HARDWARE

We now describe a method for manually propagating constants across the
software/hardware boundary in a core-based synthesis methodology, and
discuss potential approaches for automating this method. The method is
summarized in Figure 4. For each core, the first step is to determine all of
the registers in the core that serve as control registers for the various
parameters listed in the previous section. Next, for each such control
register, we must look for all references to that register in the driving
microprocessor program. If the only access to that register is a write with a
constant, and this write occurs during the reset or boot routines, as is often
the case in embedded systems, then we have a candidate for constant
propagation to peripheral cores. We replace the register’s declaration in the
core by a constant declaration. We delete any behavior that involves
detecting and carrying out a write to that register from the peripheral bus.
We can then run the synthesis tool on this modified core. A synthesis tool
will then detect and eliminate the dead code created by the constants we

#1. Propagating Constants Past Software to Hardware Peripherals
in Fixed-Application Embedded Systems

9

introduced in the model, and thus result in a simpler synthesized structure.
Most modern synthesis tools already carry out standard compiler
optimizations like constant propagation, constant folding, and dead code
elimination.

for each peripheral core P
 for each control register C in P
 for each write, W, to C in processor’s program
 if W consists of a single write, of a constant X,
 in a reset or boot routine, then
 replace C in P by a constant declaration set to X
 delete behavior related to writing C in P
 end if
 end for
 end for
end for
run synthesis as usual

Figure 4. Method for propagating constants to peripheral cores.

We can also eliminate the behavior in the microprocessor’s program
relating to writing the control register, but this is not always necessary. If we
do choose to leave it, then we must ensure that the lack of a response from
the core is acceptable. If a response is needed, like an acknowledgement,
then we leave such behavior in the core.

The above method has the advantage of being immediately applicable in
any existing core-based design process, without any modification to existing
tools. Of course, the constant propagation across the software/hardware
boundary must be performed manually in the above case. Thus, we describe
a potential approach to automating the method. A big help to such
automation is if a core design framework is being used. Such frameworks,
many of which are commercially available, manage the retrieval and
instantiation of cores (e.g., [2][5]). They typically already have support for
instantiating cores with specific values for constants or generics (a generic is
essentially a parameter whose value must be chosen before instantiation) and
for keeping track of all register address assignments in a system of cores.

10 Chapter #1

Thus, modifying such frameworks to handle software configurable
parameters can be seen as an extension of an existing method.

One approach to automation would be to extend the software compiler to
output a list of external I/O addresses that are assigned a single constant by
the program in a reset or boot routine, along with each address’ associated
constant. This requires that the compiler be aware of the location of those
reset or boot routines. Next, each core must have its control registers known
to the core framework – this can be done by the framework developer, or the
framework user, without too much effort. Furthermore, the framework must
know where in the core to find the code that writes the register. Given this
setup, the framework can read the contents of the file output by the software
compiler, and for each address the framework can then replace the
corresponding register declaration by a constant declaration, and delete write
behavior from the core, before instantiating the core into the design. Then,
synthesis can be run on the instantiated core, and the constants will result in
dead code that can be eliminated.

A second approach is possible, and in fact even simpler than the above.
In particular, we observe that modern core-based frameworks actually
generate the reset or boot code themselves, including the code for initializing
peripherals [5]. In other words, suppose a user wishes to instantiate a DMA
controller into a system already having a microprocessor and memory. The
framework will query the user to ask for the values of software configurable
parameters, like transfer mode, base address and block size. The framework
then generates the necessary driver software on the microprocessor. The
second approach extends the above by having the framework also ask if the
software configurable parameter values will ever change, or if instead they
are in fact constants. If they are constants, then the framework can withhold
generation of the related driver software, and instead directly proceed to
instantiate the core with the corresponding register declaration replaced by a
constant, and with the register-write behavior deleted.

5. EXPERIMENTS

We performed several experiments to evaluate the size and power
savings possible by using our method of propagating constants to peripheral
cores. We modelled three popular peripherals as register-transfer level
VHDL soft cores: the 8255A programmable peripheral interface, the 8237A
DMA controller, and the 16550A UART. Each core model is nearly a fully-
functional model. The three soft-core models required 1045, 920 and 1063
lines of VHDL code, respectively. We also obtained a discrete cosine
transform (DCT) core (Free-DCT-L) from http://www.opencores.org, which

#1. Propagating Constants Past Software to Hardware Peripherals
in Fixed-Application Embedded Systems

11

consisted of 910 lines of code. We manually modified these models to
eliminate dead code that would have resulted from constant propagation of
the software-configurable parameters described below. We synthesized the
cores twice, once before and once after dead code elimination, using the
Synopsys Design Compiler. Area and power were measured using Synopsys
analysis tools, with power measured while running a suite of test vectors for
each core. Because we wanted to see first-hand the impact of the constant
propagation on the size of the VHDL code, we performed the propagation of
the constants and the dead code elimination manually, so we could measure
the resulting lines of code.

