Linguistically-Enriched and Context-Aware
Zero-shot Slot Filling

A. B. Siddique Fuad Jamour Vagelis Hristidis
University of California, Riverside University of California, Riverside University of California, Riverside
msidd005@ucr.edu fuadj@ucr.edu vagelis@cs.ucr.edu
ABSTRACT 1 INTRODUCTION

Slot filling is identifying contiguous spans of words in an utter-
ance that correspond to certain parameters (i.e., slots) of a user
request/query. Slot filling is one of the most important challenges
in modern task-oriented dialog systems. Supervised learning ap-
proaches have proven effective at tackling this challenge, but they
need a significant amount of labeled training data in a given domain.
However, new domains (i.e., unseen in training) may emerge after
deployment. Thus, it is imperative that these models seamlessly
adapt and fill slots from both seen and unseen domains — unseen
domains contain unseen slot types with no training data, and even
seen slots in unseen domains are typically presented in different
contexts. This setting is commonly referred to as zero-shot slot
filling. Little work has focused on this setting, with limited exper-
imental evaluation. Existing models that mainly rely on context-
independent embedding-based similarity measures fail to detect
slot values in unseen domains or do so only partially. We propose
a new zero-shot slot filling neural model, LEONA, which works
in three steps. Step one acquires domain-oblivious, context-aware
representations of the utterance word by exploiting (a) linguistic
features such as part-of-speech; (b) named entity recognition cues;
and (c) contextual embeddings from pre-trained language models.
Step two fine-tunes these rich representations and produces slot-
independent tags for each word. Step three exploits generalizable
context-aware utterance-slot similarity features at the word level,
uses slot-independent tags, and contextualizes them to produce
slot-specific predictions for each word. Our thorough evaluation on
four diverse public datasets demonstrates that our approach consis-
tently outperforms the state-of-the-art models by 17.52%, 22.15%,
17.42%, and 17.95% on average for unseen domains on SNIPS, ATIS,
MultiWOZ, and SGD datasets, respectively.

ACM Reference Format:

A. B. Siddique, Fuad Jamour, and Vagelis Hristidis. 2021. Linguistically-
Enriched and Context-Aware Zero-shot Slot Filling. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Goal-oriented dialog systems allow users to accomplish tasks, such
as reserving a table at a restaurant, through an intuitive natural
language interface (e.g., Amazon Alexa). For instance, a user may
issue the following utterance: T would like to book a table at 8 Im-
mortals Restaurant in San Francisco for 5:30 pm today for 6 people”.
For dialog systems to fulfill such a request, they first need to extract
the parameter (a.k.a. slot) values of the request. Slots in the restau-
rant booking domain include restaurant_name and city, whose
values in our example utterance are “8 Immortals Restaurant”
and “San Francisco”, respectively. Only after all slot values are
filled, the system can call the appropriate API to actually perform
the intended action (e.g., reserving a table at a restaurant). Thus,
the extraction of slot values from natural languages utterances (i.e.,
slot filling) is a critical step to the success of a dialog system.

Slot filling is an important and challenging task that tags each
word subsequence in an input utterance with a slot label (see
Figure 1 for an example). Despite the challenges, supervised ap-
proaches have shown promising results for the slot filling task [3,
14, 16, 24, 36, 61, 63, 65]. The disadvantage of supervised meth-
ods is the unsustainable requirement of having massive labeled
training data for each domain; the acquisition of such data is labo-
rious and expensive. Moreover, in practical settings, new unseen
domains (with unseen slot types) emerge only after the deploy-
ment of the dialog system, rendering supervised models ineffective.
Consequently, models with capabilities to seamlessly adapt to new
unseen domains are indispensable to the success of dialog systems.
Note that unseen slot types do not have any training data, and the
values of seen slots may be present in different contexts in new
domains (rendering their training data from other seen domains
irrelevant). Filling slots in settings where new domains emerge
after deployment is referred to as zero-shot slot filling [2]. Alexa
Skills and Google Actions, where developers can integrate their
novel content and services into a virtual assistant are a prominent
examples of scenarios where zero-shot slot filling is crucial.

There has been little research on zero-shot slot filling, and ex-
isting works presented limited experimental evaluation results. To
the best of our knowledge, existing models were evaluated using a
single public dataset. Recently, the authors in [51] proposed a cross-
domain zero-shot adaptation for slot filling by utilizing example slot
values. Due to the inherent variance of slot values, this framework
faces difficulties in capturing the full slot value (e.g., “8 Immortals
Restaurant” for slot type “restaurant_name” in Figure 1) in un-
seen domains. Coach [31] proposed to address the issues in [2, 51]
with a coarse-to-fine approach. Coach [31] uses the seen domain
data to learn templates for the slots based on whether the words are
slot values or not. Then, it determines a slot type for each identified
slot value by matching it with the representation of each slot type

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Siddique et al.
Input: I would like to book a table at 8 Immortals Restaurant in San Francisco
Output: [¢] o o (¢] [¢] o o o B-restaurant_name I-restaurant_name |-restaurant_name o B-city I-city

