
ONE RECENT TREND in commercial plat-

forms is the integration of on-chip, configurable

logic (also known as FPGAs) with a micro-

processor. Examples include 8-bit platforms,

such as Triscend’s E5 and Atmel’s FPSLIC (Field-

Programmable System-Level IC); and 32-bit plat-

forms, such as Triscend’s A7, Xilinx’s Virtex II Pro,

and Altera’s Excalibur. A main benefit of on-chip

configurable logic is that it supports the incor-

poration of different peripherals in the design;

rather than having a different chip for each of

various sets of peripherals, vendors can offer a

single chip.  Designers can also use configurable

logic to implement coprocessors that would oth-

erwise require a separate ASIC chip. We propose

yet another use of configurable logic: reducing

the energy consumed by the microprocessor in

executing software. With the rapid increase in

battery-operated systems, low energy consump-

tion is becoming increasingly important.

Our partitioning approach involves profiling

an application to identify the critical loops—

those that contribute the most to an applica-

tion’s execution time. Instead of allowing these

loops to execute in software, we reimplement

them in hardware, using the configurable logic.

We modify the original software by replacing

the loop with code to enable the configurable

logic, and to stall the microprocessor and put it

into a power-down sleep mode. When the con-

figurable logic finishes execution, it signals an

interrupt that causes the microprocessor to

resume normal execution. This approach

speeds up an application’s execution time,

meaning we can put the microprocessor in an

inactive, low-power state for longer periods of

time. Alternatively, we can execute the loop in

the same amount of time with the same perfor-

mance by slowing down the clock and reduc-

ing the microprocessor’s supply voltage. Lower

voltage results in less energy.

Using an ASIC coprocessor to reduce ener-

gy consumption is common.1,2 But, because of

configurable logic’s high power consumption,

partitioning that uses configurable logic has

mainly targeted speedup.3-5 Energy is the prod-

uct of power and time, so the power increase

from using configurable logic could outweigh

the time savings. In this article, derived from a

paper presented at the 2002 IEEE Symposium

on Field-Programmable Custom Computing
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Machines,6 we show that using on-chip config-

urable logic can in fact reduce the software

execution’s energy consumption on micro-

processor/configurable-logic platforms. We

experimented with three platforms:

� a hypothetical 0.18-micron single-chip plat-

form based on a 32-bit MIPS microprocessor

and a Xilinx Virtex XCV50E FPGA supporting

25,000 gates (real single-chip platforms were

not readily available when our experiments

began);

� a Triscend (http://www.triscend.com) E5

chip, a 0.35-micron single-chip platform that

combines an 8-bit 8051 microprocessor with

configurable logic supporting 25,000 gates;

and

� a Triscend A7 chip, a newer 0.25-micron sin-

gle-chip platform that combines a 32-bit

ARM microprocessor with configurable

logic supporting 25,000 gates.

Low-energy partitioning
Our partitioning approach involves moving

critical loops to hardware. Besides dominating

execution time, these loops tend to be small,

implying that a hardware implementation will

likely require little area and power. We consid-

ered the following programs from Motorola’s

Powerstone benchmarks:7

� a voice encoder (adpcm),

� bit reversal graphics application (brev)

� cyclic redundancy check (crc),

� data encryption standard (des),

� engine controller (engine),

� fax decoder (g3fax),

� JPEG decoder (jpeg),

� matrix multiplication (matmul),

� handwriting recognizer (summin), and

� modem encoder/decoder (v42).

Villarreal et al. give complete results of the

loop study.8 The main results showed that pro-

grams running on a MIPS processor spent 66%

of their time in loops with a static size of 256

instructions or less, whereas on an 8051 proces-

sor, the benchmarks spent 76% of their time in

such loops.

After identifying the most-critical loops, we

manually translated the C code for the one (or

at most two) most-critical loop into a VHDL

description to create a hardware implementa-

tion. For two loops, we wrote the VHDL such

that the loops could share hardware. In some

situations, we implemented less-critical loops

because the most-critical loops used too much

area, were not power efficient, or were unsuit-

able for hardware implementation.

We based our model of communication

between the configurable logic and micro-

processor on the Triscend E5 architecture,

which Figure 1 shows. We refer to the on-chip

FPGA as configurable system logic (CSL). In

this architecture, the microprocessor and CSL

can communicate directly or through shared

memory. We used direct communication to

implement handshaking between the hardware

and software. Therefore, we replaced the soft-

ware loop with code that enables the hardware

and puts the microprocessor into a low-power

state. The hardware then executes, and signals

the microprocessor upon completion, causing

software execution to resume.

