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Chapter 1: Introduction

The first computers of the 1940s and 1950s occupied entire rooms. The 1960s and 1970s
saw computers shrink to the size of bookcases. Continued shrinking in the 1980s brought
about the era of personal computers. Around that time, computers also became small
enough to be put into other electrical devices, such as into clothes washing machines,
microwave ovens, and cash registers. In the 1990s, those computers became known as
embedded systems.

What is an embedded system?

An embedded system is a computer embedded within another device. The embedded
computer is composed of hardware and software sub-systems designed to perform one or
a few dedicated functions. Embedded systems are often designed under stringent power,
performance, size, and time constraints. They typically must react quickly to changing
inputs and generate new outputs in response. Aside from PCs, laptops, and servers, most
systems that operate on electricity and do something intelligent have embedded systems.
Simple embedded system examples include the computer in a clothes washing machine, a
motion-sensing lamp, or a microwave oven. More complex examples include the computer
in an automobile cruise control or navigation system, a mobile phone, a cardiac pacemaker,
or a factory robot. (Wikipedia: Embedded Systems)

Examples of embedded systems include
computers in simple systems like blinking
tennis shoes or coffee makers, to more
complex systems like mobile phones or
automated teller machines.

Try: List three embedded systems that you interact with regularly.

Wikipedia: iPhone Wikipedia: Amazon Kindle Wikipedia: HYAC Control System
Wikipedia: IP Phone Wikipedia: SetTopBox Wikipedia: Engine Control Unit
Wikipedia: PlayStation Wikipedia: Flight Control System

Each year over 10 billion microprocessors are manufactured. Of these, about 98% end up as
part of an embedded system.
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The example statement "BO = A2 && Al && A0" sets the microcontroller output BO to 1
if inputs A2, Al, and AO are all 1. The "while (1) { <statements> }" loop is a common
feature of a C program for embedded systems and is called an infinite loop, causing the
contained statements to repeat continually.

We can use a microcontroller to add functionality to the earlier simple system to create
an embedded system. The term embedded system, however, commonly refers just to the
compute component. The switch and buttons are examples of sensors, which convert
physical phenomena into digital inputs to the embedded system. The LED is an example
of an actuator, which converts digital outputs from the embedded system into physical

phenomena. (Wikipedia: Sensor) (Wikipedia: Actuator)
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Try: Circle all ten events in the above timing diagram.

Testing

Written code should be tested for correctness. One method is to generate different input
values and then observe if output values are correct. To test code implementing "BO = AOQ
&& 'A1", all possible input value combinations of A1 and AO can be generated: 00, 01, 10,
and 11. Using RIMS, switches can be clicked to generate each desired input value. First
switches for A1 and AO can both be set to, then A0 can be set to 1, then AO can be set to 0
and Al to 1, and finally both A1 and AO can be set to 1. BO should only output 1, and hence
BO's LED should only turn green, in the second case.

For most code, there are too many possible input combinations to test all of them. Testing
should cover border cases such as all inputs being 0s and all inputs being 1s, and then
several sample normal cases. For example, completely testing "BO = A0 && Al && A2 &&
A3 && A4 && A5 && A6 && A7" would require 256 unique input value combinations. Border
and sample testing might instead test two borders, A7..A0 set to 00000000 (output should
be 0) and to 11111111 (output should be 1), and then a few (perhaps a dozen) sample
normal cases like 00110101 or 10101110. If code has branches, then good testing also
ensures that every statement in the code is executed at least once, known as 100% code

coverage. (Wikipedia: Software Testing) (Wikipedia: Software Debugging)

RIMS records all input/output values textually over time. That text can be analyzed for
correct code behavior, rather than observing RIMS LEDs. Pressing the "Generate/View
Timing Diagram" button while a program is running (or in a "break" status) automatically
saves those textual input/output values in a file and then runs the timing-diagram viewing
tool called RITS (Riverside-Irvine Timing-diagram Solution).

