
Don’t Forget Memories – A Case Study Redesigning a
Pattern Counting ASIC Circuit for FPGAs
David Sheldon

Department of Computer Science and Engineering,
UC Riverside

dsheldon@cs.ucr.edu

Frank Vahid
Department of Computer Science and Engineering,

UC Riverside
Also with the Center for Embedded Computer Systems,

UC Irvine
vahid@cs.ucr.edu

Abstract

Modern embedded compute platforms increasingly contain both
microprocessors and field-programmable gate arrays (FPGAs).
The FPGAs may implement accelerators or other circuits to
speedup performance. Many such circuits have been previously
designed for acceleration via application-specific integrated
circuits (ASICs). Redesigning an ASIC circuit for FPGA
implementation involves several challenges. We describe a case
study that highlights a common challenge related to memories.
The study involves converting a pattern counting circuit
architecture, based on a pipelined binary tree and originally
designed for ASIC implementation, into a circuit suitable for
FPGAs. The original ASIC-oriented circuit, when mapped to a
Spartan 3e FPGA, could process 10 million patterns per second
and handle up to 4,096 patterns. The redesigned circuit could
instead process 100 million patterns per second and handle up to
32,768 patterns, representing a 10x performance improvement
and a 4x utilization improvement. The redesign involved
partitioning large memories into smaller ones at the expense of
redundant control logic. Through this and other case studies,
design patterns may emerge that aid designers in redesigning
ASIC circuits for FPGAs as well as in building new high-
performance and efficient circuits for FPGAs.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Design studies and
Performance attributes

General Terms
Performance, Design.

Keywords
ASIC, FPGA, redesigning circuit, memory, BRAM, pattern
counting, design patterns, high-throughput design, stream.

1. Introduction
Implementing applications as circuits on ASICs, and increasingly

on FPGAs, is widely known to provide substantial speedups
versus implementation on microprocessors for a wide variety of
applications. However, designing circuit architectures for FPGAs
involves some important differences from ASICs. One well-
known difference involves the different off-chip/on-chip memory
access time ratio, being large for ASICs, but often near 1 (or
even less) for FPGAs, thus dramatically changing key
architecture design criteria that typically involve going to great
lengths to minimize off-chip memory accesses.

Another difference involves the pre-existence of block
RAMs on FPGAs versus synthesizing custom-sized hard-core
RAMs on ASICs. Such pre-existence, coupled with limited
numbers of ports on block RAMs, suggests that circuit
architectures for FPGAs should divide on-chip data in a more
equal and distributed manner than for ASICs, to enable the best
utilization of block RAMs as well as of distributed RAM (RAM
implemented using FPGA configurable logic blocks). Yet
another difference, related to the previous one, is the lack of
placement freedom when using FPGA hard-core units like block
RAMs or multipliers. In ASICs, RAM and multiplier cores can
generally be placed near the components that use those cores. In
FPGAs, however, RAM and multiplier cores have fixed
placements. While mapping a circuit to FPGA typically involves
placing components using cores, near to the cores the component
is using, the distribution of those cores throughout the FPGA
often makes such close placement impossible. Distant placement
in turn results in long connections that must be routed across the
FPGA, quickly consuming switch matrix capacity. Thus, routing
from FPGA hard cores can quickly lead to a congestion problem
that slows a circuit due to long routes, or that result in
excessively long synthesis runs that may not complete due to the
difficulty or inability to route the circuit.

We encountered the above problems in a project that
involved mapping a previously-designed ASIC pattern counting
circuit to an FPGA. While the circuit worked superbly as an
ASIC implementation, the circuit could not be scaled to handle
large numbers of patterns on an FPGA – the block RAM
resources were quickly consumed, and the circuit’s performance
slowed dramatically as sizes were increased to desired quantities,
with the circuit eventually failing to map.

Much work has been done on technology mapping problems
specific to FPGAs as opposed to ASICs, e.g.,
[3][4][6][10][14][15]. Beraudo [3] replicates parts of circuits to
improve performance – our approach also involves a form of
replication, but at a higher-level.

Work has also been done on creating custom computing
circuits for FPGAs, often with knowledge of the FPGA’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CODES/ISSS’08, October, 2008, Atlanta, GA, USA.
Copyright 2008 ACM 1-58113-000-0/00/0004…$5.00.

physical resources. Metzgen [12] constructed a high-performance
ALU for the NIOS processor. Patterson [13] created a DES
encryption block targeted to particular FPGAs. Numerous other
circuits for FPGAs have been developed, e.g., [2][7][8][9]. Many
of these circuits target a specific FPGA device, using knowledge
of available physical resources when creating the circuit.