Power and performance evaluation
We used the test benches that come with the

Powerstone benchmarks to generate power

and performance data. In our MIPS platform

evaluation, we used a simulation-based

approach for performance evaluation. We ran
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each example on a MIPS architectural simula-

tor that output the number of cycles that each

example executed. To determine the MIPS

processor’s power, we used the reported power

consumption of the 0.18-micron, MIPS32 4-

Kbyte processor core. All examples ran at 100

MHz with a 1.8-V supply voltage. 

These estimations assumed that the config-

urable logic consisted of a 0.18-micron Virtex

XCV50E FPGA from Xilinx, and we used Xilinx’s

Virtex Power Estimator to estimate the config-

urable logic’s power. To make its estimations,

the Power Estimator tool requires an estimate of

the average percentage of FPGA internal nets

that switch per clock cycle. The tool’s user guide

lists a typical percentage as 6% to 12%. Hence,

we used 9% as our percentage. We evaluated

hardware performance for a given loop by

counting the number of cycles that the synthe-

sized hardware required to execute the loop.

Because some loops had multiple paths, we

conservatively considered only the longest path.

We assumed that the MIPS platform had an

interconnect power (the power that the system

buses and shared memory consume) of about

0.1 W; we obtained this number by experi-

menting with the E5 platform. We also assumed

that the microprocessor had a low-power state

that consumed only 25% of the power of the

active state, and we assumed that the CSL low-

power state included only quiescent power.

Hence, we used the following equation to com-

pute total power PT:

PT = Sw × PSw + CSL(PCSL + 0.25PSw) + PI + PQ

where Sw is the per-

centage of time spent

in software, CSL is the

percentage of time

spent in the CSL, PSw is

the software’s power

when the micro-

processor is active,

PCSL is the CSL’s power

when active, PI is the

interconnect power,

and PQ is the quies-

cent power.

For the E5 and A7

platforms, we used a

digital multimeter to physically measure the cur-

rent, and hence the power (knowing the supply

voltage), for our examples. Each example exe-

cuted as an all-software implementation and

then as a partitioned implementation, using low-

power modes for the microprocessor and CSL

when the other was active. To obtain a stable

power reading, each example ran as part of a

long-running loop. We measured performance

by using the on-chip serial communication to

specify the application’s start and end. A timer

running on a workstation measured the differ-

ences between the starting and ending times to

determine the actual execution times.

For the MIPS examples, we used Xilinx tools

for all synthesis, placement, and routing. For

the E5 and A7, we synthesized the selected

loop regions for the CSL using the Synopsys

FPGA Compiler, and we used the Triscend tools

for placement, routing, and mapping.

Estimated results for the MIPS
platform 

Table 1 contains basic information about

how eight of the largest Powerstone bench-

marks run on a MIPS processor. Size corre-

sponds to the application’s static size in terms

of instruction bytes. Therefore, the number of

instructions is the size listed in Table 1 divided

by 4, since MIPS instructions are 4 bytes each.

Loop size is the static number of instruction

bytes in the most frequent loops. Loop time is

the percentage of total dynamic instructions

executed in these loops. Speedup bound is the

approximate speedup that the application
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Table 1. Benchmark profiles running on a MIPS processor.

Size (no. of Loop size (no. of Loop Speedup 

Benchmark instruction bytes) instruction bytes) time (%) bound

g3fax 4,452 24 31 1.45

adpcm 7,640 152 30 1.43

crc 4,288 68 66 2.90

des 6,116 360 52 2.08

engine 4,432 64 28 1.39

jpeg 5,960 116 10 1.11

summin 4,136 100 48 1.92

v42 6,388 60 23 1.30

Average 5,427 118 36 1.70



would achieve if the configurable logic exe-

cuted the loops in zero time.

The crc and brev results come from a parti-

tioning of the software algorithms given in the

benchmark code, even though specific hard-

ware algorithms exist to accomplish the same

task. Therefore, changing these benchmarks to

use hardware algorithms would result in even

greater savings.

Figure 2 shows speedup and energy results

for the Powerstone benchmarks running on the

MIPS platform. We normalized all energy

results, using the energy consumption of an all-

software implementation as the normalization

factor. The results are from two different types

of hardware implementations:

� a standard translation from C code to VHDL,

and

� a more aggressive translation using loop

unrolling and pipelining optimizations.

The average speedup for the standard trans-

lation was 1.46. For the aggressive translation,

the average speedup was 1.51. (Aggressive opti-

mizations don’t gain much, because of limited

memory bandwidth.) We achieved these

speedups by moving small amounts of the orig-

inal application to hardware running on the

CSL. In fact, the average percentage of total

assembly instructions used by the loops moved

to the CSL was only 2%. This corresponds to an

average of 30 instructions and an average of

only about 4,000 gates. These loops account for

an average of 36% of the total execution time,

and this percentage was as high as 66% for the

crc benchmark.

