

C is for Circuits: Capturing FPGA Circuits as Sequential
Code for Portability

Scott Sirowy*, Greg Stitt†, Frank Vahid*‡

*Dept. of Computer Science and Engineering
University of California, Riverside
{ssirowy,vahid}@cs.ucr.edu

†Dept. of Electrical and Computer Engineering
University of Florida

gstitt@ece.ufl.edu

Abstract
Synthesizing common sequential algorithms, captured in a
language like C, to FPGA circuits is now well-known to provide
dramatic speedups for numerous applications, and to provide
tremendous portability and adaptability advantages over circuit
implementations of an application. However, many applications
targeted to FPGAs are still designed and distributed at the circuit
level, due in part to tremendous human ingenuity being exercised
at that level to achieve exceptional performance and efficiency. A
question then arises as to whether applications for FPGAs will
have to be distributed as circuits to achieve desired performance
and efficiency, or if instead a more portable language like C
might be used. Given a set of common synthesis transformations,
we studied the extent to which circuits published in FCCM in the
past 6 years could be captured as sequential code and then
synthesized back to the published circuit. The study showed that a
surprising 82% of the 35 circuits chosen for the study could be re-
derived from some form of standard C code, suggesting that
standard C code, without extensions, may be an effective means
for distributing FPGA applications.

Categories and Subject Descriptors
D.1.4 [Software]: – Programming, Sequential programming

B.5.2 [Hardware]: – RTL, Automatic Synthesis

General Terms
Algorithms, Design, Languages, Performance

1. INTRODUCTION
It is now well-established that many sequential algorithms
captured in a language like C can be synthesized to exceptionally
fast circuits on field-programmable gates arrays. Numerous FPGA
synthesis tools exist [13][18][20][40], with commercial offerings
beginning to appear [10][11][32], and commercial computing
platforms increasingly supporting FPGAs [27][43]. Capturing
algorithms in C code (or a similar sequential language, which for
simplicity we’ll refer to as C code henceforth) provides
tremendous portability advantages, as code can be compiled to a

microprocessor, or synthesized entirely or partially to FPGAs
available on a computing platform. Yet, designers still often
conceptualize and capture applications as circuit designs, rather
than as C code. While this situation is partly explained by the
relatively nascent state of FPGA compilation tools, a significant
contributor is also the radically different computation model
provided by C than by circuits. The sequential instruction model
of C is oriented to time-ordered execution of instructions, while
circuits are oriented to spatial connectivity of concurrently-
executing components.

In contrast to the advent of compilers causing assembly
coding to be almost entirely replaced by C coding, where both
coding styles were temporally oriented, the sharp distinction
between temporal and spatial models likely means that spatial
models will persist in some form despite continued maturation of
C-based FPGA synthesis. Spatial models, such as circuits, possess
tremendous degrees of design freedom. Much human ingenuity
often underlies the design of both custom circuits and what are
known as “hardware algorithms,” which often look radically
different from sequential code algorithms designed to solve the
same problem. (Because “hardware algorithms” is a misnomer in
the era of FPGAs, which implement circuits as software, we use
the term “circuit-based algorithms”). Figure 1 shows that while a
standard synthesis tool might be able to generate a number of
different circuits based on the temporally-oriented Quicksort

Figure 1: Although temporally-oriented algorithms in C can be
synthesized to a variety of circuits trading off size and performance,
many clever circuits representing spatially-oriented algorithms are

not reasonably derivable from temporally-oriented algorithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
FPGA’08, February 24–26, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-934-0/08/02...$5.00.

‡Also with the Center for Embedded Computer Systems, University of California, Irvine

quicksort(array, left, right)
{
 // quicksort C code
}

N unsorted

Split

1 sorted 1 sorted

2 sorted 2 sorted

Split
Merge

...

. . . .

Synthesis

algorithm, no amount of transformations would be likely to
discover a systolic array circuit implementation for fast sorting.

Although circuits represent an important application capture
method, capturing applications as circuits suffers from limited
portability. A circuit, captured at the netlist level or even at the
register-transfer level, cannot readily be adapted to FPGAs
differing in their capacities or hard core resources, nor be
compiled to execute on a microprocessor. Improved portability
could increase the present usefulness of an application across
platforms, while also increasing its longevity. In contrast to a
circuit, an algorithm captured in C code has much portability. C
code can be synthesized to FPGAs of differing capacities and
hard core resources, through transformations like loop unrolling
and through scheduling, allocation, binding, and technology
mapping. C code can even be partitioned among a microprocessor
and FPGA, or run on a microprocessor (or several
microprocessors) without any FPGAs at all.

We therefore asked the following question:

To what extent can human-designed circuit
implementations of an application be captured in a
form of C code that can be expected to be synthesized
back to the same human-designed circuit?

Note that this question has a subtle but critical difference from
most past research that instead seeks to convert an existing
sequential algorithm to a circuit [13][16][18][28][40][46][47] –
research that clearly has much utility. To the best of our
knowledge, the above question has not been directly addressed by
the codesign or synthesis communities.

Several previous works are related to the question. Stitt [48]
provides guidelines for C coders to yield improved circuits.
Haubelt [24] formally analyzes a high-level description’s
flexibility, meaning the extent to which the description can be
synthesized to a wide variety of circuits.

Other works are also related. Work on reverse engineering of
circuits [14][22] has focused on obtaining low-level behavioral
models, like Boolean equations or finite-state machines, for

retargeting to different silicon technologies. Those works are not
intended for targeting microprocessors. Early hardware/software
partitioning work moved non-critical circuit functionality from
circuits to microprocessor code [21]. SystemC [17], involving
libraries and macros added to C++, allows for temporal and
spatial concepts to be captured in a single C++ description.

Of course, circuit designers who use synthesis tools regularly
use knowledge of synthesis techniques when writing behavioral
(e.g., register-transfer-level) descriptions, such as writing a for
loop that can easily be unrolled. Likewise, parallel architecture
programmers write simpler code (e.g., loops) they know
compilers will transform to parallel code. The question we seek to
answer takes circuit techniques to a higher level, and differs from
parallel programming techniques in the finer granularity of
parallelism offered by FPGAs compared to more standard parallel
architectures.

None of the above works explicitly addresses whether
existing circuits can be captured in a temporal language.
Answering this question is relevant to the FPGA and codesign
communities, to determine the extent to which C code can be used
to distribute circuit-based algorithms to different compute
platforms – algorithms that today are commonly captured and
distributed as circuit or register-transfer-level designs.

