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ABSTRACT

Due to the large contribution of the memory subsystem td tota
system power, the memory subsystem is highly amenable to cus
tomization for reduced power/energy and/or improved perénce.
Cache parameters such as total size, line size, and a$gbcizdn

be specialized to the needs of an application for systenmagzi
tion. In order to determine the best values for cache paenset
most methodologies utilize repetitious application exiecuto in-
dividually analyze each configuration explored. In this grape
propose a simplified yet efficient technique to accuratetyrede

the miss rate of many different cache configurations in jut o
single-pass of execution. The approach utilizes simple datic-
tures in the form of a multi-layered table and elementarwisi
operations to capture the locality characteristics of gliegtion’s
addressing behavior. The proposed technique intends ¢oneias
rate estimation and reduce cache exploration time.

Categories and Subject Descriptors
B.3 [Memory Structures]: Performance Analysis and Design Aids

General Terms
Algorithms
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Configurable cache tuning, cache optimization, low energy.

1. INTRODUCTION

Optimization of system performance and power/energy aopsu
tion is an important step during system design and is acdshea
through specialization, or tuning, of the system. Tunalleme-
ters include supply voltage, clock speed, bus width and dingo
schemes, etc. Of the many tunable parameters, it is well know
that one of the main bottlenecks for system efficiency reside
the memory sub-system (all levels of cache, main memorgedyus
etc) [16]. The memory subsystem can attribute to as much %s 50
of total system power [1, 17].

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

GLSVLSI'08 May 4-6, 2008, Orlando, Florida, USA.

Copyright 2008 ACM 978-1-59593-999-9/08/0555.00.

Ann Gordon-Ross
University of Florida
Gainesville-FL, USA

ann@ece.ufl.edu

Frank Vahid
University of California, Riverside
Riverside-CA, USA

vahid@cs.ucr.edu

Memory subsystem parameters such as total size, line side, a
associativity can be tuned to an application’s temporal spatial
locality to determine the best cache configuration to metitira-
tion goals [3]. However, the effectiveness of such tuningles
pendent on the ability to determine the best cache configuartd
complement an application’s memory addressing behavior.

To determine a cache size that yields good performance and lo
energy for an application, the size must closely reflectehgporal
locality needs of an application. It is important to deterenhow
frequently memory addresses are accessed and how longeé tak
for an executing application to access the same memoryerefer
again. This property is mostly attributed to working-searzcter-
istics such as loop size.

Similarly, the cache line size must closely reflect the spdo-
cality of an application, which is present in straight-limstruc-
tion code and data array accesses. Additionally, asseityatnust
closely reflect the needs of the application.

To determine the best values for these tunable parametdraso
cache configuration, existing cache evaluation technidueeade
analytical modeling [6, 10] and execution-based evaluajd to
evaluate the design space. Analytical models evaluate clogle
acteristics and designer annotations to predict an apptemache
configuration in a very short amount of time, requiring dittde-
signer effort. Whereas this method can be accurate, it catiffbe
cult to predict how an application will respond to real-vebithput
stimuli.

A more precise technique is execution-based evaluatiothign
technique, an application is typically simulated multififees, and
through the use of a cache simulator, application perfoomand/or
energy are evaluated for each cache configuration expléveereas
this technique is more accurate than an analytical modetienmo
embedded systems are becoming more and more complex and sim-
ulating these applications for numerous cache configurataan
demand a large amount of design time. To accelerate exeeutio
based evaluation, specialized caches have been desigried div
for cache parameters to be varied during runtime [2, 14, H6}v-
ever, due to the intrusive nature of the exploration heiagsthe
cache must be physically changed to explore each configarati

