
Hardware/Software Partitioning of Software Binaries
Greg Stitt and Frank Vahid*

Department of Computer Science and Engineering
University of California, Riverside

{gstitt | vahid}@cs.ucr.edu, http://www.cs.ucr.edu/~vahid
 * Also with the Center for Embedded Computer Systems at UC Irvine

Abstract
Partitioning an embedded system application among a
microprocessor and custom hardware has been shown to
improve the performance, power or energy of numerous
examples. The advent of single-chip microprocessor/FPGA
platforms makes such partitioning even more attractive.
Previous partitioning approaches have partitioned sequential
program source code, such as C or C++. We introduce a new
approach that partitions at the software binary level. Although
source code partitioning is preferable from a purely technical
viewpoint, binary-level partitioning provides several very
practical benefits for commercial acceptance. We demonstrate
that binary-level partitioning yields competitive speedup results
compared to source-level partitioning, achieving an average
speedup of 1.4 compared to 1.5 for eight benchmarks
partitioned on a single-chip microprocessor/FPGA device.

Keywords
Hardware/software partitioning, synthesis, binary translation,
decompilation, low power, assembly language, FPGA,
codesign, synthesis.

1. Introduction
Much previous work has shown the advantages of
hardware/software partitioning in embedded system design.
Hardware/software partitioning divides an application into
software running on a microprocessor and some number of
coprocessors implemented in custom hardware. The custom
hardware may be implemented as a new application-specific
integrated circuit, but could instead be mapped to configurable
logic, such as a field-programmable gate array (FPGA).
Advantages of such partitioning include order-of-magnitude
improvements in performance (e.g., [18][19]), as well as
reductions in power or energy [21][22][37].

The advent of single chip microprocessor/configurable-logic
platforms makes such partitioning even more attractive
[2][4][19][31][33][38]. Embedded systems developers can thus
gain the same time-to-market, cost and single-chip board-size
advantages previously only possible with software-only
implementations, while now also gaining the performance and
energy advantages possible through hardware/software
partitioning.

Nearly all hardware/software partitioning approaches
partition at the source code level. In particular, they partition
during or even before compilation of the source program. From
a purely technical point of view, the source code level is
probably the best place to perform partitioning. However,

successful technologies are not always based on the best
technical solution alone. Other considerations can play a critical
role.

In this paper, we highlight previous work in traditional
hardware/software partitioning, and we describe tool flow
problems that cause resistance to the adoption of such
partitioning in commercial environments. We propose software
binary partitioning as a solution to those problems. We show
that binary partitioning can achieve results competitive with
source code partitioning, by drawing on previous work in
decompilation. We point to future work needed to make binary
partitioning even more competitive.

2. Previous Work
Hardware/software partitioning techniques have been proposed
over the last decade, and several automated commercial
products have recently appeared.

Early work by Gupta [30] focused on taking a behavioral
hardware specification and moving non-critical regions to
software, to reduce hardware cost. The behavioral specification
was read into a synthesis internal format of a hierarchical
control/dataflow graph, and then partitioned using automated
heuristics coupled with size and performance estimators. Henkel
[14] proposed instead to start with a software program, moving
pieces to hardware to improve speed. They read the software
into a source statement-level internal format that was then
partitioned. TOSCA [6] read in a software program that was
then converted to a generic assembly-level format and
partitioned. The assembly-level format enabled good estimates
of software performance and size for a variety of processors.
SpecSyn [15] partitioned at a coarser level, reading a behavioral
specification (from a software source or a hardware description
language) into a procedure-level internal format, and
partitioning processes and procedures among hardware and
software. For software estimation, they also compiled
procedures into a generic assembly-level. Kalavade [24] also
partitioned behavior at a coarse level of tasks. Eles [13] and
Henkel [20] investigated partitioning at various levels of
granularity, ranging from statements to blocks to procedures.
OCAPI [34] focuses on supporting partitioning of a software
program at various stages of design refinement, from the early
system level, to just before software and hardware code
generation. Dozens of other efforts in the hardware/software
codesign community have focused on similar partitioning at
various levels of granularity.

Partitioning has also been addressed by the reconfigurable
computing community, seeking to speedup software by using
FPGA coprocessors. PRISM [3] was an early effort targeting a

Figure 1: Hardware/software partitioning approaches: (a) traditional source-based approach (b) proposed binary-based approach and (c)
typical structure of a hardware/software partitioner.