5.1 8255A Programmable Peripheral Interface

The 8255A had only one configuration register used for selecting the
modes of various ports. We examined the impact of propagating constants
for three different configurations of this register. Mode0 corresponded to a
configuration where port A of the device was used as an output port. Mode1
corresponded to port A being used as an output port with handshaking I/O.
Mode2 corresponded to port A being used as a bi-directional port with
interrupt I/O. Each situation resulted in a reduction of the number of lines in
the model from 1045 to an average of only 415 lines.

Optimizations from constant propagation are shown in the following
code:

if(cont_reg(4)='1') then
 pao <= "ZZZZZZZZ";
 paen <= '1';
elsif(cont_reg(4)='0') then
 paen <= '0';
end if;

In this example, cont_reg represents the control register for the device.

By setting the fourth bit to 1, port A is configured as an input port. Note that
this is accomplished with tri-state buffers that set the output signal, pao, to a
disconnected state. Paen is used to enable port A for input. If we know that
a program will always require port A to be used for output, we can simply
replace the example with an assignment of zero to the paen signal. This will
reduce area by eliminating several tri-state buffers and the logic required to
implement the if statement.

Another example is shown below:

12 Chapter #1

if(cont_reg(7) = '1' and

 cont_reg(6 downto 5) = "00") then
a_mode <= A_0;

elsif(cont_reg(7) = '1' and
 cont_reg(6 downto 5)= "11") then

 a_mode <= A_1;
elsif(cont_reg(7) = '1' and cont_reg(6)= '1') then
 a_mode <= A_2;

 end if;

In this example, the control register is being checked to determine the

appropriate mode for port A. Therefore, if we set the control register to a
constant value, then a_mode is also set to a constant value. We can then
propagate the a_mode constant into the following code:

case(a_mode) is
 when A_0 => -- implements mode 0 for Port A
 …
 when A_1 => -- implements mode 1 for Port A

 …
 when A_2 => -- implements mode 2 for Port A

 …
end case;

If a_mode is a constant, then two of the when statements will never be

executed and can therefore be eliminated. Because these statements
implement much of the functionality of the port, large area savings can be
achieved.

5.2 8237A DMA Controller

The 8237A had several configuration registers, including those that select
the arbitration mode, the number of active channels, and the transfer mode,
base address, and block size of each channel. We examined the situation of
using only a single channel, in single transfer mode. This reduced the model
from 920 to 435 lines.

The following code shows the channel being selected based on the
configuration register, command, and the input drequest:

if (command(4) = '0') then
 if (drequest(0) = '1') then
 channel <= 0;

#1. Propagating Constants Past Software to Hardware Peripherals
in Fixed-Application Embedded Systems

13

 elsif (drequest(1) = '1') then
 channel <= 1;
 elsif (drequest(2) = '1') then
 channel <= 2;
 elsif (drequest(3) = '1') then
 channel <= 3;
 end if;

If the program writes a constant to command and dreqeust, this implies

that only a single channel is being used. The channel signal is used
frequently in the code, as shown below:

db <= curr_addr(channel)(15 downto 8);
a7_4 <= curr_addr(channel)(7 downto 4);
a3_0 <= curr_addr(channel)(3 downto 0);
dack(channel) <= command(7);

This code can be further optimized by propagating the constant value of
channel. Curr_addr is implemented as 4 separate 16-bit registers, one for
each channel. Therefore, if we are only using one channel, we can
completely remove the three other registers. This optimization also applies
to other registers in the design, such as those that store the base address for
each channel. In the entire system, fifteen different 16-bit registers can be
eliminated by this one constant.

5.3 PC16550A UART

The PC16550 also had several configuration registers, including those
that enable transmit and receive, select the interrupt mode, and select the
baud rate. We examined two situations, one where the device was configured
for transmit only at a specific baud rate, and the other where it was
configured for receive only at a specific baud rate. Each reduced the model’s
lines of code from 1063 to roughly 625.

Configuring the UART for transmit only allows for the entire process
associated with receiving to be removed from the code. By making the baud
rate a constant value, all registers used to store the baud rate and all logic
required to read the baud rate from the input are removed. In addition, a
custom counter can be implemented in order to generate the fixed baud rate.

14 Chapter #1

5.4 Free-DCT-L Core

The DCT core had configuration registers for selecting between forward
and inverse DCT, and for selecting among 8, 9, 10, or 12-bit resolution. The
basic structure of the DCT core is shown Figure 5. Note that the controller
and cyclic register components both have configuration signals as input,
making them obvious candidates for constant propagation.

