
Tuning of Loop Cache Architectures to Programs in
Embedded System Design

Susan Cotterell and Frank Vahid*
Department of Computer Science and Engineering

University of California, Riverside
{susanc, vahid}@cs.ucr.edu

*Also with the Center for Embedded Computer Systems at UC Irvine

Abstract
Adding a small loop cache to a microprocessor has been shown
to reduce average instruction fetch energy for various sets of
embedded system applications. With the advent of core-based
design, embedded system designers can now tune a loop cache
architecture to best match a specific application. We developed
an automated simulation environment to find the best loop
cache architecture for a given application and technology.
Using this environment, we show significant variation in the
best architecture for different examples. The results support the
need for future fast synthesis of tuned loop cache architectures.

Categories and Subject Descriptors
B.3.0 [Memory Structures]: General.

General Terms
Design.

Keywords
Low power, low energy, tuning, loop cache, embedded systems,
instruction fetching, filter cache, customized architectures,
memory hierarchy, synthesis, architecture tuning, cores.

1. Introduction
Reducing energy and power consumption of embedded systems
translates to longer battery lives and reduced cooling
requirements. For embedded microprocessor based systems,
instruction fetching can contribute to a large percentage of
system power (nearly 50% in [19]), since such fetching occurs
on nearly every cycle, involves driving of long and possibly off-
chip bus lines, and may involve reading numerous memories
concurrently – such as in set-associative caches.

Several approaches to reducing instruction fetch energy
have been proposed, including program compression to reduce

the amount of bits fetched [4][16][20], bus encoding to reduce
the number of switched wires [5][22][27][29], and efficient
instruction cache design [2][14][17][28]. Another category of
approaches, which capitalize on the common feature of
embedded applications spending much time in small loops,
integrate a tiny (perhaps 64 word) instruction cache with the
microprocessor. Such tiny caches have extremely low power per
access, perhaps 50 times less than regular instruction memory
access [19].

Several low-power tiny instruction cache architectures have
been introduced in recent years, including the filter cache [15],
dynamically-loaded tagless loop caches [18][19], and preloaded
tagless loop caches [11]. Such tiny caches can be used in
addition to an existing cache hierarchy. Not only can each type
of cache vary in size, but also in certain features. A designer of
a mass-produced microprocessor platform might select the
cache architecture that performs best across a wide set of
benchmarks.

However, an embedded system typically runs one fixed
application for the system’s lifetime. For example, a cell
phone’s software usually does not change. Furthermore,
embedded system designers are increasingly utilizing
microprocessor cores rather than off-the-shelf microprocessor
chips. The combination of a fixed application and a flexible
core opens the opportunity to tune the core’s architecture to that
fixed application. Architecture tuning is the customizing of an
architecture to most efficiently execute a particular application
(or set of applications) under given constraints on size,
performance, power, energy, etc.[30], as discussed in the Y-
chart methodology of [13]. A very aggressive form of tuning
involves creating a customized instruction set [1][8][9][10],
known as an application-specific instruction set.

 Complementary to such application-specific instruction-set
processor design is the design of customized memory
architectures [7][12][23][24][25][26]. In this paper, we examine
the need for customized design of the tiny instruction cache part
of a memory architecture in order to minimize instruction fetch
energy for a given program. We use an automated simulation
environment to demonstrate the significant performance and
energy variations for various tiny instruction cache
architectures. We show that no one architecture is best across a
particular set of benchmarks. For those benchmarks, tuning the
cache architecture results in a 2% to 40% savings compared to
the architecture that is best for the entire set of benchmarks.
Variation would be even greater for more diverse benchmarks.
The results illustrate the need for fast exploration and synthesis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ISSS’02, October 2–4, 2002, Kyoto, Japan.

Copyright 2002 ACM 1-58113-562-9/02/0010…$5.00.

of tiny instruction cache hierarchies in embedded system
design.

2. Filter/Loop Cache Architectures
Several tiny cache architectures, shown in Figure 1, have been
proposed in recent years for low energy or power, each with
several variations.

2.1 Filter Cache
The filter cache proposed in [15] is an unusually small direct-
mapped cache. This filter cache is placed between the CPU and
the L1 cache and utilizes standard tag comparison and miss
logic. Because the filter cache is much smaller than the L1
cache, it will have a faster access time and lower power per
access, due mainly to having shorter, lower capacitance wires.
However, because the cache is so small, it may suffer from a
high miss rate and hence may decrease overall performance.
Profile-guided compilation was proposed in [3] to reduce
misses.

Architecture variation for the filter cache involves different
cache sizes. Larger filter caches may have a lower miss rate but
will have higher power per access.

