
Warp Processing:  
Dynamic Translation of 
Binaries to FPGA Circuits

S
oftware consists of bits downloaded into a 
prefabricated hardware device. Traditional 
microprocessor software bits represent 
sequential instructions to be executed by a 
programmable microprocessor. In contrast, 

field-programmable gate array software bits represent 
a circuit to be mapped onto an FPGA’s configurable 
logic fabric. Both software types free developers from 
needing to design hardware. Instead, developers simply 
download bits into a prefabricated hardware device to 
implement a desired computation.

A computation might execute faster as a circuit on 
an FPGA than as sequential instructions on a micro-
processor because a circuit allows concurrency, from 
the bit to the process level.1 For example, a bit reversal 
implemented in a circuit requires only a single clock 
cycle but might require dozens of cycles when executed 
as logic/shift instructions on a microprocessor. An  
arithmetic-level computation involving 20 multiplica-
tions might require only two clock cycles if 10 multi-
pliers are available on the FPGA, but it would require 
20 cycles or more on a microprocessor. A process-level 
computation with 10 independent 100-cycle threads 
might require only 100 cycles if each thread is imple-
mented as its own circuit, but it would require 1,000 
cycles or more if sequenced on a single microprocessor.

Several commercial and research tools seek to com-
pile popular microprocessor-oriented software pro-

gramming languages (such as C, C++, and Java) to 
FPGAs. Many such FPGA circuit compilers use profil-
ing to detect a program’s kernels—that is, small regions 
in the program that account for most of the program’s 
execution (following the well-known 90/10 rule)—and 
map those kernels to circuits on an FPGA, leaving the 
rest of the program to execute on a microprocessor.

Only a small group of expert developers has adopted 
such FPGA circuit-compilation tools. Key barriers 
to adoption include the difficulty of integrating such 
tools into established microprocessor software develop-
ment flows and the nonconformance of such tools to 
the important standard binary concept that forms the 
basis of the architectures-tools-applications ecosystem 
in many computing domains.

Warp processing seeks to overcome these barriers 
by making FPGAs invisible to the software developer. 
In warp processing, a compute platform transparently 
performs FPGA circuit compilation as a program’s 
binary executes on a microprocessor—that is, dynami-
cally. Benjamin Levine and Herman Schmit’s program 
acceleration work dynamically reconfigured functional 
units using statically created circuits.2 Nathan Clark 
and his colleagues complemented statically deter-
mined program subgraphs with dynamic decisions of 
functional unit reconfiguration.3 Warp processors are 
fully dynamic and generate entire coprocessing circuits 
beyond functional units.

Warp processing dynamically and transparently transforms an executing microprocessor’s 

binary kernels into customized field-programmable gate array (FPGA) circuits, commonly 

resulting in 2X to 100X speedup over executing on microprocessors. A new architecture and  

set of dynamic CAD tools demonstrate warp processing’s potential.
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WArP ProCessinG
Figure 1 provides an overview of warp processing. 

The architecture consists of a microprocessor and 
FPGA sharing instruction and data caches (or memory), 
a profiler, and dynamic CAD tools. A developer or end 
user initially downloads a program as microprocessor 
software (that is, a microprocessor binary). The profiler 
dynamically detects the binary’s kernels, the dynamic 
CAD tools automatically map those kernels to FPGA 
circuits, and the binary updater dynamically updates 
the program’s binary to use the new circuits. When the 
update takes place, the program’s execution might sud-
denly speed up by a factor of 2, 10, or even more—in 
other words, the execution time “warps.”

Profiling an executing binary is a widely investigated 
problem with numerous approaches that trade off accu-
racy and performance overhead.4 Researchers have also 
developed solid solutions for dynamic binary updating.5 
Thus, developing effective dynamic CAD tools repre-
sents the main outstanding problem in enabling warp 
processing. Two key challenges in developing warp 
processing’s dynamic CAD tools are compiling fast and 
efficient circuits from binary code instead of source code 
and quickly synthesizing a computation into an FPGA 
circuit using only lean dynamic-processing resources 
instead of powerful desktop workstations.

Decompilation
Warp processors synthesize circuits from executing 

binary code rather than from source code. However, 
binary code lacks high-level constructs (such as loops, 
arrays, and functions), which are readily detected in 
source-level code. Without such high-level constructs, 
synthesis from binaries might yield slower or bigger 

circuits. We use aggressive decompilation to address 
the challenge of synthesizing fast efficient circuits from 
binary code.

