
A First Look at the Interplay of Code Reordering and
Configurable Caches

ABSTRACT
The instruction cache is a popular target for optimizations of
microprocessor-based systems because of the cache’s high
impact on system performance and power, and because of the
cache’s predictable temporal and spatial locality. Optimization
techniques can be designed based on this predictability. We
explore for the first time the interplay of two popular
instruction cache optimization techniques: the long-known
technique of code reordering and the relatively-new technique
of cache configuration. We address the question of whether
those two optimizations complement each other or if one
optimization dominates the other. Through experiments using
embedded system benchmarks, we show that cache
configuration dominates a particular category of code
reordering techniques with respect to optimizing performance
and energy, obviating the need for reordering. We also
examine the modern scenario of synthesized custom caches,
and show that combining cache configuration with code
reordering results in cache size reductions of 13% on average,
and up to 89% in some benchmarks, beyond just cache
configuration alone.

Categories and Subject Descriptors
B.3.2 [Hardware]: Memory Structures: Design Styles – cache
memories.

General Terms
Design.

Keywords
Configurable cache, code reordering, code reorganization, code
layout, cache hierarchy, cache exploration, cache optimization,
low power, low energy, architecture tuning.

1. INTRODUCTION AND MOTIVATION
Optimization is an important part of the design of an
application or system. Many methods exist for optimizing
performance, energy consumption, power consumption, area,
etc. The instruction cache in a microprocessor-based system i s
a popular target for optimizations because the cache plays a
major role in the microprocessor’s performance and power
consumption, and because the instruction cache is amenable to

optimizations due to having predictable temporal and spatial
locality.

Two popular approaches exist for tuning the instruction
cache: code reordering and cache configuration. Code
reordering/reorganization/layout at the basic block level is a
mature method developed in the late 1980’s to tune an
instruction stream to the instruction cache to improve cache
hit rates and improve the cache’s utilization. This widely-
researched method increases performance on average, though
for some examples may decrease performance if applied. Due to
new hardware technologies and core-based design
methodologies, much recent research focuses on a second
approach for instruction cache tuning: cache configuration.
Instruction cache configuration tunes a cache to an
application’s instruction stream to find the lowest energy or
best performing cache configuration for an application.
Configurable parameters normally include cache size, line size,
and associativity. Caches may be configured in a core-based
methodology in which a designer synthesizes a customized
cache along with a microprocessor [2][3][4][18][31]. Caches in
pre-designed chips may instead be hardware configurable, with
configuration occurring by setting register bits during system
reset or during runtime [1][16][34].

Code reordering and cache configuration can be applied at
different times during application design. Code reordering i s
typically carried out during design time as a designer guided
step, while cache tuning can be applied at design time or easily
applied during runtime. For code reordering, the designer must
compile the code, profile the code, and then generated an
optimized executable by either recompiling the code or using
a link-time code optimizer. Dynamic procedure placement [25]
is possible but has received little attention due in part to
potentially significant runtime overhead. Cache configuration
can also be applied as a designer guided step; however, recent
research focuses on cache tuning during runtime to eliminate
the need for designer intervention [34] with little to no
runtime overhead. Designer guided optimization steps
increase the complexity of the design task, whereas runtime
optimization requires no special design efforts and also
ensures optimizations use an application’s real data set.

Code reordering tunes the instruction stream for a cache
whereas cache configuration tunes the cache to the resulting
instruction stream. However, the interaction between the two
tuning approaches – i.e., whether they complement, degrade, or
obviate the need for each other – has not been considered
before, and needs to be addressed. We present in this paper a
study that investigates the interaction so that system
designers can appropriately integrate these two approaches.
Section 2 describes background work on code reordering and
cache configuration. Section 3 describes our evaluation
framework. Section 4 describes our experiments and results
examining the interplay of the two techniques. Section 5
provides our conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’05, April 17–19, 2005, Chicago, Illinois, USA.
Copyright ACM 1-59593-057-4/05/0004...$5.00.

