
DATE99.doc Last printed 12/20/98 6:53 AM Page 1 of 7

FSMD Functional Partitioning for Low Power

Enoch Hwang Frank Vahid Yu-Chin Hsu
Department of Computer Science and Engineering

University of California, Riverside, CA 92521
ehwang@cs.ucr.edu vahid@cs.ucr.edu hsu@cs.ucr.edu

Abstract

Previous work has shown that sizable power
reductions can be achieved by shutting down a system’s
sub-circuits when they are not needed. However, these
shutdown techniques focus on shutting down only
portions of the controller or the datapath of a single
custom hardware processor. We propose a higher level
shutdown technique that considers both the controller
and datapath simultaneously; in particular, we partition
a processor into multiple simpler mutually-exclusive
communicating processors, and then shut down the
inactive processors (i.e., the inactive controller/datapath
pairs). Power reduction is accomplished because only
one smaller processor is active at a time. In addition to
power reduction, functional partitioning also provides
solutions to a variety of synthesis problems and does not
require the modification of the synthesis tool. We
present results showing that this FSMD functional
partitioning technique can reduce power, on average,
42% over unoptimized systems.

1. Introduction

Power reduction of VLSI systems is an important
goal for system design and much work has been done in
this area, as surveyed in [1]. While power reduction
techniques can be applied at nearly every design
abstraction level, many previous works have focused on
the lower levels of abstraction. Recently, there is a focus
on power reduction at the higher levels [2] where large
power savings are possible merely by cutting down on
wasted switching activities. It has been found that the
dynamic power due to capacitive charging and
discharging as calculated from the equation

Pd =
1
2 C V

2 f N (1)

where C is the loading capacitance in the circuit, V is the
supply voltage, f is the clock frequency, and N is the
switching frequency, accounts for over 90% of the total
circuit power [3]. Thus, high-level power reduction is
obtained mainly by reducing the switching frequency

from the outputs of the gates and this is made possible by
shutting down unnecessary portions of the circuit. Two
areas of shutdown techniques for power reduction have
appeared in recent literature.

In datapath shutdown techniques, portions of the
combinational logic in the datapath can be shut down for
some cycles when those results are either precomputed
or are not required. In [4], the output values are
precomputed using few high order bits one cycle before
they are needed. If the output values can be
precomputed, then the entire original logic circuit can be
turned off in the next clock cycle. Thus, switching
activity is reduced and power is saved. The guarded
evaluation technique in [5] tries to determine, on a per
clock cycle basis, which parts of a combinational circuit
are computing results that will be used, and which are
not. The sections that are not needed are then shut off,
thus saving the power used in all the useless transitions
in that part of the circuit. The clock gating method used
in a popular synthesis tool considers only static power.
Static power, however, accounts for less than 10% of the

case State_Var is
when s0 =>

p := 1 ;
i := 1 ;
t1 := (1 < x) ; -- x is a primary input
if t1 then

State_Var := s1 ;
else

y <= p ;
State_Var := s3 ;

end if ;
when s1 =>

p := p * 2 ;
y <= p ;
i := i + 1 ;
State_Var := s2 ;

when s2 =>
t2 := (i < x) ;
if t2 then

State_Var := s1 ;
else

State_Var := s3 ;
end if ;

when s3 =>
p := p – 1;
y <= p ;
i := i – 1;
State_Var := s2 ;

end case;

Figure 1. Sample unpartitioned FSMD code.

DATE99.doc Last printed 12/20/98 6:53 AM Page 2 of 7

total power consumption in a circuit [3].
In controller shutdown techniques [6], the controller

is partitioned into two or more mutually-exclusive
interacting FSMs and their clocks are selectively gated.
Each FSM controls the execution of one section of
computation. Only one of the interacting FSMs is active
at any given clock cycle, while all the others are idle and
their clock is stopped.