Step 1: NLP Models Cues Step 2: Slot-independent tags

Syntactic Cues 0..B 1 1 B 1
1 PRON
8 Immortals Restaurant | PROPN I
in ADP
San Francisco PROPN [CRF Layer
NER Cues
1 o
8 Immortals Restaurant | ORG [Encoding Layer
in o
San Francisco GPE T

Contextual Word Representations

Embedding Layer

8 Immortals Restaurant
L

o o0
o ity
name restaurant
°) T
locatior
Ve | ... 8 Immortals Restaurant ... San Francisco

Step 3: Slot-specific tags

O ... B-restaurant_name I-restaurant_name I-restaurant_name ... O O

B-city I-city

Slot Description

1 !

Contextualization Layer] [Embedding]
]4—{ Encoding]

Prediction Layer]

Similarity Layer

Figure 1: Overview of LEONA with an example utterance and its words’ label sequence (following the IOB scheme).

description. The diversity of slot types across different domains
makes it practically impossible for Coach to learn general templates
that are applicable to all new unseen domains; for example, “book”
and “table” can be slot values in an e-commerce domain, but not
in the restaurant booking domain.

We propose an end-to-end model LEONA!? that relies on the
power of domain-independent linguistic features and contextual
representations from pre-trained language models (LM), and context-
aware utterance-slot similarity features. LEONA works in three
steps as illustrated in Figure 1. Step one leverages pre-trained Nat-
ural Language Processing (NLP) models that provide additional
domain-oblivious and context-aware information to initialize our
embedding layer. Specifically, Step one uses (i) syntactic cues through
part of speech (POS) tags that provide information on the possi-
bility of a word subsequence being a slot value (e.g., proper nouns
are usually slot values); (ii) off-the-shelf Named Entity Recognition
(NER) models that provide complementary and more informative
tags (e.g., geo-political entity tag for “San Francisco”); and (iii) a
deep bidirectional pre-trained LM (ELMo) [41] to generate con-
textual character-based word representations that can handle un-
known words that were never seen during training. Moreover, the
pre-trained ELMo [41] with appropriate fine-tuning has provided
state-of-the-art (SOTA) results on many NLP benchmarks [6, 18,
42, 43, 48, 54]. Combined, these domain-independent sources of
rich semantic information provide a robust initialization for the
embedding layer to better accommodate unseen words (i.e., never
seen during training), which greatly facilitates zero-shot slot filling.

Step two fine-tunes the semantically rich information from Step
one by accounting for the temporal interactions among the ut-
terance words using bi-directional Long Short Term Memory net-
work [19] that effectively transfers rich semantic information from
NLP models. This step produces slot-independent tags (i.e., Inside

!Linguistically-Enriched and cONtext-Aware
2Source code coming soon

Outside Beginning I0B), which provide complementary cues at the
word subsequence level (i.e., hints on which word subsequences
constitute slot values) using a Conditional Random Field (CRF) [25].
Step three, which is the most critical step, learns a generalizable
context-aware similarity function between the utterance words
and those of slot descriptions from seen domains, and exploits the
learned function in new unseen domains to highlight the features
of the utterance words that are contextually relevant to a given
slot. This step also jointly contextualizes the multi-granular infor-
mation produced at all steps. Finally, CRF is employed to produce
slot-specific predictions for the given utterance words and slot type.
This step is repeated for every relevant slot type, and the predic-
tions are combined to get the final sequence labels. In our example
in Figure 1, the predictions for “restaurant_name” and “city” are
combined to produce the final sequence labels shown in the figure.
In summary, this work makes the following contributions:

e We propose an end-to-end model for zero-shot slot filling that
effectively captures context-aware similarity between utterance
words and slot types, and integrates contextual information
across different levels of granularity, leading to outstanding
zero-shot capabilities.

e We demonstrate that pre-trained NLP models can provide ad-
ditional domain-oblivious semantic information, especially for
unseen concepts. To the best of our knowledge, this is the first
work that leverages the power of pre-trained NLP models for
zero-shot slot filling. This finding might have positive implica-
tions for other zero-shot NLP tasks.

e We conduct extensive experimental analysis using four public
datasets: SNIPS [7], ATIS [30], MultiWOZ [64] and SGD [45], and
show that our proposed model consistently outperforms SOTA
models in a wide range of experimental evaluations on unseen
domains. To the best of our knowledge, this is first work that
comprehensively evaluates zero-shot slot filling models on many
datasets with diverse domains and characteristics.