ﬁ RITS (Riverside-Irvine Timing Diagram Solution)

File  Help
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RITS timing diagram from running the "BO = A0 && !A1" program.The user can zoom in or out using the "+"
and "-" buttons on the top right, and scroll using the scrollbar at the bottom. The user can save the currently
shown portion of the timing diagram using the "Save JPEG" button.
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}
(Note: bit #0 refers to the least significant bit, LSB, so bit #2 is the third bit from the right)
Try: Write a single C statement for RIM that sets B to A except that bit #7 and bit #6 are set to 1s.
A mask is a constant value having a desired pattern of Os and 1s, typically used with
bitwise operators to manipulate a value. In the above examples, 0x0OF, 0xFO, OxF7, and

0x04 are masks. Masks are typically used based on the following ideas (below, assume "a"
is a single bit):

To force a bit position to 0, AND with a mask having 0 in that position (a & 0 = 0)

To force a bit position to 1, OR with a mask having 1 in that position (a | 1 = 1)

To pass a bit position through, AND with a mask having 1 in that position (a & 1 = a),
or OR with a mask having 0 in that position (a | 0 = a)

Masks are sometimes defined as constant variables:

const unsigned char MaskLoNibls = 0x0F;
B = A | MaskLoNibls; // Passes high nibble, sets low nibble to 1111

The term mask comes from the role of letting some parts through while blocking others, like
a mask someone wears on his face letting the eyes and mouth through while blocking other
parts.

Two more bitwise operators are commonly used:

o << :left shift
e >> ! right shift

For unsigned integer types, shift operators move their first operand's bits left/right by the
number of positions indicated by their second operand (the shift amount), as shown:

O0x0F << 2: 0x0F >> 3:
00001111 00001111

<< 2 >> 3
00111100 00000001

Note that vacated positions on the right (for left shift) or left (for right shift) have 0s shifted
in. Below are some examples of using shift operators:

B A << 1; // Sets B7 to A6, B6 to A5, ..., Bl to A0, and BO to O
B A >> 4; // Sets B7..B4 to 0000, and B3..B0 to A7..A4
B =2A & (0xOF << 2); // Passes A's 4 middle bits to B

The shift amount should be between 0 and the number of left-operand bits, inclusive.
Try: Compute "B = A << 6;" and "B = A >> 5" for A being OxFE.

Try: Test the above shift operator examples using RIMS, by creating a distinct program for each.
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Notice that the SM model and the earlier C code have the same behavior. However, the SM
more explicitly captures the desired time-ordered behavior. This straightforwardness can be
further seen by trying to extend the SM.

Try: Extend the SM to sound an alarm if A1AO=11 is reached by a sequence other than 00, 10, 11.

The extension can be achieved by adding transitions leaving Wait00 and Wait10, where
each transition checks for "Al && AQ0" and points to an "Alarm" state that sets B1=1 (all
other states should set B1=0). The transitions leaving Wait00 and Wait10 that point back to
the same state would also need to have their conditions refined to not include the "Al &&
AQ" case.

RIBS

The RIBS (Riverside-Irvine Builder of State machines) tool supports graphical state diagram
capture of SMs.

, ,
£ Dbt Do S ey I e
.

File Edit Help

|| Controls Global Variables and Functions

Step 1 l Insert State l Step 2 I Insert Transition l Step 3 Step 4 /*This code will be shared between state machines.*/ -
Project Name:  ToggleExample [C] Enable UART 3
X Toggle |5k
TR EEE Variables and Functions Object
Name: Toggle “*Define user variables for this state machine here */ L Name
Prefic. TG Inputs: A7-AD
Outputs: B7-B0 P Delete

Period: ms -

Canvas

e o

Le [se edOnPress

Condtion

TdOnRel hse

B0 =0: B0 =1;

A user can insert states and insert transitions between states. The user can click on a state
and write C code for the state's actions (in the text box on the right). Likewise, the user
can click on a transition and write C conditions (bottom-right text box). The SM begins
by transitioning to an initial state (from the shown black dot). Pressing "Generate C"
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Choosing a period for different time intervals

Sometimes one system involves multiple different time intervals. For example, consider
a system that repeatedly blinks an LED on for 500 ms and off for 1 second. The system
involves two different intervals: 500 ms, and 1 second. The system can be captured as a
synchSM having a 500 ms period and three states: LedOn, LedOffl, and LedOff2. The idea
is to choose the period as the greatest common divisor of the required time intervals, and
then use multiple states (or counting within a state) to obtain the actual desired interval.