However, there has been little work on how to redesign
existing ASIC circuits to FPGAs. Most research has focused on
creating new circuits for FPGAs, with little work done in trying
to understand the differences between designing for ASICs
versus FPGAs.

In this paper, we provide a case study describing our efforts
to redesign a pattern counting circuit for fast, efficient FPGA
implementation. The contributions are twofold. First, we describe
a fast and efficient pattern counting circuit that can process 100
million patterns per second and that scales well to tens of
thousands of target patterns. Counting patterns is a fundamental
computing problem with a wide variety of applications, including
networking, computer profiling, bioinformatics, and more, for
which FPGAs provide outstanding speedups over
microprocessors. Second, we describe how we improved
performance and utilization by redesigning an ASIC circuit for
an FPGA, which, along with future or other case studies, may
lead to design patterns [5] to help guide circuit designers who
target FPGAs.

2. Pattern Counting and the ASIC-Oriented
Pipelined Binary Tree Circuit
Lysecky [11] introduced a high-throughput circuit for the pattern
counting problem. The problem involves a bus over which
unique bit patterns may appear. One example of such a bus is the
address bus between a microprocessor and a memory, as shown
in Figure 1. Given a set of pre-specified patterns of interest,
known as target patterns, the problem is to count the number of
times each target pattern appears on the bus. A goal is to have the
pattern counter support the highest throughput possible. Possible
applications of pattern counting include accurate profiling of an
executing program, accurate profiling of network traffic in a
network router, tallying huge databases of business transactions
(e.g., counting the number of each item sold), counting word
frequencies in large numbers of phone conversations, counting
occurrences of particular sequences in biological data, and much
more.

Lysecky’s solution is based on a pipelined binary tree,
illustrated in Figure 2. The target patterns are stored in the tree in
breadth-first order. Thus, the first level (root) contains only one
pattern, the second level contains two patterns, the third contains
four patterns, the fourth contains eight patterns, and so on. Each
level consists of control logic and a memory to store the patterns,
and another memory of the same size (not shown in the figure) to
maintain pattern counts. Each level operates concurrently, taking

information from the previous level, and sending information to
the next level.

Level 1 receives the current pattern and compares with the
target pattern. If equal, level 1’s logic increments the count
associated with that target pattern. If less, the logic passes the
pattern to level 2, informing level 2 to look in its left node
(because in a binary tree, if the pattern is less than the root, then
search proceeds down the left subtree) – in particular, by telling
level 2 to look at address 0. If greater, level 1 tells level 2 to look
in address 1. Level 2 then compares the pattern with the target
pattern located in the address it received from level 1 (while level
1 meanwhile processes the next incoming pattern). If equal, level
2’s logic increments the count associated with that target pattern.
If less, level 2 appends a 0 to the address, so if the address was 0,
the new address is 00; if it was 1, the new address is 10. If
greater, level 2 appends a 1 to the address, yielding either 01 or
11. Subsequent levels operate similarly, either incrementing their
count, or appending 0 or 1 to the address as they pass the address
to the next level.

The pipelined binary tree achieves single-clock-cycle
throughput. The cycle length is mostly due to memory access.
Wires between levels can be extremely compact using simple
folding approaches that abut each level with the next. The
original design, in UMC’s 0.18 technology, achieved GHz
frequencies, and hence billion-patterns-per-second throughput.
Size is efficient due to only minimal logic being required per
level (an adder, a comparator, and a few gates), which is dwarfed
by the memory size for large target pattern sets.

In seeking to perform pattern counting on a Xilinx Spartan 3e
1600 FPGA using Xilinx ISE tools [16], we used Lysecky’s
binary tree circuit by coding it in structural VHDL. However, we
found that the circuit, while working superbly for its target
device of ASICs, failed to work as well on FPGAs. Figure 3
shows that the clock frequency of the original binary tree design
drops precipitously as the number of target patterns (i.e., binary
tree size) is increased above 512, from nearly 100 MHz for the
smaller trees, to below 10 MHz for the 4,096 pattern tree. The
result is a large throughput decrease shown Figure 4 (note that
the Y-axis is a log scale). The large drops are likely due to
routing congestion caused by trying to connect the larger levels’

Figure 1: Example pattern counting scenario: Counting
occurrences of an address on a CPU bus.

Figure 2: Pattern counting with a pipelined binary tree. Each

level operates concurrently, taking the pattern and address
information from the previous level, and passing information to

the next level.

