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Abstract: Many embedded systems include a microprocessor that executes a single 
program for the lifetime of the system. These programs often contain constants 
used to initialize control registers in peripheral hardware components. Now 
that peripherals are often purchased in intellectual property (core) form and 
synthesized along with the microprocessor onto a single chip, new 
optimization opportunities exist. We introduce one such optimization, which 
involves propagating the initialization constants past the microprocessor to the 
peripheral, such that synthesis can further propagate the constants inside the 
peripheral core. While constant propagation in synthesis tools is commonly 
done, this work illustrates the benefits of recognizing initialization constants 
from the software as really being constants for hardware. We describe results 
that demonstrate 2-3 times reductions in peripheral size, and 10-30% savings 
in power, on several common peripheral examples. 
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1. INTRODUCTION 

Embedded system designers are increasingly composing their designs 
from pre-designed intellectual-property cores, integrating those cores into a 
single chip model as shown in Figure 1, and then fabricating a chip [3]. A 
core is a description of a system-level component, like a microprocessor, 
memory, or peripheral component like a direct-memory access (DMA) 
controller or universal asynchronous receiver/transmitters (UART). Cores 
come in three forms. A soft core is a synthesizable hardware description 

1 



2 Chapter #1
 
language (HDL) model. A firm core is a structural HDL model. A hard core 
is a technology-specific layout. Many commercial core libraries now exist, 
e.g., [4], and core standards are evolving rapidly [9]. 
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Figure 1. Core-based embedded system design. 

A designer gains many advantages from building a system from standard 
cores, such as a standard DMA controller or UART. Most importantly, the 
designer gains improved time-to-market due to familiarity with the standard 
core and compatibility with development tools. Such standard cores typically 
come with parameters [8]. Some are pre-fabrication parameters, which are 
set by a designer before synthesis, thus influencing the synthesis results. 
Such parameters are typically achieved using generics or constants in a 
hardware description language (HDL), but can also be achieved using 
module generators, which generate unique HDL models depending on the 
parameter selection. For example, a JPEG decompression core might by 
synthesizable to have either 12 or 16-bit resolution. Synthesizing for 12-bit 
resolution would yield a smaller core.  

Other parameters, in contrast, are post-fabrication parameters, set only 
after the core has been synthesized. Such parameters’ settings are typically 
stored in registers or non-volatile memory inside the core. They are more 
commonly referred to as software configurable parameters. For example, a 
DMA controller will have a base register to indicate the starting address in 
memory from which the controller should move data, and a block size 
register to indicate the number of words that should be moved. An arbiter 
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core might have a register whose setting determines whether arbitration uses 
a fixed or rotating priority scheme. 

We make the observation that an embedded system typically runs a 
single program that never changes – the application is fixed. In fact, in many 
cases that program cannot be changed, because it may be burned into ROM 
(using mask-programmed ROM) that appears with the microprocessor and 
peripherals on a single chip to reduce chip cost, size and power (at the 
expense of less flexibility).  

A typical embedded system will execute a boot program upon system 
reset, and this program will, among other things, set these software 
configurable parameters in the system’s peripherals, as shown in Figure 1. 
However, if the embedded system’s program never changes, then those 
register values never change during the execution of the embedded system.  
For example, a particular embedded system may use a DMA controller to 
repeatedly send data directly from an array, of size 48 and starting from 
memory location 100, to a display device.  The system's boot program may 
set the DMA controller base register to 100, and the block size register to 48. 
These values will never change for the life of the embedded system. 

Previously, when systems were built using discrete off-the-shelf 
integrated circuits, such software configuration was necessary. However, 
since today’s systems are being built with cores, we now have an 
optimization opportunity that did not previously exist. Specifically, for an 
embedded system whose program does not change, the values to which the 
software configurable peripheral parameters are being set are really 
constants. As compiler writers are well aware, constants provide excellent 
optimization capability, through the well-known compiler optimization 
known as constant propagation and constant folding[1][10]. Such 
propagation consists of replacing a variable holding a constant by the 
constant itself. This replacement can result, for example, in branch 
conditions that always evaluate to false, resulting in turn in dead code that 
can then be eliminated. It can also enable compile-time evaluation of 
expressions. 