Exploring a large number of cache configurations can poten-
tially significantly adversely effect program executiontémms of
energy and performance overhead while exploring poor corgig
tions. To reduce the number of configurations explored, iefftc
heuristics have been proposed [8, 19] to systematicaletsa the
configuration space and result in a near-optimal cache agoafig
tion while evaluating only a fraction of the design spacewieer,
even though the number of cache configurations is greatlycest
in some systems, tens of cache configurations may need to-be ex
plored, thus still potentially imposing a large overhead &on-



suming too much exploration time. Exploration time must biek algorithms using binomial trees resulting in single-pagemes 5

enough to adapt to rapidly changing resource requirem@ts [ times faster than previous approaches. They also proposhes
Instead of changing the cache configuration numerous times t single-pass algorithm to simulate caches with varying lbkizes.

evaluate each different cache configuration, much infaomatbout In [5], Cascaval and Padua proposed a method to estimate cach

the memory addressing behavior could be extracted fromgesin  misses at compile time using a machine independent modetibas

execution of an application independent of the cache corafiigun. on a stack algorithm.

In multi-cache evaluation, multiple cache configuratiore eval- Most of the existing methods perform very well for a given set

uated in a single pass of execution [18]. For example, thebeum  of caches with a fixed line size or a fixed total size. Thus,éhes

of neighboring addresses that are accessed in a short pétiate algorithms can be utilized in simulation-based cache mieduc-

or how often a given address is repeatedly referenced cagestig  ing the number of necessary simulation passes. Howevare sin

an application’s temporal and spatial locality requiretaeif such
properties about the spatial and temporal locality of thgliep-
tion are extracted and well correlated in an organized stracthe
behavior of many cache configurations can be estimated qnd-ap
priate cache parameters can be projected.

In this work, we present a simplified, yet efficient way to extr
locality properties for an entire cache configuration desigace in
just one single-pass. SPCE (pronounced spee-cee), ole-piags
multi-cache evaluation methodology, utilizes small, cactgable
structures and elementary bitwise operations consisfingrapar-
isons and shifting to allow us to estimate the cache misSoatl
configurations simultaneously. SPCE provides design ticoelar-

these methods are unable to evaluate all different caclenaders
simultaneously, multiple simulation passes are still negly thus
in a runtime tuning environment, cache exploration coulddme
lengthy. In [13], Janapsatya et al. present a techniqueaiuate

all different cache parameters simultaneously and, todisedf our
knowledge, is the only such technique. They present a see
structure consisting of multiple linked lists to keep tradflkcache
statistics for a large design space. Whereas this work nhostly

resembles our methodology and shows tremendous speedups in

simulation time, their methodology was not designed wittaedh
ware implementation in mind. Our methodology utilizes diergo-
ray structures, structures that are more amenable to avigight

ation in a simulation-based environment, but most impdigawe
design SPCE with a hardware implementation in mind, progdi
an important non-intrusive cache exploration alternafidrequick
runtime exploration. In this paper, we present a detailgdrihm ) ) ) ) )
for SPCE’s operation and evaluate SPCE in a simulationebase SPCE is a single-pass multi-cache evaluation techniqueste e
vironment compared to a state-of-the-art cache tuningidtenr ~ Uate all values for all cache parameters (total size, lime and
In [9], we provide a hardware implementation of SPCE and quan @SSociativity) simultaneously, requiring only one sintigia pass.
tify the importance of such a runtime tuning environment. Whereas previous single-pass cache evaluation technigilies
This paper is organized as follows: Section 2 discussetettla  COMplex data structures to estimate cache miss values, SRCE
work pertaining to single-pass cache evaluation. Sectiae3 I|_ze_s simple table_structures ar_ld_elementary bitwise djpgIcon-
scribes an overview of SPCE. In the Section 4, we present ele- Sisting of comparisons and shifting. )
mentary properties for addressing behavior analysis tmat the Figure 1 illustrates an overview of SPCE’s cache evaluatien
cache miss rate of fully-associative caches. Section Hidstthose thodology. The running application; produces a sequence of in-
properties to analyze address conflicts and introduces mubre  Struction addresses, which can be captured independently of the
vanced concepts to build a multi-layered table for multiteaeval- cache configuration, by using an instruction-set architecsimu-
uation of direct-map caches as well as set-associativeesa@ec-  lator or executable platform model [4]. In this work, we izél a
tion 6 presents the SPCE algorithm and discusses its impleme Processor simulator to generate an address trace for pesitén
tation details. In Section 7 we validate SPCE with experitmen  Processing, but we point out that, given the sheer size afaypd-