The CSL, when active, consumed an average

of 67% more power than the microprocessor

when it was active. Despite this significant dif-

ference, total power increased by only 3% com-

pared to the software-only version. The reason

for this small increase is that in the partitioned

example, the CSL was active for only 10% of the

total execution time.

The average energy savings was 25%. If we

had used a CSL switching frequency of 12%

rather than 9%, the energy savings would have

been 21%. For the aggressive optimizations, the

average savings was 28%.

The energy results represent the amount of

energy required to accomplish a particular task.

Assuming the system consumes almost no ener-

gy during the task period’s idle time, we get over-

all energy savings. Alternatively, we could take

advantage of the speedup to reduce the clock

speed, achieving approximately the same ener-

gy results. Clock scaling is possible on many plat-

forms, including the Triscend E5 and A7.

Measured results for the E5 platform
We implemented four of the Powerstone

benchmarks on the 8051-based E5 platform—

fewer benchmarks than on the hypothetical

MIPS platform because implementing on the

physical platform is more time-consuming.

Different examples were used because differ-

ent groups conducted these experiments at dif-

ferent times than for the MIPS experiments.

Table 2 contains information about those four

benchmarks run on an 8051 processor, provid-

ing the same type of information that was in

Table 1. The number of instructions ranges

from the size listed in Table 2 to the size divided
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Figure 2. Estimated results for MIPS platform: speedup (a) and energy consumption (b) for partitioned examples.



by 3, because 8051 instructions range from 1 to

3 bytes in length.

Figure 3 shows speedup and energy results

on the E5 for those four Powerstone bench-

marks. On average, execution time decreased

by 66%, corresponding to a speedup of 7.5. The

E5 achieved this speedup by moving an aver-

age of 513 instruction bytes into the CSL.

Excluding the brev benchmark, which by far

uses the largest number of instructions in the

loop, the average number of instruction bytes

moved to hardware was 114. The reason for this

larger number of loop instructions than for the

MIPS processor is that the 8051 is an 8-bit

processor, and implementing even a small loop

can require many instructions. Overall, the 513

loop instruction bytes account for approxi-

mately 76% of the total execution time.

Speedups obtained by partitioning for the 8051-

based E5 platform are much greater than for

the MIPS or A7 platforms because the 8051 is a

far slower processor; thus, using configurable

logic has a greater impact.

Total power for the partitioned implemen-

tations increased by an average of only 7%

compared with the software-only version. The

reason for this small increase is that the parti-

tioned examples required very little config-

urable logic and were active for only a short

time. The energy savings was 71%.

Measured results for A7 platform
We also tested energy savings on the

Triscend A7 chip, which combines a 32-bit ARM

processor with configurable logic. Figure 4

shows the speedup and energy results achieved

on three of the Powerstone benchmarks.

The average reduction in execution time

was 53%. This corresponds to a speedup of 2.3.

Power consumption increased by an average

of only 1% when using the CSL. This small

increase was also due to a very small area over-

head and to the CSL being active for only a

short time. The average energy savings was

53%. By comparing the g3fax and crc data in

Figure 1 with that in Figure 3, we see that our

estimation results for the MIPS platform match-
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Table 2. Benchmark profiles running on an 8051 processor.

Size (no. of Loop size (no. of Loop Speedup 

Benchmark instruction bytes) instruction bytes) time (%) bound

g3fax 8,309 71 56 2.27

crc 810 58 63 2.69

brev 2,505 1,710 92 12.99

matmul 838 212 94 17.24

Average 3,116 513 76 8.80
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Figure 3. Measured results for Triscend E5 platform:

execution times (a) and energy consumption (b) for the

software and partitioned examples.
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es reasonably with our measured results for the

A7 platform.

Size requirements
In the previous sections, we looked at the

speedup obtained from partitioning one or two

frequent loops into the CSL. Table 3 provides

the number of gates required to obtain those

speedups for Xilinx Virtex XCV50E FPGA (MIPS

platform) and the Triscend E5 CSL. We see that

surprisingly few gates are needed—just a few

thousand, on average.

The Powerstone benchmarks are fairly small

programs. To further investigate the size

requirements of on-chip CSL to speed up criti-

cal loops, we have recently begun investigating

the MediaBench benchmark suite,9 a set of larg-

er programs typical in embedded and media-

processing systems. Figure 5 shows results on

three MediaBench programs, for our MIPS-

based platform.

