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Abstract 
Adding a small loop cache to a microprocessor has been shown 
to reduce average instruction fetch energy for various sets of 
embedded system applications. With the advent of core-based 
design, embedded system designers can now tune a loop cache 
architecture to best match a specific application. We developed 
an automated simulation environment to find the best loop 
cache architecture for a given application and technology. 
Using this environment, we show significant variation in the 
best architecture for different examples. The results support the 
need for future fast synthesis of tuned loop cache architectures. 

Categories and Subject Descriptors 
B.3.0 [Memory Structures]: General. 

General Terms 
Design. 

Keywords 
Low power, low energy, tuning, loop cache, embedded systems, 
instruction fetching, filter cache, customized architectures, 
memory hierarchy, synthesis, architecture tuning, cores. 

1. Introduction 
Reducing energy and power consumption of embedded systems 
translates to longer battery lives and reduced cooling 
requirements.   For embedded microprocessor based systems, 
instruction fetching can contribute to a large percentage of 
system power (nearly 50% in [19]), since such fetching occurs 
on nearly every cycle, involves driving of long and possibly off-
chip bus lines, and may involve reading numerous memories 
concurrently – such as in set-associative caches.  

Several approaches to reducing instruction fetch energy 
have been proposed, including program compression to reduce 

the amount of bits fetched [4][16][20], bus encoding to reduce 
the number of switched wires [5][22][27][29], and efficient 
instruction cache design [2][14][17][28]. Another category of 
approaches, which capitalize on the common feature of 
embedded applications spending much time in small loops, 
integrate a tiny (perhaps 64 word) instruction cache with the 
microprocessor. Such tiny caches have extremely low power per 
access, perhaps 50 times less than regular instruction memory 
access [19]. 

Several low-power tiny instruction cache architectures have 
been introduced in recent years, including the filter cache [15], 
dynamically-loaded tagless loop caches [18][19], and preloaded 
tagless loop caches [11]. Such tiny caches can be used in 
addition to an existing cache hierarchy. Not only can each type 
of cache vary in size, but also in certain features. A designer of 
a mass-produced microprocessor platform might select the 
cache architecture that performs best across a wide set of 
benchmarks. 

However, an embedded system typically runs one fixed 
application for the system’s lifetime. For example, a cell 
phone’s software usually does not change. Furthermore, 
embedded system designers are increasingly utilizing 
microprocessor cores rather than off-the-shelf microprocessor 
chips. The combination of a fixed application and a flexible 
core opens the opportunity to tune the core’s architecture to that 
fixed application. Architecture tuning is the customizing of an 
architecture to most efficiently execute a particular application 
(or set of applications) under given constraints on size, 
performance, power, energy, etc.[30], as discussed in the Y-
chart methodology of [13]. A very aggressive form of tuning 
involves creating a customized instruction set [1][8][9][10], 
known as an application-specific instruction set. 

 Complementary to such application-specific instruction-set 
processor design is the design of customized memory 
architectures [7][12][23][24][25][26]. In this paper, we examine 
the need for customized design of the tiny instruction cache part 
of a memory architecture in order to minimize instruction fetch 
energy for a given program. We use an automated simulation 
environment to demonstrate the significant performance and 
energy variations for various tiny instruction cache 
architectures. We show that no one architecture is best across a 
particular set of benchmarks. For those benchmarks, tuning the 
cache architecture results in a 2% to 40% savings compared to 
the architecture that is best for the entire set of benchmarks. 
Variation would be even greater for more diverse benchmarks. 
The results illustrate the need for fast exploration and synthesis 
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of tiny instruction cache hierarchies in embedded system 
design. 

2. Filter/Loop Cache Architectures 
Several tiny cache architectures, shown in Figure 1, have been 
proposed in recent years for low energy or power, each with 
several variations. 