Linguistically-Enriched and Context-Aware Zero-shot Slot Filling

2 PRELIMINARIES
2.1 Problem Formulation

Given an utterance with J words X; = (x7, x2, - - - ,x]), a slot value
is a span of words (xg, - - - ,Xf) such that 0 < e < f < J, that
is associated with a slot type. Slot filling is a sequence labeling
task that assigns the labels Y; = (y5, yz,---,yy) to the input Xj,
following the I0B labeling scheme [44]. Specifically, the first word
of a slot value associated with slot type S, is labeled as B-S;, the
other words inside the slot value are labeled as I-S;, and non-
slot words are labeled as 0. Let D, = {S1, Ss, ...}, be the set of
slot types in domain c. Let Dsgeny = {Dy, - -+, Dy} be a set of seen
domains and DynsgeN = {Dyyp - - - » D2} be a set of unseen domains
where Dsgen N Dynseen = @. Let {(X;, yi)};?:l be a set of training
utterances labeled at the word level such that the slot types in
Y; are in D), € Dseey. In traditional (i.e., supervised) slot filling,
the domains of test utterances belong to Dsgey, whereas in zero-
shot slot-filling, the domains of test utterances belong to Dynseen;
an utterance belongs to a domain if it contains slot values that
correspond to slot types from this domain. Note that in zero-shot
slot filling, the output slot types belong to either seen or unseen
domains (i.e., in Dy € Dsgen U Dynseen)- We focus on zero-shot
slot filling in this work.

2.2 Pre-trained NLP Models

In this work, we utilize several pre-trained NLP models that are
readily available. Specifically, we use: Pre-trained POS tagger, Pre-
trained NER model, and Pre-trained ELMo. The cues provided by
POS/NER tags and ELMo embeddings are supplementary in our
model, and they are further fine-tuned and contextualized using
the available training data from seen domains. Next, we provide a
brief overview of these models.

Pre-trained POS tagger. This model labels an utterance with part
of speech tags, such as PROPN, VERB, and ADJ. POS tags provide
useful syntactic cues for the task of zero-shot slot filling, especially
for unseen domains. LEONA learns general cues from the language
syntax about how slot values are defined in one domain, and trans-
fers this knowledge to new unseen domains because POS tags are
domain and slot type independent. For example, proper nouns are
usually values for some slots. In this work, we employ SpaCy’s
pre-trained POS tagger®, that has shown production level accuracy.
Pre-trained NER model. This model labels an utterance with I0B
tags for four entity types: PER, GPE, ORG, and MISC. The NER model
provides information at a different granularity, which is generic
and domain-independent. Although the NER model provides tags
for a limited set of entities and the task of slot filling encounters
many more entity types, we observe that many, but not all, slots
can be mapped to basic entities supported by the NER model. For
instance, names of places or locations are referred to as “GPE” (i.e.,
geo-political entity or location) by the NER model, whereas in the
task of the slot filling, there may be a location of a hotel, restaurant,
salon, or some place the user is planing to visit. It remains challeng-
ing to assign the name of the location to the correct corresponding
entity/slot in the zero-shot fashion. Moreover, NER models can not
identify all slots/entities that slot filling intends to extract, resulting

Shttps://spacy.io/api/annotation#pos-tagging

Conference’17, July 2017, Washington, DC, USA

in a low recall. Yet, cues from NER model are informative and help-
ful in reducing the complexity of the task. In this work, we employ
SpaCy’s pre-trained NER model®.

Pre-trained ELMo. Pre-trained language models (i.e., ELMo) are
trained on huge amounts of text data in an unsupervised fashion.
These models have billions of parameters and thereby capture gen-
eral semantic and syntactic information in an effective manner. In
this work, we employ the deep bidirectional language model ELMo
to provide contextualized word representations that capture com-
plex syntactic and semantic features of words based on the context
of their usage, unlike fixed word embeddings (i.e., GloVe [40] or
Word2vec [37]) which do not consider context. Furthermore, these
representations are purely character based and are robust for words
unseen during training, which makes them suitable for the task of
zero-shot slot filling.

2.3 Conditional Random Fields

Conditional Random Fields (CRFs) [57] have been successfully ap-
plied to various sequence labeling problems in natural language pro-
cessing such as POS tagging [8], shallow parsing [50], and named
entity recognition [49]. To produce the best possible label sequence
for a given input, CRFs incorporate the context and dependencies
among predictions. In this work, we employ linear chain CRFs
that are trained by estimating maximum conditional log-likelihood.
In its simplest form, it estimates a transition cost matrix of size,
num_tags X num_tags, where the value at the indices [i, j] repre-
sents the likelihood of transitioning from the j-th tag to the i-th
tag. Moreover, it allows enforcing constraints in a flexible way (e.g.,
tag “I” can not be preceded by tag “0”).