For example, given the FSMD description in Figure
1, the corresponding RTL design is shown in Figure 2.
Suppose that the input for x is 0 in the FSMD code, then
only states s0 and s3 will be executed, and so neither the
adder nor the multiplier is needed. These two functional
units will be wasting power in the unoptimized circuit of
Figure 2 because they will have switching activities even
though their results are not needed. Furthermore, the
controller can also be reduced to save power.

Figure 3 shows the result of applying the guarded
evaluation technique to the unoptimized circuit of Figure
2. Latches are added in front of all the functional units.
Since only the comparator and the subtract unit are
needed in the execution of states s0 and s3, the inputs to
the adder and multiplier can be latched, thus, preventing
the inputs from changing. Power is saved because there
will be no switching activity in these two functional
units.

Figure 4 shows an example of applying the
selectively-clocked FSM technique. Here we have split
the original FSM into two sub-FSMs. FSM1 includes
state s1 which control the portion of the datapath for the
multiplier and adder while FSM2 includes states s0, s2,
and s3, which control the portion of the datapath for the
comparator and subtract unit. Since we only need the
use of the comparator and subtract unit to execute states
s0 and s3, FSM1 can be made inactive by stopping the
clock to it. The power savings from this technique come
directly from the fact that there are multiple smaller
FSMs instead of one large one. As a result, we have a
shorter local clock line, fewer states, and simpler and
smaller next state logic. While this method prevents
unnecessary power consumption in the control unit, there
is no power reduction in the datapath.

While the above mentioned techniques show

significant power reductions, they focus only on either
the datapath or the controller for a single custom
processor. It was recognized in [5] and [6] that the
power savings would be even larger if both the controller
and the datapath were considered together and if the
techniques were applied on the complete circuit, rather
than on individual blocks. In this paper, we propose a
new shutdown technique for reducing power where both
the controller and the datapath are considered together.

The rest of the paper is organized as follows. In
Section 2, we will describe the problem. Section 3 gives
a detailed description of our technique. Section 4 shows
our experimental results, and we conclude in Section 5.

2. Problem Description

When a circuit is synthesized from a behavioral
description to a gate level netlist, only one control unit
and one datapath is generated. What this means is that
when there is a signal change at the primary input, the
entire datapath and control unit may be affected.
Partitioning the netlist (as in structural partitioning) does
not reduce power because even though the partitioning
creates more than one physical partition, there is still
logically only one datapath and one control unit. When a
primary input signal changes, it may still affect many of
the gates in the datapath and/or controller regardless of
which part they are in. Previous techniques only try to
reduce the switching activities within a localized subset
of gates either in the datapath or the controller.

FSM

p i

1

x

2

y

Control ler Datapath

mux
2

mux
1

mux
3

mux
4

- <* +

Figure 2. Unoptimized RTL design example.

p i

1

x

F S M

y

Control ler Datapath

mux
2

mux
1

mux
3

mux
4

- <* +
latchla tch la tch

2

la tch

Figure 3. Guarded evaluation technique.

F S M
1

F S M
2

p i

1

x

2

y

Control ler Datapath

mux
2

mux
1

mux
3

mux
4

- <* +

Figure 4. Selectively-clocked FSM technique.

DATE99.doc Last printed 12/20/98 6:53 AM Page 3 of 7

2.1 FSMD Functional Partitioning

Our FSMD functional partitioning technique is
applied before synthesis. The original FSMD is first
partitioned into several smaller mutually-exclusive
FSMDs. Each of these smaller FSMDs is then
synthesized to its own custom processor, having its own
controller and datapath. The reason why FSMD
functional partitioning can significantly reduce power is
that each processor is smaller than the original one large
processor implementing the entire process, and only one
processor is executing a computation at any given time
while the other processors will be idle. When a
processor is idle, we have, in effect, shut down both the
controller and the datapath for that processor. Thus,
power reduction is possible through functional
partitioning because it reduces the overall switching
activities of the entire system by localizing the activities
within smaller processors, hence, power consumed per
operation is less.