2.1 Filter Cache 
The filter cache proposed in [15] is an unusually small direct-
mapped cache. This filter cache is placed between the CPU and 
the L1 cache and utilizes standard tag comparison and miss 
logic. Because the filter cache is much smaller than the L1 
cache, it will have a faster access time and lower power per 
access, due mainly to having shorter, lower capacitance wires. 
However, because the cache is so small, it may suffer from a 
high miss rate and hence may decrease overall performance. 
Profile-guided compilation was proposed in [3] to reduce 
misses. 

Architecture variation for the filter cache involves different 
cache sizes. Larger filter caches may have a lower miss rate but 
will have higher power per access. 

2.2 Dynamically Loaded Loop Caches 
To eliminate performance degradation and the need for tag 
comparisons, a loop cache was proposed in [18]. The proposed 
loop cache is a small instruction buffer that is tightly integrated 
with the processor and that has no tag address store or valid bit. 
Instead of placing the loop cache between the processor and an 
L1 cache and risk degrading performance, the loop cache is 
simply an alternative location from which to fetch instructions. 
A loop cache controller is responsible for filling the loop cache 
when detecting a simple loop – defined as any short backwards 
branch instruction. At the end of the first iteration of a simple 

loop, the short backwards branch is detected. Then, during the 
second iteration, the loop cache is filled. Finally, starting with 
the third iteration, the loop cache controller fetches instructions 
from the loop cache instead of regular instruction memory.  

The location from which to fetch an instruction is 
determined using a simple counter. The controller continues to 
fetch from the loop cache, resetting the counter each time it 
reaches zero (indicating the loop is iterating again). This 
behavior will continue until a control of flow change is 
encountered or until the triggering short backwards branch is 
not taken. We refer to this type of dynamically loaded loop 
cache as the original dynamic loop cache. 

One drawback of the original dynamic loop cache is the 
cache’s inability to handle loops that are larger than the cache 
itself. The original dynamic loop cache controller would only 
fill the loop cache if the loop completely fit within the cache. To 
alleviate the problem, the original dynamic cache was later 
extended in [19] to what is referred to as a flexible dynamic loop 
cache. In this design, if a loop is larger than the loop cache, the 
loop cache will be filled with the instructions located at the 
beginning of the loop until the loop cache is full. 

Architecture variation for the dynamically loaded loop 
cache thus includes loop cache size as well as original versus 
flexible loop support.  

2.3 Preloaded Loop Caches 
In a dynamically loaded loop cache, internal branches within 
loops, multiple backwards branches to the same starting point in 
a loop, nested loops, and subroutines all pose problems. In each 
of the situations, the control of flow change would cause the 
filling of or execution from the loop cache to be aborted. A 
preloaded loop cache was proposed in [11] to overcome these 
limitations. Using profiling information gathered for a particular 
application, the loops that comprised the largest percentage of 
execution time are selected and preloaded into the loop cache 
during system reset, along with extra bits indicating whether 
control of flow changes within the loop cause an exit from the 
loop. In addition, loop address registers are preloaded to 
indicate which loops were preloaded into the loop cache. After 
this initialization, the contents of the loop cache do not change 
for the duration of program execution. By preloading, all of the 
above-mentioned situations with control of flow changes could 
be handled. 

The loop cache controller can check for a loop address 
whenever a short backwards branch is executed. Since loops are 
preloaded, loop cache fetching can begin on a loop’s second 
rather than third iteration. This approach is referred to as the 
preloaded loop cache (sbb). Alternatively, loop addresses can 
be looked for on every instruction, allowing loop cache fetching 
to begin on a loop’s first iteration. This approach is referred to 
as the preloaded loop cache (sa) (starting address). 

While the preloaded loop cache is also a tagless loop 
caching scheme, it only allows a limited number of loops to be 
cached and requires more complex logic to index into the 
preloaded loop cache. Unlike the previously mentioned caches, 
a preloaded loop cache is not transparent to the designer or tool 
flow, requiring profiling and preloading, but with potentially 
greater energy savings. 