3 APPROACH

Our model LEONA is an end-to-end neural network with six lay-
ers that collectively realize the conceptual three steps in Figure 1.
Specifically, the Embedding layer realizes Step one and it also
jointly realizes Step two together with the Encoding and the CRF
layers. The Similarity, Contextualization, and Predication layers
realize Step three. We briefly summarize each layer below, and
we describe each layer in detail in the subsequent subsections. The
Embedding layer maps each word to a vector space; this layer
is responsible for embedding the words from both the utterance
and the slot description. The Encoding layer uses bi-directional
LSTM networks to refine the embeddings from the previous layer
by considering information from neighboring words. This layer
encodes utterances as well as slot descriptions. The CRF layer uses
utterance encodings and makes slot-independent predictions (i.e.,
I0B tags) for each word in the utterance by considering dependen-
cies between the predictions and taking context into account. The
Similarity layer uses utterance and slot description encodings to
compute an attention matrix that captures the similarities between
utterance words and a slot type, and signifies feature vectors of the
utterance words relevant to the slot type. The Contextualization
layer uses representations from different granularities and contextu-
alizes them for slot-specific predictions by employing bi-directional
LSTM networks; specifically, it uses representations from the Simi-
larity layer, the Encoding layer, and the I0B predictions produced

“https://spacy.io/api/annotation#named-entities

https://spacy.io/api/annotation#pos-tagging
https://spacy.io/api/annotation#named-entities

Conference’17, July 2017, Washington, DC, USA

Siddique et al.

(Tee) (ee) (00 (?0] (?0] (TO]
Prediction Layer
CRF Layer T T . T Contextualization
[] (o Jf i = ILSTM] } o
h, h, hj N :) u, g
—
[LSTM):[LSTM];_'_'_’_’{ LSTM] '_'_'_’_ } EnLCOding
I I I ELMo Embedding ayer
POS Embedding } Emeedding
ayer
T T T NER Embedding T T
X, X, X) s Sk
(\ J
Utterance Slot Description

Figure 2: Illustration of the layers in our model LEONA.

by the CRF layer. The Prediction layer employs another CRF to
make slot-specific predictions (i.e., I0B tags for a given slot type)
based on the input from the contextualization layer. Note that the
prediction process is repeated for all the relevant slot types and its
outputs are combined to produce the final label for each word.

3.1 Embedding Layer

This layer maps each word in the input utterance to a high-dimensional

vector space. Three complementary embeddings are utilized: (i)
word embedding of the POS tags for the input words, (ii) word em-
bedding of the NER tags for the input word, and (iii) contextual word
embedding from the pre-trained ELMo model. Then, we employ
a two-layer Highway Network [55] to combine the three embed-
dings for each word in an effective way. Highway Networks have
been shown to have better performance than simple concatenation.
They produces a dim-dimensional vector for each word. Specifically,
the embedding layer produces X € R4 for the given utterance
{x1,x2,-+-, x5} with J words, and S € REmXK for the given slot
description {sy,s2, - - - , s} with K words. This representation gets
fine-tuned and contextualized in the next layers.

3.2 Encoding Layer

We use a bi-directional LSTM network to capture the temporal
interactions between input words. At time-step i, we compute
hidden states for the input utterance as follows:

- —>
hi=LSTM(h i1, X)
—

—
hi = LSTM(h i—llei)

— —
Then, we concatenate the output of the hidden states h; and h; to
-
get the bi-directional hidden state representation, h; = [h;; h;] €
R24 . This layer produces H € R**/ from the context word vec-

tors X (i.e., for utterance). Essentially, every column of the matrix

represents the fine-tuned context-aware representation of the cor-
responding word. A similar mechanism is employed to produce
U € R**K from word vector S (i.e., for slot description).

3.3 CREF Layer

The task of the CRF layer is to predict one of three slot-independent
tags (i.e., I, O, or B) for each word based on utterance contextual
representation H = {hy, hy,---,hy} produced by the encoding
layer. Let Y refer to a sequence label, and the set of all possible state
sequences is C. For the given input sequence H, the conditional
probability function for the CRF, P(Y|H; W, b), over all possible
label sequences Y is computed as follows:

J
‘Hz 0; (yi-1,yi, H)
i=

> 110y, H)
y' eCi=1

P(Y|H; W, b) =

where 0;(y

i-r
that has W;’y weight and by, bias matrices for the label pair
v, y).

Note that the slot-independent predictions also represent the
output of Step two; i.e., information about utterance words at a
different granularity than the initial cues from NLP models. Essen-
tially, Step two learns general patterns of slot values from seen
domains irrespective of slot types, and transfers this knowledge
to new unseen domains and their slot types. Since it is hard to
learn general templates of slot values that are applicable to all un-
seen domains, we do not use these slot-independent predictions to
predict slot-specific tags. Instead, we pass this information to the
contextualization layer for further fine-tuning.

y;, H) = exp(WJ’yhi +by) is a trainable function,

Linguistically-Enriched and Context-Aware Zero-shot Slot Filling

3.4 Similarity Layer

The similarity layer highlights the features of each utterance word
that are important for a given slot type by employing attention
mechanisms. The popular attention methods [1, 29, 60] that sum-
marize the whole sequence into a fixed length feature vector are not
suitable for the task at hand, i.e., per word labeling. Alternatively,
we compute the attention vector at each time step, i.e., attention
vector for each word in the utterance. The utterance encoding
H € R*>J and slot description encoding U € R***K metrics are
input to this layer, that are used to compute a similarity matrix
A € RI*K between the utterance and slot description encodings.
A ji represents the similarity between j-th utterance word and
k-th slot description word. We compute the similarity matrix, as
follows:

Aj = a(Hj, Ug) €R

where « is a trainable function that captures the similarity between
input vectors H.; and Uy, where H.; and Uy, are j-th and k-
th column-vectors of H and U, respectively. a(h,u) = Wz—a) [ho
u ® h @ u], where @ is vector concatenation, ® is element-wise
multiplication, and W(q) is a trainable weight vector.