2.2 Dynamically Loaded Loop Caches
To eliminate performance degradation and the need for tag
comparisons, a loop cache was proposed in [18]. The proposed
loop cache is a small instruction buffer that is tightly integrated
with the processor and that has no tag address store or valid bit.
Instead of placing the loop cache between the processor and an
L1 cache and risk degrading performance, the loop cache is
simply an alternative location from which to fetch instructions.
A loop cache controller is responsible for filling the loop cache
when detecting a simple loop – defined as any short backwards
branch instruction. At the end of the first iteration of a simple

loop, the short backwards branch is detected. Then, during the
second iteration, the loop cache is filled. Finally, starting with
the third iteration, the loop cache controller fetches instructions
from the loop cache instead of regular instruction memory.

The location from which to fetch an instruction is
determined using a simple counter. The controller continues to
fetch from the loop cache, resetting the counter each time it
reaches zero (indicating the loop is iterating again). This
behavior will continue until a control of flow change is
encountered or until the triggering short backwards branch is
not taken. We refer to this type of dynamically loaded loop
cache as the original dynamic loop cache.

One drawback of the original dynamic loop cache is the
cache’s inability to handle loops that are larger than the cache
itself. The original dynamic loop cache controller would only
fill the loop cache if the loop completely fit within the cache. To
alleviate the problem, the original dynamic cache was later
extended in [19] to what is referred to as a flexible dynamic loop
cache. In this design, if a loop is larger than the loop cache, the
loop cache will be filled with the instructions located at the
beginning of the loop until the loop cache is full.

Architecture variation for the dynamically loaded loop
cache thus includes loop cache size as well as original versus
flexible loop support.

2.3 Preloaded Loop Caches
In a dynamically loaded loop cache, internal branches within
loops, multiple backwards branches to the same starting point in
a loop, nested loops, and subroutines all pose problems. In each
of the situations, the control of flow change would cause the
filling of or execution from the loop cache to be aborted. A
preloaded loop cache was proposed in [11] to overcome these
limitations. Using profiling information gathered for a particular
application, the loops that comprised the largest percentage of
execution time are selected and preloaded into the loop cache
during system reset, along with extra bits indicating whether
control of flow changes within the loop cause an exit from the
loop. In addition, loop address registers are preloaded to
indicate which loops were preloaded into the loop cache. After
this initialization, the contents of the loop cache do not change
for the duration of program execution. By preloading, all of the
above-mentioned situations with control of flow changes could
be handled.

The loop cache controller can check for a loop address
whenever a short backwards branch is executed. Since loops are
preloaded, loop cache fetching can begin on a loop’s second
rather than third iteration. This approach is referred to as the
preloaded loop cache (sbb). Alternatively, loop addresses can
be looked for on every instruction, allowing loop cache fetching
to begin on a loop’s first iteration. This approach is referred to
as the preloaded loop cache (sa) (starting address).

While the preloaded loop cache is also a tagless loop
caching scheme, it only allows a limited number of loops to be
cached and requires more complex logic to index into the
preloaded loop cache. Unlike the previously mentioned caches,
a preloaded loop cache is not transparent to the designer or tool
flow, requiring profiling and preloading, but with potentially
greater energy savings.

Figure 1: Loop cache roles: (a) a filter cache is L0 memory –
misses cause a fill from L1, (b) a basic dynamically loaded loop
cache sits to the side – accesses are either to it or L1 memory,
(c) a preloaded loop cache also sits to the side, but its contents

do not change during program execution.

(a)

Processor

Filter cache
(L0)

L1 memory

(b)

Processor

Basic
dynamic

loop cache

L1 memory

Mux

(c)

Processor

Preloaded
loop cache

L1 memory

Mux

Architecture variation for a preloaded loop cache includes
cache size, number of supported loops, and loop address
checking strategy.

3. Evaluation Framework
Which tiny instruction cache architecture and variation is best?
The answer depends on the application being executed. We
evaluated a number of cache architecture variations on a set of
Powerstone benchmarks [21]. For each benchmark, we
considered 106 different cache configurations:

• filter cache – cache sizes ranging from 8 to 1024 bytes,
with lines sizes of 4 to 64 (configurations where lines
sizes are greater than cache size were omitted)

• original dynamic loop cache – cache sizes ranging from 8
to 1024 entries

• flexible dynamic loop cache – cache sizes ranging from 8
to 1024 entries

• preloaded loop cache using short backwards branch
address – cache sizes ranging from 8 to 1024 entries, with
2 to 6 loop address registers

• preloaded loop cache using start address – cache sizes
ranging from 8 to 1024 entries, with either 2 or 3 loop
address registers

For the dynamic and preloaded loop caches, each entry within
the cache corresponds to a 32-bit instruction. In addition, for the
preloaded loop caches, the number of loop address registers
available indicates the maximum number of loops that can be
preloaded into the loop cache.

