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Abstract 
Partitioning an embedded system application among a 
microprocessor and custom hardware has been shown to 
improve the performance, power or energy of numerous 
examples. The advent of single-chip microprocessor/FPGA 
platforms makes such partitioning even more attractive. 
Previous partitioning approaches have partitioned sequential 
program source code, such as C or C++. We introduce a new 
approach that partitions at the software binary level. Although 
source code partitioning is preferable from a purely technical 
viewpoint, binary-level partitioning provides several very 
practical benefits for commercial acceptance. We demonstrate 
that binary-level partitioning yields competitive speedup results 
compared to source-level partitioning, achieving an average 
speedup of 1.4 compared to 1.5 for eight benchmarks 
partitioned on a single-chip microprocessor/FPGA device. 
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Hardware/software partitioning, synthesis, binary translation, 
decompilation, low power, assembly language, FPGA, 
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1. Introduction 
Much previous work has shown the advantages of 
hardware/software partitioning in embedded system design. 
Hardware/software partitioning divides an application into 
software running on a microprocessor and some number of 
coprocessors implemented in custom hardware. The custom 
hardware may be implemented as a new application-specific 
integrated circuit, but could instead be mapped to configurable 
logic, such as a field-programmable gate array (FPGA). 
Advantages of such partitioning include order-of-magnitude 
improvements in performance (e.g., [18][19]), as well as 
reductions in power or energy [21][22][37]. 

The advent of single chip microprocessor/configurable-logic 
platforms makes such partitioning even more attractive 
[2][4][19][31][33][38]. Embedded systems developers can thus 
gain the same time-to-market, cost and single-chip board-size 
advantages previously only possible with software-only 
implementations, while now also gaining the performance and 
energy advantages possible through hardware/software 
partitioning. 

Nearly all hardware/software partitioning approaches 
partition at the source code level. In particular, they partition 
during or even before compilation of the source program. From 
a purely technical point of view, the source code level is 
probably the best place to perform partitioning. However, 

successful technologies are not always based on the best 
technical solution alone. Other considerations can play a critical 
role.  

In this paper, we highlight previous work in traditional 
hardware/software partitioning, and we describe tool flow 
problems that cause resistance to the adoption of such 
partitioning in commercial environments.  We propose software 
binary partitioning as a solution to those problems. We show 
that binary partitioning can achieve results competitive with 
source code partitioning, by drawing on previous work in 
decompilation. We point to future work needed to make binary 
partitioning even more competitive. 

2. Previous Work 
Hardware/software partitioning techniques have been proposed 
over the last decade, and several automated commercial 
products have recently appeared.  

Early work by Gupta [30] focused on taking a behavioral 
hardware specification and moving non-critical regions to 
software, to reduce hardware cost. The behavioral specification 
was read into a synthesis internal format of a hierarchical 
control/dataflow graph, and then partitioned using automated 
heuristics coupled with size and performance estimators. Henkel 
[14] proposed instead to start with a software program, moving 
pieces to hardware to improve speed. They read the software 
into a source statement-level internal format that was then 
partitioned. TOSCA [6] read in a software program that was 
then converted to a generic assembly-level format and 
partitioned. The assembly-level format enabled good estimates 
of software performance and size for a variety of processors. 
SpecSyn [15] partitioned at a coarser level, reading a behavioral 
specification (from a software source or a hardware description 
language) into a procedure-level internal format, and 
partitioning processes and procedures among hardware and 
software. For software estimation, they also compiled 
procedures into a generic assembly-level. Kalavade [24] also 
partitioned behavior at a coarse level of tasks.  Eles [13] and 
Henkel [20] investigated partitioning at various levels of 
granularity, ranging from statements to blocks to procedures. 
OCAPI [34] focuses on supporting partitioning of a software 
program at various stages of design refinement, from the early 
system level, to just before software and hardware code 
generation. Dozens of other efforts in the hardware/software 
codesign community have focused on similar partitioning at 
various levels of granularity.  