The similarity matrix A is used to capture bi-directional inter-
actions between the utterance words and the slot type. First we
compute attention that highlights the words in the slot description
that are closely related to the utterance. At time-step ¢, we compute
it as follows: U, = Yp v, Uy where v; = softmax(Ay.) € RK
is the attention weight for slot description computed at time-step
tand Yo, = 1forall t. U’ e R*J represents the attention
weights for the slot description with respect to all the words in the
utterance. Basically, every column of the matrix represents close-
ness of the slot description with the corresponding utterance word.
Then, attention weights that signify the words in the utterance that
have the highest similarity with the slot description are computed
as follows: h’ = 3 ; b;H.j where b = softmax(maxe(A)) € R/
and max is operated across columns, and H’ € R***/ is obtained
by tiling h” across columns.

We highlight that U’ represents features that highlight impor-
tant slot description words with closely similar words of utterance,
and H’ highlights features of the utterance with high similarity
with the slot description, computed based on the similarity matrix
A, that itself has been computed based the contextual representa-
tions of the utterance (H) and slot description () generated by
the encoding layer that considers surrounding words (i.e., employ-
ing bi-LSTM) to generate the representations. Finally, ¢’ and H’
are concatenated to produce G € R*>*/, where every column of
the matrix represents rich bi-directional similarity features of the
corresponding utterance word with the slot description.

Essentially, this layer learns a general context-aware similarity
function between utterance words and a slot description from seen
domains, and it exploits the learned function for unseen domains.
Due to the general nature of the similarity function, this layer also
facilitates the identification of slot values in cases when Step two
fails to correctly identify domain-independent slot values.

Conference’17, July 2017, Washington, DC, USA

3.5 Contextualization Layer

This layer is responsible for contextualizing information from dif-
ferent granularities. Specifically, the utterance encodings from the
Encoding layer, the bi-directional similarity between the utterance
and the slot description from the Similarity layer, and the slot-
independent I0OB predictions from the CRF layer are passed as
input. This layer employs 2 stacked layers of bi-directional LSTM
networks to contextualize all the information by considering the
relationships among neighbouring words’ representations. It gen-
erates high quality features for the prediction layer; specifically,
the features are € R2%/ , where each column represents the 24-
dimensional features for the given word in the utterance.

3.6 Prediction Layer

The contextualized features are passed as input to this layer, and it
is responsible for generating slot-specific predictions for the given
utterance and slot type. First, it passes these features through 2
linear layers with ReLU activation. Then a CRF is employed to
make structured predictions, as briefly explained in the CRF layer.
The prediction process is done for each of the relevant slot types
(i.e., slot types in the respective domain) and the resulting label
sequences are combined to produces the final label for each word.
Note that if the model made two or more conflicting slot predictions
for a given sequence of words, we pick the slot type with the highest
prediction probability.

3.7 Training the Model

The model has two trainable components: the slot-independent
I0B predictor and the slot-specific I0B predictor. We jointly train
both components by minimizing the negative log likelihood loss
of both components over our training examples. The training data
is prepared as follows. The training examples are of the form
(Xi, Sy, yi', yi;'), where X; represents an utterance, S, represents
a slot type, Y, represents slot-independent I0B tags for the given
utterance X;, and Y represents slot-specific I0B tags for the given
utterance X; and slot type S. For a sample from the given dataset
of the form (X}, Y;) that has values for m slot types, first slot-
indepedent I0B tags Y/ are generated by removing slot type in-
formation. Then, we generated m positive training examples by
setting each of m slot types as S, and generating corresponding
label Y/ (i.e., slot-specific tags for slot type Sy). Finally, q negative
examples are generated, where such slot types are chosen which
are not present in the utterance. For example, the utterance in Fig-
ure 1 “I would like to book a table at 8 Immortals Restaurant in San
Francisco” has true labels as “O O O O O O O O B-restaurant_name
I-restaurant_name I-restaurant_name O B-city I-city”. The positive
training examples would be: (- - -, “restaurant_name”,“O0 00 O
OOOBIIOBIZ,“O0000O0O0O0OBIIOO00”and(---,“city”,
-+,“00000000000O0BTI”). Whereas the negative exam-
ples can be as follows: (- - -, “salon_name”, ---,“O0 00000
0000000, (-+-, “cuisine”, -+, --+), (- - -, “phone_number”,
-+, --+), and so on. Note that slot types are shown in the above
example for brevity, the slot descriptions are used in practice.