Figure 1: Loop cache roles: (a) a filter cache is L0 memory – 
misses cause a fill from L1, (b) a basic dynamically loaded loop 
cache sits to the side – accesses are either to it or L1 memory, 
(c) a preloaded loop cache also sits to the side, but its contents 

do not change during program execution. 
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Architecture variation for a preloaded loop cache includes 
cache size, number of supported loops, and loop address 
checking strategy. 

3. Evaluation Framework 
Which tiny instruction cache architecture and variation is best? 
The answer depends on the application being executed. We 
evaluated a number of cache architecture variations on a set of 
Powerstone benchmarks [21]. For each benchmark, we 
considered 106 different cache configurations: 

• filter cache – cache sizes ranging from 8 to 1024 bytes, 
with lines sizes of 4 to 64 (configurations where lines 
sizes are greater than cache size were omitted) 

• original dynamic loop cache – cache sizes ranging from 8 
to 1024 entries 

• flexible dynamic loop cache – cache sizes ranging from 8 
to 1024 entries 

• preloaded loop cache using short backwards branch 
address – cache sizes ranging from 8 to 1024 entries, with 
2 to 6 loop address registers 

• preloaded loop cache using start address – cache sizes 
ranging from 8 to 1024 entries, with either 2 or 3 loop 
address registers 

For the dynamic and preloaded loop caches, each entry within 
the cache corresponds to a 32-bit instruction. In addition, for the 
preloaded loop caches, the number of loop address registers 
available indicates the maximum number of loops that can be 
preloaded into the loop cache. 

We developed a suite of tools to evaluate each cache 
configuration for a given benchmark. Starting from C code for 
each benchmark, an lcc compiler ported to the MIPS instruction 
set is used to compile each benchmark. We then use a MIPS 
instruction-set simulator to obtain instruction traces for each 
benchmark. These instruction traces are then fed to the 
appropriate loop cache simulator that calculates the number of 
operations corresponding to the selected cache configuration. 
For example, in dynamically loaded loop caches, we are 
interested in the number of fetches from the loop cache, fills to 
the loop cache, and fetches from the instruction memory. Then, 
using this data, we calculate the instruction-fetch related power 
consumed by each configuration, the execution time for each 
benchmark, and the instruction-fetch related energy consumed. 

The loop cache simulators used back-annotated power data 

obtained from synthesis. We calculated power and energy based 
on the switching activity of each operation and the relative 
capacitance of various components. The switching activity of 
each operation was measured by implementing the various 
cache designs in VHDL. Each design was synthesized using 
Synopsys Design Compiler and simulated at the gate-level to 
determine the average switching activity. The relative 
capacitance values (e.g., the capacitance of an internal net 
compared to a bus) associated with the different components of 
each design were factored out such that we could set these 
values to correspond to different technologies. Using this 
approach, we can compare the various cache configurations 
without limiting the results to a given technology. However, a 
designer interested in determining how each cache 
configuration performs for a specific technology can simply set 
the values to correspond with the technology of interest.  

4. Results 
To facilitate plotting of so many configurations, we map each 
configuration to a number, with Table 1 providing a key to 
show the mapping. For example, 1 represents the original 
dynamic cache with 8 entries, 2 represents the original dynamic 
cache with 16 entries, and so on. For the preloaded loop cache 
using start address, an 8 entry cache with 2 loop address 
registers is referred to with 17, an 8 entry cache with 3 loop 
address register is referred to with 18. For the filter cache, an 8 
byte cache with line size of 8 is referred to with 73. And, since 
an 8 byte cache cannot have a line size of 16, the next cache 
configuration (referred to with 74) is a 16 byte cache with line 
size of 8. 

