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ABSTRACT 
The memory hierarchy of a system can consume up to 50% of 
microprocessor system power. Previous work has shown that 
tuning a configurable cache to a particular application can reduce 
memory subsystem energy by 62% on average. We introduce a 
self-tuning cache that performs transparent runtime cache tuning, 
thus relieving the application designer and/or compiler from pre-
determining an application’s cache configuration. The self-tuning 
cache applies tuning at a determined tuning interval. A good 
interval balances tuning process energy overhead against the 
energy overhead of running in a sub-optimal cache configuration, 
which we show wastes much energy. We present a self-tuning 
cache that dynamically varies the tuning interval, resulting in 
average energy reduction of as much as 29%, and within 11% of 
the energy savings of an optimal self-tuner tuning at ½ of the 
phase interval and within 13% of the oracle. 

Categories and Subject Descriptors 
B.3 [Memory Structures]: Performance Analysis and Design 
Aids. 

General Terms 
Algorithms and design. 

Keywords 
Configurable cache, reconfigurable cache, phase-based, cache 
tuning, reconfigurable architecture, low energy, low power, 
architecture tuning, embedded systems.  

1. INTRODUCTION  
Configurable caches allow for cache parameters, such as total 
size, associativity, and line size, to be varied. Configurable caches 
enable architectural specialization to a particular application, for 
improved power, energy, and/or performance.  

 Cache tuning is the process of determining the best cache 
parameter values for a given application. For example, an 
application with a large working set benefits from a large cache; a 
small cache yields excess energy due to thrashing (the working 
set being swapped in and out). Conversely, an application with a 
small working set benefits from a small cache; a large cache 
would waste energy due to high energy cost per fetch and 
unnecessary static power. Similarly, specific spatial and temporal 
localities suggest best line size and associativity settings.   

Cache requirements vary greatly across applications [14]. 
Tuning a configurable cache to a particular application can reduce 
average memory access energy by 62%, along with performance 

improvements in most cases [5]. Cache requirements can even 
vary within an application [11], and tuning the cache to phases 
can yield additional improvement. 

Software-reconfigurable caches [1][2][14] enable cache 
parameter values to be adjusted dynamically. One dynamic 
approach requires that cache configurations have been pre-
determined statically, with reconfiguration taking place by adding 
instructions to an application that updates the cache configuration 
register during phase changes. Another dynamic approach is fully 
transparent, in which the cache itself automatically adjusts its 
parameters to the executing application, i.e., the cache is self-
tuning.  

Self-tuning enables the energy savings of cache tuning without 
any designer effort, simplifying the design process, maintaining 
standard tool flows, and keeping binaries portable; a self-tuning 
cache can be incorporated transparently into any cache-based 
architecture. Furthermore, a self-tuning cache can tune to runtime 
changes in environment, such as changes to input patterns or 
software updates. 

One self-tuning cache design dynamically invokes a self-
tuning mode, at a specified tuning interval, that efficiently 
explores the configuration space, or examines special counters, to 
predict the best cache configuration for the currently-running 
application or phase [2][13][15]. A challenge in self-tuning is 
determining a good tuning interval. If phase changes are periodic, 
then for maximum savings, the tuning interval should closely 
match the phase interval, or the length of time a system executes 
between phase changes. A phase change is any change in the 
executing application such that a different cache configuration 
would be better than the previous one. Because the tuning process 
consumes extra energy, if the tuning interval is too short, excess 
tuning energy is expended. If the tuning interval is too long, 
energy is wasted running in sub-optimal configurations.  

The best tuning interval is highly dependent on runtime factors 
and thus is hard to pre-determine. Previous methods use feedback 
control to determine if tuning should occur at the fixed tuning 
interval, but they do not analyze the chosen interval nor attempt to 
adjust the tuning interval. We show that significant energy is 
wasted if the tuning interval does not closely match the changing 
phases of the system.  

We present an in-depth study of a dynamically-adjusting 
tuning interval. Whereas most previous methods use fixed tuning 
intervals, we introduce an effective online algorithm to adjust the 
tuning interval to match the phase interval of a system. We design 
a feedback controlled self-tuner that is system independent, which 
examines execution and determines the tuning interval regardless 
of the number of applications and/or presence of an operating 
system. Our methodology is widely applicable to embedded, 
desktop, and even super-computing environments. Furthermore, 
this methodology can easily be incorporated into many existing 
periodic dynamic tuning methodologies for improved results. 
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2. ONLINE ALGORITHMS 
We use the framework of online algorithms, which process data 
as data arrives and are unable to view the entire data set, for our 
approach. A self-tuner tunes the tuning interval based on current 
and past, but not future, system behavior.   