Motorola 68010 process
Berkeley BRASS projec
among the Garp [19] arc
reconfigurable logic. Th
user to provide pragma d
is to occur or where dat
platform. The Nimble co
to an architecture consist
a reconfigurable-datapat
compiles C code to a
Both used profiling inf
software regions to the
application based on t
compiler [1]. The Camer
and maps to a platform
gate FPGA board. The
parallelism of the critica
hundred times.

Most partitioning wo
of such partitioning. Re
benefits also [21][22
performance speedup to
for a longer period, or
voltage while still meetin

3. Source versus
Partitioning
All work mentioned ab
compilation (e.g., [15][

Compiler Front-End

Sw source

Compiler
Back-End

Sw source

Compilation

Binaries

Hw/sw partitioning

Binaries

Hw source

Synthesis

Netlists

Hw/sw partitioning

Internal format creation

Internal format Profiling

Sw estimation
Hw estimation

Exploration

Sw
generation

Hw
generation

Hw/sw partitioning

Binaries Netlists

)

Assembler &
Linker

Assembly
&

object files

Assembly
& Assembler &

Linker object files

Hw source

Synthesis
(a)
or and four Xilinx 3090 FPGAs.
t [9] extended a C compiler to parti
hitecture, which combines a MIPS
e NAPA C compiler [18] allows
irectives to specify where computa

a is to reside on a micprocessor/FP
mpiler [16][26] was to compile C c
ing of a general-purpose processor
h coprocessor. Proceler’s product
processor and an FPGA coproces
ormation to detect and move cri
 FPGA. DEFACTO [8] partitions
he intermediate format of the S
on project [7][10] uses a variation
consisting of a PC and a multi-mil
y use a compiler to extract mas
l loops and obtain speedups of sev

rk focuses on the performance ben
cent research has emphasized en

][32][37], achieved by using
put the system in a low power idle s
 to scale down the system opera
g timing constraints.

Assembly Level

ove partitions either before softw
24]), or more commonly, as par
(b
The
tion
with
 the
tion
GA
ode

with
[29]
sor.

tical
 an
UIF
of C
lion
sive
eral

efits
ergy

the
tate
ting

are
t of

compilation. Partitioning durin
Figure 1(a). A compiler front-en
intermediate format, such as SU
is annotated with profiling d
detected, and those parts
implementation in hardware. Th
are then fed through a compiler
code for a processor, while the
fed to a synthesis tool (typical
description language code) for h

Binary-level hardware/softw
would operate on binaries, as
approach would require that so
binaries. The partitioning tool
partition, and generate an upda
and hardware source for the ha
straightforwardly disassembled
the binary level and assembly le

At first glance, a binar
undesirable for several reasons
about the program, such as hig
dimensional array data, arithme
to see. Second, the binary level i

However, traditional so
partitioning has a major practica
its adoptability in real comme
source-level hardware/software
with standard tool flows. Tool
likely continue to be a major iss
One reason such partitioning d
(c)
g compilation is illustrated in
d reads the source code into an
IF [1]. This intermediate format
ata. The critical regions are
are examined for potential
e regions destined for software
 back-end to generate assembly
parts intended for hardware are
ly by first generating hardware
ardware implementation.

are partitioning, in contrast,
illustrated in Figure 1(b). This
urce code first be compiled to
would then read the binaries,

ted binary for the software part
rdware part. As binaries can be
into assembly code, we refer to
vel interchangeably.
y-level approach may seem
. First, high-level information
h-level loop constructs, multi-
tic expressions, etc., are harder
s processor specific.
urce-level hardware/software
l problem that severely restricts
rcial environments: traditional
 partitioning does not fit well
flow has always been and will
ue in commercial environments.
oesn’t fit well is because such

partitioning requires a compiler that is able to partition.
However, companies typically already have stable and trusted
compilers for their embedded processors, often coupled with
sophisticated integrated development environments (IDEs) that
include graphical debug and analysis tools. The vast majority of
users of those compilers will not be performing
hardware/software partitioning, and thus incorporating such
partitioning into those compilers is not likely to be a priority.
Furthermore, even companies doing partitioning would like to
be able to move to a new compiler without having to give up
their ability to partition. Using a combined compiler/partitioner
is thus a high-risk proposition.