2. A MOTIVATING EXAMPLE- SORTING
There are numerous factors a designer must consider when
implementing a sorting algorithm, including data set size, data
ordering, and now more recently, the platform on which the
algorithm will run.

A software designer targeting a microprocessor platform
might use a classic temporal sorting algorithm, such as
Quicksort[30], which recursively divides the data into sets greater
than and less than a selected pivot. In contrast, a designer
targeting an FPGA might approach the problem differently,
instead relying on spatial constructs to capture the notion of
sorting. The designer might use a systolic Mergesort [57] or
Bitonic sort [7], representing highly-parallel, pipelined sorting

Figure 2: C is for circuits: Some circuits might still be captured in a form of C code that is synthesizable back to the original circuit; such
C code would provide tremendous portability advantages over other circuit representations

C code?

Manual
Capture

Synthesis

Designer
captures spatial
algorithm as
custom circuit

N unsorted

Split

1 sorted 1 sorted

2 sorted 2 sorted

Split
Merge

...

Temporal domain

Spatial domain

Queue 16_u, 16_s, 1_1, 1_2, 2_1, 2_2, 4_1,
 4_2, 8_1, 8_2;
Split(16_u.dequeue, 16_u.dequeue, 1_1, 1_2);
stage1 = Merge(1_1.dequeue, 1_2.dequeue);
Split(16_u.dequeue, 16_u.dequeue);
stage1 += Merge(1_1.dequeue, 1_2.dequeue);
Split(stage1, 2_1, 2_2);
…

N unsorted

Split

1 sorted 1 sorted

2 sorted 2 sorted

Split
Merge

...

Same circuit

methods, which cannot reasonably be expected to be derived from
a Quicksort algorithm by any FPGA compiler (Figure 1). Those
methods are radically different than the temporal Quicksort
algorithm, even though they accomplish the same task.

Unfortunately, a systolic Mergesort circuit representation is
typically not portable, often distributed as a bitstream or at best,
some form of netlist. The lack of portability forces distributors to
design not only different circuits for different data set sizes, but
also for different FPGA sizes and families, which could easily
number in the hundreds. Figure 2 illustrates the portability
benefits of capturing circuits as C code, showing that if we can
capture the systolic Mergesort circuit in some form of C code that
could be synthesized to the original circuit, we would have a more
robust distribution format, capable of being run on a wide range
of platforms.

3. STUDY METHODOLOGY
To investigate whether circuits designed for FPGAs might be
captured and synthesized from C code, we examined all papers
from the last six years of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2001-2006),
a forum for presentation of clever human-designed circuits for
FPGAs (among other topics). We found 70 papers that focused on
description of new circuit-based algorithms or clever circuit
implementations of standard algorithms for some application.
After estimating that each example would require 2-3 days of
investigation, we decided to investigate in-depth half of those
circuits. We pseudo-randomly chose the subset of 35 circuits to
investigate by sorting the 70 circuit papers according to their
appearance in the proceedings, starting from oldest to newest. We
chose every other paper for investigation – we explain this to
make clear that the circuits were not handpicked based on their
suitability for C code representation.

We then strove to find C code descriptions for the circuits that
would compile back to the same circuit. The goal of the study was
to find any C description that would compile to the human-
designed circuit. Specifically, the claim is not that all functionally
equivalent C algorithms would compile to that circuit. Only one is
needed, and that one would be used to distribute the circuit-based
algorithm. Furthermore, the goal is not to automate the derivation
of the C code from the circuit, but merely to determine if a
competent designer could capture his/her circuit in C code if
necessary.

If we were able to capture the circuit in C code that would
synthesize back to the same circuit, we classified the circuit as
“re-derivable from C”.

Note that if we failed to classify the circuit as re-derivable
from C, another C algorithm for the application likely exists that
would synthesize to some other circuit with the same
functionality, just not the same circuit as the human-designed one.
That other circuit would likely have slower performance.

We further sub-categorized the circuits that we found to be re-
derivable from C as either synthesizable from “temporally-
oriented C” or “spatially-oriented C”. We define “temporally-
oriented C” as the obvious algorithm that most simply captured
the desired behavior of the application (e.g., what we feel is the
most “natural” algorithm). If we failed to find such a C
algorithm, we next tried to capture the circuit’s unique spatial
features, through careful use of subroutines and loops, such that a
reasonable FPGA synthesis tool should yield the original circuit
again. While noting whether circuits were captured in temporally-

oriented and spatially-oriented C was not the main point of the
study, the distinction does provide some notion of the effort
required by designers to capture their circuit in C code, with
spatially-oriented C being harder to write. Furthermore, the
distinction also shows the extent of the cleverness of the human-
designed circuit, with those derivable from the spatially-oriented
C rather than temporally-oriented C likely exhibiting more
complex or novel circuit design features.

3.1 Standard Synthesis Transformations
Because FPGA synthesis tools are still maturing and presently
differ widely, we did not simply run the C algorithm through one
particular tool. Instead, we defined the transformations and
optimizations that could be expected in a mature “standard”
synthesis tool. The reader may thus determine for him/herself
whether the transformations are “standard” enough to be applied
by synthesis tools. To perform synthesis, we followed the
methodology shown in Figure 3. If we were able to capture the
circuit in C, we converted that C code into a control/data flow
graph. We optimized the graph by performing the following
optimizations in the order shown: function inlining, loop
unrolling, predication, constant propagation, dead code
elimination, and code hoisting – straightforward optimizations
that could be reasonably implemented in any compilation tool.
We performed definition-use analysis to verify that regions of a
circuit could be pipelined straightforwardly. We performed
resource allocation by allocating a resource for every operation in
the dataflow graph. We could have used a more conservative
resource allocation, but most of the circuits we investigated were
pipelined, and therefore would not allow sharing of resources. We

Figure 3: Study methodology. We modeled each circuit in C (when
possible). We then performed the following transformations and

optimizations in the order shown, representing a “standard” synthesis
tool, and observed whether the original circuit was recovered.

“Standard” synthesis tool

1. Function Inlining
2. Loop Unrolling
3. Predication
4. Constant Propagation
5. Dead Code Elimination
6. Code Hoisting
7. Definition-Use Analysis

CDFG creation

Optimizations

Resource Allocation

VHDL Creation

CDFG analysis

C

Capture circuit in C code?Same circuit?
If not, modify
C and repeat

Scheduling

scheduled the graph using resource-constrained list scheduling,
inserting registers between each stage of the dataflow graph.
Again, we could have used a more conservative pipelining
approach to save area, but we were interested in maximizing
clock frequency. Next, we converted the scheduled graph into a
structural VHDL representation that we then synthesized using
Xilinx ISE.