We developed a suite of tools to evaluate each cache
configuration for a given benchmark. Starting from C code for
each benchmark, an lcc compiler ported to the MIPS instruction
set is used to compile each benchmark. We then use a MIPS
instruction-set simulator to obtain instruction traces for each
benchmark. These instruction traces are then fed to the
appropriate loop cache simulator that calculates the number of
operations corresponding to the selected cache configuration.
For example, in dynamically loaded loop caches, we are
interested in the number of fetches from the loop cache, fills to
the loop cache, and fetches from the instruction memory. Then,
using this data, we calculate the instruction-fetch related power
consumed by each configuration, the execution time for each
benchmark, and the instruction-fetch related energy consumed.

The loop cache simulators used back-annotated power data

obtained from synthesis. We calculated power and energy based
on the switching activity of each operation and the relative
capacitance of various components. The switching activity of
each operation was measured by implementing the various
cache designs in VHDL. Each design was synthesized using
Synopsys Design Compiler and simulated at the gate-level to
determine the average switching activity. The relative
capacitance values (e.g., the capacitance of an internal net
compared to a bus) associated with the different components of
each design were factored out such that we could set these
values to correspond to different technologies. Using this
approach, we can compare the various cache configurations
without limiting the results to a given technology. However, a
designer interested in determining how each cache
configuration performs for a specific technology can simply set
the values to correspond with the technology of interest.

4. Results
To facilitate plotting of so many configurations, we map each
configuration to a number, with Table 1 providing a key to
show the mapping. For example, 1 represents the original
dynamic cache with 8 entries, 2 represents the original dynamic
cache with 16 entries, and so on. For the preloaded loop cache
using start address, an 8 entry cache with 2 loop address
registers is referred to with 17, an 8 entry cache with 3 loop
address register is referred to with 18. For the filter cache, an 8
byte cache with line size of 8 is referred to with 73. And, since
an 8 byte cache cannot have a line size of 16, the next cache
configuration (referred to with 74) is a 16 byte cache with line
size of 8.

We measured the average instruction access energy savings
for each cache configuration for each benchmark compared to

Table 1: Corresponding code for various cache configurations

Figure 2: Instruction fetch energy savings for blit for various cache configurations.

-100
-80
-60
-40
-20

0
20
40
60
80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

Loop Cache Configurations

%
 E

ne
rg

y
Sa

vi
ng

s

original flexible preloaded (sa) preloaded (sbb) filter

Cache Type Size Num Loops/
Line Size Code

Original Dynamic 8-1024 N/A 1-8

Flexible Dynamic 8-1024 N/A 9-16

Preloaded Loop Cache (SA) 8-1024 2-3 loops 17-32

Preloaded Loop Cache (SBB) 8-1024 2-6 loops 33-72

Filter Cache 8-1024 8-64 line size 73-106

the instruction access energy consumed by a configuration that
contains no filter/loop cache. Figure 2 shows the savings for
each cache configuration for the blit benchmark (a graphics
application) in Powerstone. For this benchmark, we see that the
dynamic loop caches, preloaded loop caches, and most of the
filter caches do well, achieving roughly 96% energy savings.
Since the dynamic loop cache is transparent to the designer and
has no performance overhead, a designer would likely choose a
dynamic cache for this benchmark.

 Figure 3 shows the savings for each cache configuration for
the v42 benchmark (a modem encoding/decoding application).
Although the dynamic caches performed well for the blit
benchmark, they are not competitive for v42. Instead, the
preloaded loop caches yield a much larger energy savings
compared to the dynamic and filter caches. The best preloaded
loop cache using the short backwards branch address is a 512
entry cache with 5 loop address registers, resulting in instruction
fetch energy savings of over 60%.

The remaining benchmarks showed similar variation with
respect to which loop cache architecture was best. Each class of
tiny instruction cache architecture was best for at least one
benchmark.

Figure 4 shows the average savings of each cache
configuration over all benchmarks. Cache configuration 30, a
pre-loaded loop cache using start address with 512 entries and 3
loop address registers, had an average savings of 73%. Cache
configuration 105, a filter cache of size 1024 bytes and line size

of 32, did equally well with a savings of 73%. These two
configurations had the highest average savings over all cache
configurations. However, the filter cache does result in some
performance degradation. Figure 5 shows the average increase
in execution time given the various filter cache configurations
compared with the execution time when using a loop cache.