Try: A system should repeatedly blink an LED on for 750 ms and off for 1 second. Capture the behavior as a
synchSM, clearly specifying the period.

Counting within a state is better than using multiple states when the desired interval is
much larger than the SM period. The following shows the above blinking LED example using
a variable for counting.

BlinkingLed2
Period; 250 ms;
unsigned char X;

(X <3)/
X=0;

The advantage of the counting approach is clearer for a longer off interval, such as 5
seconds.

Converting a synchSM to C

Microcontrollers with timers

Microcontrollers come with one or more timers to measure time intervals. A timer is a
hardware component that can be programmed to tick at a user-specified rate, such as
once every 100 ms. (Wikipedia: Programmable Interval Timer). When the timer ticks, it
interrupts the microcontroller's execution. Interrupt means to temporarily stop execution
of the main C code and jump to a special C function known as an interrupt service
routine (ISR). (Wikipedia: Interrupt Service Routine). When that ISR function finishes
executing, execution resumes where it previously stopped in the main C code.

Copyright © Frank Vahid, Tony Givargis, and Bailey Miller 2012
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= TimerISR()
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Timer can be set to "tick™ every T ms. At each timer tick, RIM stops executing the main code, calls
TimerlSR() automatically, and then resumes executing the main code where it previously stopped.

In RIMS, the ISR is called TimerISR. It can be defined by the user as follows:

void TimerISR() {
// user inserts code here

}

Every time the hardware timer ticks, the TimerISR function gets called automatically by the
microcontroller. The user can insert code into the ISR that should be executed whenever the
timer ticks. The user's own main code should never call the TimerISR function directly.

The wuser sets the timer's tick rate by calling another RIMS built-in function,
TimerSet(Period), where Period is an unsigned short indicating the tick period in
milliseconds. To activate the timer, the user calls TimerOn().

We use the ISR to set a global flag to 1. A flag is a global variable used by different parts
of a C program to communicate basic status information with one another. (Wikipedia: Flag
(computing)). The user's main C code can thus monitor the flag's value, waiting for it to
become 1, to determine that the timer has ticked. For example, the following code would
toggle BO every 1 second:

#include "RIMS.h"
volatile unsigned char TimerFlag = 0;
void TimerISR() {

TimerFlag = 1;

}

void main () {
B = 0;//Initialize output

TimerSet (1000); // Timer period = 1000 ms (1 sec)
TimerOn () ; // Turn timer on

while (1) {
BO = !BO; // Toggle BO
while (!TimerFlag) {} // Wait 1 sec
TimerFlag = 0;
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Similarly, a microcontroller with too few inputs may expand
its effective inputs via time-multiplexed reading of input
registers (in conjunction with an external multiplexor), or
via rapid scanning, which is the input-version of refresh. To
illustrate rapid scanning, consider a keypad. A keypad is a
device consisting of several push buttons arranged in a two-
dimensional grid, as in the figure on the right with 16 buttons
arranged in a 4x4 grid. If each button had its own pin, 16 pins
would be required on the keypad as well as on a microcontroller
that reads the keypad -- in general, an NxM keypad would
require N*M pins. Reducing that number of pins is important,
especially for larger keypads such as a PC's keyboard.

Similarly, a microcontroller with too few inputs may expand its effective inputs via time-
multiplexed reading of input registers (in conjunction with an external multiplexor), or
via rapid scanning, which is the input-version of refresh. To illustrate rapid scanning,
consider a keypad. A keypad is a device consisting of several push buttons arranged in a
two-dimensional grid, as in the figure on the right with 16 buttons arranged in a 4x4 grid.
If each button had its own pin, 16 pins would be required on the keypad as well as on a
microcontroller that reads the keypad -- in general, an NxM keypad would require N*M pins.
Reducing that number of pins is important, especially for larger keypads such as a PC's
keyboard.

Instead, keypads commonly have only N+M pins, or 8 pins for the above 4x4 keypad,
arranged as shown in the figure below. Each button (drawn as a circle) is a passive button
that when pressed connects one R terminal with one C terminal.