3.2 Memory Interfacing
Designers typically define a custom memory interface to best
serve the custom circuit, yet our defined standard synthesis tool
does not involve synthesis of custom memory interfaces. Since
this work concentrates on capturing the compute aspect of custom
circuits in C, and not the memory interface, we assume that the
synthesis tool is provided with information for each circuit from
which the tool can synthesize a custom interface similar to that in
the custom circuit. Future work will involve developing
mechanisms for providing custom interface information as well as
synthesis transformations to generate custom interfaces.

Most of the custom circuits used a standard memory interface
consisting of one dual-ported memory, which allows one port for
reading and one for writing. This kind of memory interface allows
for block transfers and single transfers, similar to many DMAs.
Some circuits implemented streaming data from off-chip
memories, while others did not use external memory.

3.3 Miscellaneous
For each example, we targeted the specific FPGA used for each of
the custom circuits in their original papers. Although we could
have compared both the original circuit and synthesized circuit on
newer FPGA fabrics, we felt such comparison might be unfair if
the custom circuits were designed based on the characteristics of
the original FPGA fabric.

Due to space limits, we describe only a few examples in
detail, and summarize results of the other examples.

4. GAUSSIAN NOISE GENERATOR
Figure 5 shows the custom circuit in [36] for a Gaussian noise
generator. The circuit consists of four pipeline stages. The first
stage utilizes linear feedback shift registers (LFSRs) to generate a

32-bit and 18-bit random number, corresponding to u1 and u2.
Stage 2 uses the random numbers from the previous step as input
to the illustrated functions, which consist of square root, sine,
cosine, and log functions. Stage 3 adds every two consecutive
results from stage 2. The circuit implements this functionality by
delaying one input for a cycle using a register and then adding the
output of the register with the output from the previous stage.
This buffering results in a delay to the pipeline, potentially
causing an output to be generated every 2 cycles. Stage 4
multiplexes the results from stage 3 to the output of the noise
generator. By adding a register to the right input of the
multiplexor, the circuit generates an output every cycle, instead of
two outputs every two cycles.

We first tried to determine if the circuit was re-derivable from
temporally-oriented C. The natural temporal C uses a loop that
executes the behavior of stages 1 and 2 twice to generate two

Figure 4: Spatial C code for Gaussian noise generator. Figure 5: Circuit for a Gaussian noise generator.

Linear Feedback Shift Registers

1

u2

f(u1) g1(u2) g2(u2)

*
x1 x2

+

*

+

noise

Stage1

Stage2

Stage3

Stage4

u1

inline float rand0_1() {
 return rand()/((float) RAND_MAX+1);
}

inline Stage1 doStage1() {
 Stage1 result;
 result.u1 = rand0_1();
 result.u2 = rand0_1();
 return result;
}

inline Stage2 doStage2(float u1, float u2) {

 Stage2 result;
 float f_u1, g1_u2, g2_u2;

 f_u1 = sqrt(-log(u1));
 g1_u2 = sin(2*M_PI*u2);
 g2_u2 = cos(2*M_PI*u2);
 result.x1 = f_u1*g1_u2;
 result.x2 = f_u1*g2_u2;
 return result;
}

inline Stage3 doStage3(float x1, float x2) {

 static float acc1=0.0, acc2=0.0;
 Stage3 result;

 result.x1 = acc1 + x1;
 result.x2 = acc2 + x2;
 acc1 = x1;
 acc2 = x2;
 return result;
}

inline void doStage4(int i, int j,
 float x1, float x2) {

 noise[i] = stage3.x1;
 noise[j] = stage3.x2;

}

int main() {

 Stage1 stage1; Stage2 stage2; Stage3 stage3;
 unsigned int i=0;

 while (1) {
 stage1 = doStage1();
 stage2 = doStage2(stage1.u1, stage1.u2);
 stage3 = doStage3(stage2.x1, stage2.x2);
 doStage4(i, i+1%NUM_SAMPLES,

 stage3.x1, stage3.x2);
 i = (i+2)%NUM_SAMPLES;
 }

 return 0;
}

samples for the accumulate step in stage 3. FPGA synthesis tools
would replicate the circuit used in each iteration of the loop,
increasing the area of the circuit without improving performance.
We next tried to determine if the circuit was re-derivable from
spatially-oriented C. Figure 4 shows a portion of the C code to
model the Gaussian noise generator circuit in Figure 5. The C
code utilizes a single function to describe each pipeline stage of
the custom circuit. The output is stored into the array noise[]. To
handle outputting to an array, we modified the code for stage 4 to
store the two noise samples to two memory locations, as opposed
to multiplexing the output to a single location. As we will show,
this code is synthesized to the same stage 4 circuit shown in
Figure 5. For simplicity, the C code uses floating point arithmetic
as opposed to the fixed-point arithmetic in the custom circuit. The
fixed-point code is similar, with the main difference being that the
code uses logical and operations to remove unused bits of the
random numbers, essentially specifying the width of each number
to be 32 bits for u1 and 18 bits for u2.

The control and data flow graphs generated during synthesis
for each function of the C code are shown in Figure 6. Figure 6(a)
shows the control flow graph for main(), where each function call
has a corresponding node in the graph. For simplicity, we have
omitted the control flow node for the code used to update the
variable i. Figure 6(b) shows the data flow graph for function
doStage1(). We omit the control flow graph for this function, and
all other functions, because the corresponding graphs consist of
only a single node. The data flow graph for stage 1 assigns
random numbers to the two outputs of the function. Although not
shown, the data flow graph also contains operations to constrain
the random numbers to values between 0 and 1. Figure 6(c) and
Figure 6(d) show the data flow graphs for the doStage2() and
doStage3() functions. The data flow graph for doStage4(), shown
in Figure 6(e), produces two outputs instead of the single output
from Figure 5.

Figure 7 shows the circuits for each data flow graph for each
C function after synthesis performs scheduling, resource
allocation, and binding. For stage 1, shown in Figure 7(a),
synthesis maps the random number generators to LFSRs. Figure
7(b) shows the circuit for stage 2, for which synthesis utilizes
approximation techniques to map the functions in stage 2 onto the
same resources used to approximate these functions in the custom
design. Unlike in the custom circuit, scheduling during synthesis

is likely to insert registers between the approximation circuits and
the multipliers in order to reduce the critical path length. For stage
3, shown in Figure 7(c), synthesis maps acc1 and acc2 onto
registers because the outputs from this stage are used again as
inputs. Stage 4, shown in Figure 7(d), multiplexes the two outputs
from the data flow graph for this stage. Synthesis adds the
multiplexor because the outputs from the data flow graph are
written to memory, which in this case is a shared resource with
only a single port. To allow both inputs to be written to memory,
synthesis delays input x2 one cycle using a register while the
circuit stores x1.