Ann Gordon-Ross, Frank Vahid*
Department of Computer Science and Engineering

University of California, Riverside
{ann/vahid}@cs.ucr.edu

http://www.cs.ucr.edu/~vahid
*Also with the Center for Embedded Computer Systems at UC Irvine

Nikil Dutt
Center for Embedded Computer Systems

School of Information and Computer Science
University of California, Irvine

dutt@cecs.uci.edu
http://www.ics.uci.edu/~dutt

2. INSTRUCTION CACHE
OPTIMIZATIONS

2.1 Code Reordering
Much research exists exploring the benefits of code
reordering. Code reorganization at the basic block level dates
back to early work in 1988 by Samples et. al [24]. McFarling
[17] uses basic block execution counts for code ordering and
instruction exclusion to maximize instruction cache hit ratios
and significantly improves the effectiveness of the cache. Hwu
et. al [13] and Pettis and Hansen [21] (PH) use similar
techniques to reorder basic blocks using edge profile
information. The PH code reordering methodology serves as
the basis for many of the modern code reordering tools and
techniques and in many cases is applied directly with no
modification [6][7][11][14][20][23][26][27][28][29].

For the experiments presented in this paper, we use the
Pentium Link-Time Optimizer (PLTO) [27], which performs
code reordering using an improved PH algorithm. In the PH
algorithm, basic blocks are reordered to reduce the number of
taken branches and to reduce the number of misses in the
instruction cache by increasing instruction locality. For
example, loop bodies frequently contain an error condition
that is checked in each loop iteration but the error code is
infrequently executed. The error handling code is loaded into
the instruction cache, polluting the instruction cache with
code that may never be fetched. Code reordering moves
infrequently executed code out of the loop body, replacing the
code with a jump to the relocated code. Additionally, a jump i s
inserted at the end of the relocated code to transfer control
back to the loop body.

Basic block reordering uses profile information to guide
placement of basic blocks. The goal is to form chains of basic
blocks that are to be placed as straight-line code. More
successful code reordering methods use edge profiling as
opposed to basic block profiling. Edge profiling counts the
number of times each arc in a control flow graph is taken where
basic block profiling simply counts the number of times each

basic block is executed. Edge profiling supplies more
information on the flow of execution through the control flow
graph so basic blocks that are frequently executed in sequence
(have a high arc weight) can be together in the final code
layout.

The basic block reordering methodology used in this paper
is based on the bottom-up positioning algorithm as described
by PH. Initially, a control flow graph is created for the
application with arcs annotated with their corresponding
execution frequency. Figure 1 shows a sample control flow
graph for a loop. The bottom-up algorithm begins with each
basic block as the head and tail of a basic block chain. Next,
each arc in the graph is processed from largest to smallest. The
basic blocks at the source and destination of the arc are merged
to form a new chain if either of the basic blocks is the tail of
one chain and the other basic block is the head of different
chain. If either the source or the destination basic block is not
a head or tail of a chain, the basic blocks may not be
connected. In this case a new chain is formed.

Figure 1 shows the basic block chains that are formed after
applying the bottom-up algorithm to the control flow graph.
After the set of chains are determined, the chains are ordered in
the executable based on the heaviness of the interconnecting
edges. Additionally, unconditional branches are added to the
code to maintain correctness.

PLTO implements a variation of the PH bottom-up
algorithm. PLTO improves upon the original PH algorithm in
two ways. The first improvement addresses minor
modifications needed to address problems identified by
Calder et. al [5]. The improvements deal with branch alignment
to benefit the underlying fetch architecture and branch
predictor. The second improvement deals with the formation of
the basic block chains. The basic blocks are grouped into three
different sets: the hot set, the zero set, and the cold set. The hot
set contains basic blocks that account for a threshold
percentage of the execution time of the application. The zero
set contains all basic blocks that are never executed and all
remaining basic blocks are placed in the cold set. Basic block
chains from each set are determined using the PH bottom-up
algorithm. The chains from each set are then concatenated to
form the final layout.

The PH bottom-up algorithm is designed to exploit a single
level direct mapped cache. Basic block reordering is performed
without any attention to how the ordering may cause
contention in a set associative cache or how code reordering
effects conflicts in the other levels of the cache hierarchy.
More complex algorithms extend code reordering to include
temporal aware code placement and multiple levels of cache
[10]. The effects of code reordering and cache configuration
with these considerations are left for future work.