Keypad

RO »A0 BO

A
-
Y

8

|
TTTHT]

Cco
c1
—— - C2
c3

A microcontroller can poll each button one at a time, a process known as scanning, to
detect whether that button is pressed. The scheme works as long as the keypad is scanned
at a rate much faster than button presses. The microcontroller connects outputs B3..B0 to
the keypad's C3..CO terminals, and inputs A3..A0 to the keypad's R3..R0 terminals. Those
A3..A0 inputs must be configured as pull-up, meaning each will be read as 1 (even when
disconnected) unless a 0 is written.

With the hardware interfacing complete, an algorithm for scanning the keypad can be
created. The first step is to write a function to read whether a particular button (say the
button at row 2 and column 1) is pressed, assuming at most one button is pressed at a
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CountFour Period: 500 ms
unsigned char cnt;
. unsigned char cnt;

ent=0;
for(i=0;i<8;i++){
if (get_bit(A , i) {
cnt++;

}
}
B1 = (cnt>=4);

The transition from SO back to SO implements the "while (1)" loop. Selecting the same
period as the BlinkLed and ThreelLeds tasks, namely 500 ms, enables straightforward
round-robin execution of all three tasks when converted to C. A TickFct_CountFour() can be
written for the CountFour synchSM, and the main code's while loop will simply be extended
with a third task:

while (1) {
TickFct BlinkLed()
TickFct ThreeLeds (

// execute one tick of the BlinkLed synchSM
// execute one tick of the ThreeLeds synchSM

) ;
TickFct CountFour () ; // execute one tick of the CountFour synchSM
while (!TimerFlag) {} // wait for timer period
TimerFlag = 0; // lower flag raised by timer

}

For the above to work, the original sequential instructions should have been run to
completion (within the infinite loop, of course). If they weren't run to completion, then the
behavior should first be re-captured as an SM instead such that each state's actions run to
completion.

When translating any single-state synchSM to C where that state has a single true-
conditioned no-action transition pointing back to the state (as for CountFour above), a
reasonable simplification is to eliminate the state and transition code in the synchSM's tick
function, just listing that state's actions. For example, the CountFour synchSM may be
converted to the following tick function:

unsigned char cnt;
void TickFct CountFour () { // single-state synchSM
cnt=0;
for (i=0; 1<8; i++) {
if (GetBit (A, 1)) {
cnt++;

Global versus local variables
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system (0OS), but can instead be included directly in user code as above, which is especially
useful in the absence of an OS.

To ease learning of ISRs, our earlier code just had the ISR set a flag, but with the reader
now more comfortable with ISRs, we now put the scheduler code directly into the ISR.
The main() function's "while (1)" loop will be empty; all activity occurs in the ISR.

If a function exists to put the processor into a low-power mode while not executing any
tasks and instead waiting for a timer tick, then that function can be called in main's "while
(1)" loop. RIM has such a function named "Sleep();", which we insert into that loop.

The below program portion highlights the main code and TimerISR code in the task
scheduler approach:

void TimerISR() {
unsigned char 1i;
for (1 = 0; i < tasksNum; ++1i) { // Heart of the scheduler code
if ( tasks[i].elapsedTime >= tasks[i].period ) { // Ready
tasks([i] .state = tasks[i].TickFct (tasks[i].state);
tasks[i] .elapsedTime = 0;
}
tasks[i] .elapsedTime += tasksPeriodGCD;

}

int main () {
unsigned char i=0;
tasks[i] .state = -1;
tasks[i] .period = 500;
tasks[i] .elapsedTime = tasks[i].period;
tasks[i].TickFct = &TickFct ThreeLED; //function TickFct ThreeLED not

shown

TimerSet (tasksPeriodGCD) ;
TimerOn () ;

while (1) {
Sleep () ;
}

return 0;

The following shows the complete code for the LedShow system with different-period tasks,
including the definition of both tasks, and the scheduler code. To keep the scheduler code
close together, the code uses function declarations for the tick functions, with the longer
function definitions appearing after the main function.

#include "RIMS.h"
typedef struct task {

int state; // Current state of the task
unsigned long period; // Rate at which the task should tick
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programmer may choose to ignore the exception, meaning certain ticks would be skipped.

