
 A Self-Tuning Configurable Cache

ABSTRACT
The memory hierarchy of a system can consume up to 50% of
microprocessor system power. Previous work has shown that
tuning a configurable cache to a particular application can reduce
memory subsystem energy by 62% on average. We introduce a
self-tuning cache that performs transparent runtime cache tuning,
thus relieving the application designer and/or compiler from pre-
determining an application’s cache configuration. The self-tuning
cache applies tuning at a determined tuning interval. A good
interval balances tuning process energy overhead against the
energy overhead of running in a sub-optimal cache configuration,
which we show wastes much energy. We present a self-tuning
cache that dynamically varies the tuning interval, resulting in
average energy reduction of as much as 29%, and within 11% of
the energy savings of an optimal self-tuner tuning at ½ of the
phase interval and within 13% of the oracle.

Categories and Subject Descriptors
B.3 [Memory Structures]: Performance Analysis and Design
Aids.

General Terms
Algorithms and design.

Keywords
Configurable cache, reconfigurable cache, phase-based, cache
tuning, reconfigurable architecture, low energy, low power,
architecture tuning, embedded systems.

1. INTRODUCTION
Configurable caches allow for cache parameters, such as total
size, associativity, and line size, to be varied. Configurable caches
enable architectural specialization to a particular application, for
improved power, energy, and/or performance.

 Cache tuning is the process of determining the best cache
parameter values for a given application. For example, an
application with a large working set benefits from a large cache; a
small cache yields excess energy due to thrashing (the working
set being swapped in and out). Conversely, an application with a
small working set benefits from a small cache; a large cache
would waste energy due to high energy cost per fetch and
unnecessary static power. Similarly, specific spatial and temporal
localities suggest best line size and associativity settings.

Cache requirements vary greatly across applications [14].
Tuning a configurable cache to a particular application can reduce
average memory access energy by 62%, along with performance

improvements in most cases [5]. Cache requirements can even
vary within an application [11], and tuning the cache to phases
can yield additional improvement.

Software-reconfigurable caches [1][2][14] enable cache
parameter values to be adjusted dynamically. One dynamic
approach requires that cache configurations have been pre-
determined statically, with reconfiguration taking place by adding
instructions to an application that updates the cache configuration
register during phase changes. Another dynamic approach is fully
transparent, in which the cache itself automatically adjusts its
parameters to the executing application, i.e., the cache is self-
tuning.

Self-tuning enables the energy savings of cache tuning without
any designer effort, simplifying the design process, maintaining
standard tool flows, and keeping binaries portable; a self-tuning
cache can be incorporated transparently into any cache-based
architecture. Furthermore, a self-tuning cache can tune to runtime
changes in environment, such as changes to input patterns or
software updates.

One self-tuning cache design dynamically invokes a self-
tuning mode, at a specified tuning interval, that efficiently
explores the configuration space, or examines special counters, to
predict the best cache configuration for the currently-running
application or phase [2][13][15]. A challenge in self-tuning is
determining a good tuning interval. If phase changes are periodic,
then for maximum savings, the tuning interval should closely
match the phase interval, or the length of time a system executes
between phase changes. A phase change is any change in the
executing application such that a different cache configuration
would be better than the previous one. Because the tuning process
consumes extra energy, if the tuning interval is too short, excess
tuning energy is expended. If the tuning interval is too long,
energy is wasted running in sub-optimal configurations.

The best tuning interval is highly dependent on runtime factors
and thus is hard to pre-determine. Previous methods use feedback
control to determine if tuning should occur at the fixed tuning
interval, but they do not analyze the chosen interval nor attempt to
adjust the tuning interval. We show that significant energy is
wasted if the tuning interval does not closely match the changing
phases of the system.

We present an in-depth study of a dynamically-adjusting
tuning interval. Whereas most previous methods use fixed tuning
intervals, we introduce an effective online algorithm to adjust the
tuning interval to match the phase interval of a system. We design
a feedback controlled self-tuner that is system independent, which
examines execution and determines the tuning interval regardless
of the number of applications and/or presence of an operating
system. Our methodology is widely applicable to embedded,
desktop, and even super-computing environments. Furthermore,
this methodology can easily be incorporated into many existing
periodic dynamic tuning methodologies for improved results.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA
Copyright 2007 ACM 978-1-59593-627-1/07/0006…5.00

Ann Gordon-Ross and Frank Vahid*
University of California, Riverside – Department of Computer Science and Engineering

http://www.cs.ucr.edu/{~ann}{~vahid}, {ann,vahid}@cs.ucr.edu
*Also with the Center for Embedded Computing Systems at University of California, Irvine

2. ONLINE ALGORITHMS
We use the framework of online algorithms, which process data
as data arrives and are unable to view the entire data set, for our
approach. A self-tuner tunes the tuning interval based on current
and past, but not future, system behavior.