results and finally in Section 8, we conclude the paper ankheut ~ dress traces, address trace generation may be omitted stnutin
future directions for SPCE to a broader domain. tion addresses may be trapped during simulation and fed @ESP

in parallel.

hardware implementation.

3. SPCE OVERVIEW

2. RELATED WORK

o . . Sequenceof|” T TTTTTTTTT T TT TR N

Much research exists in the area of multi-cache evalualiow; ) addresse¥ ! T Stack-based SPCE i
ever, nearly all existing techniques require multiple pas® ex-  (, "7 "S N T ____ - %'[3]> analysis !
plore all configurable parameters or employ large and congaéa y 1A - i
structures that are not amenable to hardware implementatios Lo Multvcache |
restricting their applicability to strictly a simulatidmased evalua- )- ] - :
tion environment. / K CaChinNgSS Ratd
Algorithms for single-pass cache simulation tackle thebfam Cache configuration | // L A . i

. . . : 5 Cache Miss Rat|

of multi-cache evaluation by examining concurrently a §eaghes design spac€={c,,...G} |,/ onc, '
with different sizes during the same execution pass. Reksear J/ : i
this issue began in 1970 when Mattson et al. presented an algo /" Locality and Conflict __ ;
rithm for simulating fully-associative caches with vanyisizes and /' Multi-layered Table Generation CaChgn'\ﬂ'Ss Rate:
a fixed block size [15]. The algorithm utilized stack-basiedsa- e/

tion and took advantage of the inclusion property.

The inclusion property states that at any time, the contehts
a cache are a subset of the contents of a larger cache. Hill andFigure 1: SPCE overview: multi-layered table generation fo
Smith [12] identified the set-refinement property, whicheexis multi-cache evaluation.
the inclusion property to study the inclusion effects oflmas-
sociativity, and extended the inclusion property for dinempped
and set-associative caches. Sugumar and Abraham [18gedt!

SPCE processes the sequence of addresses and analyzes the en
tire cache configuration design spaceconsisting ofm different



configurations. Each configuration is a unique combinatiorab
ues for line size, associativity, and total size in the desigace.
SPCE uses a stack structure to store previous addresseacfar ¢
hit evaluation. When an address is processed, SPCE scastatke
to determine if the current address has been fetched psdyiand
would perhaps result in a cache hit depending on the cacHiguen
ration. After SPCE processes an address, if the addresdnwady
present in the stack, the address is removed and pushederttipt
of the stack. If the address was not present in the stacksiitniply
pushed onto the top of the stack.

resulting locality information for line size and total cacsize anal-
ysis populates the table, while conflict data for associativity anal-
ysis populates the multi-layered tallié, where each layer repre-
sents the associativity levels explored.

After processing all instruction addresses, the cells eftébles
L and K store the number of cache hits for the sequence of ad-

The locality tableL(b, d) represents a structured abstraction of
a sequence of addressEsand can be built by evaluating the vari-
ablesb andd whenT'[t;]>b = T'[t; 4 d]>b, as the application runs.
It is important to note that when evaluatifit;|>b = T7[t; +d]>b,

it is not sufficient to simply count the number of referenéeghich
occur betweerl™[t;] andT'[t; + d.
If any referencel’[t; + j] for 1 < j < d results in a cache
hit, that reference would not displace any cache line. Timthis
situation, T'[t;] > b = T[t; + d + 1] > b would result in a cache

We present details of data generation in sections 4 and 5. Thehit as well. As this point we redefinéas thedelay or the number
of unique cache references occurring between any two refese

whereT'[t;] > b = T[t; + d] > b.