Input Buffering
Cyclic Register

64K Word
ROM

Multiply
Accumulator(1)

Multiply
Accumulator(2)

Controller

Serial
Data
Input

Configuration
Input

Parallel
Data Out

Control signals for notation of
next input and output data words

Configuration

Figure 5. Block diagram of DCT core.

 Portions of the VHDL code for the controller that deal with control
registers are shown below:

 with dctselect select
 rows <= add_tmp2(5 downto 3) when '1',
 add_tmp2(2 downto 0) when others;

with dctselect select
 columns <= add_tmp2(2 downto 0) when '1',
 add_tmp2(5 downto 3) when others;

The signal dctselect is used to select between inverse and forward DCT. By
converting dctselect into a constant with a value of zero, we can optimize the
code into the following assignments:

rows <= add_tmp2(2 downto 0);

#1. Propagating Constants Past Software to Hardware Peripherals
in Fixed-Application Embedded Systems

15

columns <= add_tmp2(5 downto 3);

This change eliminates two multiplexors (used to select between add_tmp2(5
downto 3) and add_tmp2(2 downto 0)) and a small amount of wires.
 The controller also contains a finite state machine that depends on the
control registers. The following code represents a state from the FSM that
reads the mode signal in order to select the resolution:

when 5 =>

 if mode = "00" then
 state := 6;
 elsif mode = "01" then
 state := 12;
 elsif mode = "10" then
 state := 11;
 else
 state := 9;
 end if;

By converting mode to a constant, we can convert this code into a single
assignment to the state variable. This eliminates the need for the 3
comparisons. In addition, several of the states can only be reached from the
assignments in this control statement. Therefore, depending on the value of
the constant assigned to mode, we may be able to eliminate states from the
FSM. This type of optimization might be very difficult for a normal
compiler to make because it would have to prove that a certain region of
code could not be reached. However, for a synthesis tool, constant
propagation can be followed by FSM state minimization. It would not be
hard to detect states that were never reached because there would be no
transitions to these states. Therefore, a synthesis tool could easily remove
unneeded states resulting from constant propagation.
 The cyclic register component also uses the same control register, mode,
which selects the resolution. The code is shown below:

if rising_edge(ck) then
 if rst = '1' then
 internal <= (others => '0');

 -- 8 bits resolution mode
 else mode = "00" then

 internal(63 downto 1) <= internal(62 downto 0);

16 Chapter #1

 internal(0) <= din_tmp;

 -- 9 bits resolution mode
 elsif mode = "01" then
 internal(71 downto 1) <= internal(70 downto 0);
 internal(0) <= din_tmp;

 -- 10 bits resolution mode
 elsif mode = "10" then
 internal(79 downto 1) <= internal(78 downto 0);
 internal(0) <= din_tmp;

 -- 12 bits resolution mode
 else
 internal(95 downto 1) <= internal(94 downto 0);
 internal(0) <= din_tmp;
 end if;
end if;

In this example, internal is likely to be synthesized as a 96-bit shift register,
where shifts only occur in specified ranges. By assigning mode a constant
value of "11", the code is simplified by requiring only one shifting range of
95 bits, resulting in much smaller hardware.

In our experiments, we tested the configuration of inverse DCT with 12-
bit resolution. This configuration reduced the size of the code from 910
lines to 867 lines.

5.5 Results

Note that the parameters used in all the described examples were not
represented by constants or generics in the VHDL source. Rather, the cores
were designed to be synthesized to support software configuration of these
parameters, as is common.

The size and power data is summarized in Table 1. We see that size after
synthesis was reduced by an average of 58%, and power by an average of
22%. The reason that power is not reduced as much as size is because many
of the gates eliminated through constant propagation were not used during a
core’s execution even when present, so didn’t consume much power. This
can be seen in the UART example, by the removal of logic to handle
receiving. This logic might be a large part of overall area, but if it isn’t
being used frequently, it is unlikely to consume much power. We believe
that the power reductions that do occur result from less switching activity

#1. Propagating Constants Past Software to Hardware Peripherals
in Fixed-Application Embedded Systems

17

due to simpler control and datapath switching logic. For the DCT core,
power savings are actually greater than area savings. This results from the
removal of a small amount of frequently used logic that contributes greatly
to the switching activity of the system.