CPU Memory

Pattern
counter

Level 1 logic Memory
1 pattern

logic Memory
2 patterns

logic Memory
4 patterns

...

Level 2

Level 3

Level n logic Memory
2n-1 patterns

...

Current pattern

logic to multiple block RAMs (each Spartan block RAM can
hold 512 patterns). Beyond 4,096 patterns, the circuits failed to
map to the FPGA. Figure 5 provides some insight into why,
showing that the 4,096 pattern design utilizes nearly all the
available block RAMs, but leaves most LUTs (lookup tables)
unutilized.

In the above design, every level uses a block RAM. Thus,
there is underutilization within the block RAMs themselves for
all levels smaller than 512 (levels 1 through 8), which is the size
of a block RAM. We tried to have the smaller levels instead use
distributed RAM, but doing so decreased the clock cycle by 50%
or more.

3. Hash Table Approach for Pattern
Counting
As the pipelined binary tree failed to synthesize well to FPGAs,
we investigated an entirely different approach for pattern

counting on FPGAs. We created a new design implementing a
hash table. We implemented a custom hashing function to
convert a pattern to an address via simple bit selection. In order
to get a best-case analysis for the hash table, we used a perfect
hash in our experiments, meaning the patterns used for each
experimental run had a one-to-one mapping into the hash table.
Upon finding a match, the corresponding count is incremented.

This simple circuit is comprised mainly of a memory equal to
the size of the number of patterns, with very little logic required
for the hash function, incrementing, and conflict logic. While the
circuit’s clock frequency is high, as shown in Figure 3, Figure 6
shows that this circuit does not achieve the same throughput as
the pipelined binary tree, starting below 10 million patterns per
second. Furthermore, the circuit failed to map for more than
8,192 patterns, due to block RAMs being consumed, as shown in
Figure 7. The figure shows that block RAMs are exhausted at
8,192 patterns while LUTs are almost entirely unutilized.

0

20

40

60

80

100

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,38 32,76
Number of Patterns

C
lo

ck
 F

re
qu

en
cy

 (M
H

z)

Original binary tree
Hash table
Split binary tree

Figure 3: Clock frequency as a function of number of patterns, for the three different designs considered.

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768
Number of Patterns

Pa
tte

rn
s

Pe
r S

ec
on

d

Original binary tree

Figure 4: Throughput for the original binary tree. Note that Y-axis is a log scale, so throughput reduction is more than 10x.

0%

20%

40%

60%

80%

100%

16 32 64 128 256 512 1,024 2,048 4,096
Number of Patterns

Pe
rc

en
t U

til
iz

at
io

n

LUTs %
BRAM %

Figure 5: Original pipelined binary tree’s block RAM and LUT utilizations.

4. Split Pipelined Binary Tree for Pattern
Counting
We thus re-examined the binary tree approach to determine if the
tree structure could have better scaling and efficiency on FPGAs.
We noted that the large memories seemed to be the source of the
FPGA problem in both the original binary tree and the hash table
circuits, causing clock frequency reductions in the former, and
block RAM exhaustion in both. We thus sought to reduce the
size of the largest single memory needed in the circuit.

In the original binary tree circuit, each level required a
memory twice the size of the previous level. Beyond a size of
512, which is the size of a block RAM on the FPGA we were
using, performance dropped for the binary tree approach.

In the original binary tree circuit, after 512 patterns, the
performance begins to slow. We concluded that this drop in
performance was largely due to increased wire lengths for a
level’s logic to access the level’s block RAMs, e.g., the logic for
a level with 2,048 patterns would be connected to 4 BRAMs. In
the binary tree circuit, the logic associated with each level is
small, while the BRAMs are spread over the entire FPGA. The
overall performance is further slowed by the fact that BRAMs
must have single cycle access to the data.

Our solution was to divide any level with a memory larger
than 512 into sub-circuits consisting of logic having sub-
memories of 512 each. To avoid the situation of one block of
logic connecting to multiple BRAMs, we replicated the logic at
each level for each sub-memory, forming a sub-module. Each
sub-module connects with the appropriate two sub-modules of
the next level. Figure 8 shows the sub-module structure that is

created in this split binary tree. For each additional level added to
the tree, each sub-module will be connected to 2 sub-modules,
each of 512 patterns.

The sub-module solution maintains the simple connectivity
among levels and the fully-pipelined nature of the design. This

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768
Number of Patterns

Pa
tt

er
ns

 p
er

 s
ec

on
d

Original binary tree
Hash table

Figure 6: Throughput for a circuit hash table implementation.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

16 32 64 128 256 512 1024 2048 4096 8192

Number of Patterns

Pe
rc

en
t U

til
iz

at
io

n

LUTs %
BRAM %

Figure 7: Hash table circuit’s block RAM and LUT utilizations.