2.2 Configurable Cache Tuning
Su et. al [30] show in early work that the memory hierarchy i s
very important in determining the power and performance of
an application. Recently, Zhang et. al [34] showed the vastly
different cache configurations required to achieve minimal
energy consumption by the cache. If a cache does not reflect
the requirements of an application, excess energy may be
consumed. For example, if the cache size is too large for an
application, excess energy will be consumed fetching from the
large cache. If the cache size is too small, excess energy may be
consumed due to thrashing – the working set of an application
is constantly being swapped in and out of the cache. Tunable
parameters normally include cache size, line size, and
associativity however, other parameters such as the use of a

Figure 1: Edge weighted control flow graph and resulting
basic block chains.

 A

 B

 C

 D E

 F G H

 I J

 K

 L

1000

4116

334

7 6

7 6

258

258

3782

3416

3400

3400

1 6

366

1000

334

K B C D F I

E G

A

H

L

4116
J

victim buffer, instruction/data encoding, bus width, etc. could
also be included as tunable parameters

Recently, much research has focused on cache tuning.
Motorola’s M*CORE processor [16] offers way configuration,
which allows the ways of a unified cache to be specified as
data, instruction, or unified way or the way may be shutdown
altogether. Albonesi [1] presented a method for using way
shutdown to reduce dynamic energy consumption by an
average of 40%. Zhang et. al [33] introduced a methodology
called way concatenation where a cache may be configured as
direct-mapped, 2-way, or 4-way set associative. Zhang shows
an average energy savings of 40% compared to a 4-way set
associative cache. In additional work by Zhang [32], a tuning
heuristic is presented to tune the level one cache, producing a
set of Pareto optimal points trading off energy consumption
and performance. In [12], Gordon-Ross et. al extend Zhang’s
work to include a second level of cache. A cache tuning
heuristic is designed to tune separate level one and level two
caches showing average cache energy savings of 53% over a
base cache configuration

In this paper, we will apply the cache tuning heuristic
developed by Zhang et. al [34] to configure the level one cache
for reduced energy consumption. Zhang describes a runtime
tuning heuristic to efficiently and effectively search the level
one cache configuration for optimal size, line size, and
associativity showing average cache energy savings of 45% to
55%. The heuristic searches parameters based on their impact
on the energy consumption of the cache. Zhang determined
cache size to have the greatest impact on the energy
consumption of the cache, followed by line size and finally
associativity. The heuristic also takes care to explore each
parameter in a way that minimizes the need for any cache
flushing. The cache tuning heuristic explores the cache as
follows:

1 . Begin with the smallest cache size, line size, and
associativity. Increase the cache size (keeping the line
size and associativity constant) while there is a decrease
in energy. If an increase in energy occurs or the cache i s
at the maximum size, the cache size is fixed at the last
size explored.

2. Using the cache size determined in step one, increase the
line size while there is a decrease in energy. If an increase
in energy occurs or the maximum line size is reached, the
cache line size is fixed at the last size explored.

3. Using the cache size determined in step one and the line
size determined in step two, increase the associativity
while there is a decrease in energy. If an increase in
energy occurs or the maximum associativity is reached,
the associativity is fixed at the last associativity
explored.

This configuration heuristic may be implemented as software
running on a co-processor or as specialized hardware.

To enable the cache tuning heuristic to tune during
runtime, a tunable cache is necessary. Zhang [33] describes
tunable cache hardware and presents verification of the
hardware layout of this configurable cache. Figure 2(a) shows
the configuration cache tuning architecture. Figure 2(b) shows
the base cache consisting of four separate banks that may be
turned on, concatenated with another bank (Figure 2(c)), or
turned off (Figure 2(d)) via a configuration register. Due to the
use of configurable banks, certain cache configurations are not
possible. For instance, if a base cache size of 8 KB is desired,
four banks of 2 KB each will be utilized. An 8 KB direct-
mapped, 2-way, and 4-way set associative cache is available.
To reduce the cache size to 2 KB, three of the banks must be
shut down leaving one remaining bank of 2 KB. Since banks
are used to increase associativity and there is only one bank
available in a 2 KB cache, only a direct-mapped cache i s
available for 2 KB. Further details are available in [33].