To optimize the circuit, synthesis can inline all of the
functions for each stage into the main function and then perform
code hoisting to move the code for each stage into a single control
flow node, which is possible since there exists no control in each
function. The resulting data flow graph for this single control
node is shown in Figure 7(e). During scheduling, synthesis will
insert a register at each level of the data flow graph, as shown in
Figure 7(f). Note the similarity of the circuit in Figure 7(f) with
the custom circuit shown in Figure 5. The only difference in the
synthesized circuit is the addition of registers before the
multipliers – an addition that may actually improve performance
compared to the custom circuit.

The throughput of the synthesized circuit is identical to the
custom circuit, with each circuit producing a noise sample each
cycle. The latency of each pipeline is different, but this latency
only determines when the initial output from the circuit is valid.
We point out that under certain situations, the two circuits are
likely to differ in other ways. For example, if the target
architecture utilizes a dual-ported memory or a memory with
sufficient bandwidth to simultaneously store two results, then
stage 4 of the synthesized circuit will not contain the multiplexor

Figure 6: Control/data flow graph for C-level Gaussian noise
generator functions (a) main, (b) doStage1, (c) doStage2, (d)

doStage3, and (e) doStage4.

Figure 7: Datapaths after scheduling, resource allocation, and
binding for (a) doStage1, (b) doStage2, (c) doStage3, (d)
doStage3, (e) main before pipelining, and (f) main after

pipelining. Note the similarity with Figure 5.

doStage1()

doStage2()

doStage4()

rand() rand()

u1 u2 f(u1) g1(u2) g2(u2)

*
x1 x2

u1 u2 u2

acc1 acc2 x1 x2

+ +

*

main()

doStage1() doStage2()

doStage3() doStage4()

acc1 acc2

x1 x2

noise[i] noise[j]

doStage3()

(a)

(b)

(c)

(d) (e)

LFSR

u1 u2

x1

noise[]

doStage1()

doStage4()

+
acc1

+
acc2

x2

sel

x1 x2 LFSR

f(u1) g1(u2) g2(u2)

* *

+
acc1

+
acc2

sel
noise[]

LFSR

f(u1) g1(u2) g2(u2)

**

+
acc1

+
acc2

noise[]
sel

f(u1) g1(u2) g2(u2)

* *

u1 u2
doStage3() doStage2()

main() main() - pipelined

(a) (b) (c)

(d)

(e)

(f)

or buffer register. This architectural difference does not affect
throughput, but does affect timing, resulting in two noise samples
every two cycles. To our knowledge, synthesis cannot guarantee
the same timing as the custom circuit due to the lack of timing
information in the C code. However, the timing difference after
synthesis does not appear to be critical.

Thus, we classify this circuit as re-derivable from (spatially-
oriented) C.

5. MOLECULAR DYNAMICS
SIMULATOR
Scrofano [42] creates a custom FPGA accelerator for molecular
dynamics simulations. The authors identify the nonbonded-forces
calculations as the most time consuming region of the simulation
and provide a custom circuit for those calculations.

Figure 8(a) shows the pseudocode implemented by the custom
circuit. For each atom, the inner loop calculates the forces from
each neighbor of the atom. The code stores the forces in the array
forceRAM, which the following loop stores into the forceOBM
array.

Figure 8(b) shows a high-level view of the custom circuit for
the inner loop. Scrofano utilizes two separate on-board memories
(OBM) to store the positionOBM array and the forceOBM array.
Utilizing two memories allows the circuit to simultaneously
stream position and force data without stalling, therefore
achieving a maximum throughput of one force calculation per
cycle. Scrofano implements the forceRAM array in on-chip
memory to minimize the amount of read/write mode switches that
would be required if the forces were stored back immediately to
the forceOBM array. To optimize the datapath, the authors
divided the pipeline into two pipelines separated by a FIFO.
Dividing the pipeline reduced the latency penalty that was
incurred every time the inner loop executed. The first pipeline
generates output faster than the second pipeline and therefore only
the latency of the second pipeline has a significant effect on
performance.

If we used C code based on the pseudocode in Figure 8(a) to
try and model the custom circuit, the inner loop becomes a fully
pipelined circuit that streams in the force and position data.
Synthesis maps the forceRAM array onto block RAMs, which is

possible due to the small size of the array, resulting in a single
pipeline that performs the same operations as the two pipelines in
the custom circuit. To our knowledge, there is presently no
common synthesis technique that automatically divides a pipeline
as is done in the custom circuit. Such a technique may be
possible, requiring analysis to best determine the placement and
size of the buffer. By using a single pipeline, the synthesized
circuit incurs a larger latency penalty each time the inner loop
executes, as shown in Figure 8(c). The designer might instead
direct the FPGA synthesis tool by altering the C code in Figure
8(a) to model the buffer that separates the two pipelines. This
might be accomplished by inserting a function call to enqueue the
intermediate result of the first pipeline and dequeuing a result to
the input of the second pipeline. Of course, this relies on a model
of a buffer the FPGA compiler can recognize. By modeling the
spatial constructs of the circuit, an FPGA tool would be able to
effectively recover the original circuit.

Another important difference when using the temporally-
oriented code in Figure 8(a) is that the synthesized circuit uses a
single memory for input. When synthesizing code to a specific
architecture, the synthesis tool must use the appropriate memory
architecture, which we assume to be a single off-chip memory.
Therefore, the synthesized circuit must read the position and force
arrays from a single memory, which does not provide sufficient
bandwidth to execute the pipeline without stalls. Therefore, the
synthesized circuit has a lower throughput, outputting a force
calculation every two cycles. If enough on-chip RAM existed to
store both arrays, or the synthesis tool could stream data into two
on-chip memories fast enough, then the synthesized circuit could
perform similarly to the designer-specified circuit.

Thus, we classify the molecular dynamics circuit as re-
derivable from (spatially-oriented) C.