Partitioning has also been addressed by the reconfigurable 
computing community, seeking to speedup software by using 
FPGA coprocessors. PRISM [3] was an early effort targeting a 



Figure 1: Hardware/software partitioning approaches: (a) traditional source-based approach (b) proposed binary-based approach and (c) 
typical structure of a hardware/software partitioner. 
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partitioning requires a compiler that is able to partition. 
However, companies typically already have stable and trusted 
compilers for their embedded processors, often coupled with 
sophisticated integrated development environments (IDEs) that 
include graphical debug and analysis tools. The vast majority of 
users of those compilers will not be performing 
hardware/software partitioning, and thus incorporating such 
partitioning into those compilers is not likely to be a priority. 
Furthermore, even companies doing partitioning would like to 
be able to move to a new compiler without having to give up 
their ability to partition. Using a combined compiler/partitioner 
is thus a high-risk proposition. 

A second major problem with source-level partitioning is 
that there is often much code that is not written at the source 
level. Some code may be written at the assembly level – in fact, 
critical code loops are rather likely candidates for such a level. 
Furthermore, some code may exist as object code in libraries 
that are linked in at the final stages before binary generation 
(e.g., math libraries, I/O libraries, and operating system code). 
Such code never gets read into most compilers, and thus is 
never part of the internal format that is partitioned. Yet, the 
assembly code and library code are prime candidates for critical 
kernels that should be considered for partitioning onto 
hardware.  

Furthermore, software may come from several different 
source languages, even for the same product – a single product 
may have code written in C, C++, and even Java (compiled 
using a native compiler). Multiple source files do not require a 
single compiler in current tool flows – they are instead linked at 
the object level.  

We see that the assembly language (or more precisely, the 
machine language) for a given processor represents a sort of 
universal language for that processor. All source languages 
must be converted to the assembly level. Furthermore, the 
instruction set is very resistant to change, and any changes that 
do occur are typically small extensions. 

The binary-level drawback of losing high-level information 
can fortunately be largely overcome today thanks to decades of 
work in decompilation, e.g., [11][12]. Decompilation methods 
are able to extract much high-level information. We will 
describe this in more detail later. 

The second drawback of being processor specific is not a 
major problem in commercial environments. Although some 
research partitioners explore the use of different processors, in 
commercial practice, the decision as to which processor to use 
is made based on many non-technical factors – such as the 
roadmap of future generations of the processor, the stability of 
the processor manufacturer, the quality and stability of the 
software environment supporting the processor, and the past 
experiences with the processor. Thus, having a processor-
specific partitioner is quite reasonable.  

Furthermore, porting an existing binary-level 
hardware/software partitioner to a new processor is not very 
difficult. Decompilation first reads a binary into a processor-
neutral control/dataflow graph. The tool that converts a binary 
to that graph is relatively simple. Thus, a CAD vendor 
supplying a binary-level hardware/software partitioner would be 
able to easily support a wide variety of processors. 

An additional advantage of binary-level partitioning is that 
software performance and size estimation is extremely accurate.  

Looking to the future, we note several successes in dynamic 
binary optimization [5][25]. Conceivably, binary-level 
partitioning could eventually be done dynamically and hence 
completely transparently to a designer, resulting in completely 
transparent software speedup and energy reduction on platforms 
having on-chip FPGAs. This is a long ways off, but binary-level 
partitioning is the first step. 

Thus, while source-level partitioning does have technical 
advantages, binary-level partitioning has numerous practical 
advantages, motivating us to begin development of such a 
partitioner. 

4. Evaluating Improvement Potential for 
Microprocessor/Configurable-Logic Chips 
We first sought to determine the speedup possible by mapping 
critical loops of embedded applications onto configurable logic 
of a modern single-chip microprocessor/configurable-logic 
device. Many programs spend much of their time in small loops. 
Such loops would be excellent candidates for re-mapping to 
hardware, since speeding them up can have a big impact on 
overall performance, and since they may not require too much 
hardware. We sought to determine the potential improvements 
that could be obtained by re-mapping frequently executed small 
loops from software to on-chip configurable logic.  

4.1 Benchmarks and Loop Analysis 
We examined several examples from Motorola’s Powerstone 
[27] benchmark suite: a voice encoder (adpcm), a cyclic 
redundancy check (crc), a data encryption standard (des), an 
engine controller (engine), a fax decoder (g3fax), a JPEG 
decoder (jpeg), a handwriting recognizer (summin), and a 
modem encoder/decoder (v42). We executed each example, 
using the input vectors in Powerstone, on an instruction set 
simulator for a MIPS microprocessor, augmented to output 
instruction traces. We wrote an additional tool to then parse the 
traces and gather loop statistics. 