3. EVALUATION FRAMEWORK
To determine the combined effects of code reordering and
cache configuration, we used 27 benchmarks: 12 benchmarks
from the Powerstone benchmark suite [16], 3 benchmarks from
the MediaBench benchmark suite [15], and 11 benchmarks
from the EEMBC benchmark suite [9]. For each benchmark
suite, we report data for every benchmark that successfully ran
through the compilation and simulation tools we utilized.
Some benchmarks would not compile, would not run through
the tools, or would not execute correctly after code reordering
was applied.

We used PLTO [27] to perform code reordering on the
applications. PLTO is similar to the popular ALTO [20] tool
but works with the x86 architecture instead of the Alpha
architecture. We performed the following steps to produce
code reordered executables:

1. Compile the code with flags specifying the inclusion of
the symbol table and relocation information and to not
patch any of the instructions. Libraries are statically
linked.

2. Invoke PLTO to instrument the executable to gather edge
profiles.

3 . Run the instrumented executable to produce a file
containing the edge counts.

4 . Rerun PLTO with edge profiles and perform code
reordering.

PLTO offers many other link-time optimizations. To ensure
that we only explored code reordering, we turned off all other
optimizations at the command line. Additionally, for
comparison purposes, we created executables without code
reordering using the same steps as described above except that
in step 4, we turned off the code reordering optimization.

We used Perl scripts to drive the cache tuning heuristic
along with an instruction cache simulator to determine cache
statistics. Most x86 cache simulators are trace driven,
requiring an instruction trace file for execution. Due to the

Figure 2: (a) Configurable cache architecture; (b) 8 KByte 4-
way base cache with for 2 KByte sub banks; (c) 8 KByte 2-

way cache using way concatenation; (d) 4 KByte 2-way cache
using way shutdown.

M
ic

ro
pr

oc
es

so
r

I-cache

D-cache

$ Tuner

M
ai

n
M

em
or

y

(a)

2
K

B

2
K

B

2
K

B

2
K

B

2
K

B

2
K

B

2
K

B

2
K

B

2
K

B

2
K

B

2
K

B

2
K

B

(b) (c) (d)

long execution time of some of the benchmarks studied, trace
driven cache simulation would be cumbersome. To alleviate
the need for instruction traces, we obtained a trap-based
profiler from the University of Arizona to perform execution
driven cache simulation [19]. The trap-based profiler combines
the trace cache simulator Dinero IV [8] and PLTO to create an
execution driven cache simulation. The trap-based profiler
executes the application using PLTO, traps instruction
addresses, and passes the instruction addresses to Dinero.

We determine energy consumption for a cache
configuration for both static and dynamic energy using the
following model:

total_energy = static_energy + dynamic_energy
dynamic_energy = cache_hits * hit_energy + cache_misses *

miss_energy
miss_energy = offchip_access_energy +miss_cycles * CPU_stall_energy

+ cache_fill_energy
miss_cycles = cache_misses * miss_latency + (cache_misses *

(linesize/16) * memory_bandwidth)
static_energy = total_cycles * static_energy_per_cycle

static_energy_per_cycle = energy_per_Kbyte * cache_size_in_Kbytes
energy_per_Kbyte = ((dynamic_energy_of_base_cache * 10%) /

base_cache_size_in_Kbytes)

We used Cacti [22] to determine the dynamic energy
consumed by each cache fetch for each cache configuration
using 0.18-micron technology. The trap profiler provided us
with the cache hits and cache misses for each cache
configuration. Miss energy determination is quite difficult
because it depends on the off-chip access energy and the CPU
stall energy which are highly dependent on the actually
system configuration used. We could have chosen a particular
system configuration and obtained hard values for the
CPU_stall_energy however, our results would only apply to
one particular system configuration. Instead, we examined the
stall energy for several microprocessors and estimate the
CPU_stall_energy to be 20% of the active energy of the
microprocessor for this study. We obtain the
offchip_access_energy from a standard low-power Samsung
memory. To obtain miss cycles, the miss latency and
bandwidth of the system is require. We estimate a cache miss
to take 40 times longer than a cache hit to transfer the first
block (16 bytes) and subsequent blocks (each additional 16
bytes) would transfer in 50% of the time it took to transfer the
first block. Previous work [12] showed that cache tuning
heuristics remain valid across different configurations of miss
latency and bandwidth. We determine the static energy per
Kbyte as 10% of the dynamic energy of the base cache divided
by the base cache size in Kbytes.