6. CELLULAR LEARNING AUTOMATA-
BASED EVOLUTIONARY COMPUTING

In [23], Hariri et al. proposed a custom architecture for
cellular learning automata based evolutionary computing (CLA-
EC). This architecture consists of a ring of cells, each of which
stores a genome. The architecture for each cell is shown in

Figure 8: Molecular dynamics accelerator. (a) Code for calculating nonbonded forces. (b) Custom circuit utilizing a divided pipeline to
reduce latency penalty. (c) The synthesized pipeline differs from the custom circuit by utilizing a single pipeline. The synthesized circuit

must stall due to a single memory, reducing throughput.
foreach atom i do
 ri = positionOBM[i]
 fi = forceOBM[i]
 n = 0
 foreach neighbor j of i do
 if |ri – rj| < rc then
 rj = positionOBM[j]
 fij = calcNBF(ri, rj)
 fi = fi + fij
 fj = forceOBM[j]
 forceRAM[n] = fj – fij
 n = n+1
 end
 end
 forceOBM[I] = fi
 foreach fj in forceRAM do
 forceOBM[j] = fj
 end
end

Pipeline1

Pipeline2

positionOBM[] forceOBM[]

forceRAM

Pipeline1

positionOBM[], forceOBM[]

forceRAM

(a) (b) (c)
Max throughput:
1 output per cycle

Max throughput:
1 output every 2 cycles

p1

p2

Latency

p1+p2

Latency penalty: p2

Latency penalty: p1+p2

Figure 9(a). Each cell consists of multiple learning automata
(LA) that determine a new genome. The update circuit replaces
the existing genome with the new genome if the fitness value of
the new genome is better. The majority function uses the genome
of the left and right neighbor cells to generate reinforcement
signals that guide the learning automata.

An abbreviated version of the C code we used to model the
CLA-EC is shown in

Figure 9(b). This code iterates over some maximum possible
number of cells, which is based on the input size. For each cell,
generateNewGenome() implements the behavior of the majority
function, learning automata, and the update function. The
generateNewGenome() function updates the new genome if the
new genome is better, otherwise the function sets new genome
equal to the old genome. Because generateNewGenome() only
modifies a single cell, the loop containing the
generateNewGenome() function has no loop-carried
dependencies, allowing synthesis to parallelize the function calls
by performing function inlining, loop unrolling, predication, and
code hoisting.

After the generateNewGenome() loop completes,
updateGenomes() updates the genome for each cell with the new
genome determined by the generateNewGenome() function calls.
By modifying the genome of each cell, the updateGenomes()
function creates a dependency with the generateNewGenome()
function, which uses the genome as input. To handle this
dependency, synthesis stores the genome in a register. The
resulting circuit is almost identical to the custom circuit. The only
difference is the addition of a multiplexor before the new genome
register that either selects the output of the learning automata or
the output of the genome register.

The simplicity of the C code in Figure 9(b) suggests that this
implementation may also be the most natural way of writing the
application in C. We classify the cellular automata circuit as
readily re-derivable from (temporally-oriented) C.

7. RESULTS
We described three examples from the FCCM literature and our
attempts to capture those designs in some form of standard C
code. Due to space constraints, we now briefly highlight several
other randomly selected examples before summarizing results for
the entire examined set.

Tripp [50] designed a circuit to implement a large
metropolitan traffic simulation (Road Traffic). Each cell
computed car velocities and positions based on a specific rule set
imposed by the designers which reflected real world traffic
conditions. When we focused on the computational aspect of each

cell in the network, we found the traffic design to be readily
derivable from (temporally-oriented) C.

Bogdonav [8] designed a systolic array structure to solve
matrix calculations using Gaussian elimination (Elimination). The
authors in fact modified a temporally-oriented algorithm to
achieve their circuit design. We also found the circuit to be re-
derivable from C code. We decided to model the Gaussian
elimination calculation with spatially-oriented C code to ensure
synthesis transformations would recover the original systolic
array structure.

Krueger [35] designed a floating point unit to add two
streaming numbers. The design incorporated variable delays,
which we were not able to capture in either temporal or spatial C.
We classified their design as not re-derivable from C. We again
point out that there do exist C algorithms for this application that
would synthesize to some circuit – just not to the particular
published circuit.

Figure 10 summarizes all the designs studied. As described
earlier, we identified 70 custom circuit designs published in the
last six years of the IEEE Symposium on Field-Programmable
Custom Computing Machines, of which we chose every other
circuit to study in depth, totaling 35 custom circuit designs. Of the
35 designs, 29 of the designs, or 82%, were found to be re-
derivable from C. Of the 29 circuits re-derivable from C, 9 of
those, or 25% of all 35 circuits, were captured in temporally-
oriented C. Again, this means these designs could have been
written in natural high level code, and we could have reasonably
expected a synthesis tool to recover the circuit, without much
human effort at the circuit level. We note that a benefit of being
able to capture the circuit as temporally-oriented C is that if the
platform on which the circuit runs happens to be a
microprocessor, the code may be able to run at or near its best
performance, because the algorithm may be the same algorithm
one would have written if initially targeting a microprocessor.

20 of the circuits, or 57%, were re-derivable from C were
captured in spatially-oriented C code. There were several
common reasons why a design had to be described in spatially-
oriented C as opposed to the more natural temporally-oriented
algorithm. Custom circuit designs often employed a combination
of spatial techniques, including intricate pipelining, custom
buffering, advanced memory hierarchies, and systolic array
connectivity, none of which could reasonably be re-derived from
the standard synthesis techniques.

For 17% of the circuits, we were unable to capture the circuit
in any form of C code that would be synthesized back to that
circuit. James-Roxby et. al [33] proposed logic-centric systems in
which they added microprocessors to the design to make effective
use of the cache hierarchy, a technique not reasonably describable

Figure 9: The proposed custom CLA-EC circuit consisting of a ring of (a) custom CLA-EC cells and (b) C pseudocode that
synthesizes to an almost identical parallel circuit (code for cell internals is omitted).

Majority

LA

Update

New Genome

Genome

LA LA

left

right

Cell cells[MAX_CELLS];
int main() {
 for (i=0; i < MAX_CELLS; i++)
 generateNewGenome(i);
 updateGenomes();
 return 0;
}
void updateGenomes(){
 for(i=0; i<MAX_CELLS; i++)
 cells[i].genome = cells[i].newGenome;

}

Cell

(a) (b)

using standard C constructs. Several circuits [35][55] utilized low
level cores that made re-deriving from C difficult. Others [53]
implemented circuits that relied on precise timing, which is also
difficult to capture in C. One circuit [34] took advantage of the
dynamic reconfigurability of the FPGA to implement dynamic
routing, a technique clearly not supported by standard C
constructs.

In summary, 82% of the circuit designs published in a forum
for circuit-based algorithms could be captured in some form of
standard C such that a synthesis tool supporting a basic set of
transformations could recover the circuit from that C code.