Complete results of the loop study appear in [35].  The main 
results were that the programs running on the MIPS spent 66% 
of their time in loops with a static size of 256 instructions or 
less. Furthermore, 77% of time spent in loops (or 51% of total 
time) was spent in loops whose static size was 32 instructions or 
less.  More importantly, many of the examples contained just a 
few small loops that dominated the execution time, and 
generally iterated many times per execution.  For example, 
g3fax contains two loops that represent 62% of total execution 
time and consist of only six assembly instructions each.  In 
addition, one of these loops iterates 1,729 times for each 
execution. On average, for all of the tested examples, the two 
most frequent loops accounted for approximately 40% of total 
execution time.  

The implication of this loop analysis is that by remapping 
just a small amount of code to configurable logic, we have the 
potential to achieve significant overall performance and power 
improvements.  

4.2 Partitioning Method 
Our general method of using the configurable logic for 
improvement consisted of moving as much of the software 
execution as possible onto the logic. Thus, based on the analysis 



Figure 2: Target architecture: single chip microprocessor and 
configurable logic. 

Table 1: Benchmark loop information. 
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of the loop regions of a given program, we tried to move the 
most time-dominating software regions onto the logic. Such 
partitioning was limited by the size of the logic, so we 
sometimes had to instead move the second most time-
dominating region. Since our estimations were done for a 
hypothetical single-chip MIPS/FPGA device, we needed to use 
area and power characteristics of real FPGAs.  We chose to use 
the Xilinx VirtexE systems for this purpose.   We used the area 
and power of the XCV50E, XCV100E, and XCV200E.  For 
each example, we used the smallest FPGA that the example 
could fit in, in order to reduce quiescent power.  The Xilinx 
VirtexE devices are not single-chip microprocessor/FPGA 
designs.  We are simply using the Xilinx devices in order to 
estimate characteristics of the FPGA in our hypothetical system, 
which is based on the architecture of the Triscend single-chip 
microprocessor/configurable-logic devices [33].  We have 
previously investigated partitioning [32] on the Triscend E5 and 
A7 chips.  We plan to test binary-level partitioning on these 
systems in the near future. 

Our target architecture is shown in Figure 2, which is based 
on the architecture found in Triscend’s products.  The main 
difference between our architecture and the Triscend 
architecture is the absence of a DMA.  We exclude a DMA from 
our architecture because the execution of the software and 
hardware is mutually exclusive.  Communication between the 
microprocessor and configurable system logic (CSL) takes place 
via shared memory and several direct signals. 

We implemented each partitioning by replacing the selected 
software regions with handshaking behavior. The software 
would activate the CSL using a start signal, and then wait for 
the CSL to set a done signal. The microprocessor enters a low-
power state while waiting for the CSL to finish executing, and 
the CSL enters a low-power state by not executing while 
waiting for the microprocessor. Our results could be further 
improved by considering executing the CSL and microprocessor 
in parallel when data dependencies allow this. 

Table 1 summarizes the relevant loop data for our 
benchmarks. Size indicates the total number of instructions in 
the program, while Loop Instr is the number of instructions in 
the region(s) moved to hardware. Loop Time is the percentage 
of total execution time taken by the region(s). CSL Size is the 
number of configurable logic blocks required by those regions. 
Gates is the equivalent number of gates. 
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g3fax 1,094 12 62% 225 4,265
adpcm 1,910 38 30% 469 8,075
crc 1,060 17 65% 46 770
des 1,529 90 52% 516 9,031
engine 1,108 16 28% 133 2,074
jpeg 1,490 29 10% 157 3,161
summin 1,034 25 48% 212 4,191
v42 1,597 15 23% 233 3,319
Average: 30 40% 249 4,361

Performance and Power Evaluation 
used the testbenches that come with the Powerstone 
hmarks to generate dynamic power and performance data 
e benchmarks. 
e used a simulation-based approach for performance and 

r evaluation. We ran each example on a MIPS architectural 
lator [17] that outputs the number of cycles that a program 
tes, taking into account pipelining and stalls (average 
-per-instruction for the benchmarks was 1.6). The 
gurable logic cycles were determined by creating 
esizable VHDL code and then analyzing that code, 
mistically assuming a region always executed its longest 
(meaning improvements would actually be better than 
 we report).  
n order to determine microprocessor power, we used the 
r of a typical MIPS core [28] that is fabricated using 0.18 
n technology.  We assume a clock speed for the MIPS of 
Hz at a supply voltage of 1.8 V.  We used Xilinx’s Virtex 