Such dead code resulting from constant propagation is especially 
common when propagating constants into subroutines through the 
subroutine’s parameters. While the subroutine may have been designed to 
handle a variety of sets of parameters, a particular program may only call the 
subroutine with certain constant values for those parameters, resulting in 
much dead code in the subroutine. 

We can think of a peripheral core as similar to a subroutine, in fact, as a 
subroutine that has been implemented using additional hardware. The core 
may have been designed to handle a variety of sets of software configurable 
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parameters. However, a particular program may only use the core with 
certain constant values for those parameters, resulting in much dead code in 
the core.  We therefore propose a deeper propagation of constants than 
performed by compilers. In particular, we propose to propagate those 
constants beyond the microprocessor's program, to the microprocessor's 
peripheral cores – essentially propagating those constants all the way to 
peripheral hardware. Those constants would then be fed into the synthesis 
tool being used to synthesize the cores. The synthesis tool could then 
perform constant propagations and dead code elimination during synthesis, 
where the code here refers to the core's HDL description. Most commercial 
synthesis tools already include such compiler optimizations, but those 
optimizations are only applied to the pre-fabrication parameter constants.  
We will show that much benefit would come from enabling the synthesis 
tool to recognize the post-fabrication parameter values as constants also. 

The end result of such propagation is that the synthesized core will be 
optimized for the particular program that is using the core, something we 
refer to as architecture tuning [8]. By optimized, we mean that the core will 
have fewer gates, and consume less power, than a standard version of the 
same core.  Reducing size is important since such reduction can increase 
chip yield and reduce chip cost, and many embedded systems are extremely 
cost sensitive, especially those being manufactured in high volumes. 
Reducing power is important since many embedded systems operate on 
batteries or draw power from very limited sources, and so power reduction is 
an important design criterion. 

In the following sections, we introduce the concept of propagating 
constants past software to hardware peripheral cores. After an introductory 
example, we’ll describe common core parameters that are candidates for 
constant propagation, discuss methods for achieving such propagation, and 
highlight experiments showing the size and power reductions possible. The 
results motivate future work on developing tools that introduce some 
cooperation between the compilers and the synthesis tools being used in 
developing a system-on-a-chip from cores. 

2. EXAMPLE 

As a simple illustration of propagating constants to hardware, let us 
consider a trivially simple peripheral core that has two parallel ports. Each 
port can be configured to be an input port or an output port.  A VHDL 
description of part of the core is shown in Figure 2(a). The core description 
declares a control register cont_reg with two bits. The first bit makes port A 
an output port when set to 0, and an input port when set to 1. Likewise, the 
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second bit makes port B an input or output port. The VHDL description 
begins with initialization of the control register during a reset. Next, it would 
describe the synchronous monitoring of the bus for an address corresponding 
to the control register, and the writing of the control register in this case – 
this code is omitted from the figure. Next, the VHDL description describes 
the control logic for the tri-state buffers that implement the port direction 
functionality. Finally, other behavior of the core would be described.  

Synthesis converts this soft core to hardware structure, shown in Figure 
2(b). Note that logic is generated to handle the bus monitoring and the 
control of the four required buffers.  

Now, consider the situation where this core is used in an embedded 
system and controlled by a microprocessor executing a fixed C program. We 
might see the following assembly code embedded in the reset routine of the 
C program: 

 
OUT cont_reg, #"00000010" 
 
Assuming cont_reg is the address of the control register in the 

microprocessor’s I/O address space, then this code would write the constant 
“00000010” onto the peripheral bus, resulting in a 0 being written into 
cont_reg(0) and a 1 into cont_reg(1). The peripheral core would thus be 
configured with port A as an output port, and port B as an input port. The rest 
of the C program would then access these ports appropriately.  

Now, suppose we could somehow propagate the constant “10” into the 
VHDL description of the core, before the core were synthesized, letting the 
synthesis tool know that cont_reg would be written by that constant and only 
that constant. If we did this in a way that our synthesis tool could make use 
of that information, then the synthesis tool would find much dead code in the 
VHDL description. First, the control register would not be needed, since a 
constant can be derived directly from power and ground in hardware. 
Second, the logic to monitor the bus for the control register address and then 
write the register would not be needed. Third, each buffer control signal if 
statement would have one branch that was always true and the other always 
false. Finally, the reset code of the core would not be needed. After all of 
this dead code is eliminated, the synthesis tool would output the structure 
shown in Figure 2(c). The resulting structure in this case requires less 
hardware, and would also consume less power due in part to elimination of 
the bus monitoring. 
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   if (cont_reg(0) = '0') then 
       A_out <= '1';         
       A_in  <= '0'; 
   else 