7.1 Comparison of Custom and Synthesized
Circuits

Figure 11(a) compares the performance of the custom-
designed circuits and the circuits synthesized from the C code for
several of the examined circuits. All performances are normalized
to the performance of the custom-designed circuits. For each
example shown, the performance of the synthesized circuit was
either identical to the custom circuit or slightly slower than the
custom circuit. Had we modeled the molecular dynamics circuit
with the original temporal pseudocode shown in Figure 8(a), the

synthesized circuit would have been 2.3x slower. This
performance decrease would have been caused by the inability of
synthesis to split a pipeline into smaller pipelines that
communicate using FIFOs. By modeling the molecular dynamics
circuit with custom spatially-oriented C code, synthesis is able to
generate a nearly identical circuit.

Figure 11(b) compares the area, in slices, of the synthesized
circuits and the custom circuits. On average, the synthesized
circuits required only 6% more slices. This extra area was used by
multiplexors and other glue logic that synthesis was unable to
remove, and by additional pipeline registers.

8. PORTABILITY
One important advantage of describing a circuit in C is that the C
can be distributed to different platforms having different amounts
of FPGAs, and an FPGA synthesis tool could thus allocate more
or less resources for the application without requiring a designer
to distribute a new circuit. In this section, we estimate the changes
in performance for each application when being implemented on
both a smaller and larger FPGA than the ones used in the previous
section.

A larger FPGA for the Gaussian noise generator would not
improve the performance of calculating a single noise sample, but

Figure 10: 82% of the studied circuits published in FCCM were re-derivable from C, meaning they could be captured in some form of C
such that a synthesis tool could be expected to synthesize the same or similar custom design.

 Year of Publication Design Re-derivable from C? Method/Reason

 2001 3D Vec. Normalization[31] Yes Spatial, if online algorithms can be specified
 2001 Efficient CAM[34] No Uses dynamic FPGA routing
 2001 Automated Sensor[37] Yes Temporal, floating point -> fixed point
 2001 Regular Expression[44] Yes Spatial, creative connections of one-bit flip flops
 2002 Hyperspectral Image[19] Yes Spatial, data reordering
 2002 Machine Vision[58] Yes Spatial, custom pipelining
 2002 RC4[51] Yes Temporal, straightforward implementation
 2002 Set Covering[41] Yes Spatial, data structures for easy hw implementation
 2002 Template Matching[29] Yes Spatial, heavy modifications to original algorithm
 2002 Triangle Mesh[38] Yes Spatial, custom encoding scheme
 2003 Congruential Sieves[54] Yes Temporal, straightforward translation
 2003 Content Scanning[39] Yes Temporal
 2003 F.P and Square Root[55] Yes Spatial
 2003 Gaussian Noise[36] Yes Spatial, requires the use of spatial C constructs
 2003 TRNG[52] No Requires sampling a high frequency clock for noise
 2004 3D FDTD Method[15] Yes Spatial
 2004 Deep Packet Filter[12] No Requires knowledge of underlying FPGA
 2004 Online Floating Point[35] No Online algorithm, variable length buffers
 2004 Molecular Dynamics[2] Yes Spatial
 2004 Pattern Matching[45] Yes Spatial
 2004 Seismic Migration[25] Yes Spatial
 2004 Software Deceleration[33] No Use a uP for its cache
 2004 V.M Window[53] No Specific timing schemes implemented
 2005 Data Mining[4] Yes Spatial
 2005 Cell Automata[23] Yes Temporal
 2005 Particle Graphics[6] Yes Spatial
 2005 Radiosity [3] Yes Temporal
 2005 Transient Waves[26] Yes Spatial
 2005 Road Traffic[50] Yes Temporal
 2006 All Pairs Shortest Path[9] Yes Spatial
 2006 Apriori Data Mining[5] Yes Spatial
 2006 Molecular Dynamics[42] Yes Spatial, define separate memories, custom pipeline
 2006 Gaussian Elimination[8] Yes Spatial
 2006 Radiation Dose[56] Yes Temporal
 2006 Random Variates[49] Yes Spatial

 Totals: 82% of the circuits were re-derivable from C

would allow for more samples to be generated per cycle by
replicating the circuit several times. While the ability to replicate
a circuit is not unique to writing the circuit in C, it certainly
makes the task easier. Alternatively, a larger FPGA could be used
to improve the accuracy of the approximation circuits.

For the molecular dynamics simulator, a larger FPGA could
potentially eliminate the memory bottlenecks of the synthesized
design. If a large portion of the input could be stored in on-chip
memory, then synthesis could create the same, or even an
improved memory architecture compared to the custom circuit.
Increased on-chip memory could provide sufficient bandwidth to
read multiple positions and forces, improving the throughput of
the pipeline to several force calculations per cycle.

For a larger FPGA, CLA-EC potentially would achieve
significant performance improvements compared to software, due
to the ability to implement more cells on the same device. In [35],
the authors show an approximately linear speedup compared to
software when increasing the number of cells. Based on their
results, an FPGA with twice the capacity would result in an
approximate 2x speedup. Alternatively, a larger FPGA for CLA-
EC would allow the circuit to determine an improved result for a
given run time.

For the Gaussian Elimination circuit, a larger FPGA would
not improve the performance of the custom circuit for existing
matrix sizes. However, a larger FPGA would enable circuits for
larger matrices, improving performance by at least 2x for a matrix
that would not fit in a smaller FPGA.

Similarly, a larger FPGA size for the metropolitan traffic
simulation would enable simulations of larger road networks.

For the online floating point unit, additional resources would
not improve performance because the parallelism of the hardware
is limited by non-constant bounded loops that cannot be unrolled.

For smaller FPGAs, the C code for each application could be
synthesized by the FPGA to use fewer resources. In fact, every
example except the Gaussian noise generator could be
implemented with a datapath consisting of only a multiplier, an
adder, a register file, and a corresponding amount of steering
logic. The performance of these smaller circuits would be slower
than the pipelined implementations of the original circuits, but the
C representation would still provide a correct implementation. For
the Gaussian noise generator, the C representation would
synthesize to a circuit as long as the FPGA had enough resources
to implement the sine, cosine, square root, and log functions.

Furthermore, every example could be implemented entirely
on a microprocessor, at the obvious cost of slowdown. We leave
examining the extent of that slowdown, and partitioning among
microprocessor and FPGA, for future work. However, because
25% of the examined circuits could be captured in temporally-

oriented C code, the microprocessor performance of these
captured circuits is likely comparable to corresponding software-
oriented implementations, since these implementations are likely
to be similar.