Decompilation involves recovering high-level con-
structs from binary code. Fortunately, researchers 
have developed sophisticated decompilation techniques 
for retargeting binaries from one microprocessor to 
another. These techniques can recover various if-then-
else constructs, loops (including nested loops), arrays, 
functions, and more.6

However, efficient circuit compilation also requires 
two new decompilation techniques.7 Loop rerolling 
detects an unrolled loop in a binary and replaces the 
code with a rerolled loop, thus letting a circuit synthe-
sizer unroll the loop by an amount that matches avail-
able FPGA resources. Previous decompilation tech-
niques also use loops to detect arrays, and synthesizers 
need arrays to effectively use FPGA smart buffers, which 
increase data reuse and thus decrease time-consuming 
memory accesses.8 Rerolling also reduces control-flow 
graph size, thus significantly reducing the time for cir-
cuit synthesis, which typically uses superlinear (such as 
quadratic) algorithms with respect to the graph size.

The other new technique, operator strength promo-
tion, detects strength-reduced operations (for example, a 
multiplication replaced by shifts and adds) and replaces 
them with stronger operators (for example, a multiplica-
tion), thus letting a circuit compiler use fast functional 
units (such as a multiplier) if available on the FPGA. 

We developed a new decompilation tool, consisting 
of 15,000 lines of C code that incorporates key existing 
techniques and our two new techniques. The tool’s out-
put is a control/dataflow graph, which synthesis tools 
can convert to a fast and efficient circuit.

Figure 1. Warp processing overview. The profiler dynamically detects a downloaded program’s binary kernels. The dynamic CAD 
tools map the kernels to FPGA circuits, and the binary updater dynamically updates the binary to use the new circuits. The net result 
can be dramatically faster—warped—execution.  
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We compared performance speedups (versus micro-
processor-only execution) achieved when synthesiz-
ing kernels to FPGA circuits directly from C code 
to synthesizing from a decompiled control/dataflow 
graph generated by our decompilation tool.9 Figure 2a 
gives results for various small (several hundred lines) 
embedded system benchmarks, showing nearly identi-
cal performance with using C. Speedups were nearly 
identical, being 8X faster on average than micropro-
cessor execution.

Without our two new decompilation techniques, the 
binary approach would have yielded 33 percent less aver-
age speedup, with a worst case of 65 percent less. With-
out any decompilation, the binary approach actually 
yielded an average slowdown (not speedup) of 4X.

We also conducted an in-depth study on a large 
16,000-line highly optimized H.264 video decoder 
application obtained through collaboration with Free-
scale.10 Figure 2b shows that synthesis from binaries 
was nearly indistinguishable from synthesis from C.

Even used statically, synthesis from binaries supports 
numerous source-programming languages, leading to 
commercial products from Binachip and Critical Blue 
for static binary synthesis.

Dynamic CAD
To quickly convert a computational kernel into an 

FPGA circuit using only lean compute resources, we 
developed a complete suite of efficient CAD algorithms 
and a custom FPGA fabric intended to enable such effi-
cient CAD tasks.

FPGA CAD tasks, shown in Figure 1, include

decompilation, 
behavioral synthesis (converting a control/dataflow 
graph to a data path and register transfers), 
register transfer synthesis (converting register trans-
fers to logic), 
logic synthesis (minimizing logic), 
technology mapping (mapping logic to FPGA- 
compatible resources), 
placement (placing logic/compute resources within 
specific FPGA resources), and 
routing (creating connections between logic/ 
compute resources).

Figure 3a shows average CAD task runtime and mem-
ory usage when converting Embedded Microprocessor 
Benchmark Consortium (EEMBC) application kernels to 
FPGA circuits, using Xilinx ISE running on a powerful 
3.2-GHz Pentium D-based desktop workstation. The fig-
ure doesn’t show data for behavioral synthesis and register 
transfer synthesis because these tasks require orders of 
magnitude less time and memory than the others.

Routing is the most compute- and memory-intensive 
FPGA CAD task. Typical routing tool approaches itera-
tively reroute a circuit until the tool determines a valid 
or sufficiently optimized routing. Such approaches rep-
resent the FPGA’s programmable elements using a large 
routing resource graph, consisting of nodes that corre-
spond to every configurable switch within the FPGA (of 
which there might be hundreds of thousands). During 
each routing pass, the routing algorithms must search 
through and update the routing resource graph, requir-
ing long execution times and much memory.