We design a system to monitor the effects of the current tuning 
interval to evaluate the tuning interval. Our methodology is 
similar to a feedback control system [9]. A basic control system 
consists of a plant (system under control), a goal (set-point), and a 
method to manipulate the plant (actuator).  Changes made via the 
actuator modify the plant and thus modify the output of the 
system to meet the set-point. A feedback control system examines 
the output of the system and determines the error in relation to the 
set-point, thus allowing the actuator to adjust based on observed 
error. We view self-tuning as a feedback control system by 
considering energy change as the observed output of the system, 
and treating the cache tuner as the actuator used to reduce the 
energy consumption of the memory subsystem plant. However, 
set-points are typically fixed values, but in the self-tuner, the set-
point is the minimization of energy consumption, which makes 
modeling as a control system difficult. In the next section, we 
adapt feedback control system theory to our methodology.  

3. SELF-TUNING METHODOLOGY 
We describe the design of a feedback control system capable of 
monitoring the tuning interval and transparently optimizing the 
self-tuner for reduced energy consumption.   

3.1 Motivating example 
A strictly periodic tuning approach blindly tunes at a fixed 
interval, which may be either too long or too short. Event-driven 
techniques poll event counters at some interval, comparing 
counters (such as a cache miss rate counter) to thresholds, to 
determine if tuning should occur. However, even if a stable 
system is observed (e.g., cache miss rate is stable) and thus tuning 
skipped, a phase change may occur between polling intervals, 
meaning the interval is too long.  

Figure 1 illustrates the impact of a tuning interval being too 
long or too short, assuming a fixed periodic phase interval of 10 
million cycles, where at each phase change, the system chooses a 
random benchmark from a given benchmark suite (further details 
of the system setup are described in section 4.1). The figure 
shows energy consumption of a self-tuning instruction cache 
subsystem normalized to a system running with a fixed base 
cache. The self-tuning energy consists of the energy consumed 
during tuning plus the energy consumed by the system running 
with the configuration determined during tuning as it executes for 
the remainder of the tuning interval. The optimal system would be 
an oracle that immediately recognizes phase changes and runs the 

tuner.  
A tuning interval that matches the phase interval (in this case, 

10 million cycles) yields optimal results. However, without 
omniscient information during runtime, it impossible to 
accurately predict a phase change 100% of the time (Sherwood 
[12] presents an efficient and effective method to predict phase 
changes, but due to the difficulty of predicting the future, it is not 
perfect). With the optimal tuning interval, the self-tuning system 
reduces 32% of energy over a base cache system, which includes 
7% overhead due to the tuning process itself. However, if the 
phase interval is not tracked precisely, the penalty is severe and 
there is no potential energy savings compared to the base system. 

Too short (undershoot) or too long (overshoot) of fixed tuning 
intervals reduces energy savings. Overshoot means a phase 
change is missed and the new phase is executed using the current 
cache configuration. We observed that overshoot results in a 
tremendous energy penalty. A cache tuned to a particular phase is 
best for that phase but is likely very poor for another phase. We 
refer to these configurations as extremist configurations. 
Overshoot results in the system consuming more energy than a 
base cache system, meaning it is better to not perform self-tuning 
than have overshoot. Overshoot energy details appear in [6].  

In contrast to overshoot, undershoot yields energy savings 
compared to a base cache. The best results are at a tuning interval 
of 5 million cycles, which is half the phase interval, yielding 28% 
energy savings over a base system. Furthermore, if ½ of the phase 
interval is not tracked precisely, we see that the penalty is 
acceptable and the system can still save energy compared to the 
base system. 

Thus, interval tuning is important, and since it is better to 
undershoot the tuning interval than overshoot the interval, we 
sought to develop a methodology for tracking ½ of the phase 
interval. 

3.2 Feedback control system  
Figure 2 shows our feedback controlled self-tuner, modeled after 
a control system. The goal of our system is to control the tuning 
interval to minimize over all energy consumption. 

Since our system has no set-point, but rather seeks to minimize 
energy, our system is similar but not exactly a feedback control 
system. The plant is a microprocessor. Changes to the plant occur 
as side effects of changes made to the cache system by the 
actuator, or cache tuner. Plant changes reflect in the system miss 
rate, after application of the energy model (discussed in section 
4.1), serves as the feedback to the system. Phase changes 
represent disturbances to the plant causing changes in the miss 
rate. 