A_in  <= '1';           
A_out <= '0'; 

   end if; 
   if (cont_reg(1) ='0') then 
       B_out <= '1';           
       B_in  <= '0'; 
   else 
       B_in  <= '1'; 
       B_out <= '0'; 
   end if; 
end if; 
-- Other behavior omitted 
end process; 

signal cont_reg:  
UNSIGNED(1 downto 0); 

-- declarations for A, B and       
   buffers omitted. 
process(clk, reset) 
begin 
if (reset) then 
   cont_reg = "00"; 
   A_out <= '1'; A_in <= '0'; 
   B_out <= '1'; B_in <= '0'; 
end if; 
if rising_edge(clk) then 
   -- Code to detect write request 
   -- from bus to cont_reg, and 
   -- to update cont_reg, omitted 
   

(a) 

(b) 

(c) 

A B 

1 1 

A B cont_reg 

logic 

bus

 

Figure 2. A simple example of propagating constants to hardware (a) soft core, (b) 
synthesized core structure, (c) synthesized core structure after propagating constants 

cont_reg(0)=0 and cont_reg(1)=1. 
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3. PARAMETERS IN CORES 

We examined a number of common peripheral cores, and found many 
software configurable parameters that could be candidates for constant 
propagation. Some common peripheral cores include the Intel 8255A 
(programmable peripheral interface), the 8237A (DMA controller), and the 
M16550A (UART – Universal Asynchronous Receiver-Transmitter). 

Figure 3 is the block diagram of the 8255A. The 8255A interfaces with a 
microprocessor on one side, and provides three configurable ports on the 
other side.  Its software configurable parameters include mode of operation, 
number of ports in use, and direction of each port (input or output). These 
parameters are set by a microprocessor by writing an 8-bit control word into 
a control register in the 8255A. 
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Figure 3. The Intel 8255A parallel peripheral interface. 

The 8237A includes even more software configurable parameters, 
including the number of channels, the type of priority scheme (fixed or 
rotating) being used to arbitrate between channels, whether each channel 
operates in single transfer mode or block transfer mode, the starting address 
and block size for each channel, etc. There are thus several control registers 
in the 8237A. 

Likewise, the UART’s parameters include the baud rate, parity type, 
mode of communication, etc.  

In general, peripheral cores tend to have several types of configurable 
parameters, related to features such as:   
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– Size of internal data or external data bus 
– Number of channels or ports 
– Modes of operation 
– I/O direction 
– Rate of data transfer 
– Resolution 
 

Supporting numerous parameters is necessary in order for a peripheral to 
be applicable in a variety of systems and thus to sell in large quantities. 
While some parameters appear in a core as user-settable constants or 
generics, others appear as software configurable control registers. Such 
software configurability is used in peripherals for several reasons. One 
reason is that, before the advent of cores, software configuration was the 
only way to configure a peripheral integrated circuit (IC). A core may thus 
be modeling a widely-used standard peripheral that was defined in the time 
of ICs, such as UART and DMA controller cores. A second reason is that, 
even for cores representing new peripherals, the core designer does not know 
if the peripheral will be controlled by a microprocessor whose application 
will not change. If the core were used in a system whose application did 
change, then constant or generic-based parameters would not be appropriate. 
Thus, support of software configurable parameters is very common, but 
results in extra hardware size as well as power consumption. 

4. PROPAGATING CONSTANTS FROM 
SOFTWARE TO HARDWARE 

We now describe a method for manually propagating constants across the 
software/hardware boundary in a core-based synthesis methodology, and 
discuss potential approaches for automating this method. The method is 
summarized in Figure 4. For each core, the first step is to determine all of 
the registers in the core that serve as control registers for the various 
parameters listed in the previous section. Next, for each such control 
register, we must look for all references to that register in the driving 
microprocessor program. If the only access to that register is a write with a 
constant, and this write occurs during the reset or boot routines, as is often 
the case in embedded systems, then we have a candidate for constant 
propagation to peripheral cores. We replace the register’s declaration in the 
core by a constant declaration. We delete any behavior that involves 
detecting and carrying out a write to that register from the peripheral bus. 
We can then run the synthesis tool on this modified core. A synthesis tool 
will then detect and eliminate the dead code created by the constants we 
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introduced in the model, and thus result in a simpler synthesized structure. 
Most modern synthesis tools already carry out standard compiler 
optimizations like constant propagation, constant folding, and dead code 
elimination. 