We design a system to monitor the effects of the current tuning
interval to evaluate the tuning interval. Our methodology is
similar to a feedback control system [9]. A basic control system
consists of a plant (system under control), a goal (set-point), and a
method to manipulate the plant (actuator). Changes made via the
actuator modify the plant and thus modify the output of the
system to meet the set-point. A feedback control system examines
the output of the system and determines the error in relation to the
set-point, thus allowing the actuator to adjust based on observed
error. We view self-tuning as a feedback control system by
considering energy change as the observed output of the system,
and treating the cache tuner as the actuator used to reduce the
energy consumption of the memory subsystem plant. However,
set-points are typically fixed values, but in the self-tuner, the set-
point is the minimization of energy consumption, which makes
modeling as a control system difficult. In the next section, we
adapt feedback control system theory to our methodology.

3. SELF-TUNING METHODOLOGY
We describe the design of a feedback control system capable of
monitoring the tuning interval and transparently optimizing the
self-tuner for reduced energy consumption.

3.1 Motivating example
A strictly periodic tuning approach blindly tunes at a fixed
interval, which may be either too long or too short. Event-driven
techniques poll event counters at some interval, comparing
counters (such as a cache miss rate counter) to thresholds, to
determine if tuning should occur. However, even if a stable
system is observed (e.g., cache miss rate is stable) and thus tuning
skipped, a phase change may occur between polling intervals,
meaning the interval is too long.

Figure 1 illustrates the impact of a tuning interval being too
long or too short, assuming a fixed periodic phase interval of 10
million cycles, where at each phase change, the system chooses a
random benchmark from a given benchmark suite (further details
of the system setup are described in section 4.1). The figure
shows energy consumption of a self-tuning instruction cache
subsystem normalized to a system running with a fixed base
cache. The self-tuning energy consists of the energy consumed
during tuning plus the energy consumed by the system running
with the configuration determined during tuning as it executes for
the remainder of the tuning interval. The optimal system would be
an oracle that immediately recognizes phase changes and runs the

tuner.
A tuning interval that matches the phase interval (in this case,

10 million cycles) yields optimal results. However, without
omniscient information during runtime, it impossible to
accurately predict a phase change 100% of the time (Sherwood
[12] presents an efficient and effective method to predict phase
changes, but due to the difficulty of predicting the future, it is not
perfect). With the optimal tuning interval, the self-tuning system
reduces 32% of energy over a base cache system, which includes
7% overhead due to the tuning process itself. However, if the
phase interval is not tracked precisely, the penalty is severe and
there is no potential energy savings compared to the base system.

Too short (undershoot) or too long (overshoot) of fixed tuning
intervals reduces energy savings. Overshoot means a phase
change is missed and the new phase is executed using the current
cache configuration. We observed that overshoot results in a
tremendous energy penalty. A cache tuned to a particular phase is
best for that phase but is likely very poor for another phase. We
refer to these configurations as extremist configurations.
Overshoot results in the system consuming more energy than a
base cache system, meaning it is better to not perform self-tuning
than have overshoot. Overshoot energy details appear in [6].

In contrast to overshoot, undershoot yields energy savings
compared to a base cache. The best results are at a tuning interval
of 5 million cycles, which is half the phase interval, yielding 28%
energy savings over a base system. Furthermore, if ½ of the phase
interval is not tracked precisely, we see that the penalty is
acceptable and the system can still save energy compared to the
base system.

Thus, interval tuning is important, and since it is better to
undershoot the tuning interval than overshoot the interval, we
sought to develop a methodology for tracking ½ of the phase
interval.

3.2 Feedback control system
Figure 2 shows our feedback controlled self-tuner, modeled after
a control system. The goal of our system is to control the tuning
interval to minimize over all energy consumption.

Since our system has no set-point, but rather seeks to minimize
energy, our system is similar but not exactly a feedback control
system. The plant is a microprocessor. Changes to the plant occur
as side effects of changes made to the cache system by the
actuator, or cache tuner. Plant changes reflect in the system miss
rate, after application of the energy model (discussed in section
4.1), serves as the feedback to the system. Phase changes
represent disturbances to the plant causing changes in the miss
rate.