We chose cache parameters to reflect those available in
typical embedded processors. We explore cache sizes of 2, 4,
and 8 Kbytes, cache line sizes of 16, 32, and 64 bytes, and set
associativities of direct-mapped, 2-way, and 4-way.

For comparison purposes, we generated cache statistics for
every cache configuration for every benchmark, with and
without code reordering, to determine the optimal cache
configuration. We found that in every case, the tuning
heuristic determined the optimal cache configuration. From
this point forward, we will refer to the heuristically determined
cache configuration as the optimal cache configuration given
that the two yield identical results for every benchmark.

To determine cache energy savings due to cache
configuration, normally a large cache is used as a base cache

for comparison purposes. The cache size reflects a common
configuration likely to be found in a platform to accommodate
a wide range of target applications. However, research shows
that code reordering is most effective for small to medium
cache sizes [17] because an application may entirely fit into
too large of a cache – only in a small cache do we see large
numbers of conflict misses. To best show the benefits of code
reordering, we have chosen the smallest cache as our base
cache configuration – a 2 Kbyte direct-mapped cache with a
line size of 16 bytes. This small cache size is not too small as
to be dominated by capacity misses. Using the smallest cache
possible is also a goal of many cost-constrained embedded
systems.

4. EXPERIMENTS
We explore the interaction of code reordering and cache
configuration by producing four energy and performance
results for each benchmark. The results include energy and
performance values for the base cache configuration for each
benchmark without code reordering and for each benchmark
after code reordering has been performed. Additionally, we
apply cache configuration to each benchmark without code
reordering and for each benchmark after code reordering has
been applied. We are also interested in applying code
reordering again after cache configuration is performed,
however, the code reordering method used does not take the
cache configuration into account and consequently reapplying
code reordering given the tuned cache configuration will not
effect the code ordering. In the future, we hope to explore the
iterative application of code reordering and cache tuning;
however, setting up an experimental framework for this is non-
trivial due to the lack of support for past tools developed for
research on cache configuration aware code reordering.
Creating the setup described in Section 3 took over two
months to locate, obtain, and get all tools interacting properly.
Nevertheless, the non-iterative interplay that we examine
covers a wide range of potential applications of code
reordering and cache configuration, especially those that
apply reordering at compile time and cache configuration at
runtime, since iteration would not be possible in such a case.

4.1 Code Reordering and Cache
Configuration
Figure 3 shows the energy savings and performance impact of
cache configuration both with and without code reordering.
All values have been normalized to the base cache
configuration without code reordering for each benchmark.
Overall, results show a similar trend for both energy and
performance as expected since code reordering simply reduces
the number of cache misses. For code reordering alone, average
energy savings and execution time reduction are
approximately 3.5% over all benchmarks. However, the
averages include two benchmarks, CACHEB and CANRDR where
code reordering performs very poorly. Removing these two
benchmarks from the average increases the average energy
savings and execution time reduction to approximately 9%,
closely reflecting results obtained in previous research [20].
(Ultimately, a designer would hopefully be able to detect the
decreased performance of code reordering on a program and
then choose to not apply reordering on that program).

When cache configuration is applied to the benchmarks,
Figure 3 shows that on average both the energy savings and
performance benefits are nearly identical for cache
configuration without code reordering and cache
configuration with code reordering. Energy savings in the
instruction cache obtained due to cache configuration is on
average 15% without code reordering and 17% with code
reordering over all benchmarks — a minor difference.
Likewise, execution time reduction with cache configuration
averages 17% without code reordering and 18.5% with code
reordering over all benchmarks – again, a minor difference.
From these results, we might conclude that the benefits due to
code reordering are nearly negated when cache configuration i s
used. A designer can thus eliminate the special tools, profiling
setup, and time required to perform code reordering, if runtime
cache configuration is available. The additional savings due to
adding code reordering to cache configuration are nominal and
probably not worth the extra design effort required by the
designer. Runtime cache configuration produces the benefits
without designer effort.