Table 1: Locality table L(b, d)

: ; ; L(0,1) L(1,1) L(2,1) L(bmaz, 1)
dressgs analyzed for all cache configurations in the_sﬁacBy T07) 7CE) TG9) T omar2)
summing up the contents of the tables and subtracting thae va 7(0,3) (.3 72,3) T(bmaz, 3)
from the size of the address trace, it is easy to evaluateeanits
rates for every cache configuration. The miss rates can gheojt> L(0,dmaz) | L(1,dmaz) | L(2,dmaxz) L(bmaz, dmaz)

plied to an energy model for the system to calculate energy co
sumption for each cache configuration.

4.2 Fully-associative Cache Miss Rate

In a fully-associativecache, references can be mapped to any
cache line. For this reason, a cache withnes, using an optimal
(OPT) or near optimal (LRU) replacement policy stores any ad
dress referencé|t;] until address'[t; + ] is referenced, where
represents the number of cache misses occurring betwesameé
T'[t:] and referenc&’[t; + n).

A fully-associative cache configuration is defined by theation
c¢;j(b,n), whereb defines the line size in terms of words, anthe
total number of lines in the cache.

We know thatZ (b, d) gives us the number of occurrenceg; |
b = T[t; + d] > b in a sequence of address&s Thus, L(b, d)
indicates how often the same block is regularly accessent @ft
references to other addresses.

We conclude that a fully associative cache configurati@h, n),
composed of: lines with 2 words per line, is able to hold any ref-
erenceff[ti] as long as it is repeatedly accessed, yieldirg, d)
cache hitsyd < n. (Equation 2).

4. LOCALITY ANALYSIS
4.1 Definitions

While applicatioru; executes, the memory hierarchy fulfills suc-
cessive instruction reference requests. We define the tidered
sequence of referenced addresses by the véatc])rt € Zt(tis
a positive integer), of lengtfi’|, such thatZ'[t] is thet'" address
referenced [11].

In a traditional cache mapping, two addresgés] andZ'[t; +d]

belong to the same cache block if, and onlyféf%] = Lgid,

whereT[t; + d] is the d™" address referenced aftéiit;] and 2"
is the cache block size in number of words (words are defined in
Bytes).

Since the block size is the number of words, usually a power of
2, it is reasonable to represent it by the powkr We define the
operator> as the bitwise shift operatidfi[t;] > b where the address
Tt:] is shifted to the right times. ShiftingZ[t;] to the rightb
times is equivalent to dividinf[ti] by 2° (Equation 1).

[t Cache_hit[c;(b,n)] = > L(b,d 2
f[ti]bb:% (1 ache-hit[c; (b, n)] dzz:l (b, d) ()

Thus, if T[t;] > b = T[t: + d] > b, then the addresseE[t;]
andT'[t; + d], are references to the same cache blocX afords.
Note that for the particular case where= 0, T[t;] and T'[t; +
d] would correspond to exactly the same address. By consglerin
the probability of frequent accesses to the same block dutie
execution of a given applicatiospatialandtemporallocality can = .
be directly correlated as a function@ndd. Miss_ratelc;(b,n)] = 71 = CaChetht[cj(b’ n)] (3)

We evaluate the locality in the sequence of addre$§es of a T
running applicatioru; by counting the occurrences whéféti] >
b = T[t: + d]>b and registering it in the cell.(b, d) of the locality
table The number of rows and columns of the locality table are
defined by the boundarids < d < dmaz and0 < b < bmax
respectively (Table 1) wherémax is defined as the total number
of available lines in the largest cache of the configuratipacs,
andbmaz defines the total number of line sizes available.