After a tuning process, the energy error is calculated by the 
Energy Error Calculator (EEC). A change in energy (ΔE) before 
tuning compared to after tuning signifies a phase change. If the 
energy before tuning is the same as the energy after tuning, we 
assume no phase change occurred during the last interval. The 

 
 
 
 
 
 
 

 

 

Figure 1: Self-tuning energy normalized to base system for too-
long and too-short tuning intervals for a fixed phase interval of 

10 million cycles. 

 
 
 
 
 
 

Figure 2: Proposed feedback control system 
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EEC outputs the percent change in energy (%ΔE). To prevent 
erratic behavior due to artifacts in disturbances, the %ΔE is 
calculated over a window of past tuning intervals. We determine 
the best window size (W) through experimentation in section 4.2. 

The controller uses %ΔE to vary the tuning interval. If %ΔE is 
small, then the system does not benefit from tuning, thus the 
system should be tuned less often. Conversely, if %ΔE is large, 
then the system does benefit from tuning, thus the system should 
be tuned more often. 

3.3 Controller logic 
As earlier mentioned, overshoot should be avoided. If the phase 
change is overshot, the tuning interval should back off rapidly to 
avoid excess energy wasted in a suboptimal cache configuration. 
Thus, the tuning interval should increase slowly but decrease 
quickly. This is similar to an attack/decay online algorithm [9]. 

We initially developed a fixed equation to control the interval 
length using a fixed percentage to increase/decrease the tuning 
interval. Through experimentation, we observed that fixed 
increments/decrements of the tuning interval did not offer enough 
granularity of change for the tuning interval, and we were unable 
to stabilize the system.  

To stabilize the tuning interval, we developed a variable, two-
part equation similar to a fuzzy logic system, in which changes 
neither need to be absolute nor do changes need to use fixed value 
logic. With fuzzy logic, the tuning interval can be changed based 
on how close or far away the system is from being stable as is 
observed by the %ΔE of the system.   

Figure 3 graphically depicts the equations to calculate the 
tuning interval. The x-axis plots %ΔE and the y-axis is the percent 
change applied to the tuning interval based on %ΔE. Variables are 
denoted in bold italics. The graph assumes a Point of Stability 
(PoS), which is the %ΔE we would expect to see in a stable 
system with good a tuning interval, and thus there should be no 
change to the tuning interval (y-axis point is 1). For %ΔE values 
less that the PoS, the system tunes too frequently.  At the extreme 
where %ΔE = 0 (no change in energy after tuning), the tuning 
interval should be increased by the maximum amount, which we 
call U. For 0 <= %ΔE < PoS, the change in tuning interval U is 
calculated using the equation passing through points (PoS, 1) and 
(0, U). 

For %ΔE > PoS, we assume a maximum %ΔE of 100%. In 
reality, %ΔE could be greater than 100% but we assume that for 
values greater than 100% we are only interested in decreasing the 
tuning interval by the maximum amount D. For PoS < %ΔE < 
100%, the percentage change D applied to the tuning interval is 
calculated using the equation passing through points (100%, D) 

and (PoS, 1).  
We determine appropriate values for U, D, and PoS in Section 

4.2 through experimentation.  

4. RESULTS 
4.1 Experimental setup 
We use the highly configurable cache and tuning heuristic 
developed by Zhang [14]. We configure the level one instruction 
cache only. Possible cache configurations include cache sizes of 
2, 4, and 8 KBytes, line sizes of 16, 32, and 64 bytes, and direct-
mapped, 2-way, and 4-way set associativities.  We compare to a 
base cache configuration of an 8KB, 4-way set associative cache 
with 32-byte line size [14], which performs reasonably across all 
the examined benchmarks. 

We use 20 benchmarks from the Powerstone [10] and 
MediaBench [8] benchmark suites.  We execute each benchmark 
on SimpleScalar for every cache configuration to gather hit and 
miss rates. We apply the tuning heuristic and the energy model in 
[14] to determine the best cache configuration per application. As 
tuning energy is application-dependent, we calculate tuning 
energy per application. We estimate the tuning time as 1 million 
cycles and use actual cycles-per-instruction values for each 
application. 

We model the overall system in C++ and, without loss of 
generality, switch applications to simulate phase changes. For 
each experiment, we simulate 10,000 phase changes. 