For the G721 example (a voice-encoding

application), we achieved a reasonable

speedup of 1.8 by using only 1,307 gates. With

an additional loop, the speedup increased

slightly to 2.2 but required 5,811 gates. After this

point, any additional speedup requires many

more gates, which in most cases outweighs the

performance benefits.

The adpcm (adaptive, differential pulse

code modulation) example is interesting

because the processor spends more than 90%

of the execution time in a small loop. By imple-

menting this loop in hardware, we achieved a

speedup of 27.2 using 14,132 gates.

Implementing any other software regions in

hardware gives minimal improvements

because the original loop accounts for such a

large percentage of the execution time.

The Pegwit example (a public key encryp-

tion program), shows a steadier speedup

increase than the other two examples. By using

4,301 gates, we can achieve a speedup of 1.5.

Speedup increases dramatically to 3.0 for

13,419 gates. The speedup then slowly starts to

level off, reaching 3.4 at 15,678 gates and 3.7 at

18,150 gates. After that point, any additional

partitioning has a very large area overhead.

Triscend’s current offerings of single-chip

microprocessors combined with CSL parts have

from 5,000 to 40,000 gates of CSL. New Xilinx

and Altera single-chip platforms can have sev-

eral hundred thousand CSL gates. Therefore,

these current offerings can easily support the

amount of CSL required to obtain these

speedups.
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Table 3. FPGA size requirements for the Powerstone benchmarks.

Xilinx Virtex FPGA Triscend E5 CSL 

Benchmark (no. of gates) (no. of gates)

g3fax 2,737 1,896

adpcm 7,973 NA

crc 782 1,044

des 8,772 NA

engine 2,261 NA

jpeg 2,669 NA

summin 3,604 NA

v42 3,961 NA

brev NA 1,692

matmul NA 6,468

Average 4,095 2,775
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Estimated ASIC results for the MIPS
platform

Platforms with on-chip logic are useful not

only for final products but also for ASIC proto-

typing. After verifying system functionality using

configurable logic, a designer could create an

ASIC with the necessary microprocessor and

on-chip coprocessing hardware to achieve

improved power, performance, size, and cost.

Such an ASIC could also include additional

components on-chip. We therefore estimated

the speedup and energy savings for ASIC ver-

sions of our examples, assuming a 200-MHz

ASIC design.

Figure 6 compares energy savings between

the MIPS-CSL chip and MIPS-based ASIC design.

These results represent the average energy

required for the eight Powerstone benchmarks

in Table 1. You might notice that the magnitude

of energy is far smaller in Tables 2 and 3. This is

due to the use of 0.18-micron rather than 0.25-

or 0.35-micron technology, and also to the non-

inclusion of peripheral components.) As we

mentioned earlier, using the CSL yields energy

savings of 25%. If we simply replace the CSL with

an ASIC coprocessor version of the hardware,

the average energy savings increases to 33%.

However, this assumes that we use the same

interconnect. Because ASIC interconnects can

be more efficient, we also show data based on

the assumption that the power for the ASIC inter-

connect is half that for the CSL. In this case, the

average energy savings increases to 53%.

The average speedup achieved by the ASIC

was 1.57, compared to 1.46 for the MIPS-CSL

chip. This additional speedup was due to the

ASIC’s higher clock frequency. The power con-

sumed by the ASIC coprocessor hardware was

only 11% of the CSL power. This low power con-

sumption didn’t result in significantly larger

energy savings, mainly because the ASIC

coprocessor was active for only 5% of the

benchmarks’ total execution time.

OUR EXPERIMENTS indicate that software exe-

cution can be made significantly faster and

more energy efficient by using a surprisingly

small amount of configurable logic available

with a microprocessor on a single-chip plat-

form. The data suggests that embedded micro-

processor platform vendors might seriously

consider including configurable logic for

improved software execution, and that software

compiler vendors for such platforms might con-

sider including automatic hardware/software

partitioners in their compilers. Existing vendors

of such platforms should consider targeting

low-power applications and focus on minimiz-

ing the power consumption of the various plat-

form components. 

Our data also suggests that such single-chip

platforms can achieve most of the available

software speedup and about half of the avail-

able energy savings as an ASIC. So, when com-

pared to the cost, time, and risk associated with

creating an ASIC, such prefabricated platforms

appear extremely practical.

A future technical challenge is to create a

hardware/software partitioning approach that

fits easily with existing embedded-system tool

flows. Typical embedded-system flows don’t

incorporate complex and expensive toolsets

that are common in ASIC flows. We are there-

fore developing partitioning methods that min-

imize the impact on existing embedded-system

tool flows, including binary-level partitioning

and even dynamic on-chip partitioning. We are

also examining methods to include both soft-

ware and hardware algorithms into software

descriptions, to further improve the speedup

and energy results of such partitioning. �
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