A second major problem with source-level partitioning is
that there is often much code that is not written at the source
level. Some code may be written at the assembly level – in fact,
critical code loops are rather likely candidates for such a level.
Furthermore, some code may exist as object code in libraries
that are linked in at the final stages before binary generation
(e.g., math libraries, I/O libraries, and operating system code).
Such code never gets read into most compilers, and thus is
never part of the internal format that is partitioned. Yet, the
assembly code and library code are prime candidates for critical
kernels that should be considered for partitioning onto
hardware.

Furthermore, software may come from several different
source languages, even for the same product – a single product
may have code written in C, C++, and even Java (compiled
using a native compiler). Multiple source files do not require a
single compiler in current tool flows – they are instead linked at
the object level.

We see that the assembly language (or more precisely, the
machine language) for a given processor represents a sort of
universal language for that processor. All source languages
must be converted to the assembly level. Furthermore, the
instruction set is very resistant to change, and any changes that
do occur are typically small extensions.

The binary-level drawback of losing high-level information
can fortunately be largely overcome today thanks to decades of
work in decompilation, e.g., [11][12]. Decompilation methods
are able to extract much high-level information. We will
describe this in more detail later.

The second drawback of being processor specific is not a
major problem in commercial environments. Although some
research partitioners explore the use of different processors, in
commercial practice, the decision as to which processor to use
is made based on many non-technical factors – such as the
roadmap of future generations of the processor, the stability of
the processor manufacturer, the quality and stability of the
software environment supporting the processor, and the past
experiences with the processor. Thus, having a processor-
specific partitioner is quite reasonable.

Furthermore, porting an existing binary-level
hardware/software partitioner to a new processor is not very
difficult. Decompilation first reads a binary into a processor-
neutral control/dataflow graph. The tool that converts a binary
to that graph is relatively simple. Thus, a CAD vendor
supplying a binary-level hardware/software partitioner would be
able to easily support a wide variety of processors.

An additional advantage of binary-level partitioning is that
software performance and size estimation is extremely accurate.

Looking to the future, we note several successes in dynamic
binary optimization [5][25]. Conceivably, binary-level
partitioning could eventually be done dynamically and hence
completely transparently to a designer, resulting in completely
transparent software speedup and energy reduction on platforms
having on-chip FPGAs. This is a long ways off, but binary-level
partitioning is the first step.

Thus, while source-level partitioning does have technical
advantages, binary-level partitioning has numerous practical
advantages, motivating us to begin development of such a
partitioner.

4. Evaluating Improvement Potential for
Microprocessor/Configurable-Logic Chips
We first sought to determine the speedup possible by mapping
critical loops of embedded applications onto configurable logic
of a modern single-chip microprocessor/configurable-logic
device. Many programs spend much of their time in small loops.
Such loops would be excellent candidates for re-mapping to
hardware, since speeding them up can have a big impact on
overall performance, and since they may not require too much
hardware. We sought to determine the potential improvements
that could be obtained by re-mapping frequently executed small
loops from software to on-chip configurable logic.

4.1 Benchmarks and Loop Analysis
We examined several examples from Motorola’s Powerstone
[27] benchmark suite: a voice encoder (adpcm), a cyclic
redundancy check (crc), a data encryption standard (des), an
engine controller (engine), a fax decoder (g3fax), a JPEG
decoder (jpeg), a handwriting recognizer (summin), and a
modem encoder/decoder (v42). We executed each example,
using the input vectors in Powerstone, on an instruction set
simulator for a MIPS microprocessor, augmented to output
instruction traces. We wrote an additional tool to then parse the
traces and gather loop statistics.

Complete results of the loop study appear in [35]. The main
results were that the programs running on the MIPS spent 66%
of their time in loops with a static size of 256 instructions or
less. Furthermore, 77% of time spent in loops (or 51% of total
time) was spent in loops whose static size was 32 instructions or
less. More importantly, many of the examples contained just a
few small loops that dominated the execution time, and
generally iterated many times per execution. For example,
g3fax contains two loops that represent 62% of total execution
time and consist of only six assembly instructions each. In
addition, one of these loops iterates 1,729 times for each
execution. On average, for all of the tested examples, the two
most frequent loops accounted for approximately 40% of total
execution time.