9. CONCLUSIONS
As FPGAs become more common in mainstream general-purpose
computing platforms, distributing high-performance
implementations of applications on FPGAs will become
increasingly important. Even in the presence of C-based synthesis
tools for FPGAs, designers continue to implement applications as
circuits, due in large part to allow for capture of clever circuit-
level implementation features leading to superior performance
and efficiency. We sought to determine whether those circuits
could still be captured in some form of standard C code, such that
standard synthesis transformation would re-derive the same
circuit.

For the 35 circuits studied, we found that 82% were indeed re-
derivable from C. The main conclusion of this study is that
standard C code, without extensions for concurrency or clocking,
when coupled with straightforward synthesis tools incorporating
well-known transformations and optimizations, can serve as an
effective distribution format for a large percentage of applications
targeting FPGAs. This conclusion is significant because C code is
tremendously portable, not only allowing for synthesis to FPGAs
differing in their capacities and hard-core resources, but also
allowing for partitioning among microprocessors and FPGAs, and
even for microprocessor-only implementation. Distributing a
circuit using C code thus expands the range of target platforms
and the longevity of an application, compared to distributing it
using a hardware description language or a netlist format.

10. ACKNOWLEDGEMENTS
This work was supported in part by the National Science
Foundation (CNS-0614957) and the Semiconductor Research
Corporation (2005-HJ-1331).

REFERENCES
[1] ATTIG, M. AND LOCKWOOD, J. 2005. A framework for rule

processing in reconfigurable network systems. FCCM, pp. 225-234.
[2] AZIZI, N., KUON, I., EGIER, A., DARABIHA, A., AND CHOW, P. 2004.

Reconfigurable Molecular Dynamics Simulator (April 20 - 23,
2004). FCCM

[3] BAKER, P., TODMAN, T., STYLES, H., AND LUK, W. 2005.
Reconfigurable Designs for Radiosity. - Volume 00 (April 18 - 20,
2005). FCCM

[4] BAKER, Z. K. AND PRASANNA, V. K. 2005. Efficient Hardware Data
Mining with the Apriori Algorithm on FPGAs. (Fccm'05) - Volume
00 (April 18 - 20, 2005). FCCM

Figure 11: Comparison of original custom circuits versus circuits synthesized from derived sequential code representations: (a) execution
time and (b) area (slices) Both metrics are normalized to values for the original custom circuit.

0

0.5
1

1.5

2

CLA
-E

C
Nois

e MD

Traf
fic

Elim
ina

tio
n

Floa
t

Ave
rag

e

Custom

Synthesized

(a) Normalized Execution Time (b) Normalized Area (Slices)

0
1
2
3
4
5

CLA
-E

C
Nois

e MD

Traf
fic

Elim
ina

tio
n

Floa
t

Ave
rag

e

Custom

Synthesized

[5] BAKER, Z. K. AND PRASANNA, V. K. 2006. An Architecture for
Efficient Hardware Data Mining using Reconfigurable Computing
Systems. (Fccm'06) - Volume 00 (April 24 - 26, 2006). FCCM

[6] BEECKLER, J. S. AND GROSS, W. J. 2005. FPGA Particle Graphics
Hardware (April 18 - 20, 2005). FCCM

[7] BITTON, D. , DEWITT, D.J, HSAIO, D.K, AND J. MENON. 1984. A
taxonomy of parallel sorting. ACM Comput. Surv. 16, 3 (Sep. 1984)

[8] BOGDANOV, A. AND MERTENS, M. C. 2006. A parallel hardware
architecture for fast Gaussian Elimination over GF(2). FCCM, pp.
237-248.

[9] BONDHUGULA, U., DEVULAPALLI, A., DINAN, J., FERNANDO, J.,
WYCKOFF, P., STAHLBERG, E., AND SADAYAPPAN, P. 2006.
Hardware/Software Integration for FPGA-based All-Pairs Shortest-
Paths. (April 24 - 26, 2006). FCCM.

[10] CATAPULTC. http://www.mentor.com/products/c-based_design/
[11] CELOXICA. http://www.celoxica.com/
[12] CHO, Y. H. AND MANGIONE-SMITH, W. H. 2004. Deep Packet Filter

with Dedicated Logic and Read Only Memories. (April 20 - 23,
2004). FCCM

[13] DINIZ, P., HALL, M., PARK, J., SO, B., AND ZIEGLER, H. 2005.
Automatic mapping of C to FPGAs with the DEFACTO compilation
and synthesis systems. Journal on Microprocessors and
Microsystems, Vol. 29, Issues 2-3, pp. 51-62.

[14] DOOM, T.; WHITE, J.; WOJCIK, A.; AND G. CHISHOLM. 1998.
Identifying high-level components in combinational circuits.
Proceedings of the 8th Great Lakes Symposium on VLSI 1998.

[15] DURBANO, J. P., ORTIZ, F. E., HUMPHREY, J. R., CURT, P. F., AND
PRATHER, D. W. 2004. FPGA-based acceleration of the 3D finite-
difference time-domain method. FCCM.

[16] ELES, P., PENG, Z., KUCHCHINSKI, K. AND DOBOLI, A. 1997. System
level hardware/software partitioning based on simulated annealing
and tabu search. Journal on Design Automation for Embedded
Systems, Vol. 2, No. 1, pp. 5-32.

[17] FIN, A., FUMMI, F., AND SIGNORETTO, M. 2001. SystemC: a
homogenous environment to test embedded systems. CODES, pp 17-
22.

[18] FRIGO, J., GOKHALE, AND M., LAVENIER, D. 2001. Evaluation of
the streams-C C-to-FPGA compiler: an applications perspective.
FPGA, pp. 134-140.

[19] FRY, T. W. AND HAUCK, S. 2002. Hyperspectral Image Compression
on Reconfigurable Platforms. (September 22 - 24, 2002). FCCM.

[20] GUPTA, S., DUTT, N.D., GUPTA, R.K., AND NICOLAU, A. 2003.
SPARK: a high-level synthesis framework for applying parallelizing
compiler transformations. VLSI..

[21] GUPTA, S., AND G. DEMICHELI 1991. VULCAN - A System for
High-Level Partitioning of Synchronous Digital Circuits. Technical
Report.

[22] HANSEN, M.C. YALCIN, H. AND J.P HAYES, 1999. Unveiling the
ISCAS-85 benchmarks: A Case Study in Reverse Engineering . IEEE
Design and Test in Computers. Vol. 12, Issue 3.

[23] HARIRI, A., RASTEGAR, R., ZAMANI, M. S., AND MEYBODI, M. R.
2005. Parallel hardware implementation of cellular learning automata
based evolutionary computing (CLA-EC) on FPGA. FCCM, pp. 311-
314.