If the memory architecture could not be customized to a
particular application, as is the case for pre-fabricated
microprocessors or even core’s without support for
customization, then the microprocessor designer would
typically include the cache configuration that is best on the
average over a set benchmarks. We thus compared the
difference in energy savings of the best average configuration
over all benchmarks to the best customized configuration for
each benchmark, to see what additional savings we get through
customization. We previously concluded that configurations 30
and 105 had the best average savings. The first bar in Figure 6
shows the savings for the best cache configuration for the given
benchmark, the second bar shows the savings for configuration
30, and the third bar shows the savings for configuration 105.
We see that the best customized cache configuration for
compress and jpeg each have an increased savings of 23% over
configuration 30. In addition, for adpcm, ucbqsort, and v42, the
best customized cache configuration has an increased savings of
43%, 25%, and 45% respectively, over configuration 105. Thus,
although on average the difference was only 11% for both cache
configurations, there exist certain benchmarks where using the

Figure 3: Instruction fetch energy savings for v42 for various cache configurations

-100
-80
-60
-40
-20

0
20
40
60
80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

Loop Cache Configurations

%
 E

ne
rg

y
Sa

vi
ng

s

Figure 4: Average instruction fetch energy savings for Powerstone benchmarks for various cache configurations

-100
-80
-60
-40
-20

0
20
40
60
80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

Loop Cache Configurations

A
ve

ra
ge

 %
 E

ne
rg

y
Sa

vi
ng

s

original flexible preloaded (sa) preloaded (sbb) filter

original flexible preloaded (sa) preloaded (sbb) filter

best average overall cache configuration will yield significantly
less savings than using the best cache configuration for a given
benchmark.

5. Conclusions
Incorporating a tiny instruction cache can result in instruction
fetch energy savings, but many variations of such caches exists.
By customizing such a cache to a particular program, we
obtained an average additional energy savings of 11% compared
to a non-customized cache, with savings over 40% in some
cases examined.

Although our current environment is automated, the
environment requires several hours to find the best
configuration, because it reruns a cache simulator for every
configuration. We have also developed faster exploration of the
configurations [6]. Additionally, we plan to investigate a wider
variety of loop cache architectures, such as warm-fill
dynamically-loaded loop caches and hybrid dynamic/preloaded
loop caches, as well as examining the impact that a good loop
cache can have on the design of the first level of regular
instruction cache.

6. Acknowledgments
This work was supported by a Department of Education
GAANN fellowship and by the National Science Foundation
(grant CCR-9876006).

7. References
[1] Aditya, S., B. Rau, V. Kathail. Automatic Architectural

Synthesis of VLIW and EPIC Processors. International
Symposium on System Synthesis (ISSS), 1999.

[2] Bahar, R., G. Albera, S. Manne. Power and Performance
Tradeoffs Using Various Caching Strategies. International
Symposium on Low Power Electronics and Design
(ISLPED), 1998.

[3] Bellas, N., I. Hajj, C. Polychronopoulos, G. Stamoulis.
Energy and Performance Improvements in Microprocessor
Desing Using a Loop Cache. International Conference on
Computer Design, 1999.

[4] Benini, L., A. Macii, E. Macii, M. Poncino. Selective
Instruction Compression for Memory Energy Reduction in
Embedded Systems. International Symposium on Low
Power Electronics and Design (ISLPED), 1999.

[5] Benini, L., G. Micheli, E. Macii, D. Sciuto, C. Silvano.
Asymptotic Zero-Transition Activity Encoding for Address
Busses in Low-Power Microprocessor-Based Systems.
IEEE GLS-VLSI-97, 1997.

[6] Cotterell, S., F. Vahid. Synthesis of Customized Loop
Caches For Core-Based Embedded Systems. International
Conference on Computer Aided Design, 2002.

[7] Dutt, N. Memory Organization and Exploration for
Embedded Systems-on-Silicon. International Conference
on VLSI and CAD, 1997.

[8] Fisher, J. Customized Instruction-Sets For Embedded
Processors. Design Automation Conference (DAC), 1999.

[9] Fisher, J., P. Faraboschi, G. Desoli. Custom-Fit Processors:
Letting Applications Define Architectures. International
Symposium on Microarchitecture (MICRO), 1996.

[10] Gonzales, R. Xtensa: A Configurable and Extensible
Processor. International Symposium on Microarchitecture
(MICRO), 2000.