Figure 5 shows the result of applying the FSMD
functional partitioning technique to the sample circuit of
Figure 2. Here, we have two smaller mutually-exclusive
processors. The first processor contains the controller
and datapath for executing state s1, and the second
processor contains the controller and datapath for
executing states s0, s2, and s3. Thus, when x=0, only
processor 2 needs to be active. Processor 1 remains
inactive in an idle state waiting for processor 2 to wake it
up if necessary. The datapath of processor 1 is not
consuming power because the inputs are not changing.
The power consumed by both controllers is reduced
because of their smaller size. Furthermore, the power
consumed by processor 1’s controller is reduced even
more because it is in an idle state. The overhead in this
technique is the communication and possible duplication
of registers.

In addition to reducing power, FSMD functional
partitioning also provides solutions to a variety of
synthesis problems. These include I/O satisfaction by
reducing total I/O by as much as 67% (which could
impact physical design positively), reduced synthesis
runtime by as much as 85%, and hardware / software

tradeoffs [7]. Furthermore, our technique does not
require the modification of the synthesis tool. The
relevance of using the FSMD model is that many circuit
designs are still specified at the register-transfer level
using this model. However, partitioning introduces extra
power consumption for inter-processor communication
between the smaller FSMDs. Thus, the problem that
must be solved is one of partitioning such that the
reduction in power for computations far outweighs the
power increase for communication, while also
minimizing the increase in total circuit size and
execution time, and preserving the cycle-by-cycle
behavior.

2.2 FSMD Defined

Since we based our partitioning technique on the
FSMD model, we will now define it. An FSMD differs
from a traditional FSM in that it may include variables
with various data types, as well as complex data
operations in its actions. Formally, a finite-state machine
with datapath [8] is a 6-tuple defined as follows:

P = <S, s0, I ∪ STAT, O ∪ A, δ, λ>
where:

• S = {s0, …, sm} is a finite set of states
• s0 is the reset state.
• I = {i j} is a set of primary input values.
• STAT = {Rel(a, b) : a, b ∈ EXP} is a set of

status signals as logical relations between two
expressions from the set EXP.

• EXP = {f(x,y,z,…) : x,y,z,… ∈ VAR} is a set of
expressions.

• VAR is a set of storage variables.
• O = {ok} is a set of primary output values.
• A = {x ⇐ e : x ∈ VAR, e ∈ EXP} is a set of

storage assignments.
• δ is a state transition function that maps a cross

product of S and I ∪ STAT into S.
• λ is the output function that maps a cross

product of S and I ∪ STAT into O ∪ A for
Mealy models or S into O ∪ A for Moore
models.

3. Implementation Details

In contrast to procedural functional partitioning [9]
which performs a coarse-grained partitioning of
procedures and functions, FSMD functional partitioning
has no concept of functions or procedures, but rather
states. What we need in FSMD functional partitioning is
to be able to determine the variables that need to be
passed from one state to the next. A power partitioning
heuristic is then applied to separate the states into two or

F S M
2

comm

F S M
1

Controller Datapath Controller Datapath

Processor 1 Processor 2

p i

1

2

y

mux
2

mux
1

* +

x

y

mux
2

mux
1

mux
3

mux
4

- <

1

p i

Figure 5. FSMD partitioning technique.

DATE99.doc Last printed 12/20/98 6:53 AM Page 4 of 7

more parts. Finally, communication between the parts is
added. The details are discussed in the following
sections.

3.1 Dataflow analysis

Given an unpartitioned FSMD, we first construct a
control flow graph by assigning a state in the FSMD to a
node in the graph. For example, given the unpartitioned

FSMD code of Figure 1, we obtain the initial control
flow graph of Figure 6(a). A dataflow analysis, similar
to that used for compiler optimization [10], is then
performed on the graph to obtain the variables that need
to be passed from one state to another.

When we perform the FSMD partitioning, we are
only interested in the amount of data that cross between
two parts and not between two states that are in the same
part. Thus, for each part Pi, we need to calculate the set
of variables needed to be passed from the caller part,
Pi.in, and the set of variables needed to pass to the callee
part, Pi.out. The heuristic to evaluate Pi.in and Pi.out is
shown in Figure 7. Note that before applying this
heuristic, we must already know how many parts we will
have and the set of nodes in each part. Continuing with
our example, if we put node s1 in part P1 and the rest of
the nodes in part P0, then after applying the heuristic of
Figure 7, we obtain the results shown in Figure 6(b).