Additionally, we observed a very interesting trend across
all benchmarks. As Figure 3 shows, in a few benchmarks, both
energy and execution time are increased when code reordering
is applied. However, when cache configuration is applied
along with code reordering, there is no execution time
degradation for any benchmark. Execution time for each
application is either as good or better than the base cache
configuration with no code reordering. Cache configuration
thus alleviates some of the negative performance impacts some
applications incur due to code reordering.

4.2 Change in Cache Requirements Due to
Code Reordering
Table 1 shows the optimal cache configuration for each
benchmark without code reordering and with code reordering.
This information shows the effectiveness of code reordering in
increasing the spatial locality of an application. In 30% of the
benchmarks, code reordering results in an optimal cache
having a larger line size. These cases are marked in bold in the
With Code Reordering column. A larger line size in the
optimal cache means that the configurable cache tuning
algorithm found that a larger line size improved the cache hit

rate, which in turn means that code reordering successfully
placed linearly-executed blocks next to one another spatially.

Table 1 also shows that code reordering successfully
increases the overall effectiveness of the optimal cache in 22%
of the benchmarks, resulting in a smaller cache size. These
cases are underlined in the With Code Reordering column. In
only one case, engine, did code reordering actually increase
the size of the optimal cache. The Change in Area column in
Table 1 shows the overall change in optimal instruction cache
area due to code reordering. Positive change denotes an

Table 1: Optimal cache configuration for all benchmarks with
code reordering and without code reordering. Configurations

are noted as cache size followed by associativity followed by line
size. Bold configurations denote cases where code reordering

resulted in a larger line size. Underlined configurations denote
cases where code reordering resulted in a smaller cache size.

Figure 3: (a) Energy consumption with code reordering and cache configuration. Energy for each benchmark is normalized to the
energy consumption of the base cache without code reordering. (b) Execution time with code reordering and cache configuration.

Execution time for each benchmark is normalized to the execution time of the base cache without code reordering.

0
0.2
0.4
0.6
0.8

1
1.2

ad
pc

m
bc

nt bi
lv bl

it
br

ev cr
c

de
s

en
gi
ne fir

m
at

m
ul

po
cs

ag

uc
bq

so
rt

g7
21

gs
m
-d

ec
od

e

gs
m
-e

nc
od

e

A2
TI

ME0
1

Ba
se

FP
01

BI
TM

NP0
1

CA
CH

EB
01

CA
NRD

R0
1

IIR
FL

T0
1

PN
TR

CH
01

PU
W

MOD01

RS
PE

ED
01

TB
LO

OK0
1

TT
SP

RK
01 av

g

Base Cache
Without
Code
Reordering

Base Cache
With Code
Reordering

Optimal
Cache
Without
Code
Reordering
Optimal
Cache With
Code
Reordering

(a)

(b)