The implication of this loop analysis is that by remapping
just a small amount of code to configurable logic, we have the
potential to achieve significant overall performance and power
improvements.

4.2 Partitioning Method
Our general method of using the configurable logic for
improvement consisted of moving as much of the software
execution as possible onto the logic. Thus, based on the analysis

Figure 2: Target architecture: single chip microprocessor and
configurable logic.

Table 1: Benchmark loop information.

Microprocessor

Configurable
System Logic

(CSL)

UART

TIMERS

A
dd

re
ss

System RAM

D
at

a

of the loop regions of a given program, we tried to move the
most time-dominating software regions onto the logic. Such
partitioning was limited by the size of the logic, so we
sometimes had to instead move the second most time-
dominating region. Since our estimations were done for a
hypothetical single-chip MIPS/FPGA device, we needed to use
area and power characteristics of real FPGAs. We chose to use
the Xilinx VirtexE systems for this purpose. We used the area
and power of the XCV50E, XCV100E, and XCV200E. For
each example, we used the smallest FPGA that the example
could fit in, in order to reduce quiescent power. The Xilinx
VirtexE devices are not single-chip microprocessor/FPGA
designs. We are simply using the Xilinx devices in order to
estimate characteristics of the FPGA in our hypothetical system,
which is based on the architecture of the Triscend single-chip
microprocessor/configurable-logic devices [33]. We have
previously investigated partitioning [32] on the Triscend E5 and
A7 chips. We plan to test binary-level partitioning on these
systems in the near future.

Our target architecture is shown in Figure 2, which is based
on the architecture found in Triscend’s products. The main
difference between our architecture and the Triscend
architecture is the absence of a DMA. We exclude a DMA from
our architecture because the execution of the software and
hardware is mutually exclusive. Communication between the
microprocessor and configurable system logic (CSL) takes place
via shared memory and several direct signals.

We implemented each partitioning by replacing the selected
software regions with handshaking behavior. The software
would activate the CSL using a start signal, and then wait for
the CSL to set a done signal. The microprocessor enters a low-
power state while waiting for the CSL to finish executing, and
the CSL enters a low-power state by not executing while
waiting for the microprocessor. Our results could be further
improved by considering executing the CSL and microprocessor
in parallel when data dependencies allow this.

Table 1 summarizes the relevant loop data for our
benchmarks. Size indicates the total number of instructions in
the program, while Loop Instr is the number of instructions in
the region(s) moved to hardware. Loop Time is the percentage
of total execution time taken by the region(s). CSL Size is the
number of configurable logic blocks required by those regions.
Gates is the equivalent number of gates.

4.3
We
benc
for th

W
powe
simu
execu
cycle
confi
synth
pessi
path
those

I
powe
micro
100 M
Powe
utiliz
XCV

W
analy
MIPS
powe
woul
powe
[23],
powe
total

wher
perce
when
CSL

4.4
In o
conv
was
Example
Size
(instr)

Loop
Instr

Loop
Time

CSL
Size Gates

g3fax 1,094 12 62% 225 4,265
adpcm 1,910 38 30% 469 8,075
crc 1,060 17 65% 46 770
des 1,529 90 52% 516 9,031
engine 1,108 16 28% 133 2,074
jpeg 1,490 29 10% 157 3,161
summin 1,034 25 48% 212 4,191
v42 1,597 15 23% 233 3,319
Average: 30 40% 249 4,361

Performance and Power Evaluation
used the testbenches that come with the Powerstone
hmarks to generate dynamic power and performance data
e benchmarks.
e used a simulation-based approach for performance and

r evaluation. We ran each example on a MIPS architectural
lator [17] that outputs the number of cycles that a program
tes, taking into account pipelining and stalls (average
-per-instruction for the benchmarks was 1.6). The
gurable logic cycles were determined by creating
esizable VHDL code and then analyzing that code,
mistically assuming a region always executed its longest
(meaning improvements would actually be better than
 we report).
n order to determine microprocessor power, we used the
r of a typical MIPS core [28] that is fabricated using 0.18
n technology. We assume a clock speed for the MIPS of
Hz at a supply voltage of 1.8 V. We used Xilinx’s Virtex

r Estimator [36] to estimate power for each example, also
ing a 0.18 micron FPGA technology (in particular, the
50E, XCV100E, and XCV200E).
e estimated total power in the following way: by

zing the Triscend E5 device [33], we estimated for the
-based system that the interconnect power, namely the
r consumed by the system buses and shared memory,
d be about 0.1 W. Furthermore, we are assuming a low-
r state of 25% of the active state on the microprocessor

 and the CSL’s low-power state consisted only of quiescent
r, and we thus used the following equation to compute
power:

Total power = %Sw * PSw + %CSL* (PCSL + .25*PSw) +
Interconnect Power + Quiescent Power

e %Sw is the percent of time spent in software, %CSL the
nt time spent in the CSL, PSw is the power of the software
 the microprocessor is active, and PCSL is the power of the
when active.

Potential Improvements
rder to determine potential improvements, we manually
erted the C code for the frequent loops into VHDL. This
done by manually extracting parallelism from the C code

Table 2: Comparison of source-level and binary-level partitioning approaches.

and then creating the appropriate hardware. We modified the
hardware until the longest delay allowed for a clock frequency
of 100 MHz. Since the implemented loops were generally very
small, reaching the desired clock frequency was not difficult.
Greater speedup could be achieved by performing optimizations
such as loop unrolling, pipelining, etc.

The left half of Table 2 shows the performance, power and
energy data for partitioning the examples at the source level.
The Sw column represents the total cycles required by an all
software solution. Loop in sw indicates how many cycles were
required by the regions that we planned to move to the
configurable logic. Loop in CSL indicates the cycles required
when the regions were moved to configurable logic, and
Sw/CSL represents the total cycles after partitioning. A is the
area in gates of the custom hardware for the loop. P is the
overall power of the system in Watts. %E is the percentage
energy improvement. S is the speedup. The average speedup
achieved through source-level partitioning was 1.5. 1

The energy savings are a modest 27%, due to the power
increase of using configurable logic. However, as low-power
configurable logic finds its way onto these devices, and voltage
scaling becomes more common, those energy savings will likely
increase tremendously.

Note that the speedup was achieved by moving less than 3%
of software to configurable logic (as seen in Table 1) – an
average of just 30 lines of assembly code.

5. Initial Studies using a Decompilation-
Based Approach
In order for binary-level partitioning to achieve acceptable
results, there are a number of issues that must be dealt with.
One of the largest problems is that much high-level information
is lost during the compilation process. For example, all control
statements, such as loops and if statements, are implemented
using jumps and branches. Also, high-level data structures,
such as arrays and structures, do not exist at the assembly level.

Another major problem is that regions of code that contain
jumps whose target is determined at runtime cannot be
implemented efficiently in hardware. Assembly code also tends
to use many temporary registers in order to implement a high-
level expression. These registers must be removed in order to
produce efficient hardware.

1 The best possible case (assuming the loops were implemented

in zero time) is 1.84.

A major issue with binary-level partitioning is that the
results are dependent on the assembly code produced by a
compiler or assembly programmer. For example, a compiler
may choose to implement a typical move instruction by using
an add with an immediate value of zero. This implies that
constant propagation must be performed, otherwise an adder
would be included unnecessarily. Also, since code and data are
impossible to distinguish at the binary level, a partitioning tool
must assume that the code is completely separated from data, or
must determine dynamically if a location is actually an
instruction.

As a first attempt at hardware generation from assembly
code, we tried binary translation techniques, converting each
assembly instruction into a corresponding state in a VHDL state
machine. There was little performance to gain from this
approach, since most high performance processors have a CPI
(cycles per instruction) close to 1. For slower processors, such
as an 8051, which have a CPI typically ranging from 4 to 12,
this technique may be more effective. The largest disadvantage
of this approach is that each time the hardware partition
executes, the values of all required registers need to be read by
the custom logic. This can add much overhead that in some
cases causes performance to decrease. In addition, the area of
designs based on binary translation was much larger than a
high-level approach.

We see that the standard binary translation method imposes
much overhead. The main problem with this approach is that
translation is done per instruction, and no high level-
information is used to optimize the hardware. Alternatively, we
can use decompilation to recover as much high-level
information as possible and thus produce a more efficient
hardware implementation.