[24] HAULBELT, C., TEICH , J., RICHTER, K. AND ERNST R. 2002. System
design for flexibility. DATE.

[25] HE, C., LU, M., AND SUN, C. 2004. Accelerating seismic migration
using FPGA-based coprocessor platform. FCCM, pp. 207-216.

[26] HE, C., ZHAO, W., AND LU, M. 2005. Time domain numerical
simulation for transient waves on reconfigurable coprocessor
platform. FCCM, pp. 127-136.

[27] INTEL QUICKASSIST TECHNOLOGY
http://www.intel.com/technology/magazine/45nm/quickassist-
0507.htm

[28] J. HENKEL. 1999. A low power hardware/software partitioning
approach for core-based embedded systems. DAC, pp. 122-127.

[29] HEZEL, S., KUGEL, A., MÄNNER, R., AND GAVRILA, D. M. 2002.
FPGA-Based Template Matching Using Distance Transforms.
(September 22 - 24, 2002). FCCM.

[30] C.A HOARE. 1961. Algorithm 64: Quicksort. Commun. ACM 4, 7
(Jul. 1961)..

[31] HUANG, Z. AND ERCEGOVAC, M. D. 2001. FPGA Implementation of
Pipelined On-Line Scheme for 3-D Vector Normalization. (April 29 -
May 02, 2001). FCCM.

[32] Impulse CoDeveloper. http://www.impulsec.com/

[33] JAMES-ROXBY, P., BREBNER, G., AND BEMMANN, D. 2004. Time-
Critical Software Deceleration in an FCCM. (April 20 - 23, 2004).
FCCM

[34] JAMES-ROXBY, P. B. AND DOWNS, D. J. 2001. An Efficient Content-
Addressable Memory Implementation Using Dynamic Routing.
(April 29 - May 02, 2001). FCCM.

[35] KRUEGER, S. D. AND SEIDEL, P. 2004. Design of an on-line IEEE
floating-point addition unit for FPGAs. FCCM, pp. 239-246.

[36] LEE, D., LUK, W., VILLASENOR, J., AND CHEUNG, P. Y. 2003. A
hardware Gaussian noise generator for channel code evaluation.
FCCM.

[37] MAHMOUD, W. H., HAGGARD, R. L., AND ABDELRAHMAN, M. 2001.
Hardware Implementation of Automated Sensor Self-Validation
System for Cupola Furnaces (April 29 - May 02, 2001). FCCM.

[38] MITRA, T. AND CHIUEH, T. 2002. An FPGA Implementation of
Triangle Mesh Decompression. (September 22 - 24, 2002). FCCM.

[39] MOSCOLA, J., LOCKWOOD, J., LOUI, R. P., AND PACHOS, M. 2003.
Implementation of a Content-Scanning Module for an Internet
Firewall (April 09 - 11, 2003). FCCM

[40] NAJJAR, W., BÖHM, W., DRAPER, B., HAMMES, J., RINKER, R.,
BEVERIDGE, R., CHAWATHE, M., AND ROSS, C. 2003. From
algorithms to hardware -- a high-level language abstraction for
reconfigurable computing. IEEE Computer, Vol. 36, Issue 8, August
2003, pp.63-69.

[41] PLESSL, C. AND PLATZNER, M. 2002. Custom Computing Machines
for the Set Covering Problem (September 22 - 24, 2002). FCCM.

[42] SCROFANO, R., GOKHALE, M., TROUW, F., AND PRASANNA, V. K.
2006. Hardware/software approach to molecular dynamics on
reconfigurable computers. FCCM, pp. 23-34.

[43] SGI ALTIX. http://www.sgi.com/products/servers/altix/
[44] SIDHU, R. AND PRASANNA, V. K. 2001. Fast Regular Expression

Matching Using FPGAs. (April 29 - May 02, 2001). FCCM
[45] SOURDIS, I. AND PNEVMATIKATOS, D. 2004. Pre-Decoded CAMs for

Efficient and High-Speed NIDS Pattern Matching. (April 20 - 23,
2004). FCCM

[46] SRINIVASAN, V., RADHAKRISHNAN, S., AND VEMURI, R. 1998.
Hardware/software partitioning with integrated hardware design
space exploration. DATE, pp. 28-35.

[47] STITT, G., VAHID, F., MCGREGOR, G., AND EINLOTH, B. 2005.
Hardware/software partitioning of software binaries: a case study of
H.264 decode. CODES/ISSS, pp. 285-290.

[48] STITT, G., AND F. VAHID. 2006. A Code refinment methodology for
performance-improved synthesis from C. ICCAD.

[49] THOMAS, D. B. AND LUK, W. 2006. Efficient Hardware Generation
of Random Variates with Arbitrary Distributions. (Fccm'06) -
Volume 00 (April 24 - 26, 2006). FCCM

[50] TRIPP, J. L., MORTVEIT, H. S., HANSSON, A. A., AND GOKHALE, M.
2005. Metropolitan road traffic simulation on FPGAs. FCCM, pp.
117-126.

[51] TSOI, K. H., LEE, K. H., AND LEONG, P. H. 2002. A Massively
Parallel RC4 Key Search Engine. (September 22 - 24, 2002). FCCM.

[52] TSOI, K. H., LEUNG, K. H., AND LEONG, P. H. 2003. Compact FPGA-
based True and Pseudo Random Number Generators. (April 09 - 11,
2003). FCCM.

[53] VULETIC, M., POZZI, L., AND IENNE, P. 2004. Virtual Memory
Window for a Portable Reconfigurable Cryptography Coprocessor.
(April 20 - 23, 2004). FCCM

[54] WAKE, H. A. AND BUELL, D. A. 2003. Congruential Sieves on a
Reconfigurable Computer. (April 09 - 11, 2003). FCCM

[55] WANG, X. AND NELSON, B. E. 2003. Tradeoffs of Designing
Floating-Point Division and Square Root on Virtex FPGAs. (April
09 - 11, 2003). FCCM

[56] WHITTON, K., HU, X. S., YI, C. X., AND CHEN, D. Z. 2006. An FPGA
Solution for Radiation Dose Calculation. (April 24 - 26, 2006).
FCCM

[57] ZHANG, Y. AND S.Q ZHENG. 1995. Design and analysis of a systolic
sorting architecture. SPDP. IEEE Computer Society, Washington,
DC, 652.

[58] ZIEGLER, H., SO, B., HALL, M., AND DINIZ, P. C. 2002. Coarse-Grain
Pipelining on Multiple FPGA Architectures (September 22 - 24,
2002). FCCM.