After a tuning process, the energy error is calculated by the
Energy Error Calculator (EEC). A change in energy (ΔE) before
tuning compared to after tuning signifies a phase change. If the
energy before tuning is the same as the energy after tuning, we
assume no phase change occurred during the last interval. The

Figure 1: Self-tuning energy normalized to base system for too-
long and too-short tuning intervals for a fixed phase interval of

10 million cycles.

Figure 2: Proposed feedback control system

0

0.5

1

1.5

2

2.5

1m 2m 3m 4m 5m 6m 7m 8m 9m10
m

11
m

12
m

13
m

14
m

15
m

16
m

17
m

18
m

19
m

20
m

Tuning interval (m illions o f cycles)

N
o

rm
a
li

ze
d

 e
n

e
rg

y Se lf-tun ing
energy
norm alized to
op tim a l

Se lf-tun ing
energy
norm alized to
base

Tuning interval
undershoot

Tuning interval overshoot
Oracle

Microprocessor

$’s

plant

Cache
Tuner

Miss
rate

energy
model

Controller
Energy

Error Calc
(EEC)

Energy Consumption

%ΔE
actuator

Phase changes
(disturbances)

Tuning
interval

(i)

EEC outputs the percent change in energy (%ΔE). To prevent
erratic behavior due to artifacts in disturbances, the %ΔE is
calculated over a window of past tuning intervals. We determine
the best window size (W) through experimentation in section 4.2.

The controller uses %ΔE to vary the tuning interval. If %ΔE is
small, then the system does not benefit from tuning, thus the
system should be tuned less often. Conversely, if %ΔE is large,
then the system does benefit from tuning, thus the system should
be tuned more often.

3.3 Controller logic
As earlier mentioned, overshoot should be avoided. If the phase
change is overshot, the tuning interval should back off rapidly to
avoid excess energy wasted in a suboptimal cache configuration.
Thus, the tuning interval should increase slowly but decrease
quickly. This is similar to an attack/decay online algorithm [9].

We initially developed a fixed equation to control the interval
length using a fixed percentage to increase/decrease the tuning
interval. Through experimentation, we observed that fixed
increments/decrements of the tuning interval did not offer enough
granularity of change for the tuning interval, and we were unable
to stabilize the system.

To stabilize the tuning interval, we developed a variable, two-
part equation similar to a fuzzy logic system, in which changes
neither need to be absolute nor do changes need to use fixed value
logic. With fuzzy logic, the tuning interval can be changed based
on how close or far away the system is from being stable as is
observed by the %ΔE of the system.

Figure 3 graphically depicts the equations to calculate the
tuning interval. The x-axis plots %ΔE and the y-axis is the percent
change applied to the tuning interval based on %ΔE. Variables are
denoted in bold italics. The graph assumes a Point of Stability
(PoS), which is the %ΔE we would expect to see in a stable
system with good a tuning interval, and thus there should be no
change to the tuning interval (y-axis point is 1). For %ΔE values
less that the PoS, the system tunes too frequently. At the extreme
where %ΔE = 0 (no change in energy after tuning), the tuning
interval should be increased by the maximum amount, which we
call U. For 0 <= %ΔE < PoS, the change in tuning interval U is
calculated using the equation passing through points (PoS, 1) and
(0, U).

For %ΔE > PoS, we assume a maximum %ΔE of 100%. In
reality, %ΔE could be greater than 100% but we assume that for
values greater than 100% we are only interested in decreasing the
tuning interval by the maximum amount D. For PoS < %ΔE <
100%, the percentage change D applied to the tuning interval is
calculated using the equation passing through points (100%, D)

and (PoS, 1).
We determine appropriate values for U, D, and PoS in Section

4.2 through experimentation.

4. RESULTS
4.1 Experimental setup
We use the highly configurable cache and tuning heuristic
developed by Zhang [14]. We configure the level one instruction
cache only. Possible cache configurations include cache sizes of
2, 4, and 8 KBytes, line sizes of 16, 32, and 64 bytes, and direct-
mapped, 2-way, and 4-way set associativities. We compare to a
base cache configuration of an 8KB, 4-way set associative cache
with 32-byte line size [14], which performs reasonably across all
the examined benchmarks.

We use 20 benchmarks from the Powerstone [10] and
MediaBench [8] benchmark suites. We execute each benchmark
on SimpleScalar for every cache configuration to gather hit and
miss rates. We apply the tuning heuristic and the energy model in
[14] to determine the best cache configuration per application. As
tuning energy is application-dependent, we calculate tuning
energy per application. We estimate the tuning time as 1 million
cycles and use actual cycles-per-instruction values for each
application.

We model the overall system in C++ and, without loss of
generality, switch applications to simulate phase changes. For
each experiment, we simulate 10,000 phase changes.