  
for each peripheral core P 
    for each control register C in P 
        for each write, W, to C in processor’s program 
            if W consists of a single write, of a constant X,  
                    in a reset or boot routine, then 
                replace C in P by a constant declaration set to X 
                delete behavior related to writing C in P 
            end if 
        end for 
    end for 
end for 
run synthesis as usual 

 

Figure 4. Method for propagating constants to peripheral cores. 

We can also eliminate the behavior in the microprocessor’s program 
relating to writing the control register, but this is not always necessary. If we 
do choose to leave it, then we must ensure that the lack of a response from 
the core is acceptable. If a response is needed, like an acknowledgement, 
then we leave such behavior in the core. 

The above method has the advantage of being immediately applicable in 
any existing core-based design process, without any modification to existing 
tools. Of course, the constant propagation across the software/hardware 
boundary must be performed manually in the above case. Thus, we describe 
a potential approach to automating the method. A big help to such 
automation is if a core design framework is being used. Such frameworks, 
many of which are commercially available, manage the retrieval and 
instantiation of cores (e.g., [2][5]). They typically already have support for 
instantiating cores with specific values for constants or generics (a generic is 
essentially a parameter whose value must be chosen before instantiation) and 
for keeping track of all register address assignments in a system of cores. 
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Thus, modifying such frameworks to handle software configurable 
parameters can be seen as an extension of an existing method.  

One approach to automation would be to extend the software compiler to 
output a list of external I/O addresses that are assigned a single constant by 
the program in a reset or boot routine, along with each address’ associated 
constant. This requires that the compiler be aware of the location of those 
reset or boot routines. Next, each core must have its control registers known 
to the core framework – this can be done by the framework developer, or the 
framework user, without too much effort. Furthermore, the framework must 
know where in the core to find the code that writes the register. Given this 
setup, the framework can read the contents of the file output by the software 
compiler, and for each address the framework can then replace the 
corresponding register declaration by a constant declaration, and delete write 
behavior from the core, before instantiating the core into the design. Then, 
synthesis can be run on the instantiated core, and the constants will result in 
dead code that can be eliminated. 

A second approach is possible, and in fact even simpler than the above. 
In particular, we observe that modern core-based frameworks actually 
generate the reset or boot code themselves, including the code for initializing 
peripherals [5]. In other words, suppose a user wishes to instantiate a DMA 
controller into a system already having a microprocessor and memory. The 
framework will query the user to ask for the values of software configurable 
parameters, like transfer mode, base address and block size. The framework 
then generates the necessary driver software on the microprocessor. The 
second approach extends the above by having the framework also ask if the 
software configurable parameter values will ever change, or if instead they 
are in fact constants. If they are constants, then the framework can withhold 
generation of the related driver software, and instead directly proceed to 
instantiate the core with the corresponding register declaration replaced by a 
constant, and with the register-write behavior deleted. 

5. EXPERIMENTS 

We performed several experiments to evaluate the size and power 
savings possible by using our method of propagating constants to peripheral 
cores.  We modelled three popular peripherals as register-transfer level 
VHDL soft cores: the 8255A programmable peripheral interface, the 8237A 
DMA controller, and the 16550A UART. Each core model is nearly a fully-
functional model. The three soft-core models required 1045, 920 and 1063 
lines of VHDL code, respectively. We also obtained a discrete cosine 
transform (DCT) core (Free-DCT-L) from http://www.opencores.org, which 
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consisted of 910 lines of code. We manually modified these models to 
eliminate dead code that would have resulted from constant propagation of 
the software-configurable parameters described below. We synthesized the 
cores twice, once before and once after dead code elimination, using the 
Synopsys Design Compiler. Area and power were measured using Synopsys 
analysis tools, with power measured while running a suite of test vectors for 
each core. Because we wanted to see first-hand the impact of the constant 
propagation on the size of the VHDL code, we performed the propagation of 
the constants and the dead code elimination manually, so we could measure 
the resulting lines of code.    