0
0.2
0.4
0.6
0.8
1

1.2

ad
pc
m

bc
nt bil

v
bli
t
br
ev crc de

s

en
gin
e fir

ma
tm
ul

po
cs
ag

uc
bq
so
rt
g7
21

gs
m-
de
co
de

gs
m-
en
co
de

A2
TI
M
E0
1

Ba
se
FP
01

BI
TM
NP
01

CA
CH
EB
01

CA
NR
DR
01

IIR
FL
T0
1

PN
TR
CH
01

PU
W
M
OD
01

RS
PE
ED
01

TB
LO
OK
01

TT
SP
RK
01 av

g

1.54 1.55

Without Code
Reordering

With Code
Reordering

Change in Area

adpcm* 4k1w32 4k1w64 8.71%
bcnt* 2k1w64 2k1w64 0%
bilv* 2k1w32 2k1w64 14.28%
blit* 2k1w64 2k1w64 0%
brev* 2k1w64 2k1w64 0%
crc* 2k1w64 2k1w64 0%
des* 8k1w16 4k1w16 -78.70%
engine* 4k1w16 8k1w16 44.04%
fir* 2k1w16 2k1w32 8.72%
matmul* 4k1w16 2k1w16 -89.08%
pocsag* 2k1w16 2k1w32 8.72%
ucbqsort* 2k1w64 2k1w64 0%
g721** 8k1w16 8k1w32 7.53%
gsm-decode** 2k1w16 2k1w64 21.75%
gsm-encode** 2k1w16 2k1w16 0%
A2TIME*** 4k1w16 2k1w32 -72.60%
BaseFP*** 2k1w32 2k1w64 14.28%
BITMNP*** 4k1w64 4k1w32 -9.54%
CACHEB*** 2k1w64 2k1w64 0%
CANRDR*** 4k1w64 2k1w32 -67.96%
IIRFLT*** 8k1w64 8k1w64 0%
PNTRCH*** 2k1w64 2k1w64 0%
PUWMOD*** 4k1w64 2k1w32 -67.96%
RSPEED*** 2k1w64 2k1w64 0%
TBLOOK*** 2k1w64 2k1w64 0%
TTSPRK*** 8k1w64 4k1w32 -80.95%

avg -13.03%*Powerstone **Mediabench ***EEMBC

1.59 1.61

increase in cache size while a negative change denotes a
decrease in cache size. Overall, we observed a 13% decrease in
optimal instruction cache area due to code reordering. The
decrease in cache size reveals an optimization available for
small custom synthesized embedded systems with very tight
area constraints. From this data, we can conclude that code
reordering and cache configuration can be used to reduce the
area devoted to the instruction cache by an average of 13% and
by as much as 89%.

5. CONCLUSIONS AND FUTURE WORK
We explored for the first time the interplay of two instruction
cache optimization techniques: code reordering and cache
configuration. Our results show that cache configuration
obviates the need for code reordering with respect to
performance and energy, using a popular code reordering
method. Thus, cache configuration applied dynamically
during runtime would eliminate the need for designer applied
code reordering. Even for cache configuration applied at
design time, our results show that cache configuration
performs better than code reordering, yielding better average
improvement, and avoiding the undesirable energy and
performance degradation obtained by code reordering for some
benchmarks.

 Additionally, we showed that in 52% of the benchmarks,
code reordering was successful in improving cache utilization
by resulting in an optimal cache configuration that was either
smaller or had a larger line size (and better hit rate). The
success of code reordering resulted in an average reduction in
instruction cache size of 13% and as high as 90%. This
reduction in size reveals a benefit for applying both
optimization methods in core-based embedded microprocessor
design flows.

Future work includes studying code reordering techniques
that take temporal locality and multiple cache levels into
account. Additionally, we plan to study the iterative interplay
of code reordering and cache configuration using a code
reordering technique that takes into consideration the target
cache configuration. In such an approach, we might apply
reordering and cache configuration multiple times and in
different sequences in a search for the best tuning of
instruction stream to cache and cache to instruction stream.

6. ACKNOWLEDGEMENTS
We would like to thank Professor Saumya Debray and Patrick
Moseley from the University of Arizona for providing PLTO
and the trap profiler. This research was supported in part by the
National Science Foundation (CCR-0203829, CCR-9876006).

7. REFERENCES
[1] Albonesi, D.H. Selective cache ways: on demand cache resource

allocation. Journal of Instruction Level Parallelism, May 2002.
[2] Altera, Nios Embedded Processor System Development,

http://www.altera.com/corporate/news_room/releases/products/nr-
nios_delivers_goods.html

[3] Arc International, www.arccores.com
[4] ARM, www.arm.com
[5] Calder, B, Grunwald, D. Reducing branch costs via branch

alignment. 6th International Conference on Architectural Support for
Programming Languages and Operating Systems, October 1994.

[6] Cohn, R., Goodwin, P., Lowney, G., Rubin, N. Spike: an optimizer
for Alpha/NT executables. in USENIX Windows NT Workshop,
August 1997.

[7] Cohn. R., Lowney, P.G. Design and analysis of profile-based
optimization in Compaq's compilation tools for Alpha. Journal of
Instruction Level Parallelism, vol. 2, May 2000.

[8] Dinero IV, http://www.cs.wisc.edu/~markhill/DineroIV/

[9] EEMBC, the Embedded Microprocessor Benchmark Consortium,
www.eembc.org.

[10] Gloy, N. Code Placement using Temporal Profile Information. PhD
thesis, Harvard University, 1998.