Figure 8: Pattern counting with a pipelined split binary tree. Each
level operates concurrently, taking the pattern and address

information from the previous level, and passing information to
the next level. Levels after n are composed of multiple logic and

memory blocks. In our experiments, n=8.

Level 1 logic Memory
1 pattern

logic Memory
2 patterns

.. .

Level 2

logic Memory
2n patterns

logic Memory
2n patterns

Current pattern

logic Memory
2n patterns

Level n+2

Sub-module

Sub-
module

Sub-
module

Sub-
module .. .

.. .
. . .

.. .

Sub-
module

Level n

structure also has the added benefit of easing the routing of the
tools. Once a pattern has been passed to a sub-tree, the pattern
will stay in that sub-tree. This means that no communication is
needed between sub-modules in the same level. The only
communication required is with the parent module in the
previous level and the two children in the next level. This basic
structure also gives the tool much greater flexibility in how to
best to layout the circuit on the FPGA.

The solution’s drawbacks include an increase in area due to
redundant logic in each level, equaling approximately 15 slices
per BRAM, and more power due to multiple sub-modules being
active simultaneously in each level. We found neither drawback
to be significant. Neither LUT utilization nor power was an issue
in the earlier design, and thus those factors could tolerate
increases without problem.

Figure 9 shows throughput results for the split pipelined
binary tree, compared with the previous two approaches. The
split binary tree maintains a nearly constant throughput beyond
512 patterns, to the maximum size that we experimented with,
which was 32,786 patterns. Actually, the split binary tree
experiences a 10% drop in throughput, which is not noticeable in
the figure.

Figure 10 shows block RAM and LUT utilizations. We
noticed a surprising decrease in block RAM utilization above
1,024 patterns. Upon investigation of the synthesis script outputs,
we determined that this decrease was due to the synthesis tool
making use of distributed RAM. We believe the use of
distributed RAM (i.e., using CLBs for memory rather than block
RAMs) was enabled by the smaller maximum memory size,
which helped the synthesis tool place logic and memory near
each other and thus to find acceptable routing solutions, even
when using distributed RAM. It is not clear to us at this time why
the tool could put the larger memories into distributed RAM

without significant clock frequency reduction, but could not do
so when we tried to use distributed RAM for the smaller
memories of the original binary tree. However, of the different
types implementations that we examined, the split-binary tree
was the only implementation for which the synthesis tool used
distributed memory. In all the tests, we directed the synthesis
tool to attempt to use the BRAMs.

The largest tree we synthesized for the target Spartan device
could hold 32,768 target patterns. Based on throughput and
utilization, more patterns could likely have been successfully
mapped (likely up to 65,536). However, as seen in Figure 11, the
synthesis runtime for the 32,768 pattern circuit was 8 hours,
which was the longest runtime we considered for this study.

Thus, splitting the memory into smaller devices enables more
efficient synthesis, stemming largely from the synthesis
requirement that a logical memory have single cycle access even
when implemented on multiple BRAMs.

5. Other Memory Configurations
Ideally, one circuit could be automatically mapped to different
FPGAs, but as seen in the extent of the redesign involved in
earlier sections, such automation could be challenging. We have
shown how to map a high-throughput pattern counter to the
memory implementation architecture of a Xilinx Spartan FPGA.
However, Altera’s FPGAs use a different memory architecture.

Xilinx Virtex and Spartan FPGAs contain on-chip memory
blocks (BRAMs) that are all the same size on a single device
(though the sizes may vary between different devices). In
contrast, Altera Stratix FPGAs [1] have on-chip memory
(TriMatrix Memory) that is divided into three different types.
MLAB is the smallest of the types with 640 bits per block, with
up to 6,750 such blocks available on a device. M9K is a 9
kilobits memory block with up to 1,040 such blocks on a device.

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768

Number of Patterns

Pa
tte

rn
s

pe
r s

ec
on

d

Original binary tree
Hash table
Split binary tree

Figure 9: Throughput for the split pipelined binary tree.

0%
20%
40%
60%
80%

100%

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768
Number of Patterns

Pe
rc

en
t U

til
iz

at
io

n

LUTs %
BRAM %

Figure 10: Split binary tree’s utilizations.

The largest is the M144K block, which holds 144 kilobits and
with up to 48 such blocks on a device.