Notice that the variable x is used in state s2 and was
defined (primary input) in state s0, thus, it must be
passed from s0 via s1 to s2. However, x is not in either
of the sets P1.in or P1.out. This is because s0 and s2 are
in the same part. If we had put s2 in P1, then x would
have to be passed across the parts, thus increasing the
power consumed by the communication.

3.2 Power partitioning heuristic

For our initial experiments, we have used a simple
heuristic to partition the states such that the overall
energy consumption of the entire circuit is minimized.
The heuristic is based on the following energy estimation
model. Details of the model can be found in [11]. Let
Esi be the energy consumed by state si. The total energy
for a 2-part partitioned system (parts A and B) is:

commBBAAdpartitione EEEE +α+α= (2)

where ∑
∈∀

=
Ais

iA EsE (similarly for EB) is the sum of the

FSMD state

reset states0

s1

s 0

s 1

s 2

s 3

(a)

P 1

P 0

P1. in={ i ,p }
P1 .ou t= { i , p }

P0 . in={ i ,p }
P0 .ou t= { i , p }s0

s2

s1

s3

 (b)

P 1

P 0

start
s1

star t
s1

star t
s2

P1. in={ i ,p }
P1 .ou t= { i , p }

P0 . in={ i ,p }
P0 .ou t= { i , p }

s0

s1

s3

s
id le1

s
id le0

s2

(c)

Figure 6. (a) Control flow graph for Figure 1,
(b) result after dataflow analysis and
partitioning, and (c) result after refinement.

for each part P do

end

).()..(.

).()..(.

.in defined variablesofset // ..

.in used variablesofset // ..

.in not are that states sition to that tranin states ofset //

. and,,, : states all ofset .

.in not are that states fromsition that tranin states ofset //

. and,,, : states all ofset .

begin

defPoutcallerPoutP

usePincalleePinP

PPndefndefP

PPnusenuseP

PP

PnPnjinnncallerP

PP

PnPnjinnncalleeP

jijii

jiiji

−=

−=

∈∀=
∈∀=

∉∈≠→=

∉∈≠→=

�

�

�

�

Figure 7. Partition dataflow analysis
heuristic.

DATE99.doc Last printed 12/20/98 6:53 AM Page 5 of 7

energy of the states in part A (part B), and αA (αB) is the
complexity for processor A (processor B) due to its
controller and datapath interconnect. αA (αB) is
approximated by the number of states in the part. The
assumption made for α is that the complexities of two
individual states are summed to get the complexity for
both states combined, but in reality, the combined
complexity will be less than the sum. Ecomm is the
communication energy. We found that the
communication energy does not affect the partitioning
heuristic too much because it is dominated by the much
larger state energy. Because of this, Ecomm is ignored to
simplify our current partitioning heuristic. Let EU and
αU be defined similarly but for the unpartitioned system,
then since EA + EB = EU and αA + αB = αU, we can
rewrite equation (2) as:

))((AUAUAAdpartitione EEEE −α−α+α= (3)

To minimize Epartitioned, we need to minimize both
terms. However, we cannot minimize the first term by
minimizing both EA and αA because this will cause the
second term to be maximized; likewise with the second
term. Thus, to minimize a term, we can only minimize
either α or E for the same term. From this observation,
the partitioning heuristic below tries to balance the α and
E between the two parts:

1. Calculate Esi for all states.
2. Sort the states according to the Esi ’s such that

Esm < ... < Esn < Esp <… < Esq.
3. Divide the sorted states into two parts between

sn and sp satisfying the following criteria:

• Part A = {si : ∀ i, Esi ≤ Esn}
• Part B = { sj : ∀ j, Esj ≥ Esp }
• |EA – EB| is minimized.