We can estimate the cache miss rate of a given cache configura-
tionc; (b, n) for a sequenc@’ by subtracting the result 6fache_hit
from the total size of the sequence of addre$§¢$Equation 3):

Any fully-associative cache configuratien(b, n) within the de-
sign space defined by the boundafies b < bmax andl < d <
dmax can be estimated by using the Locality Tallle Thus, just
one single-pass simulation of the application (or tr’ﬁctés neces-
sary to generate the entire contentd.of



5. DIRECT-MAPPED AND SET-ASSOCIA-
TIVE CACHES

5.1 Multi-layered Conflict Table

The locality tableL(b, d) presented in Section 4 composes an
efficient way to estimate the cache miss rate of fully-asgtoe
caches. However, due to the high cost in terms of area andener
consumption for fully-associative caches, most real-adche
devices are built as direct-map or set-associative stregtu

For these cache structures, the locality tab(é, d) can not be
used to estimate cache misses, since mapping conflictsdoessks
that map to the same cache line are not considered. Missgtite e
mation for such cache structures must take into accountvla-e
ation of address mapping conflicts.

Here, we defing as the number of sets independent of the as-
sociativity. A direct-mapped cache can be considered acpéat
case of a set-associative cache (set sizeliise). In this case, the
number of sets is equal to the number of cache lires ).

Two distinct addresseE[t;] andT'[t; + d] suffer from an address
mapping conflict ifT’[t;] > b divided bys andT[t; + d] > b divided
by s results in the same remainder (Equation 4).

(T[t:]>b) mod s = (T[t; + d] > b) mod s = Conflict (4)

In fully-associative cachess (= 1), the probability of a given
referencef[ti] > b) being present in the cache is dependent on the
number of cache lines and how long it takes until the samekhb#oc
referenced againi(< n).

In direct-mapped and set-associative caches, the prdaifib
given reference being present in the cache depends on thigenum
of cache setss) and how many cache conflicts occur before the
same block is referenced again. If the level of associgtisihigher
than the number of conflicts, the reference will still be ia tache
(Hit). For the analysis of cache conflicts, we propose theofet
table layersK,, denoted as @onflict table which is composed
of « layers, one for each associativity explored, as illustrate
Table 2.

Table 2: Conflict table K (b, s) for oo = 1 and 2

K10, 1) Ki(1, 1) K2, 1) K1 (bmaz, 1)
K,1(0,2) K,1(1,2) K1(2,2) K, (bmax, 2)
K1(0,4) Ki(1,4) Ki(2,4) K, (bmaz, 1)
K;(0,smaz) | Ki1(1,smaz) | Ki(2, smazx) K, (bmaz, smax)
K5(0,1) K>(1,1) K3(2,1) K (bmax, 1)
K5(0,2) K>(1,2) K5(2,2) K5 (bmax, 2)
K5(0,4) K>(1,4) K3(2,4) K (bmax, 4)
K>(0,smaz) | K2(1,smaz) | K2(2, smax) Ko (bmazx, smax)

SPCE builds the conflict tabl&,, for a running application by
analyzing the sequence of addresﬁﬁ and counting the num-
ber of occurrences (mapping conflicts) of distinct addrdeskis
mapped to the same cache line. The number of lines in eachdaye
of the conflict table is defined by the maximum number of sets
smax. For any cache configuratioh,(s), Equation 4 computes the
number of mapping conflicts:j betweeril[t;]>b andT[t; +d] b,
which defines the appropriate layeto fill in K. (b, s). The layer
« is determined by rounding up the valuexof- 1 to the next power
of 2 (Equation 5).

a = 2[10¥;2(w+1ﬂ

®)

5.2 Miss Rate Estimation

We designed the conflict tabl€,, (b, s) in a such way that layer
« refers to the associativity of a given cache configuratioaydr
a = 1, for example, characterizes the addressing behavior of a
direct-map cache, layer = 2 characterizes a two-way set-asso-
ciative cache, layetv = 4 characterizes a four-way cache, and so
on.