Conference’17, July 2017, Washington, DC, USA

Table 1: Dataset statistics.

Dataset SNIPS ATIS MultiwOZ SGD
Dataset Size 145K 59K 67.4K 188K
Vocab. Size 12.1K 1K 10.5K 33.6K
Avg. Length 9.0 11.1 13.3 13.8
of Domains 6 1 8 20
of Intents 7 18 11 46
of Slots 39 83 61 240

4 EXPERIMENTAL SETUP

In this section, we describe the datasets, evaluation methodology,
competing methods, and the implementation details of our model
LEONA.

4.1 Datasets

We used four public datasets to evaluate the performance of our
model LEONA: SNIPS Natural Language Understanding bench-
mark (SNIPS) [7], Airline Travel Information System (ATIS) [30],
Multi-Domain Wizard-of-Oz (MultiW0Z) [64], and Dialog System
Technology Challenge 8, Schema Guided Dialogue (SGD) [45]. To
the best of our knowledge, this is first work to comprehensively
evaluate zero-shot slot filling models on a wide range of public
datasets. Table 1 presents important statistics about the datasets.
SNIPS. A crowd-sourced single-turn Natural Language Understand-
ing (NLU) benchmark widely used for slot filling. It has 39 slot types
across 7 intents from different domains. Since this dataset does not
have slot descriptions, we used tokenized slot names as the descrip-
tions (e.g., for slot type “playlist_owner”, we used “playlist
owner” as its description).

ATIS. A single-turn dataset that has been widely used in slot filling
evaluations. It covers 83 slot types across 18 intents from a single
domain. Many of the intents do not have many utterances, so all
the intents having less than 100 utterances are combined into a
single intent “Others” in our experiments. Moreover, similarly to
SNIPS dataset, we used the tokenized versions of the slot names as
slot descriptions.

MultiwOZ. A well-known dataset that has been widely used for
the task of dialogue state tracking. In this work, we used the most
recent version of the dataset (i.e., MultiW0Z2.2). In its original form,
it contains dialogues between users and system. For the task of slot
filling, we take all the user utterances and system messages that
mention any slot(s), and shuffle the order to make it as if it were
a single-turn dataset to maintain consistency with the previous
works. For experiments in this work, utterances with intents that
have less than 650 (< 1% of the dataset) utterances are grouped into
the intent “Others”.

SGD. A recently published comprehensive dataset for the eighth
Dialog System Technology Challenge; it contains dialogues from
20 domains with a total of 46 intents and 240 slots. SGD was orig-
inally proposed for dialogue state tracking. This dataset is also
pre-processed to have single-turn utterances labeled for slot fill-
ing. Moreover, we merge utterances from domains that have no
more than 1850 (< 1% of the dataset) utterances, and we name the
resulting domain “Others”.

Siddique et al.

Since not all datasets provide a large enough number of domains,
we do the splits in our experiments based on intents instead of
domains for datasets that have more intents than domains. That is,
we consider intents as domains for SNIPS, ATIS, and MultiW0Z.

4.2 Evaluation Methodology

We compute the slot F1 scores® and present evaluation results for
the following settings:

Train on all except target intent/domain. This is the most com-
mon setting that previous works [2, 31, 51] have used for evaluation.
A model is trained on all intents/domains except a single target in-
tent/domain. For example, for SNIPS dataset the model is trained on
all intents except a target intent “AddToPlatlist” that is used for
testing the model’s capabilities in the zero-shot fashion. This setup
is repeated for every single intent in the dataset. The utterances
at test time only come from a single intent/domain (or “Others”)
which makes this setting less challenging.

Train on a certain percentage of intents/domains and test
on the rest. This is a slightly more challenging setting where test
(i.e., unseen in training) intent/domains are usually from multiple
unseen new intents/domains. We vary the number of training (i.e.,
seen) and testing (i.e., unseen) intents/domains to comprehensively
evaluate all competing models. In this setting, we randomly select
~ 25%, ~ 50%, and ~ 75% of the intents/domains for training and
the rest for testing, and report average results over five runs.
Train on one dataset and test on the rest of the datasets. This
is the most challenging setting, where models are trained on one
dataset and tested on the remaining datasets. For example, we train
on the SGD dataset and test on SNIPS, ATIS, and MultiWOZ datasets.
Similarly, we repeat the process for every dataset. Since datasets
are very diverse (i.e., in terms of domains, slot types and user’s
expressions), this setting can be thought of as a “in the wild” [9]
setting, which resembles real-world zero-shot slot filling scenarios
to a large degree.

4.3 Competing Methods
We compare against the following state-of-the-art (SOTA) models:

Coach [31]. This model proposes to handle the zero-shot slot fill-
ing task with a coarse-to-fine procedure. It first identifies the
words that constitute slot values. Then, based on the identi-
fied slot values, it tries to assign these values to slot types by
matching the identified slot values with the representation of
each slot description. We use their best model, i.e., Coach+TR,
that employs template regularization but we call it Coach for
simplicity.