5.1 8255A Programmable Peripheral Interface 

The 8255A had only one configuration register used for selecting the 
modes of various ports. We examined the impact of propagating constants 
for three different configurations of this register. Mode0 corresponded to a 
configuration where port A of the device was used as an output port. Mode1 
corresponded to port A being used as an output port with handshaking I/O. 
Mode2 corresponded to port A being used as a bi-directional port with 
interrupt I/O. Each situation resulted in a reduction of the number of lines in 
the model from 1045 to an average of only 415 lines. 

Optimizations from constant propagation are shown in the following 
code: 

 
if( cont_reg(4)='1' ) then 
    pao <= "ZZZZZZZZ"; 
    paen <= '1'; 
elsif( cont_reg(4)='0' ) then 
    paen <= '0'; 
end if; 

 
In this example, cont_reg represents the control register for the device.  

By setting the fourth bit to 1, port A is configured as an input port.  Note that 
this is accomplished with tri-state buffers that set the output signal, pao, to a 
disconnected state.  Paen is used to enable port A for input.  If we know that 
a program will always require port A to be used for output, we can simply 
replace the example with an assignment of zero to the paen signal.  This will 
reduce area by eliminating several tri-state buffers and the logic required to 
implement the if statement. 

Another example is shown below: 
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if( cont_reg(7) = '1' and  

     cont_reg(6 downto 5) = "00" ) then 
a_mode <= A_0; 

elsif( cont_reg(7) = '1' and  
 cont_reg(6 downto 5)= "11" ) then 

      a_mode <= A_1; 
elsif( cont_reg(7) = '1' and cont_reg(6)= '1' ) then 
    a_mode <= A_2; 

  end if; 
 
In this example, the control register is being checked to determine the 

appropriate mode for port A.  Therefore, if we set the control register to a 
constant value, then a_mode is also set to a constant value.  We can then 
propagate the a_mode constant into the following code: 

 
case( a_mode ) is     
    when A_0 =>  -- implements mode 0 for Port A 
   … 
    when A_1 =>  -- implements mode 1 for Port A 

       … 
    when A_2 =>  -- implements mode 2 for Port A 

 … 
end case; 
 
If a_mode is a constant, then two of the when statements will never be 

executed and can therefore be eliminated.  Because these statements 
implement much of the functionality of the port, large area savings can be 
achieved. 

5.2 8237A DMA Controller 

The 8237A had several configuration registers, including those that select 
the arbitration mode, the number of active channels, and the transfer mode, 
base address, and block size of each channel. We examined the situation of 
using only a single channel, in single transfer mode. This reduced the model 
from 920 to 435 lines. 

The following code shows the channel being selected based on the 
configuration register, command, and the input drequest: 

 
if ( command(4) = '0' ) then 
     if ( drequest(0) = '1' ) then 
          channel <= 0; 
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     elsif ( drequest(1) = '1' ) then 
          channel <= 1; 
     elsif ( drequest(2) = '1' ) then 
          channel <= 2; 
     elsif ( drequest(3) = '1' ) then 
          channel <= 3; 
     end if; 
 
If the program writes a constant to command and dreqeust, this implies 

that only a single channel is being used.  The channel signal is used 
frequently in the code, as shown below: 

 
db   <= curr_addr(channel)(15 downto 8); 
a7_4 <= curr_addr(channel)(7 downto 4); 
a3_0 <= curr_addr(channel)(3 downto 0); 
dack(channel) <= command(7); 
 

This code can be further optimized by propagating the constant value of 
channel.  Curr_addr is implemented as 4 separate 16-bit registers, one for 
each channel.  Therefore, if we are only using one channel, we can 
completely remove the three other registers.  This optimization also applies 
to other registers in the design, such as those that store the base address for 
each channel.   In the entire system, fifteen different 16-bit registers can be 
eliminated by this one constant. 

5.3 PC16550A UART 

The PC16550 also had several configuration registers, including those 
that enable transmit and receive, select the interrupt mode, and select the 
baud rate. We examined two situations, one where the device was configured 
for transmit only at a specific baud rate, and the other where it was 
configured for receive only at a specific baud rate. Each reduced the model’s 
lines of code from 1063 to roughly 625. 