Analyzing code for timer overrun

A programmer can manually analyze code to estimate whether a timer-overrun exception
might occur on a microcontroller. Consider the following single-state synchSM task named
CountThree, with a period of 500 ms, that sets B1 to 1 if AO-A3 have three or more 1s:

CountThree Period: 500 ms
unsigned char cnt;

@ Estimated assembly
instructions

cnt = 0; 3

if (AD) { ent++ }; 2+3
if (A1) { ent++}; 2+3
if (A2) { cnt++ }; 2+3
if (A3) { ent++ }; 2+3
B1 = (ent >= 3); 3+2

Ticks are separated by 500 ms. The question is whether state S0's actions execute in
less than 500 ms on a particular microcontroller. Suppose a (very slow) microcontroller
M executes 800 assembly-level instructions per second, meaning 1 sec / 800 instr =
0.00125 sec/instr. We must estimate the number of assembly instructions to which
S0's actions translate. Very roughly, we estimate that each assignment statement
("cnt=0", "cnt++", "B1l=") translates to 3 assembly instructions, each if statement
translates to 2 instructions, and each comparison ("cnt >=3") translates to 2 instructions,
as shown in the figure above. Then S0's actions translate to 28 instructions. On
microcontroller M, 28 instructions will require 28 instr * 0.00125 sec/instr = 0.035 sec = 35
ms. Because 35 ms is much less than 500 ms, we can estimate that timer overrun will not
occur.

The utilization of a microcontroller is the percentage of time that the microcontroller is
actively executing tasks:

Utilization = (time executing / total time) * 100%

For the above, the utilization during a 500 ms time window is the measure of interest,
because every 500 ms window is identical. During a 500 ms window, microcontroller M
executes S0's actions in 35 ms, so its utilization is computed as 35 ms / 500 ms = 0.07, or
7%. The microcontroller is said to be idle for the remaining 93% of the time.

Utilization analysis usually ignores the additional C instructions required to implement a task
in C, such as the switch statement instructions in a tick function, or the instructions involved
in calling a tick function itself. For typical-sized tasks and typical-speed microcontrollers, the
number of such "overhead" instructions is negligibly small. The analysis does not consider
the C instructions that simply wait for the next tick ("while (1) Sleep();"); the processor is
considered to be "idle" during that time.

A state's actions may include loops, function calls, branch statements, and more, as below:
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The timing diagram on the left shows TG with polling, executing every 100 ms. The ticks
for state SO poll the input AO looking for a change from 0 to 1, and the ticks for state S2
for a change from 1 to 0. The timing diagram on the right shows a triggered TG. TG goes
inactive while waiting for an event on AO, and does not execute during that time, reducing
microcontroller utilization.

Using existing special hardware that detects events on pins can yield the additional
benefit of sampling the pin faster than sampling achieved by polling done by a task on a
microprocessor.

A triggered synchSM can be implemented in C on a microcontroller with some extensions to
the earlier scheduler. (Note: RIBS does not currently have support for triggered SMs). RIMS
does not currently have built-in support for detecting events on pins, but RIMS does
have built-in support for detecting a UART character receive, and thus a UART receive
can be used to trigger a synchSM. Thus we shall introduce an example having a synchSM
triggered by a Uart receive. Consider a modification of an earlier example (that was used to
demonstrate scheduler code) where one task blinks BO repeatedly, and another task lights
three LEDs B5, B6, B7 in sequence once whenever the letter 'g' is received by the UART: \

L= TR - TR TN R P T T TR e
val

Mame: | ThreelLedsTriggered A MOTE: synchSM should be triggered by a UART receive
Mame: |ElinkLed
Prefie: | TLT Inputs: A7-40
Prefie. |BL Inputs: &7-40 Outputs: E7-B0
Outputs: B7-BD Perind: |500 ms

Period: | 1500 ms

Cahvas

\ /’-’_1‘-“ @
LedOff ““"
T R =="g'
1

Canvas

N\

ElE o, Bo =0, B5=10; B5 =10,
BO =0, BO=1,; E|E=El; EIB=IZI; BRE = 1; BR =0;
BY =0, B7 =0 EI?'=E|; B7 =0, B7 =1,

The following code modifies the earlier scheduler code to support the triggered synchSM.
Key changes are in bold and described in the comments.

#include "RIMS.h"

typedef struct task {
signed char state;
unsigned long period;
unsigned long elapsedTime;
unsigned char active; // 1: active, 0: inactive
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