RZS [51]. This work proposes a zero-shot adaption for slot filling
by utilizing example values of each slot type. It employs charac-
ter and word embedding of the utterance and slot descriptions,
which are then concatenated with the averaged slot example
embeddings, and passed through a bidirectional LSTM network
to get the final prediction for each word in the utterance.

CT [2]. This model fills slots for each slot type individually. Char-
acter and word-level representations are concatenated with the
slot type representation (i.e., embeddings) and an LSTM network

>Standard CoNLL evaluation script is used to compute slot F1 score.

Linguistically-Enriched and Context-Aware Zero-shot Slot Filling

Table 2: SNIPS dataset: Slot F1 scores for all competing mod-
els for target intents that are unseen in training.

Conference’17, July 2017, Washington, DC, USA

Table 4: MultiwOZ dataset: Slot F1 scores for all competing
models for target intents that are unseen in training,.

Target Intent | CT RZS Coach | LEONA w/o IOB LEONA Target Intent | CT RZS Coach | LEONA w/o IOB LEONA
AddToPlaylist 0.3882 0.4277 0.5090 0.5104 0.5115 Book Hotel 0.4577 03739 0.5866 0.6181 0.6446
BookRestaurant 0.2754 0.3068 0.3401 0.3405 0.4781 Book Restaurant | 0.3260 0.4200 0.4576 0.6268 0.6269
GetWeather 0.4645 0.5028 0.5047 0.5531 0.6677 Book Train 0.4777 0.5269 0.6112 0.6317 0.7025
PlayMusic 0.3286 0.3312 0.3201 0.3435 0.4323 Find Attraction 0.2914 0.3489 0.3029 0.3787 0.3834
RateBook 0.1454 0.1643 0.2206 0.2224 0.2318 Find Hotel 0.4933 0.5920 0.7235 0.7673 0.8222
SearchCreativeWork 03979 0.4445 0.4665 0.4671 0.4673 Find Restaurant 0.6420 0.6921 0.7671 0.7969 0.8338
SearchScreeningEvent | 0.1383 0.1225 0.2563 0.2690 0.2872 Find Taxi 0.1459 0.1587 0.1260 0.1682 0.1824
Average 0.3055 0.3285 0.3739 0.3866 0.4394 Find Train 0.6344 0.4406 0.7754 0.8779 0.8811

Others 0.1205 0.0878 0.1201 0.1687 0.1721

Average 0.3988 0.4045 0.4967 0.5594 0.5832

Table 3: ATIS dataset: Slot F1 scores for all competing models
for target intents that are unseen in training,.

Target Intent | CT RZS Coach | LEONA w/o IOB LEONA
Abbreviation 0.4163 0.5252 0.4804 0.4965 0.6405
Airfare 0.6549 0.5410 0.6929 0.7490 0.9492
Airline 0.7126 0.6354 0.7212 0.7762 0.8586
Flight 0.6530 0.7165 0.8072 0.8521 0.9070
Ground Service 0.4924 0.6452 0.7641 0.8463 0.8490
Others 0.4835 0.5169 0.6586 0.7749 0.8337
Average 0.5688 0.5967 0.6874 0.7492 0.8397

is used to make the predictions for each word in the utterance
for the given slot type.

Note that we do not compare against simple baselines such as
BiLSTM-CRF [26], LSTM-BoE, and CRF-BoE [22] because they have
been outperformed by the previous works we compare against.

4.4 Implementation Details

Our model uses 300 dimensional embedding for POS and NER
tags, and pre-trained ELMo embedding with 1024 dimensions. The
encoding and contextualization layers have two stacked layers of
bi-directional LSTMs with hidden states of size 300. The prediction
layer has two linear layers with ReLU activation, and the CRF uses
the “IOB” labeling scheme. The model is trained with a batch size of
32 for up to 200 epochs with early stopping using Adam optimizer
and a negative log likelihood loss with a scheduled learning rate,
starting at 0.001, and the model uses dropout rate of 0.3 at every
layer to avoid over-fitting. Whereas q is set to three for negative
sampling.

5 RESULTS

We present in the next subsections quantitative and qualitative
analysis of all competing models. We first present the quantitative
analysis in Subsection 5.1 and show that our model consistently
outperforms the competing models in all settings. Furthermore, this
subsection also has an ablation study that quantifies the role of each
conceptual step in our model. We dig deeper into limitations of
each competing model in our qualitative analysis in Subsection 5.2.

5.1 Quantitative Analysis

Train on all except target intent/domain. Tables 2 3, 4, and 5
present F1 scores for SNIPS, ATIS, MultiW0Z, and SGD datasets,
respectively. All models are trained on all the intents/domains
except the target one that is used for zero-shot testing. Our proposed
approach is consistently better than SOTA methods. Specifically, it

Table 5: SGD dataset: Slot F1 scores for all competing models
for target domains that are unseen in training.