While building on such algorithms, we reduced 
execution time and memory use by developing a fast 
lean routing algorithm and designing a CAD-oriented 
FPGA fabric.11 As Figure 4 shows, the fabric directly 
connects the configurable logic blocks’ inputs and 
outputs to the switch matrices that handle routing. 
Then, instead of representing all configurable switches 
within the FPGA, our routing approach only needs to 
represent the larger switch matrices (each switch matrix 
consists of hundreds of configurable switches), signifi-
cantly reducing the routing resource graph’s memory 
requirements and reducing execution time required to 
search the graph during routing. 

Our router is 10X faster and uses 20X less memory 
than the popular VPR routing algorithm. The tradeoff 
is a 30 percent reduction in maximum circuit execu-
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Figure 2. Comparison of FPGA circuit synthesis from C code and 
from decompiled binary code. (a) Various standard benchmark 
applications, showing only a 2.5 percent difference, and (b) 
in-depth study of the most frequent 53 functions of an H.264 
decoder application, showing almost no difference.
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tion speed and 10 percent more routing resource 
usage.

Our FPGA fabric also includes dedicated 
hard-core components, including multiply accu-
mulators, data address generators, and loop 
control hardware, specifically designed to effi-
ciently speed up microprocessor kernels, obtain-
ing improvements roughly equal to the routing 
approach’s overhead.

We verified our custom CAD-oriented FPGA 
design’s functionality and performance through 
postlayout simulation targeting a 0.13-μm tech-
nology as part of the Intel Research Shuttle.

We also developed lean logic-synthesis, tech-
nology-mapping, and placement algorithms.9 
Typically, such CAD algorithms optimize the 
circuit implementation during each iteration. 
Our algorithms use single-pass optimizations, 
requiring orders of magnitude less memory and execu-
tion time than traditional approaches. The core of our 
logic-synthesis algorithm is an efficient two-level logic 
minimizer that’s 15X faster and uses 3X less memory 
than Espresso-II. The tradeoff here is a 2 percent 
increase in circuit size. 

Our technology mapper uses a hierarchical bottom-
up graph-clustering algorithm that’s 25X faster than 
commercial technology-mapping algorithms but only 
minimally impacts circuit delay. Our dependency-
based positional-placement algorithm requires orders 
of magnitude less memory and execution than popu-
lar commercial and research placement tools, but with 
tradeoffs directly related to our routing algorithms’ 
circuit performance. We obtained these efficiencies by 
focusing on microprocessor kernel speedup and by giv-
ing up some circuit performance for CAD efficiency.

The collection of lean FPGA CAD algorithms forms 
the Riverside Dynamic CAD tools. The RDCAD tools 
consist of 30,000 lines of C code. Figure 3b shows run-
time and memory use for each RDCAD task on the 3.2-
GHz desktop workstation. Runtimes are in fractions 
of seconds rather than tens of seconds to minutes, and 
memory use is only 3.6 Mbytes. RDCAD ran on a small 
low-cost embedded processor (a 40-MHz ARM7) in 
only 1.2 seconds using only 3.6 Mbytes of memory.

WArP ProCessinG sCenArios
Researchers can apply warp processing in two sce-

narios, depending on application runtime. Figure 5a 
shows the execution of a short-running application, 
in which the dynamic CAD tools run longer than the 
application. In this scenario, warp processing achieves 
no speedup for the first few executions, but warps 
future executions by saving and then reusing the appli-
cation’s saved FPGA configuration.

Figure 5b illustrates warp processing for longer-
running applications requiring hours or days, such as 

in scientific computing. In this scenario, profiling and 
dynamic CAD finish well before the end of the appli-
cation’s first execution, allowing for warped execu-
tion of the remainder of the application. This scenario 
requires no saving of the FPGA configuration beyond 
an application’s single execution, although the appli-
cation could still use saved configurations for future 
executions.

results
We conducted various experiments to determine over-

all application speedups obtained by warp processing. 
We considered single-threaded applications as well as 
increasingly common multithreaded applications. 

single-threaded applications
We ran experiments on numerous single-threaded 

benchmark applications from various benchmark suites, 
including Powerstone, EEMBC, and MediaBench (see 
Table 1 for a list of these applications). We only con-
sidered applications amenable to speedup using FPGAs, 