At the end of simulation, the value stored in each elemerti®f t
table K, (b, s) indicates how many times the same block (&%kis
repeatedly referenced and results in a hit. Depending onablee
mapping, which is defined by the number of setf the lowest
associativity level which guaranteds, (b, s) cache hits is given
by a.

A given cache configuration with level of associativityis ca-
pable of overcoming no more thamn— 1 mapping conflicts. Thus,
the number of cache hits is determined by summing up the cache
hits from layera. = 1 up to its respective layet = w, wherew
refers to the associativity. From now on, each cache corsiigur
will be defined byc; (w, b, s) (Equation 6).

Cache_hit[c;(w,b, s)] = i Ko (b,s) (6)

6. ALGORITHM IMPLEMENTATION

Figure 3 shows the SPCE algorithm to build the multi-layered
conflict table. A stack keeps track of the sequence of prelyac-
cessed addresses and is repeatedly scanned to evaluatecahic
figurations would result in that access being a “cache hit.”

pr ocess( ADDR)
{
ADDR = ADDR >> W
for B = BMAX downto BM N{
//shift out block offset
BASE_ADDR = ADDR >> B
/'l scan stack
WAS_FOUND = | ookup_st ack( BASE_ADDR)
i f (WAS_FOUND) {
for S = SMN to SMAX{ //for each set siz¢g
//scan stack | ooking for set conflicts
NUM_CONFLI CTS = count _conflicts(S, BASE_ADDR)
i f (NUM_CONFLI CTS <= ANAX) {
/Imark the appropriate table |evel
ALPHA = roundup( NUM_CONFLI CTS)
updat e_t abl e(ALPHA, S, B)

//shift out word offset
/lfor each line sizg

}
} /1 end for S = SMN to SMAX

}
} /1 end for B = BMAX downto BM N
//push or nove addr to top
updat e_st ack( WAS_FOUND, ADDR)

}

Figure 2: The SPCE algorithm.

When the address is found in the stack, SPCE analyzes the num-
ber of set conflicts to determine the minimum set-assodigtio
yield a hit. The occurrences are registered into the apjaigdayer
of the conflict table by incrementing the value of its cell t&fhit
determination, if the address was found in the stack, theeadds
moved to the top of the stack. Otherwise, the new addressisou
onto the stack. Taking advantage of the inclusion propeftst o



larger cache line size over a smaller size, the outer logmresble
for the line size exploration was intentionally implemehteith a
decrementing counter to optimize stack scanning.

Pre-defining the bounds of the tables specify the particigar
sign space of cache configurations explored. The numbetuics
in each table layer is defined by the minimum and maximum num-
ber of words per lineZ®™" and2°™, respectively). The number
of lines in the tables are defined by the minimum and maximum
number of cache sets/uin andsmazx, respectively) in the cache
configuration space. The number of table layers is deperafent
the highest associativity level consideregr{az).

Each cache configuration in the design space is defined bythe p
rametersuv, b, ands (associativity, line size, and number of sets, re-
spectively), which determine their corresponding celtthamulti-
layered table. The number of misses for any cache configurati
can be easily calculated by summing up the table cells fogitren
configuration to determine the number of cache hits and actirig
the amount from the total number of addresses.

7. EXPERIMENTAL RESULTS
7.1 Setup

We implemented SPCE as a standalone C++ program to proces{

an instruction address trace file. We gathered instructilniress
traces for 9 arbitrarily chosen applications from Motol®Rower-
Stone benchmark suite [14] using a version of SimpleScatat-m
ified to output instruction traces. SimpleScalar is a 64abithi-
tecture, thus each address will be shifted by 8 to remove tivd w
offset.

Although SPCE does not impose any restriction on the param-

eters of the configurable cache architecture, in order terdete
both the accuracy and simulation time speedup comparedatea s
of-the-art cache tuning heuristic, we adopted the conflgareache
architecture presented by Zhang et al [20]. Zhang's systehi-a
tecture consists of a cache hierarchy with separate levelion
struction and data caches, both connected to the main meandry
a cache tuner connected to both caches.