Our hardware generation approach using decompilation is
illustrated in Figure 3. This corresponds to the hardware

Eg Sw

Loop
in
sw

Loop
in

CSL
Sw /
CSL A P %E S Sw

Loop
in
sw

Loop
in

CSL
Sw /
CSL A P %E S

g3fax 1,550 947 135 738 4,265 0.20 49% 2.1 1,550 947 262 865 6,428 0.21 35% 1.8
adpcm 113 29 5 89 8,075 0.19 18% 1.3 113 29 7 91 25,936 0.24 2% 1.2
crc 53 34 5 24 770 0.18 56% 2.3 53 34 10 29 3,752 0.20 41% 1.9
des 142 70 15 87 9,031 0.20 31% 1.6 142 70 22 94 18,531 0.32 -5% 1.5
engine 915 145 28 798 2,074 0.18 12% 1.2 915 145 81 851 3,303 0.18 5% 1.1
jpeg 7,900 646 171 7,425 3,161 0.18 6% 1.1 7,900 646 182 7,436 10,082 0.19 4% 1.1
summin 2,920 1,270 266 1,916 4,191 0.19 32% 1.5 2,920 1,270 426 2,076 10,156 0.22 16% 1.4
v42 3,850 846 216 3,220 3,319 0.18 15% 1.2 3,850 846 455 3,459 4,414 0.19 6% 1.1

Avg: 4,361 0.19 27% 1.5 Avg: 10,325 0.22 13% 1.4

Performance (kilo-cycles)

Source-level Partitioning
Performance (kilo-cycles)

Binary-level Partitioning

generation component in Figure 1(c). One of the first steps in
decompilation is performing data-flow analysis on the assembly
in order to remove hardware references (such as registers) and
to determine high-level expressions. Data flow analysis is
performed through the use of definition-use and use-definition
chains. Further details can be found in [11].

Figure 3: Hardware generation from assembly using
decompilation.

HW Generation

Control flow-analysis is generally performed during
decompilation in order to recover high-level control statements,
such as if statements and loops. At this point, our control-flow
analysis consists of only basic block determination. Eventually,
we will extend this to detect loops with fixed bounds, so that we
can perform loop unrolling and other optimizations.

FSM (finite-state machine) scheduling is performed
following data-flow and control-flow analysis. We describe the
HDL of the region as a FSMD (FSM with data) model.
Therefore, FSM scheduling consists of mapping groups of high-
level statements into states in a finite state machine. The most
basic example of FSM scheduling is mapping basic blocks into
a single state. Scheduling basic blocks to states simplifies the
decompilation process because recovery of high-level control
statements is unnecessary. Since all control statements jump to
basic blocks, they can simply be implemented as state
transitions. After FSM scheduling has been performed, the
HDL is passed to an RTL (register-transfer level) synthesis tool
that creates a netlist.

We could simplify the process of hardware generation by
converting the assembly to high-level HDL (hardware
description language) code and using behavioral synthesis.
Since one of the main tasks of behavioral synthesis is to create a
finite state machine for the high-level description, this would
completely eliminate the need to perform FSM scheduling.
However, using behavioral synthesis would require more
detailed control-flow analysis in order to recover high-level
control statements such as if statements and loops. We have
recently begun performing the decompilation process described
in [11], converting assembly into high-level VHDL. At this
point, the behavioral synthesis tool we use is unable to schedule
the loops at the desired clock frequency without having to add
extra clock cycles.

Type analysis is also generally associated with
decompilation. However, since high-level types have no effect
on the HDL code, our approach is greatly simplified by ignoring
type analysis.

Results from the decompilation approach are shown in the
right half of Table 2. The most interesting result is that the
average speedup is 1.4, nearly the same as the 1.5 speedup from
the high-level approach. This is significant because it implies
that decompilation-based binary translation can achieve similar
speedup as partitioning at a higher level.

The energy savings are lower than the high-level approach,
averaging 13% savings. The main reason that the energy
savings are less than a high-level approach is because of the
increased power consumption. This results from a less efficient
implementation of the loops in the CSL. When the application is
compiled, high-level operations may be transformed into
different types of assembly operations and high-level
information may be lost. Therefore, when decompilation
occurs, the recovered high-level operations may look different
than the original code and may be less efficient in hardware.
This can result in larger hardware partitions. The hardware for

the assem
high-lev
these hig
hardware

6. Co
Hardwar
many pr
of the te
compete
partition
basic de
sophistic
and pow
found in
and to
hardware

7. Ac
This wo
Foundati
Educatio
developi

Refere
[1] G.