Table 1. Comparison of cores before and after constant propagation.
Cores Gates,

Original
Gates, with
constant
propagation

% size
savings

Power,
original
(micro-
watts)

Power, with
constant
propagation
(micro-
watts)

% power
savings

8225A
mode-0

3069 834 73% 2772 1902 31%

8225A
mode-1

3069 918 70% 2915 2098 28%

8225A
mode-2

3069 953 69% 2952 2124 28%

8237A
single
transfer

7276 2344 68% 2453 2097 15%

PC16550
Tx

2503 1169 53% 1461 1249 15%

PC 16550
Rx

2503 1188 53% 1449 1307 10%

DCT
Forward
8-bit

2295 1872 18% 1391 958 31%

Average
savings

 58% 22%

These reductions come of course at the cost of not being able to

reprogram the configurable parameters of the core once the system has been
implemented. Thus, if modifying the microprocessor’s program is a
possibility, then propagating constants across the software/hardware
boundary should either not be done, or should be done only to the extent that

18 Chapter #1

the designer is certain that particular constants won’t change. However, as
mentioned earlier, many embedded systems have their programs fixed in
mask-programmed ROM, and thus the configurable parameters could never
have been modified anyway, meaning our approach would have no impact
on flexibility in those cases.

6. FUTURE WORK

A core-based design flow often involves more than a microprocessor and
peripheral cores. In many cases, co-processors or custom hardware may be
used in order to speed up frequent operations. A common example of this is
adding a floating-point co-processor core to a microprocessor core with only
an integer pipeline. We have previously studied the effects of moving
frequently executed loops into custom hardware cores, where we are more
concerned with improving energy efficiency as opposed to reducing area.
 In some cases, we can apply constant propagation optimizations to these
custom cores. For example, consider a core that implements a frequently
executed function that takes several parameters as input and returns a value
based on the inputs. If we trace the values of the inputs and can determine
that one of the parameters has the same value a large percentage of the time,
we can create a custom hardware implementation of the function that treats
the parameter as a constant. This allows us to perform all optimizations
associated with constant propagation, resulting in a smaller, faster, and more
energy efficient core. Of course, since we are implementing the function for
only one value of the inputs, we would either have to create an additional
core to implement the function for all other inputs, or simply execute the
function in software. The latter method would have the additional overhead
of checking the values of the function in software in order to determine
whether the function should be executed in the optimized hardware. We
plan to investigate the benefits of such approaches in the future.

7. CONCLUSIONS

As core-based design methodologies grow in popularity, cores will be
heavily parameterized to increase applicability and hence sales. Pre-
fabrication parameters, specified using HDL generics or constants, can result
in optimized hardware. However, post-fabrication parameters, known as
software configurable parameters, until now have not been exploited
similarly. We introduced the idea of propagating constants beyond the
microprocessor software, to the peripheral hardware. We showed that such

#1. Propagating Constants Past Software to Hardware Peripherals
in Fixed-Application Embedded Systems

19

propagation yielded reductions in size by 58%, and good power reductions
of between 10-30%, using several standard peripheral examples. This work
is part of the UCR Dalton project, which seeks to develop techniques for
parameterized core-based system-on-a-chip design [7]. This work motivates
the need for future work on system-on-a-chip frameworks whose compilers
are able to detect “constants” in the sense of software configurable register
values, and are able to coordinate between compilers and synthesis tools to
propagate those constants to hardware.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under grant
number CCR-9876006. We would like to thank Rilesh Patel for his
contribution to this work.

REFERENCES

[1] Aho, A.V., R. Sethi, J.D. Ullman. "Compilers: Principles Techniques, and
Tools," Reading, Addison-Wesley Publishing Company, March 1998.

[2] Escalade Corporation, http://www.escalade.com/.
[3] Gupta, R., and Y. Zorian. Introducing Core-Based System Design. IEEE Design

& Test, Vol. 14, No. 4, Oct-Dec 1997, pp. 15-25.
[4] Inventra core library, Mentor Graphics, http://www.mentor.com/inventra/.
[5] Platform Express. Mentor Graphics, http://www.mentor.com/soc/platform_ex/.
[6] Stitt, G., F. Vahid, T. Givargis, and R. Lysecky. A First-step Towards an

Architecture Tuning Methodology for Low Power. Compilers, Architectures, and
Synthesis for Embedded Systems (CASES'00), November 2000, pp. 187-192.

[7] The UCR Dalton project: http://www.cs.ucr.edu/~dalton.
[8] Vahid, F., and T. Givargis. Platform Tuning for Embedded Systems Design.

IEEE Computer, Vol. 34, No. 3, March 2001, pp. 112-114.
[9] Virtual Socket Interface Association, Architecture Document, http://www.vsi.org,

1997.
[10] Wegman, M., and F.K. Zadeck. Constant Propagation with Conditional Branches.

ACM Transactions on Programming Languages and Systems, Vol 18, No 2,
April 1991, pp. 181-210.

	INTRODUCTION
	EXAMPLE
	PARAMETERS IN CORES
	PROPAGATING CONSTANTS FROM SOFTWARE TO HARDWARE
	EXPERIMENTS
	8255A Programmable Peripheral Interface
	8237A DMA Controller
	PC16550A UART
	Free-DCT-L Core
	Results

	FUTURE WORK
	CONCLUSIONS