Thus, if using an Altera device for the pattern counter circuit,
less splitting of memories may be necessary than when using a
Xilinx device. The levels closer to the root in the circuit’s tree
might use the smaller Altera memories, obviating the need for
splitting of the circuit’s memories and introducing the redundant
control logic to larger tree levels. Therefore, the best circuit
design can vary quite significantly depending on what the
resources that a particular device has.

6. Conclusions
We described a high-throughput pattern counter targeted to an
FPGA. The pattern counter used a pipelined binary tree
architecture that was previously developed for ASICs, but which
exhibited severe throughput reductions for larger trees, and
which failed to map beyond 4,096 patterns. We determined the
problem to be related to use of large memories, and redesigned
the architecture such that the maximum memory size was 512.
The redesign required replicating logic, but logic was not the
constraining factor in the design, and increases in logic sizes
were negligible, approximately 15 slices per memory.

This case study provides one example of how to design or
redesign a circuit to account for specific FPGA-related issues, in
this case the issue of memory size. Along with other case studies,
design patterns may emerge to help guide designers who target
FPGAs. We also show that the different FPGA designs will
probably require different mapping strategies. An interesting
avenue of future work is to develop methods to easily and
effectively port circuits to different FPGAs the way that standard
microprocessor binaries are easily ported to different
microprocessors.

7. Acknowledgements
This research was supported in part by the National Science
Foundation (CNS-0614957).
References
[1] Altera Corporation. www.altera.com, 2008
[2] Azizi, N., Kuon, I., Egier, A., Darabiha, A., and Chow, P.

Reconfigurable Molecular Dynamics Simulator, IEEE Symp. on
Field-Programmable Custom Computing Machines (FCCM), 2004.

[3] Beraudo, B., J. Lillis. Timing Optimization of FPGA Placements by
Logic Replication. Design Automation Conference (DAC), 2003.

[4] Cong J., Y. Hwang. Simultaneous Depth and Area Minimization in
LUT-based FPGA Mapping. Proceedings of the Third International
ACM Symposium on Field-Programmable Gate Arrays (FPGA),
1995.

[5] DeHon A., J. Adams, M. DeLorimier, N. Kapre, Y. Matsuda, H.
Naeimi, M. Vanier, and M. Wrighton. Design Patterns for
Reconfigurable Computing. IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM), 2004.

[6] Eguro K., S. Hauck. Armada: Timing-Driven Pipeline-Aware
Routing for FGPAs. Int. ACM Symp. on Field Programmable Gate
Arrays (FPGA), 2006.

[7] He, C., Lu, M., and Sun, C. Accelerating seismic migration using
FPGA-based coprocessor platform. IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), 2004, pp.
207-216.

[8] Huang, Z. and Ercegovac, M. D. 2001. FPGA Implementation of
Pipelined On-Line Scheme for 3-D Vector Normalization. IEEE
Symp. on Field-Programmable Custom Computing Machines
(FCCM), 2001.

[9] Krueger, S. D. and Seidel, P. Design of an on-line IEEE floating-
point addition unit for FPGAs. IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM), 2004, pp. 239-246.

[10] Li H., W. Mak, S. Katkoori. LUT-Based FPGA Technology
Mapping for Power Minization with Optimal Depth. Proceedings of
the Int. ACM Symposium on Field-Programmable Gate Arrays
(FPGA), 2001.

[11] Lysecky R., S. Cotterell, F. Vahid. A Fast On-Chip Profiler
Memory. IEEE/ACM Design Automation Conference (DAC), 2002,
pp. 28-33.

[12] Metzgen P. A High Performance 32-bit ALU for Programmable
Logic. Int. Symp. on Field Programmable Gate Arrays (FPGA),
2004.

[13] Patterson C. High Performance DES Encryption in Virtex FPGAs
using Jbits. IEEE Symp. on Field-Programmable Custom
Computing Machines (FCCM), 2000.

[14] Singh A., M Marek-Sadowska. Efficient Circuit Clustering for Area
and Power Reduction in FPGAs. Int. Symp. on Field Programmable
Gate Arrays (FPGA), 2002.

[15] Singh D., S. Brown. Integrated Retiming and Placement for Field
Programmable Gate Arrays. Int. Symp. on Field Programmable Gate
Arrays (FPGA), 2002

[16] Xilinx, Inc. Spartan 3e 1600. http://www.xilinx.com, 2008.

0
5

10
15
20
25
30
35
40
45
50

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,38 32,76
Number of Patterns

Sy
nt

he
si

s
Ti

m
e

(M
in

)

Original binary tree
Hash table
Split binary tree

Figure 11: Synthesis times of the three designs.

115 480