Using specialized configuration registers, each cachesoffen-
figurable size, line size, and associativity. To offer camfagple
size and associativity, each cache is composed of four aoafite

banks each of which acts as a way in the cache. The base cache i

a 4-way set-associative cache. The ways/banks may be seligctiv
disabled or enabled to offer configurable size. Additionaltays
may be logically concatenated to offer direct-mappe@ay, and
4-way set-associativities.

Given the bank layout of the cache, some size and assotyativi
combinations are not feasible. The cache offers a base gathysi
line size of16 bytes with configurability ta32 and 64 bytes by
fetching/probing subsequent lines in the cache. Accortintpe
hardware layout verification presented by Zhang et al. if, [l20
their configurable cache, the configurability does not impacess
time.

The configurable cache offers the sethof= 18 distinct config-
urations shown in Table 3, where each configuration is dasigh
by a valuec;. For example, a-kByte direct-mapped cache with
a 32-byte line size is designated as. These designations will be
used throughout the rest of this paper to identify each @der
cache configuration.

The values ofv, b, ands characterize the configurations with re-
spect to SPCE and are determined as followsefers to the asso-
ciativity of the configuration, which for the configurablecbe uti-
lized, is limited to directed-map, 2-way, and 4-way sepakive
caches, defined by the values= 1, 2, and 4 respectively.

cj description (w, b, s) Cachehit[c;]
c1 directed, 2kB, 16B/line| 1,1, 128 K,(1,128)
Co directed, 4kB, 16B/line| 1,1, 256 K, (1,256)
3 2-way, 4kB, 16B/line | 2,1,128 | Ki;o(1,128)
ca directed, 8kB, 16B/line| 1,1,512 K,(1,512)
s 2-way, 8kB, 16B/line | 2, 1,256 | Kii2(1,256)
Ce 4—Way, 8kB, 16B/line 4, 1, 128 K1+2+4(1, 128)
cr directed, 2kB, 32B/line| 1,2, 64 K1(2,64)
cs directed, 4kB, 32B/line| 1, 2,128 K1(2,128)
o 2-way, 4kB, 32Bfline | 2, 2, 64 K1 12(2,64)
c10 directed, 8kB, 32B/line| 1,2, 256 K1(2,256)
c11 2-way, 8kB, 32Bfline | 2,2,128 | Ki1;2(2,128)
c12 4—way, 8kB, 32B/line 4,2,64 K1+2+4(2, 64)
c13 directed, 2kB, 64B/line| 1, 3,32 K1(3,32)
C14 directed, 4kB, 64B/line| 1, 3,64 K1(3,64)
Cc15 2—Way, 4kB, 64B/line 2, 3, 32 I{1+2(37 32)
c16 directed, 8kB, 64B/line| 1, 3,128 K,(3,128)
c17 2-way, 8kB, 64BJline | 2, 3, 64 K1 12(3,064)
c18 4—way, 8kB, 64B/line 4,3,32 K1+2+4(3, 32)

Table 3: Configuration space for a single-level cache

The value ofb depends on the word size (8-bytes) and the re-
spective line size in words. For example, a line size of l&by
omprises 2 words2(x 8-bytes). 1f2° = 2-words, therb = 1.
ikewise, 32-bytes i$ = 2, and 64-bytes i$ = 3. Finally, the
number of setsd) is determined by dividing the total size by the
line size and then by the associativity)( In the configuratiors,
for example, 8-kBytes divided by 64-bytes gives us 128 line82
sets of 4 lines eachs (= 32).

Since64-bytes is the largest block size in the design space uti-
lized, it corresponds t@ words orbmax = 3. The value of
smazx is defined by the configuration with the maximum num-
ber of sets in the design space. It corresponds to configuarati
in Table 3 8-kByte directed-map cache with6-bytes per line),
which give ussmaz 512. Actually, the multi-layered table
limited by the bounds aboveu( = {1,2,4} x b = {1,2,3} x
s = {32,64,128, 256, 512}) would be able to evaluate 45 differ-
ent cache configurations, of which the design space of 18geonfi
rations defined in the Table 3 is a subset of.