Basically, this heuristic finds the median of the states
with respect to the energy consumption E. Alternatively,
we can find the median with respect to α. This heuristic
is very fast; steps 1 and 3 are O(n) and step 2 is O(nlogn)
where n is the number of states. We are currently
working on a more refined partitioning heuristic using a
branch and bound scheme and comparing the power
reduction results between them.

3.3 FSMD refinement method

The heuristic described in the previous section
produces a partitioning of the FSMD states. We now
generate new communicating FSMDs that are
functionally equivalent to the original unpartitioned
FSMD. The resulting communicating FSMDs from
Figure 6(a) are shown in Figure 6(c).

For example, to transition from state s0 to s1 in the
unpartitioned FSMD shown in Figure 6(a), the
equivalent transition in the partitioned FSMDs is shown
in Figure 6(c). Initially, P0 is in s0 and P1 is in its idle
state sidle1. To transition to s1, P0 exits s0, asserts starts1,
and enters its idle state sidle0. Seeing that starts1 is
asserted, P1 exits sidle1 and enters s1.

The FSMD partitioning can be formally described as
follows. Let P = <S, s0, I ∪ STAT, O ∪ A, δ, λ> be the
original unpartitioned FSMD. Our method is to partition
P into n parts, P0, …, Pn-1 such that the combined
behavior of the partitioned Pi ’s is functionally equivalent
to the unpartitioned P. Each partitioned FSMD, Pi, is
defined as follows:

Pi = <Si, s0,i, sidle,i, I i ∪ STATi ∪ IPi, Oi ∪ Ai ∪ OPi, δi, λi

>

where the symbols are defined similarly to the
unpartitioned FSMD except that they are for each part Pi.
A new idle state sidle,i ∈ Si is added to each Pi.
Furthermore,

�
1

0

−

=
∅=

n

i
iS

and

��
1

0
,

1

0

−

=

−

=
+=

n

i
iidle

n

i
i sSS .

P0 is the main active part, and the other Pi ’s are the
passive parts. For the main part P0, the idle state is not
the reset state, i.e. s0,0 ≠ sidle,0. Whereas, for the other
parts Pi=1 to n-1, the idle state is the reset state, i.e. s0,i =
sidle,i. Besides the primary inputs and outputs Ii and Oi,
each part also has data that is passed between the parts.
These are IPi and OPi for data that is passed from and to
another part respectively. IPi = <ip1, … ipa> where a =
number of input parameters for Pi, and OPi = <op1, …
opb> where b = number of output parameters for Pi.
These parameters and values are determined from the
dataflow analysis.

For each transition from a state u of Pi to a state v of
Pj (i ≠ j), a new signal startv is generated. startv is a uni-
directional signal that goes from Pi to Pj. Every

clock

P1 state reg s 1
s

id le1

t 0

start s1

s 0P0 state reg
s

id le0

t 1 t2 t3

Figure 8. Partitioned FSMD transition timing
diagram.

DATE99.doc Last printed 12/20/98 6:53 AM Page 6 of 7

transition from state u to v in P becomes a transition
from u to sidle,i in Pi and from sidle,j to v in Pj. The
transition from u to sidle,i in Pi asserts the output signal
startv of Pi. The transition from sidle,j to v in Pj is
performed only when the input signal startv of Pj is
asserted.

Partitioning the FSMD and introducing the extra idle
state in each part according to the technique described
above do not change the cycle-by-cycle behavior of the
original unpartitioned FSMD. When there is a transition
that crosses between two parts, the caller processor will
transition to its idle state while at the same time, the
callee processor transitions from its idle state to the next
state. The transitions to and from respective idle states
for the two parts happen simultaneously, thus, no extra
clock cycle is needed as shown in Figure 8. However, the
critical path can be either lengthened (because of the
added communication circuitry) or shortened (because of
the smaller circuitry in the smaller part). Thus, the
overall execution time can be longer or shorter than the
unpartitioned system.