r Estimator [36] to estimate power for each example, also 
ing a 0.18 micron FPGA technology (in particular, the 
50E, XCV100E, and XCV200E).  
e estimated total power in the following way: by 

zing the Triscend E5 device [33], we estimated for the 
-based system that the interconnect power, namely the 
r consumed by the system buses and shared memory, 
d be about 0.1 W.  Furthermore, we are assuming a low-
r state of 25% of the active state on the microprocessor 

 and the CSL’s low-power state consisted only of quiescent 
r, and we thus used the following equation to compute 
power:  

Total power = %Sw * PSw + %CSL* (PCSL + .25*PSw) +               
Interconnect Power + Quiescent Power 

e %Sw is the percent of time spent in software, %CSL the 
nt time spent in the CSL, PSw is the power of the software 
 the microprocessor is active, and PCSL is the power of the 
when active. 

Potential Improvements 
rder to determine potential improvements, we manually 
erted the C code for the frequent loops into VHDL.  This 
done by manually extracting parallelism from the C code 



Table 2: Comparison of source-level and binary-level partitioning approaches. 

and then creating the appropriate hardware.  We modified the 
hardware until the longest delay allowed for a clock frequency 
of 100 MHz.  Since the implemented loops were generally very 
small, reaching the desired clock frequency was not difficult.      
Greater speedup could be achieved by performing optimizations 
such as loop unrolling, pipelining, etc. 

The left half of Table 2 shows the performance, power and 
energy data for partitioning the examples at the source level. 
The Sw column represents the total cycles required by an all 
software solution. Loop in sw indicates how many cycles were 
required by the regions that we planned to move to the 
configurable logic. Loop in CSL indicates the cycles required 
when the regions were moved to configurable logic, and 
Sw/CSL represents the total cycles after partitioning.  A is the 
area in gates of the custom hardware for the loop.  P is the 
overall power of the system in Watts. %E is the percentage 
energy improvement.  S is the speedup.  The average speedup 
achieved through source-level partitioning was 1.5. 1 

The energy savings are a modest 27%, due to the power 
increase of using configurable logic. However, as low-power 
configurable logic finds its way onto these devices, and voltage 
scaling becomes more common, those energy savings will likely 
increase tremendously.  

Note that the speedup was achieved by moving less than 3% 
of software to configurable logic (as seen in Table 1) – an 
average of just 30 lines of assembly code. 

5. Initial Studies using a Decompilation-
Based Approach 
In order for binary-level partitioning to achieve acceptable 
results, there are a number of issues that must be dealt with.  
One of the largest problems is that much high-level information 
is lost during the compilation process.  For example, all control 
statements, such as loops and if statements, are implemented 
using jumps and branches.  Also, high-level data structures, 
such as arrays and structures, do not exist at the assembly level.  

Another major problem is that regions of code that contain 
jumps whose target is determined at runtime cannot be 
implemented efficiently in hardware.  Assembly code also tends 
to use many temporary registers in order to implement a high-
level expression.  These registers must be removed in order to 
produce efficient hardware. 

                                                                 
1 The best possible case (assuming the loops were implemented 

in zero time) is 1.84.  

A major issue with binary-level partitioning is that the 
results are dependent on the assembly code produced by a 
compiler or assembly programmer.  For example, a compiler 
may choose to implement a typical move instruction by using 
an add with an immediate value of zero.  This implies that 
constant propagation must be performed, otherwise an adder 
would be included unnecessarily.  Also, since code and data are 
impossible to distinguish at the binary level, a partitioning tool 
must assume that the code is completely separated from data, or 
must determine dynamically if a location is actually an 
instruction. 

As a first attempt at hardware generation from assembly 
code, we tried binary translation techniques, converting each 
assembly instruction into a corresponding state in a VHDL state 
machine.  There was little performance to gain from this 
approach, since most high performance processors have a CPI 
(cycles per instruction) close to 1.  For slower processors, such 
as an 8051, which have a CPI typically ranging from 4 to 12, 
this technique may be more effective.  The largest disadvantage 
of this approach is that each time the hardware partition 
executes, the values of all required registers need to be read by 
the custom logic.  This can add much overhead that in some 
cases causes performance to decrease.  In addition, the area of 
designs based on binary translation was much larger than a 
high-level approach. 