4.2 Tuning interval function evaluation
We first determined the best constant values for the variables in
Figure 3 and the window size from Section 3.2 using a periodic
system. We assumed a training set of 2 applications switching at a
fixed phase interval. We varied one parameter while holding other
parameters fixed to determine the best value for that parameter.
The best value now becomes the fixed value for that parameter,
and we varied the next parameter. Using knowledge of cache and
application behavior and observations gathered during initial
testing, we chose the fixed values conservatively (small) to
eliminate erratic behavior. We note that the best values are highly
dependent on the actual system, the applications running, and the
phase switching frequency, however we will show in section 4.3
that the values determined with our training system work well for
a variety of different test systems.

Graphs depicting fluctuation in energy consumption can be
found in [6]. For each variable, we chose the value that resulted
in greatest energy savings. We varied PoS, followed by U, D, and
finally W. The final values chosen were: PoS = 0.17, U = 1.11, D
= 0.82, and W = 2. We observe that these values cause the tuning
interval to converge to ½ of the phase interval quickly with little
oscillation after convergence [6].

To determine values for a more diverse system, we applied the
same technique to a system with a fixed phase interval, but where
a random benchmark was chosen from our set of 20 benchmarks
at each phase change. The final values chosen for the system
were: PoS = 0.16, U = 1.12, D = 0.85, and W = 5.

4.3 Energy savings
To evaluate the feedback controlled self-tuner and the values
determined for PoS, U, D, and W for test systems, we first looked
at two-phase systems switching at a fixed phase interval for
random pairs of benchmarks. Figure 4 shows energy consumption
normalized to the base cache system for the optimal oracle self-

Figure 3: Two part equation to map change in energy (x-axis)
to a change in tuning interval (y-axis).

1.0

PoS 100%

D

U

0

Large energy
change,
decrease
interval

Small energy
change,
increase
interval

%ΔE

C
ha

ng
e

to
 tu

ni
ng

in

te
rv

al

y =
1−U

PoS
x +U

Stable system

y =
D−1

1− PoS
x +1−

D−1

1− PoS
PoS

tuner (tunes precisely at the phase change), a self-tuner that tunes
at exactly ½ the phase interval, and our self-tuner with a variable
tuning interval. A y value of 1 represents the energy consumption
for the base system, and all bars below that line denote energy
savings. If we compared our variable interval self-tuner with an
actual system, our method would outperform most fixed tuning
intervals. However, we compare to the best possible tuning
intervals in order to show how close our methodology comes to
obtaining optimal results.

Assuming a 400 MHz system, Figure 4 shows a system with a
phase interval of 62.5 ms ([6] shows results for different systems).
The self-tuner with variable tuning interval comes within 13% of
the optimal self-tuner, and reduces energy by 29% compared to a
base system.

Figure 5 evaluates a less periodic 2-phase system. For this
system, the base phase interval is 62.5 ms and at each phase
change, there is a 50% chance of the next phase interval being
increased or decreased by 50%. Again, the self-tuner with a
variable tuning interval performs very well, coming within 17%
of the optimal self-tuner, within only 6% of the self-tuner at a
fixed rate of ½ the phase interval, and with 26% energy savings
compared to the base system.

4.4 Initial tuning intervals, untunable systems
Choosing an appropriate initial value for the tuning interval is
important. We determined through experiments that if a very
large initial tuning interval was chosen relative to the phase
interval, aliasing could lead to interval values converging at rates
greater than the phase interval. For example, in a two phase
periodic system, if the tuning interval is so long that is skips over
the execution of one of the phases, the energy before and after
tuning will be the same because the system missed the phase
change that occurred in between tuning times. We observed no
problem starting with a small interval. Thus, it is better to start the
tuning interval at a very small value.

We assumed that the phases did not switch faster than the
tuning time, but a real system may violate that assumption. If an
application switches faster than the system can tune for, the
system will always be tuning and hence incur energy overhead.
Thus, a minimum interval value should be specified. If the tuning
interval remains at the minimum value for too long, then the
system should be deemed untunable and the cache system set to a
reasonable base configuration. To react to future system changes,
the self-tuner could be re-invoked periodically to see if the system
has changed to a tunable state.

5. CONCLUSIONS
We presented a novel dynamic self-tuning cache for reduced
energy. Previous methods use a fixed tuning interval that we

observed could have significant energy overhead. We developed a
feedback control system for adjusting the tuning interval to match
system needs. The self-tuner reduces average energy consumption
by 29%, and comes within 11% of the energy savings of the best
possible non-oracle tuner that tunes at half of the phase interval,
and within 13% of the oracle. Future work includes improving our
self-tuner to be more robust in highly diverse environments.