4. Experimental Results

We have implemented the FSMD functional
partitioning technique described above. We start by
describing a system using the FSMD model with VHDL.
After applying our partitioning technique, the system is
synthesized and simulated to obtain the switching
activity data. Power results are calculated using the
switching activity and the capacitance of the netlist
obtained from the technology library. The unpartitioned
and partitioned systems are compared in terms of their
average and total power usage, area, and execution time.

Table 1 shows the statistics for the FSMD examples.
Fac is a factorization program. Chinese evaluates the
Chinese Remainder Theorem. Diffeq is an example from
the HLSynth MCNC benchmark. Volsyn is a volume-
measuring medical instrument controller. NLoops is an
example with nested loops. MP is a small
microprocessor. DSP is a digital signal processor. The
second and third columns show the size in terms of gate

count for the unpartitioned and partitioned systems
respectively. For the partitioned size, the gate count for
the individual parts are further broken down. The states
column shows the number of states in the partitioned
system and the last column shows the total bit width for
the communication.

The results are summarized in Table 2. Columns 2
and 3 show the percent increase in area and execution
time respectively. The absolute average and total power
for the partitioned examples are shown in columns 4 and
5. The percent average and total power savings are
shown in columns 6 and 7. In all cases except for Diffeq,
both the average and total power is reduced. The savings
in average power ranges from 2% to as much as 66%
with an average of 42%. The savings in total power
range from 33% to 64% with an average of 41%. For the
Diffeq example, the average power is reduced by 2% but
the total power is increased by 3%. A possible reason
for this is that the Diffeq example is simply a repetition
of a single algorithm several times, and thus, is not a
good candidate for partitioning because of frequent
communication. The tradeoff for the area on the average
is 24% and only 1% on average for the execution time.
The reason why the execution time overhead is so small
is because the critical path can be shortened as a result of
a smaller processor, thus compensating for the critical
path lengthening from communication. The 24% increase
in gates is not as significant because chip capacities
continue to grow exponentially. The results do take into
consideration the fact that the bus capacitance for
communications between parts are larger than internal
capacitance. In our power calculation, we have used a
bus capacitance that is four times the internal
capacitance.

Figure 9 shows a comparison of average power
savings between our FSMD partitioning technique with
the guarded evaluation [5] and selectively-clocked [6]
techniques. We used two approaches to make the
comparison and they both gave similar results. In the

Table 2: Power reduction results.
% Overhead Absolute

Partitioned
% Power Savings

Example
Area

%
Time

%

Average
Power
(µW)

 Total
Power
(µJ)

Average
%

Total
%

Fac 13 5 17.26 1347.40 66 64

Chinese 67 7 15.85 3491.43 37 33

Diffeq 12 5 54.74 8989.34 2 -3

Volsyn 3 9 7.54 1509.18 49 44

NLoops 33 -6 5.19 2511.00 42 45

MP 2 -4 13.29 425.27 51 51

DSP 39 -9 1.08 28.38 48 50

Average 24 1 16.42 2614.57 42 41

Table 1: Example statistics.
Unpart Partitioned

Example
Size Size States Com

Fac 15251 17208=11166+2758+3284 20 230

Chinese 19766 33054=14137+2233+1669+15015 44 485

Diffeq 11487 12874=1654+11220 58 258

Volsyn 11193 13163=10798+2365 16 67

NLoops 2622 3484=1988+1496 12 66

MP 6210 6307=4623+1684 101 98

DSP 278 386=131+255 13 12

DATE99.doc Last printed 12/20/98 6:53 AM Page 7 of 7

first approach, we analyzed our set of examples to
estimate the power savings using the localized
techniques. In the second approach, the power savings
data for the localized techniques are taken directly from
their respective papers and adjusted to our unoptimized
examples. Since their savings are with respect to
portions of the whole system, we have adjusted it
accordingly to reflect the savings for the entire system.
The data from [5] does not include examples with a
power savings of less than 15%. Hence, to compare
fairly, we have dropped such examples in the comparison
(in our case, the Diffeq data is dropped.) The percent
power savings for the three techniques, guarded
evaluation, selectively-clocked, and FSMD partitioning,
over the unoptimized design are 31%, 7%, and 49%
respectively. The power usage by the functional units
and muxes is less for FSMD partitioning than for
guarded evaluation because there is power savings from
the muxes for the former but not the latter technique.
Power usage by the registers is more than the
unoptimized because some registers have to be
duplicated, however, it is slightly less than that of
guarded evaluation because fewer extra latches are
needed. The controller power usage is about the same as
that of the selectively-clocked technique.