Configuring the UART for transmit only allows for the entire process 
associated with receiving to be removed from the code.  By making the baud 
rate a constant value, all registers used to store the baud rate and all logic 
required to read the baud rate from the input are removed.   In addition, a 
custom counter can be implemented in order to generate the fixed baud rate. 
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5.4 Free-DCT-L Core 

The DCT core had configuration registers for selecting between forward 
and inverse DCT, and for selecting among 8, 9, 10, or 12-bit resolution.  The 
basic structure of the DCT core is shown Figure 5.  Note that the controller 
and cyclic register components both have configuration signals as input, 
making them obvious candidates for constant propagation. 

 
Input Buffering 
Cyclic Register 

64K Word 
ROM 

Multiply 
Accumulator(1)

Multiply 
Accumulator(2) 

Controller 

Serial 
Data 
Input 

Configuration 
Input 

Parallel 
Data Out 

Control signals for notation of 
next input and output data words 

 

Configuration 

 

Figure 5. Block diagram of DCT core. 

 Portions of the VHDL code for the controller that deal with control 
registers are shown below:   
 
 with dctselect select 
     rows <= add_tmp2(5 downto 3) when '1', 
             add_tmp2(2 downto 0) when others; 

 
with dctselect select 
     columns <= add_tmp2(2 downto 0) when '1', 
                add_tmp2(5 downto 3) when others; 

 
The signal dctselect is used to select between inverse and forward DCT.  By 
converting dctselect into a constant with a value of zero, we can optimize the 
code into the following assignments: 

 
rows    <= add_tmp2(2 downto 0); 
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columns <= add_tmp2(5 downto 3); 

   
This change eliminates two multiplexors (used to select between add_tmp2(5 
downto 3) and add_tmp2(2 downto 0)) and a small amount of wires. 
 The controller also contains a finite state machine that depends on the 
control registers.  The following code represents a state from the FSM that 
reads the mode signal in order to select the resolution: 
 
when 5 => 

     if mode = "00" then 
         state := 6; 
     elsif mode = "01" then 
         state := 12; 
     elsif mode = "10" then 
         state := 11; 
     else 
         state := 9; 
     end if; 
 
By converting mode to a constant, we can convert this code into a single 
assignment to the state variable.  This eliminates the need for the 3 
comparisons.  In addition, several of the states can only be reached from the 
assignments in this control statement.  Therefore, depending on the value of 
the constant assigned to mode, we may be able to eliminate states from the 
FSM.  This type of optimization might be very difficult for a normal 
compiler to make because it would have to prove that a certain region of 
code could not be reached.  However, for a synthesis tool, constant 
propagation can be followed by FSM state minimization.  It would not be 
hard to detect states that were never reached because there would be no 
transitions to these states.  Therefore, a synthesis tool could easily remove 
unneeded states resulting from constant propagation. 
 The cyclic register component also uses the same control register, mode, 
which selects the resolution.   The code is shown below: 
 
if rising_edge(ck) then 
  if rst = '1' then 
    internal <= (others => '0'); 
 
  -- 8 bits resolution mode 
  else mode = "00" then         

 internal(63 downto 1) <= internal(62 downto 0); 
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     internal(0) <= din_tmp; 
 
  -- 9 bits resolution mode 
  elsif mode = "01" then  
     internal(71 downto 1) <= internal(70 downto 0); 
     internal(0) <= din_tmp; 
 
  -- 10 bits resolution mode 
  elsif mode = "10" then      
     internal(79 downto 1) <= internal(78 downto 0); 
     internal(0) <= din_tmp; 
 
  -- 12 bits resolution mode 
  else                       
      internal(95 downto 1) <= internal(94 downto 0); 
      internal(0) <= din_tmp; 
  end if; 
end if; 
 
In this example, internal is likely to be synthesized as a 96-bit shift register, 
where shifts only occur in specified ranges.  By assigning mode a constant 
value of "11", the code is simplified by requiring only one shifting range of 
95 bits, resulting in much smaller hardware. 

In our experiments, we tested the configuration of inverse DCT with 12-
bit resolution.  This configuration reduced the size of the code from 910 
lines to 867 lines.   

5.5 Results 

Note that the parameters used in all the described examples were not 
represented by constants or generics in the VHDL source. Rather, the cores 
were designed to be synthesized to support software configuration of these 
parameters, as is common.  