Configurable logic block
Switch matrix

Figure 4. In the CAD-oriented FPGA, the configurable logic 
block inputs and outputs are directly connected to the switch 
matrices.
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Figure 3. Typical time spent on CAD tasks by (a) a commercial FPGA CAD 
tool running on a desktop workstation, (b) the Riverside Dynamic CAD 
tools on the same workstation, and (c) the RDCAD tools on a lean 40-
MHz ARM7 processor. Note: Not drawn to scale.
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whose critical regions don’t use floating-point arithme-
tic, dynamic memory allocation, recursion, or point-
ers (other than for array accesses), though advances in 
FPGA synthesis increasingly support such features. For 
other applications, warp processing would provide little 
or no speedup unless we rewrote them or developed new 
decompilation techniques. However, warp processing 
should never result in a slowdown. If warp processing 
can’t speed up an application, the binary updater sim-
ply leaves the binary to execute on the microprocessor 
alone.

The warp-processing architecture simu-
lated in these experiments uses an ARM9 
operating at 200 MHz for the main micro-
processor. All hardware regions execute in 
the FPGA at 100 MHz (some benchmarks 
could have executed at a faster frequency, 
but we held the frequency at 100 MHz for 
simplicity). 

Such a 2-to-1 clock frequency ratio between 
microprocessor and FPGA is representative 
of various commercially available single-chip 
microprocessor/FPGA devices. The reported 
speedups hold for existing and future systems 
with similar frequency ratios, such as systems 
with 800-MHz microprocessors and 400-
MHz FPGAs. 

Our present warp FPGA fabric supports 
approximately 50,000 equivalent logic gates, 
roughly equal in logic capacity to a small 
Xilinx Spartan3 (XC3S50) FPGA. Warp 
processing required only 3,500 logic gates on 
average per application, with the largest cases 
being pktflow and ttsprk, which required 
10,000 logic gates each. In 0.18-μm technol-
ogy, our 50,000-gate FPGA fabric occupies 

roughly the same area as one ARM9 processor with a 
32-Kbyte cache, or as a 64-Kbyte cache alone. 

For comparison, modern commercial FPGAs have 
capacities of tens of millions of gates, and commer-
cial single-chip microprocessor/FPGA devices allocate 
about 5X more silicon area to the FPGA than to the 
microprocessors and caches. The profiler required a 
small cache of several dozen entries and 2,300 logic 
gates. The dynamic CAD tools used an additional 
small, inexpensive ARM7 processor operating at 40 
MHz. 

Table 1. Overview of benchmark applications.

Benchmark	 Benchmark	suite	 Description

brev Powerstone Bit reversal
g3fax Powerstone Group three fax decode
matmul Powerstone Matrix multiplication
mpeg2 MediaBench MPEG-2 decoder
pktflow EEMBC IP header validation
bitmnp EEMBC Bit manipulation
canrdr EEMBC Controller area network (CAN)
tblook EEMBC Table lookup and interpolation
ttsprk EEMBC Engine spark controller
matrix EEMBC Matrix operations
idct EEMBC Inverse discrete cosine transform
fir EEMBC Finite impulse response filter
rocm Warp RDCAD logic minimizer
prewitt Warp (multithreaded, or MT) Prewitt edge detection
search Warp (MT) Parallel search
moravec Warp (MT) Moravec image processing
wavelet Warp (MT) Wavelet transform
maxfilter Warp (MT) Maximum window image filter
N-body Warp (MT) Barnes-Hut N-body simulation

Figure 5. Warp processing scenarios: (a) repeated application warping, in which a short-running application is warped after several 
executions; and (b) one-time warping, in which a long-running application is warped during a single execution.
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The current architecture 
implements communication 
between the microprocessor 
and FPGA using a combina-
tion of shared memory, mem-
ory-mapped communication, 
and interrupts. The FPGA uses 
data-address generators, simi-
lar to digital signal processors 
(DSPs), to stream data required 
by FPGA circuits from memory. 
The microprocessor uses mem-
ory-mapped communication to 
initialize and enable the FPGA; 
it uses interrupts to detect a 
hardware circuit’s completion.

We ran each application on 
an instruction-set simulator to 
obtain cycle counts for micropro-
cessor execution. We ran appli-
cation kernel binaries through 
our RDCAD tools to obtain 
kernel cycle counts after warp 
processing and to ensure that 
we obtained a minimum 100-
MHz frequency. We inserted 
the necessary communication 
for data transfers between the 
microprocessor and FPGA (as 
determined by RDCAD tools) 
and counted those cycles too. A 
single data transfer between the 
microprocessor and FPGA required at least one cycle 
but at most two cycles.