After the FSMD partitioning, we end up with several
smaller processors, thus, we can further apply the
localized techniques to the individual processors to get
even better results. Our analysis [11] shows that an
additional 18% power savings might be achievable
resulting in a total savings of 58% as shown in the FSMD
partitioning and guarded evaluation plot in Figure 9.

5. Conclusions

We have introduced an FSMD functional partitioning
technique for reducing power consumption. Unlike
previous power reduction shutdown techniques which
focus only on either the datapath or the controller, our
approach partitions the entire FSMD to shut down both

the controller and the datapath. We achieved on average
a 42% average power reduction with a 24% increase in
gate count and only 1% increase in execution time.
Furthermore, since our technique is applied at a higher
level and in the early stages of the design process, further
power reduction is still possible by applying localized
power reduction techniques at the lower levels. In
addition to power reduction, FSMD functional
partitioning also provides solutions to a variety of
synthesis problems and does not require the modification
of the synthesis tool.

References
[1] Srinivas Devadas & Sharad Malik, “A Survey of

Optimization Techniques Targeting Low power VLSI
Circuits,” Proceedings of the Design Automation
Conference, pp. 242-247, 1995.

[2] Enrico Macii, Massoud Pedram, & Fabio Somenzi,
“High-Level Power Modeling, Estimation, and
Optimization,” Proceedings of the Design Automation
Conference, pp. 31-38, 1997.

[3] A. Chandrakasan, T. Sheng, & R. Brodersen, “Low
Power CMOS Digital Design,” Journal of Solid State
Circuits, Vol. 27, No. 4, pp. 473-484, April 1992.

[4] Mazhar Alidina, Jose Monteiro, Srinivas Devadas, &
Abhijit Ghosh, “Precomputation-Based Sequential
Logic Optimization for Low Power,” Proceedings of
the International Conference on Computer Design, pp.
74-81, October 1994.

[5] Vivek Tiwari, Sharad Malik, & Pranav Ashar,
“Guarded Evaluation: Pushing Power Management to
Logic Synthesis/Design,” International Symposium on
Low Power Design, 1995.

[6] L. Benini, P. Vuillod, G. De Micheli & C. Coelho,
“Synthesis of Low-Power Selectively-Clocked Systems
from High-Level Specification,” International
Symposium on System Synthesis, pp. 57-63, Nov. 1996.

[7] F. Vahid, T. Le, & Y.C. Hsu, “A Comparison of
Functional and Structural Partitioning,” International
Symposium on System Synthesis, pp. 121-126,
November 1996.

[8] D. Gajski, N. Dutt, A. Wu, & S. Lin, High-Level
Synthesis Introduction to Chip and System Design,
Kluwer Academic Publisher, Boston, 1992.

[9] D. Gajski, F. Vahid, S. Narayan, and J. Gong,
Specification and design of embedded systems, New
Jersey, Prentice Hall, 1994.

[10] A. V. Aho, R. Sethi, & J. D. Ullman, Compilers
Principles, Techniques, and Tools, Addison-Wesley
Publishing Company, California, 1988.

 [11] E. Hwang & F. Vahid, “Energy Estimation for FSMD
Partitioning,” UCR CS 98 06, University of California,
Riverside.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Unoptimized Guarded
Evaluation

Selectively-
Clocked

FSMD
Partitioning

FSMD Part.+
Guard. Eval.

A
ve

ra
ge

 P
ow

er
 (

uW
)

communication
controller
registers
FUs + muxes

31%

0%
7%

49%
58%

Figure 9. Average power savings compared.
Percentages show power savings. Shorter
bars are better.