The size and power data is summarized in Table 1. We see that size after 
synthesis was reduced by an average of 58%, and power by an average of 
22%. The reason that power is not reduced as much as size is because many 
of the gates eliminated through constant propagation were not used during a 
core’s execution even when present, so didn’t consume much power.  This 
can be seen in the UART example, by the removal of logic to handle 
receiving.  This logic might be a large part of overall area, but if it isn’t 
being used frequently, it is unlikely to consume much power.  We believe 
that the power reductions that do occur result from less switching activity 
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due to simpler control and datapath switching logic.  For the DCT core, 
power savings are actually greater than area savings.  This results from the 
removal of a small amount of frequently used logic that contributes greatly 
to the switching activity of the system. 

Table 1. Comparison of cores before and after constant propagation. 
Cores Gates, 

Original 
Gates, with 
constant 
propagation 

% size 
savings 

Power, 
original 
(micro-
watts) 

Power, with 
constant 
propagation 
(micro-
watts) 

% power 
savings 

8225A 
mode-0 

3069 834 73% 2772 1902 31% 

8225A 
mode-1 

3069 918 70% 2915 2098 28% 

8225A 
mode-2 

3069 953 69% 2952 2124 28% 

8237A 
single 
transfer 

7276 2344 68% 2453 2097 15% 

PC16550 
Tx 

2503 1169 53% 1461 1249 15% 

PC 16550 
Rx 

2503 1188 53% 1449 1307 10% 

DCT 
Forward 
8-bit 

2295 1872 18% 1391 958 31% 

Average 
savings 

  58%   22% 

 
These reductions come of course at the cost of not being able to 

reprogram the configurable parameters of the core once the system has been 
implemented. Thus, if modifying the microprocessor’s program is a 
possibility, then propagating constants across the software/hardware 
boundary should either not be done, or should be done only to the extent that 
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the designer is certain that particular constants won’t change. However, as 
mentioned earlier, many embedded systems have their programs fixed in 
mask-programmed ROM, and thus the configurable parameters could never 
have been modified anyway, meaning our approach would have no impact 
on flexibility in those cases. 

6. FUTURE WORK 

A core-based design flow often involves more than a microprocessor and 
peripheral cores.  In many cases, co-processors or custom hardware may be 
used in order to speed up frequent operations.  A common example of this is 
adding a floating-point co-processor core to a microprocessor core with only 
an integer pipeline.  We have previously studied the effects of moving 
frequently executed loops into custom hardware cores, where we are more 
concerned with improving energy efficiency as opposed to reducing area. 
 In some cases, we can apply constant propagation optimizations to these 
custom cores.  For example, consider a core that implements a frequently 
executed function that takes several parameters as input and returns a value 
based on the inputs.  If we trace the values of the inputs and can determine 
that one of the parameters has the same value a large percentage of the time, 
we can create a custom hardware implementation of the function that treats 
the parameter as a constant.  This allows us to perform all optimizations 
associated with constant propagation, resulting in a smaller, faster, and more 
energy efficient core.  Of course, since we are implementing the function for 
only one value of the inputs, we would either have to create an additional 
core to implement the function for all other inputs, or simply execute the 
function in software.  The latter method would have the additional overhead 
of checking the values of the function in software in order to determine 
whether the function should be executed in the optimized hardware.  We 
plan to investigate the benefits of such approaches in the future. 

7. CONCLUSIONS 

As core-based design methodologies grow in popularity, cores will be 
heavily parameterized to increase applicability and hence sales. Pre-
fabrication parameters, specified using HDL generics or constants, can result 
in optimized hardware. However, post-fabrication parameters, known as 
software configurable parameters, until now have not been exploited 
similarly. We introduced the idea of propagating constants beyond the 
microprocessor software, to the peripheral hardware. We showed that such 
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propagation yielded reductions in size by 58%, and good power reductions 
of between 10-30%, using several standard peripheral examples. This work 
is part of the UCR Dalton project, which seeks to develop techniques for 
parameterized core-based system-on-a-chip design [7]. This work motivates 
the need for future work on system-on-a-chip frameworks whose compilers 
are able to detect “constants” in the sense of software configurable register 
values, and are able to coordinate between compilers and synthesis tools to 
propagate those constants to hardware. 
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