[11] Gloy, N., Blackwell, T., Smith, M.D., Calder, B. Procedure
placement using temporal ordering information. Proceedings of the
30th Anual ACM/IEEE Intl. Symposium on Microarchitecture, pages
303--313, Dec. 1997.

[12] Gordon-Ross, A., Vahid, F., Dutt, N. Automatic tuning of two-level
caches to embedded applications. Design, Automation and Test
Conference in Europe (DATE), 2004.

[13] Hwu, W.W., Chang, P. Achieving high instruction cache
performance with an optimizing compiler. Proceedings of the 16th
Annual Intl. Symposium on Computer Architecture, June 1989.

[14] Lee, D., Baer, J., Bershad, B., Anderson, T. Reducing startup
latency in web and desktop applications. In Windows NT Symposium,
July 1999

[15] Lee, C., Potkonjak, M., Mangione-Smith, W.H. MediaBench: a tool
for evaluating and synthesizing multimedia and communication
systems. Proc 30th Annual International Symposium on
Microarchitecture, December 1997

[16] Malik, A., Moyer, W., Cermak, D. A low power unified cache
architecture providing power and performance flexibility.
International Symposium on Low Power Electronics and Design, 2000.

[17] McFarling, S. Program optimization for instruction caches.
ASPLOS-III: 3rd Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, April 1989.

[18] MIPS Technologies, www.mips.com
[19] Moseley, P., Debray, S., Andrews, G. Checking program profiles.

Third IEEE International Workshop of Source Code Analysis and
Manipulation, September 2003.

[20] Muth, R., Debray, S., Watterson, S., de Bosschere, K. Alto: a link-
time optimizer for the Compaq Alpha. Software Practice and
Experience, 31(6):67--101, Jan. 2001

[21] Pettis, K., Hansen, R. Profile guided code positioning. Proceedings
of the ACM SIGPLAN conference on Programming Language Design
and Implementation, 1990.

[22] Reinman, G., Jouppi, N.P. Cacti2.0: an integraded cache timing and
power model. COMPAQ Western Research Lab, 1999.

[23] Romer, T., Voelker, G., Lee, D., Wolman, A., Wong, W., Levy, H.,
Bershad, B., Chen, B. Instrumentation and optimization of Win32/Intel
executables using ETCH. In USENIX Windows NT Workshop,
August 1997,

[24] Samples, A.D., Hilfinger, P.N. Code reorganization for instruction
caches. Technical Report UCB/CSD 88/447, University of California
Berkly, October 1988.

[25] Scales, D.J. Efficient dynamic procedure placement. Technical
Report WRL-98/5, Compaq WRL Research Lab, May 1998.

[26] Scales, D.J., Randall, K.H, Ghemawat, S., Dean, J. The swift java
compiler: design and implementation. Technical Report 2000/2,
Compaq Western Research Laboratory, Apr. 2000.

[27] Scharz, B., Debray, S., Andrews, G., Legendre, M. PLTO: a link-
time optimizer for the Intel IA-32 architecture. Proc. 2001 Workshop
on Binary Translation (WBT-2001), Sept. 2001.

[28] Silicon Graphics Inc, Cord manual page. IRIX 5.3
[29] Srivastava, A., Wall,D. A practical system for intermodule code

optimization at link-time. Technical Report 92/6. Digital Western
Rearch Labrartory. June 1992.

[30] Su, C., Despain, A.M. Cache design trade-offs for power and
performance optimization: a case study,” Int. Symp. on Low Power
Electronics and Design , 1995.

[31] Tensilica, Xtensa Processor Generator, http://www.tensilica.com/.
[32] Zhang, C., Vahid, F. Cache configuration exploration on

prototyping platforms. 14th IEEE International Workshop on Rapid
System Prototyping (RSP- 03). San Diego, June 2003.

[33] Zhang, C., Vahid, F., Najjar, W. A highly-configurable cache
architecture for embedded systems. 30th Annual International
Symposium on Computer Architecture, June 2003.

[34] Zhang, C., Vahid, F. A self-tuning cache architecture for
embedded systems. Design, Automation and Test Conference in
Europe (DATE), 2004