Figure 6a compares the execution time of warp pro-
cessing with microprocessor-only execution to which 
the data is normalized. As the figure shows, warp pro-
cessing achieved an average application speedup of 
6.5X, and speedup as high as 13.3X for matmul. 

Figure 6a also shows speedups of a DSP—a TriMe-
dia processor running at 200 MHz—versus the ARM9 
processor. Like warp processing, the DSP exploits 
arithmetic-level parallelism to improve performance, 
but does so using a very large instruction word (VLIW) 
architecture. The DSP averaged 4.4X speedup com-
pared to the ARM9, less than the 6.5X speedup of 
warp processing. 

Warp processing was usually faster. The DSP was 
2X faster for one benchmark and a few percent faster 
for some others. Warp processing gains versus the 
DSP came primarily from warp processing’s ability to 
exploit more arithmetic-level parallelism (DSPs typi-
cally can execute only several operations in parallel) 
and to support a wider range of parallelism beyond 
arithmetic-level parallelism. The DSP outperformed 
warp processing when the application exhibited little 

parallelism, such that the DSP’s faster clock frequency 
led to faster overall performance.

We also applied warp processing to SPEC desktop 
application benchmarks but found little speedup. 
Warp processing would have had to speed up tens or 
hundreds of large loops to achieve benchmark speed-
ups, requiring very large FPGAs. Furthermore, many 
benchmarks used constructs, such as pointers, recur-
sion, and dynamic memory allocation, that prevented 
circuit speedups.

On average, the dynamic CAD tools executed for 1.2 
seconds. Thus, most of the embedded applications con-
sidered would require a saved FPGA configuration. For 
example, g3fax performs a group-three fax decoding 
for a single fax transmission. However, the dynamic 
CAD tools wouldn’t have warped the execution until 
after the first fax was decoded. By saving the synthe-
sized circuit, future fax transmissions would benefit 
from warp processing, providing faster fax decoding. 

Some applications would benefit immediately from 
warp processing. For MPEG-2, the dynamic CAD tools 
would have completed after decoding only a few video 
frames, providing smoother video playback for the 
remainder of the video.

Figure 6. Speedup comparison. (a) Comparison of software execution on a digital signal 
processor (DSP) and warped execution on a warp processor to a 200-MHz ARM9 on single-
threaded applications. (b) Comparison of multithreaded application speedups on various 
400-MHz ARM11-based multiprocessors and warp processors.
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Multithreaded applications
Warp processing’s benefits were most apparent for 

applications with much concurrency, such as brev (see 
Figure 6a), which has much bit-level concurrency, and 
matrix and fir, which have much arithmetic-level con-
currency. We also examined multithreaded applications, 
which obviously have much thread-level concurrency. 

Extending warp processing for multithreaded applica-
tions12 required additional CAD tools and operating sys-
tem support. A warp-aware operating system requests 
custom processors from the dynamic CAD tools for 
frequent threads. The CAD tools determine which and 
how many threads to synthesize. Memory access syn-
chronization determines shared memory locations and 
synchronizes the execution of threads that share memory 
to reduce the number of needed direct memory access 
channels. After creating thread-accelerator circuits, the 
warp-aware operating system schedules threads onto 
both microprocessors and custom circuits.

Figure 6b shows warp-processing results for multi-
threaded applications that we developed, including mul-
tithreaded versions of image-processing and scientific-
computing applications. Compared to a four-processor 
400-MHz ARM11 system, warp processing obtained 
average speedups of 169X. Although much of the speedup 
came from executing threads in parallel, the speedups 
compared even with a 64-processor system illustrate 
that other factors, including arithmetic-level parallelism 
within threads, and custom communication, were signifi-
cant. The size of the FPGA used equaled 36 ARM11s.

W e are currently focusing on desktop, server, and 
scientific-computing applications. Initial results 
using high-end processors and high-end FPGAs 

demonstrate similar speedups for various applications.
Our warp processing work shows the technique’s 

feasibility and potential, opening the door to new 
challenges, including dynamically allocating FPGA 
resources among multiple tasks, improving decompi-
lation and synthesis to expand the applications that can 
be sped up, determining when to activate or terminate 
the dynamic CAD tools, synthesizing alternative accel-
erators that trade off performance and size, and reduc-
ing power or energy via warp processing. n
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