Mu
Com
Stan

[2] Alte
PLD

Data-Flow
Analysis

Assembly Code

Control-Flow
Analysis

FSM Scheduling

FSMD-based VHDL Code

RTL Synthesis

Netlist

*Shaded items refer to decompilation process.

bly-level partitioning is more than twice the size of

el partitioning. One area of future work is to transform
h-level operations to achieve a more power-efficient
 implementation.

nclusions
e/software partitioning at the software binary level has
actical advantages important for commercial adoption
chnology. We have shown that such partitioning can

 with traditional source-level hardware/software
ing in terms of software speedup, thanks to the use of
compilation methods. Future work includes using more
ated decompilation methods to reduce hardware area
er, to use more aggressive parallelizing techniques

 a few partitioners to achieve more dramatic speedups,
 eventually investigate transparent dynamic
/software partitioning.

knowledgements
rk was supported in part by the National Science
on (CCR-9876006), UC MICRO, and a Department of
n GAANN fellowship. We thank Jason Villarreal for
ng the loop analysis tools.

nces

Aigner, A. Diwan, D. Heine, M. Lam, D. Moore, B.
rphy, C. Sapuntzakis. An Overview of the SUIF2

piler Infrastructure. Computer Systems Laboratory,
dford University.
ra Corporation, ARM-Based Embedded Processor
s, August, 2001.

[3] P. Athanas, H. Silverman: Processor Reconfiguration
Through Instruction-Set Metamorphosis. IEEE Computer,
March 1993.

[4] Atmel FPSLIC,
http://www.atmel.com/atmel/products/prod39.htm.

[5] V. Bala, E. Duesterwald, S. Banerjia. Dynamo: A
Transparent Dynamic Optimization System. Proc. of the
ACM SIGPLAN '00 Conference on Programming
Language Design and Implementation, 2000, pp. 1-12.

[6] A. Balboni, W. Fornaciari and D. Sciuto. Partitioning and
Exploration in the TOSCA Co-Design Flow. International
Workshop on Hardware/Software Codesign, pp. 62-69,
1996.

[7] W. Böhm, J. Hammes, B. Draper, M. Chawathe, C. Ross,
R. Rinker, and W. Najjar. Mapping a Single Assignment
Programming Language to Reconfigurable Systems. The
Journal of Supercomputing, vol. 21, pp. 117-130, 2002.

[8] K. Bondalapati, P. Diniz, P. Duncan, J. Granacki, M. Hall,
R. Jain, and H. Ziegler. DEFACTO: A Design
Environment for Adaptive Computing Technology. In
Reconfigurable Architectures Workshop, RAW’99, April
1999.

[9] BRASS Research Group, http://brass.cs.berkeley.edu/.
[10] The Cameron Project,

http://www.cs.colostate.edu/cameron/.
[11] C. Cifuentes, D. Simon, A. Fraboulet. Assembly to High-

Level Language Translation. Department of Compter
Science and Electrical Engineering, University of
Queensland. Technical Report 439, August 1998.

[12] C. Cifuentes, M. Van Emmerik, D.Ung, D. Simon, T.
Waddington. Preliminary Experiences with the Use of the
UQBT Binary Translation Framework. Proceedings of the
Workshop on Binary Translation, Newport Beach, USA,
October 1999.

[13] P. Eles, Z. Peng, K. Kuchchinski and A. Doboli. System
Level Hardware/Software Partitioning Based on Simulated
Annealing and Tabu Search. Kluwer's Design Automation
for Embedded Systems, vol2, no 1, pp. 5-32, Jan 1997.

[14] R. Ernst, J. Henkel, T. Benner. Hardware-Software
Cosynthesis for Microcontrollers. IEEE Design & Test of
Computers, pages 64-75, October/December 1993.

[15] D.D. Gajski, F. Vahid, S. Narayan and J. Gong. SpecSyn:
An Environment Supporting the Specify-Explore-Refine
Paradigm for Hardware/Software System Design. IEEE
Transactions on VLSI Systems, Vol. 6, No. 1, pp. 84-100,
1998.

[16] R. Goering. Compiler project marks Synopsys' step into
post-ASIC world. EE Times, August 28, 2000,
http://www.eedesign.com/story/OEG20000828S0020.