We see that the standard binary translation method imposes 
much overhead. The main problem with this approach is that 
translation is done per instruction, and no high level-
information is used to optimize the hardware.  Alternatively, we 
can use decompilation to recover as much high-level 
information as possible and thus produce a more efficient 
hardware implementation. 

Our hardware generation approach using decompilation is 
illustrated in Figure 3.  This corresponds to the hardware 
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adpcm 113 29 5 89 8,075 0.19 18% 1.3 113 29 7 91 25,936 0.24 2% 1.2
crc 53 34 5 24 770 0.18 56% 2.3 53 34 10 29 3,752 0.20 41% 1.9
des 142 70 15 87 9,031 0.20 31% 1.6 142 70 22 94 18,531 0.32 -5% 1.5
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generation component in Figure 1(c).  One of the first steps in 
decompilation is performing data-flow analysis on the assembly 
in order to remove hardware references (such as registers) and 
to determine high-level expressions.  Data flow analysis is 
performed through the use of definition-use and use-definition 
chains.  Further details can be found in [11].   

Figure 3: Hardware generation from assembly using 
decompilation. 

HW Generation 

Control flow-analysis is generally performed during 
decompilation in order to recover high-level control statements, 
such as if statements and loops.  At this point,  our control-flow 
analysis consists of only basic block determination.  Eventually, 
we will extend this to detect loops with fixed bounds, so that we 
can perform loop unrolling and other optimizations. 

FSM (finite-state machine) scheduling is performed 
following data-flow and control-flow analysis.   We describe the 
HDL of the region as a FSMD (FSM with data) model.  
Therefore, FSM scheduling consists of mapping groups of high-
level statements into states in a finite state machine.  The most 
basic example of FSM scheduling is mapping basic blocks into 
a single state.  Scheduling basic blocks to states simplifies the 
decompilation process because recovery of high-level control 
statements is unnecessary.  Since all control statements jump to 
basic blocks, they can simply be implemented as state 
transitions.  After FSM scheduling has been performed, the 
HDL is passed to an RTL (register-transfer level) synthesis tool 
that creates a netlist.  

We could simplify the process of hardware generation by 
converting the assembly to high-level HDL (hardware 
description language) code and using behavioral synthesis.  
Since one of the main tasks of behavioral synthesis is to create a 
finite state machine for the high-level description, this would 
completely eliminate the need to perform FSM scheduling.  
However, using behavioral synthesis would require more 
detailed control-flow analysis in order to recover high-level 
control statements such as if statements and loops.  We have 
recently begun performing the decompilation process described 
in [11], converting assembly into high-level VHDL.  At this 
point, the behavioral synthesis tool we use is unable to schedule 
the loops at the desired clock frequency without having to add 
extra clock cycles. 

Type analysis is also generally associated with 
decompilation.  However, since high-level types have no effect 
on the HDL code, our approach is greatly simplified by ignoring 
type analysis. 

Results from the decompilation approach are shown in the 
right half of Table 2.  The most interesting result is that the 
average speedup is 1.4, nearly the same as the 1.5 speedup from 
the high-level approach.  This is significant because it implies 
that decompilation-based binary translation can achieve similar 
speedup as partitioning at a higher level.   

The energy savings are lower than the high-level approach, 
averaging 13% savings. The main reason that the energy 
savings are less than a high-level approach is because of the 
increased power consumption.  This results from a less efficient 
implementation of the loops in the CSL. When the application is 
compiled, high-level operations may be transformed into 
different types of assembly operations and high-level 
information may be lost.   Therefore, when decompilation 
occurs, the recovered high-level operations may look different 
than the original code and may be less efficient in hardware.  
This can result in larger hardware partitions.  The hardware for 
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bly-level partitioning is more than twice the size of 

el partitioning.  One area of future work is to transform 
h-level operations to achieve a more power-efficient 
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nclusions 
e/software partitioning at the software binary level has 
actical advantages important for commercial adoption 
chnology. We have shown that such partitioning can 

 with traditional source-level hardware/software 
ing in terms of software speedup, thanks to the use of 
compilation methods. Future work includes using more 
ated decompilation methods to reduce hardware area 
er, to use more aggressive parallelizing techniques 

 a few partitioners to achieve more dramatic speedups, 
 eventually investigate transparent dynamic 
/software partitioning. 
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