We measured the average instruction access energy savings 
for each cache configuration for each benchmark compared to 

Table 1: Corresponding code for various cache configurations 

Figure 2: Instruction fetch energy savings for blit for various cache configurations. 
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Cache Type Size Num Loops/ 
Line Size Code 

Original Dynamic 8-1024 N/A 1-8 

Flexible Dynamic 8-1024 N/A 9-16 

Preloaded Loop Cache (SA) 8-1024 2-3 loops 17-32 

Preloaded Loop Cache (SBB) 8-1024 2-6 loops 33-72 

Filter Cache 8-1024 8-64 line size 73-106 



the instruction access energy consumed by a configuration that 
contains no filter/loop cache. Figure 2 shows the savings for 
each cache configuration for the blit benchmark (a graphics 
application) in Powerstone. For this benchmark, we see that the 
dynamic loop caches, preloaded loop caches, and most of the 
filter caches do well, achieving roughly 96% energy savings. 
Since the dynamic loop cache is transparent to the designer and 
has no performance overhead, a designer would likely choose a 
dynamic cache for this benchmark.  

 Figure 3 shows the savings for each cache configuration for 
the v42 benchmark (a modem encoding/decoding application). 
Although the dynamic caches performed well for the blit 
benchmark, they are not competitive for v42. Instead, the 
preloaded loop caches yield a much larger energy savings 
compared to the dynamic and filter caches. The best preloaded 
loop cache using the short backwards branch address is a 512 
entry cache with 5 loop address registers, resulting in instruction 
fetch energy savings of over 60%. 

The remaining benchmarks showed similar variation with 
respect to which loop cache architecture was best. Each class of 
tiny instruction cache architecture was best for at least one 
benchmark.  

Figure 4 shows the average savings of each cache 
configuration over all benchmarks. Cache configuration 30, a 
pre-loaded loop cache using start address with 512 entries and 3 
loop address registers, had an average savings of 73%. Cache 
configuration 105, a filter cache of size 1024 bytes and line size 

of 32, did equally well with a savings of 73%. These two 
configurations had the highest average savings over all cache 
configurations. However, the filter cache does result in some 
performance degradation. Figure 5 shows the average increase 
in execution time given the various filter cache configurations 
compared with the execution time when using a loop cache.  

If the memory architecture could not be customized to a 
particular application, as is the case for pre-fabricated 
microprocessors or even core’s without support for 
customization, then the microprocessor designer would 
typically include the cache configuration that is best on the 
average over a set benchmarks. We thus compared the 
difference in energy savings of the best average configuration 
over all benchmarks to the best customized configuration for 
each benchmark, to see what additional savings we get through 
customization. We previously concluded that configurations 30 
and 105 had the best average savings. The first bar in Figure 6 
shows the savings for the best cache configuration for the given 
benchmark, the second bar shows the savings for configuration 
30, and the third bar shows the savings for configuration 105. 
We see that the best customized cache configuration for 
compress and jpeg each have an increased savings of 23% over 
configuration 30. In addition, for adpcm, ucbqsort, and v42, the 
best customized cache configuration has an increased savings of 
43%, 25%, and 45% respectively, over configuration 105. Thus, 
although on average the difference was only 11% for both cache 
configurations, there exist certain benchmarks where using the 

Figure 3: Instruction fetch energy savings for v42 for various cache configurations 
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Figure 4: Average instruction fetch energy savings for Powerstone benchmarks for various cache configurations 
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best average overall cache configuration will yield significantly 
less savings than using the best cache configuration for a given 
benchmark.  

5. Conclusions  
Incorporating a tiny instruction cache can result in instruction 
fetch energy savings, but many variations of such caches exists. 
By customizing such a cache to a particular program, we 
obtained an average additional energy savings of 11% compared 
to a non-customized cache, with savings over 40% in some 
cases examined.  

Although our current environment is automated, the 
environment requires several hours to find the best 
configuration, because it reruns a cache simulator for every 
configuration. We have also developed faster exploration of the 
configurations [6]. Additionally, we plan to investigate a wider 
variety of loop cache architectures, such as warm-fill 
dynamically-loaded loop caches and hybrid dynamic/preloaded 
loop caches, as well as examining the impact that a good loop 
cache can have on the design of the first level of regular 
instruction cache. 
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