[17] T. Givargis and F. Vahid, The Platune Platform Tuning
Environment, http://www.cs.ucr.edu/~dalton/Platune/,
2002.

[18] M. Gokhale, J. Stone. NAPA C: Compiling for hybrid
RISC/FPGA architectures. IEEE Symposium on FPGAs
for Custom Computing Machines, FCCM '98.

[19] J. Hauser, J. Wawrzynek. Garp: a MIPS processor with a
reconfigurable coprocessor. IEEE Symposium on FPGAs

for Custom Computing Machines, pages 12-21, Napa
Valley, CA, April 1997.

[20] J. Henkel and R. Ernst. A Hardware/Software Partitioner
using a Dynamically Determined Granularity. Design
Automation Conference, 1997.

[21] J. Henkel, Y. Li. Energy-conscious HW/SW-partitioning of
embedded systems: A Case Study on an MPEG-2 Encoder.
Proceedings of Sixth International Workshop on
Hardware/Software Codesign, March 1998, pp. 23-27.

[22] J. Henkel. A low power hardware/software partitioning
approach for core-based embedded systems. Proceedings
of the 36th ACM/IEEE conference on Design automation
conference, pp. 122 – 127,1999.

[23] Intel StrongArm 1110 Processor,
http://developer.intel.com/design/strong.

[24] A. Kalavade and E. Lee. A Global Criticality/Local Phase
Driven Algorithm for the Constrained Hardware/Software
Partitioning Problem. International Workshop on
Hardware/Software Codesign, 1994, pp. 42-48.

[25] A. Klaiber. The Technology Behind Crusoe Processors.
Transmeta Corporation White Paper, January 2000.

[26] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J.
Stockwood, Hardware-Software Co-Design of Embedded
Reconfigurable Architectures. Proceedings of Design
Automation Conf. (DAC), 1999.

[27] A. Malik, B. Moyer, D. Cermak. A Low Power Unified
Cache Architecture Providing Power and Performance
Flexibility. International Symposium on Low Power
Electronics and Design. June 2000.

[28] MIPS Technologies, Inc., http://www.mips.com.
[29] Proceler, http://www.proceler.com.
[30] R. Gupta, G. De Micheli. Hardware-Software Cosynthesis

for Digital Systems. IEEE Design & Test of Computers,
pages 29-41, September 1993.

[31] C. Snyder. FPGA Processors Ready for Takeoff.
Microprocessor Report, Novemeber 2000, pp. 25-29.

[32] G. Stitt, B. Grattan, J. Villarreall and F. Vahid. Using On-
Chip Configurable Logic to Reduce Embedded System
Software Energy. IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM), 2002.

[33] Triscend Corporation, http://www.triscend.com/. 2002.
[34] G. Vanmeerbeeck, P. Schaumont, S. Vernalde, M. Engels

and I. Bolsens. Hardware/Software Partitioning of
Embedded System in OCAPI-xl. International Symposium
on Hardware/Software Codesign, pp. 30-35, 2001.

[35] J. Villarreal, R. Lysecky, S. Cotterell, K. Miller and F.
Vahid. Loop Analysis of Embedded Applications. UC
Riverside Technical Report UCR-CSE-01-03, 2001.

[36] Virtex Power Estimator, http://support.xilinx.com/cgi-
bin/powerweb.pl.

[37] M. Wan, Y. Ichikawa, D. Lidsky, J. Rabaey. An energy
conscious methodology for early design exploration of
heterogeneous DSPs. Proceedings of the IEEE 1998
Custom Integrated Circuits Conference, p.111-117, Santa
Clara, May 1998.

[38] Xilinx Corporation, Virtex-II Pro Platform FPGA
Handbook, January 31, 2002.

http://www.atmel.com/atmel/products/prod39.htm
http://developer.intel.com/design/strong
http://www.proceler.com/
http://support.xilinx.com/cgi-bin/powerweb.pl
http://support.xilinx.com/cgi-bin/powerweb.pl

	Introduction
	Previous Work
	Source versus Assembly Level Partitioning
	Evaluating Improvement Potential for Microprocessor/Configurable-Logic Chips
	Benchmarks and Loop Analysis
	Partitioning Method
	Performance and Power Evaluation
	Potential Improvements

	Initial Studies using a Decompilation-Based Approach
	Conclusions
	Acknowledgements
	References