The right-hand column of the Table 3 shows how SPCE extracts
the number of hits from the multi-layered conflict taliig for ev-

ry ¢; in the design space. The number of cache misses can be
etermined by subtracting the result from the trace size.

In order to validate our results for the whole spatewe deter-
mined cache miss rates for our suite of benchmarks with SPGE a
also with a very popular trace-driven cache simulator (E0ihé).
Then, we estimated the total energy consumagg, a;) for run-
ning each benchmairk; with the architecture configuratian. We
adopted the same energy model as utilized by Zhang, so that ou
results can be accurately compared with his state-of-thtexaing
heuristic. The energy model calculates total energy copsom
for each cache configuration by calculating both static mawhic
energy of the cache, main memory energy, and CPU stall energy
We refer the reader to [19] for a detailed description of gneal-
culation.

7.2 Results

To validate SPCE, we compared the miss rates generated by
SPCE with the miss rates generated by DinerolV for the 45e&ach
configurations supported by the multi-layered conflictéail We
found the miss rate estimation to be identical. Table 4 sigims
ulation time speedups as high as 20.77 and an average offb4.88
cache evaluation. The variation in speedups for each atiglicis
due to differences in locality.



Simulation time (sec)

benchmark|| SPCE | DinerolV Speedup
bent 45 360 8
binary 1 30 30
brev 79 405 5.12
fir 1 7 7
g3fax 13 270 20.77
matmul 1 7 7
pocsag 1 7 7
uchgsort 126 1890 15
epic 840 13500 16.07

[ average ][ 123 | 1830.67 | 14.88 |

Table 4: Speedup obtained by using SPCE to evaluate cache

miss rate vs. DinerolV

We then applied Zhang'’s heuristic to the reduced cache config
uration space of 18 configurations to determine the optiraehe
configurationc,; and optimal energy consumptiaric,;,a;) for
each application; to compare simulation speedups obtained by
using SPCE as opposed to a tuning heuristic. For each bench-
mark, we determined how many configurations would be exglore
by Zhang’s heuristic and multiplied that by the time it takesim-
ulate the corresponding benchmark once. Table 5 showsrthe si
lation time speedup obtained by using SPCE to determinefitie o
mal configuration compared to executing Zhang's heuri§lige to
the limited space, discussion of the tuning heuristic isidet the
scope of this paper and we refer the reader to [19] for morildet

Simulation time

(secs)

[ bmark [ coi | e(coi,ai) [ SPCE [ Heuristic [ Speedup]
bent cr 0.001663 45 41 0.91
binary cr 0.000145 1 2.7 2.7
brev Cc1a 0.003202 79 54 0.68
fir (&) 0.000101 1 1 1
g3fax Cc1a 0.002074 13 36 2.77
matmul c1 0.000071 1 0.5 0.5
pocsag cg 0.000174 1 1 1
ucbgsort || c14 0.015402 126 252 2
epic c1 0.089339 840 1800 2.14

[ I [ average J| 123 [ 243 [ 1.97 |

Table 5: Speedup obtained by using SPCE to determine the
optimal cache configuration vs. a state-of-the-art cache tning

heuristic

8. CONCLUSION

In this paper we introduce SPCE as a technique to evaluate-an e
tire configurable cache design space with just one singke pim-
inating multiple costly simulation passes as with previousth-
ods. The proposed technique exploits fundamental chaistate
of locality and conflicts in the application behavior to gathache
statistics and store them in a very compact data structir€ESa-
cilitates in both ease of cache miss rate estimation anctieduin
simulation time. We devised SPCE with hardware implemeémat
in mind to facilitate in non-intrusive runtime cache configfion
exploration. Our future work includes extending the desigace

exploration to consider a second level of cache.
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