6. ACKNOWLEDGEMENTS
This work was supported in part by the National Science
Foundation (CNS-0614957) and the Semiconductor Research
Corporation (2005-HJ-1331).

7. REFERENCES
[1] D. Albonesi. Selective cache ways: on-demand cache resource

allocation. MICRO 1999
[2] R. Balasubramonian, D. Albonesi, A. Byuktosunoglu, S. Dwarkada.

Memory hierarchy reconfiguration for energy and performance in
general-purpose processor architectures. MICRO 2000.

[3] A. Ghosh, T. Givargis. Cache optimization for embedded processor
cores: an analytical approach. International Conference on Computer
Aided Design, November 2003.

[4] T. Givargis, F. Vahid. Platune: a tuning framework for system-on-a-
chip platforms. IEEE Trans. on Computer Aided Design, Nov. 2002.

[5] A. Gordon-Ross, F. Vahid, N. Dutt. Fast configurable-cache tuning
with a unified second level cache. International Symposium on Low
Power Electronics and Design, 2005.

[6] A. Gordon-Ross, F. Vahid. A self-tuning configurable cache.
University of California, Riverside. Technical Report UCR-CS-2007-
03001.

[7] S. Kaxiras, Z. Hu, M. Martonosi. Cache decay: exploiting
generational behavior to reduce cache leakage power. ICCD July 2001

[8] C. Lee, M. Potkonjak, W.H. Mangione-Smith. MediaBench: A tool
for evaluating and synthesizing multimedia and communication
systems. MICRO 1997.

[9] G. Magklis, G. Semeraro, D.H. Albonesi, S.G. Dropsho, S.
Dwarkadas, M.L. Scott. Dynamic frequency and voltage scaling for a
multiple-clock domain microprocessor. IEEE Micro, Nov-Dec 2003.

[10] A. Malik, W. Moyer, D. Cermak. A low power unified cache
architecture providing power and performance flexibility. International
Symposium on Low Power Electronics and Design, 2000

[11] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, B. Calder.
Discovering and exploiting program phases. IEEE Micro: Micro’s Top
Picks from Computer Architecture Conferences, December 2003.

[12] T. Sherwood, S. Sair, B. Calder. Phase tracking and prediction. 30th
International Symposium on Computer Architecture, 2003

[13] S. Yang, M. Powell, B. Falsafi, K. Roy, T. Vijaykumar. An
integrated circuit/architecture approach to reducing leakage in deep-
submicron high-performance i-caches. HPCA, January 2001.

[14] C. Zhang, F. Vahid, W. Najjar. A highly-configurable cache
architecture for embedded systems. 30th Annual International
Symposium on Computer Architecture, June 2003.

[15] H. Zhou, M.C. Toburen, E. Rotenberg, T.M. Conte. Adaptive mode
control: a static power efficient cache design. PACT, September 2001.

Figure 4: Energy consumption normalized to the base system
for a 2-phase system switching at a fixed period of 62.5 ms.

Figure 5: Energy consumption normalized to the base

system for a 2-phase with varying phase intervals

0

0.2

0.4

0.6

0.8

1

1.2

ps
-jp

eg
/v

42

bl
it/

g7
21

Dec

bi
na

ry
/p

oc
sa

g

jp
eg

En
c/
jp
eg

Dec

bc
nt

/e
pi
c

pe
gw

itD
ec

/g
3f
ax

fir
/b

ilv

uc
bq

so
rt/

br
ev

m
at
m
ul
/m

pe
gD

ec

pe
gw

itE
nc

/r
aw

ca
ud

io

av
er

ag
e

E
n

e
rg

y
 n

o
rm

a
li

ze
d

 t
o

 b
a
se

 c
a
ch

e

co
n

fi
g

u
ra

ti
o

n

Optimal Self-Tuner
Interval = 1/2 phase
Variable tuning interval

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

ps
-jp

eg
/v

42

bl
it/

g7
21

Dec

bi
na

ry
/p

oc
sa

g

jp
eg

En
c/
jp
eg

Dec

bc
nt

/e
pi
c

pe
gw

itD
ec

/g
3f

ax

fir
/b

ilv

uc
bq

so
rt/

br
ev

m
at

m
ul
/m

pe
gD

ec

pe
gw

itE
nc

/r
aw

ca
ud

io

av
er

ag
e

E
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

 n
o

rm
a
li
ze

d
 t

o

th
e
 b

a
se

 s
y
st

e
m

Optimal Self-Tuner Interval = 1/2 phase

Variable tuning interval