[11] Gordon-Ross, A., S. Cotterell, F. Vahid. Exploiting Fixed
Programs in Embedded Systems: A Loop Cache Example.
Computer Architecture Letters, Vol 1, 2002.

[12] Kavvadias, N., A. Chatzigeorgiou, N. Zervas, S.
Nikolaidis. Memory Hierarchy Exploration For Low Power
Architectures in Embedded Multimedia Applications.
International Conference on Image Processing (ICIP),
2001.

[13] Kienhuis, B., E. Deprettere, K. Vissers, P. van der Wolf.
An Approach for Quantitative Analysis of Application-
Specific Dataflow Architectures. Application-Specific
Systems, Architectures, and Processors (ASAP), 1997.

[14] Kim, S., N. Vijaykrishnan, M. Kandemir, A.
Sivasubramaniam, M. Irwin, E. Geethanjali. Power-aware
Paritioned Cache Architectures. International Symposium
on Low Power Electronics and Design, 2001.

Figure 5: Average performance penalty for filter caches.

0

50

100

150

200

250

300

73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

Cache Configuration

%
 In

cr
ea

se
 in

 E
xe

c.
 T

im
e

Figure 6: Best configuration for a benchmark (left bar) vs. best
average configurations: configuration 30 (middle bar) and

configuration 105 (right bar).

0

20

40

60

80

100

ad
pc

m
bc

nt

bin
ary bli

t

co
mpre

ss crc de
s

en
gin

e fir
g3

fax jpe
g

su
mmin

uc
bq

so
rt v4

2

AVERAGE

Benchmark

%
 E

ne
rg

y
Sa

vi
ng

s

[15] Kin, J., M. Gupta, W. Magione-Smith. The Filter Cache:
An Energy Efficient Memory Structure. International
Symposium on Microarchitecture (MICRO), 1997.

[16] Kirovski, D., J. Kin, W. Mangione-Smith. Procedure Based
Program Compression. International Symposium on
Microachitecture (MICRO), 1997.

[17] Ko, U., P. Balsara. Characterization and Design of A Low-
Power, High-Performance Cache Architecture.
International Symposium on VLSI Technology, Systems,
and Applications, 1995.

[18] Lee, L., B. Moyer, J. Arends. Instruction Fetch Energy
Reduction Using Loop Caches For Embedded Applications
with Small Tight Loops. International Symposium on Low
Power Electronics and Design (ISLPED), 1999.

[19] Lee, L., B. Moyer, J. Arends. Low-Cost Embedded
Program Loop Caching – Revisited. University of
Michigan Technical Report CSE-TR-411-99, 1999.

[20] Lekatsas, H., J. Henkel, W. Wolf. Code Compression for
Low Power Embedded System Design. Design Automation
Conference (DAC), 2000.

[21] Malik, A., B. Moyer, D. Cermak. A Low Power Unified
Cache Architecture Providing Power and Performance
Flexibility. International Symposium on Low Power
Electronics and Design. 2000.

[22] Mehta, H., R. Owens, M. Irwin. Some Issues in Gray Code
Addressing. IEEE GLS-VLSI-96, March 1996.

[23] Nachtergaele, L., F. Catthoor, F. Balasa, F. Franssen, E.
DeGreef, H. Samsom, and H. De Man., Optimization of
Memory Organization and Hierarchy for Decreased Size
and Power in Video and Image Processing Systems.
International Workshop on Memory Technology, 1995.

[24] Panda, P., N. Dutt, A. Nicolau. Architectural Exploration
and Optimization of Local Memory in Embedded Systems.
International Symposium on System Synthesis (ISSS),
1997.

[25] Shiue, W., C. Chakrabarti. Memory Exploration for Low
Power, Embedded Systems. Design Automation
Conference (DAC), 1999.

[26] Slock, P., S. Wuytack, F. Catthoor, and G. Jong. Fast and
Extensive System-Level Memory Exploration for ATM
Applications. International Symposium on System-Level
Synthesis, pp. 74-81, 1997.

[27] Stan, M., W. Burleson. Bus Invert for Low Power I/O.
IEEE Transactions on VLSI, 1995.

[28] Su, C., C. Tsui, A. Despain. Cache Design Trade-offs for
Power and Performance Optimization: A Case Study.
International Symposium Low Power Design, 1995.

[29] Su, C., C. Tsui, A. Despain. Saving Power in the Control
Path of Embedded Processors. IEEE Test and Design of
Computers, Vol. 11, No. 4, 1994.

[30] Vahid, F., T. Givargis, Platform Tuning for Embedded
Systems Design. IEEE Computer, Vol. 34, No 3, 2001.