4.2 Tuning interval function evaluation 
We first determined the best constant values for the variables in 
Figure 3 and the window size from Section 3.2 using a periodic 
system. We assumed a training set of 2 applications switching at a 
fixed phase interval. We varied one parameter while holding other 
parameters fixed to determine the best value for that parameter. 
The best value now becomes the fixed value for that parameter, 
and we varied the next parameter. Using knowledge of cache and 
application behavior and observations gathered during initial 
testing, we chose the fixed values conservatively (small) to 
eliminate erratic behavior. We note that the best values are highly 
dependent on the actual system, the applications running, and the 
phase switching frequency, however we will show in section 4.3 
that the values determined with our training system work well for 
a variety of different test systems. 

Graphs depicting fluctuation in energy consumption can be 
found in [6].  For each variable, we chose the value that resulted 
in greatest energy savings. We varied PoS, followed by U, D, and 
finally W. The final values chosen were: PoS = 0.17, U = 1.11, D 
= 0.82, and W = 2. We observe that these values cause the tuning 
interval to converge to ½ of the phase interval quickly with little 
oscillation after convergence [6]. 

To determine values for a more diverse system, we applied the 
same technique to a system with a fixed phase interval, but where 
a random benchmark was chosen from our set of 20 benchmarks 
at each phase change. The final values chosen for the system 
were: PoS = 0.16, U = 1.12, D = 0.85, and W = 5. 

4.3 Energy savings  
To evaluate the feedback controlled self-tuner and the values 
determined for PoS, U, D, and W for test systems, we first looked 
at two-phase systems switching at a fixed phase interval for 
random pairs of benchmarks. Figure 4 shows energy consumption 
normalized to the base cache system for the optimal oracle self-

 
 
 
 
 
 

 

 

 

 

Figure 3: Two part equation to map change in energy (x-axis) 
to a change in tuning interval (y-axis).  
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tuner (tunes precisely at the phase change), a self-tuner that tunes 
at exactly ½ the phase interval, and our self-tuner with a variable 
tuning interval. A y value of 1 represents the energy consumption 
for the base system, and all bars below that line denote energy 
savings. If we compared our variable interval self-tuner with an 
actual system, our method would outperform most fixed tuning 
intervals. However, we compare to the best possible tuning 
intervals in order to show how close our methodology comes to 
obtaining optimal results.  

Assuming a 400 MHz system, Figure 4 shows a system with a 
phase interval of 62.5 ms ([6] shows results for different systems). 
The self-tuner with variable tuning interval comes within 13% of 
the optimal self-tuner, and reduces energy by 29% compared to a 
base system.  

Figure 5 evaluates a less periodic 2-phase system. For this 
system, the base phase interval is 62.5 ms and at each phase 
change, there is a 50% chance of the next phase interval being 
increased or decreased by 50%. Again, the self-tuner with a 
variable tuning interval performs very well, coming within 17% 
of the optimal self-tuner, within only 6% of the self-tuner at a 
fixed rate of ½ the phase interval, and with 26% energy savings 
compared to the base system.  

4.4 Initial tuning intervals, untunable systems 
Choosing an appropriate initial value for the tuning interval is 
important. We determined through experiments that if a very 
large initial tuning interval was chosen relative to the phase 
interval, aliasing could lead to interval values converging at rates 
greater than the phase interval. For example, in a two phase 
periodic system, if the tuning interval is so long that is skips over 
the execution of one of the phases, the energy before and after 
tuning will be the same because the system missed the phase 
change that occurred in between tuning times. We observed no 
problem starting with a small interval. Thus, it is better to start the 
tuning interval at a very small value.  

We assumed that the phases did not switch faster than the 
tuning time, but a real system may violate that assumption. If an 
application switches faster than the system can tune for, the 
system will always be tuning and hence incur energy overhead. 
Thus, a minimum interval value should be specified. If the tuning 
interval remains at the minimum value for too long, then the 
system should be deemed untunable and the cache system set to a 
reasonable base configuration. To react to future system changes, 
the self-tuner could be re-invoked periodically to see if the system 
has changed to a tunable state. 

5. CONCLUSIONS 
We presented a novel dynamic self-tuning cache for reduced 
energy. Previous methods use a fixed tuning interval that we 

observed could have significant energy overhead. We developed a 
feedback control system for adjusting the tuning interval to match 
system needs. The self-tuner reduces average energy consumption 
by 29%, and comes within 11% of the energy savings of the best 
possible non-oracle tuner that tunes at half of the phase interval, 
and within 13% of the oracle. Future work includes improving our 
self-tuner to be more robust in highly diverse environments. 
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Figure 4: Energy consumption normalized to the base system 
for a 2-phase system switching at a fixed period of 62.5 ms. 

 
 
 
 
 
 
 

 

 

 
Figure 5: Energy consumption normalized to the base 

system for a 2-phase with varying phase intervals 
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