Target Domain | CT RZS Coach | LEONA w/o IOB LEONA
Buses 0.4954 0.5443 0.6280 0.6364 0.6978
Calendar 0.5056 0.4908 0.6023 0.6216 0.7436
Events 0.5181 0.6324 0.5486 0.7405 0.7619
Flights 0.4898 0.4662 0.4898 0.4907 0.5901
Homes 0.4542 0.7159 0.6235 0.6927 0.7698
Hotels 0.4069 0.5681 0.7216 0.7266 0.7677
Movies 0.5100 0.3424 0.5537 0.5687 0.7285
Music 0.4111 0.6090 0.5786 0.7466 0.7613
RentalCars 04138 0.3399 0.6576 0.7344 0.7389
Restaurants 0.4620 0.3787 0.7195 0.7451 0.7574
RideSharing 0.6619 0.5312 0.7273 0.7656 0.8172
Services 0.6380 0.6381 0.7607 0.7628 0.8180
Travel 0.6556 0.6464 0.8403 0.9013 0.9234
Weather 0.4605 0.5180 0.6003 0.6178 0.8223
Others 0.4362 0.5312 0.4921 0.5129 0.5592
Average 0.5013 0.5302 0.6363 0.6842 0.7505

outperforms SOTA models by 17.52%, 22.15%, 17.42%, and 17.95%
on average for unseen intents/domains on SNIPS, ATIS, MultiWoz,
and SGD datasets, respectively. We also present a variant of our
model that does not employ “IOB” tags from Step two, we call it
LEONA w/o0 I0B. Even this variant of our model outperforms all
other SOTA models. This performance gain over SOTA methods can
be attributed to the pre-trained NLP models that provide meaningful
cues for the unseen domains, the similarity layer that can capture
the closeness of the utterance words with the given slot irrespective
of whether it is seen or unseen, and the contextualization layer that
uses all the available information to generate a rich context-aware
representation for each word in the utterance.

LEONA achieves its best performance on ATIS dataset (see Ta-
ble 3) as compared to other datasets. It highlights that zero-shot
slot filling across different intents within a single domain is rela-
tively easier than across domains, since ATIS dataset consists of
a single domain, i.e., airline travel. On the contrary, SGD dataset
is the most comprehensive public dataset (i.e., it has 46 intents
across 20 domains), yet our proposed method LEONA has bet-
ter performance on it (see Table 5) than on SNIPS and MultiWoz
datasets. This calls attention to another critical point: dataset qual-
ity. We observe that SGD dataset is not only comprehensive but
also has high quality semantic description for slot types and all
the domains have enough training examples with minimal annota-
tion errors (based on a manual study of a small stratified sample
from the dataset). For example, the slot types “restaurant_name”,

Conference’17, July 2017, Washington, DC, USA

Siddique et al.

Table 6: Averaged F1 scores for all competing models for seen and unseen slot types in the target unseen domains for SNIPS,

ATIS, MultiWOZ, and SGD datasets.

Method | SNIPS ATIS MultiwOZ SGD

Slot Type — Seen Unseen | Seen Unseen | Seen Unseen | Seen Unseen
CT 0.4407 0.2725 | 0.7552 0.4851 | 0.6062 0.3040 | 0.7362 0.3940
RZS 0.4786 0.2801 | 0.8132 0.5143 | 0.6604 0.3301 | 0.7565 0.4478
Coach 0.5173 0.3423 | 0.7742 0.7166 | 0.7034 0.4895 | 0.7996 0.6614
LEONA w/oIOB | 0.5292 0.3578 | 0.8155 0.7130 | 0.6651 0.5638 | 0.7986 0.7424
LEONA 0.6354 0.4006 | 0.9588 0.7524 | 0.7765 0.5962 | 0.9192 0.8167

Table 7: Averaged F1 scores for all competing models in the target unseen domains of all datasets. The train/test sets have
variable number of intents/domains, which makes this setting more challenging.

Method | SNIPS ATIS MultiwOZ SGD

% Seen Intents — 25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%
CT 0.1043 0.2055 0.2574 | 0.5018 0.7341 0.6542 | 0.2991 04371 0.6607 | 0.4523 0.5389 0.6160
RZS 0.1214 0.1940 0.3207 | 0.6393 0.7727 0.7811 | 0.4566 0.4703 0.6951 | 0.6677 0.6578 0.6741
Coach 0.1248 0.2258 0.3081 | 0.6070 0.7341 0.8104 | 0.4408 0.4505 0.6522 | 0.5888 0.6419 0.6725
LEONA w/0oIOB | 0.1550 0.2631 0.4108 | 0.6495 0.9437 0.9378 | 0.5137 0.5529 0.7843 | 0.6861 0.7315 0.7704
LEONA 0.1710 0.2895 0.4220 | 0.8093 0.9659 0.9764 | 0.5248 0.5533 0.8581 | 0.7180 0.7925 0.8324

“hotel_name”, and “attraction_name” belong to different domains,
but are very similar to one another. The rich semantic description
of each slot type makes it easy for the model to transfer knowl-
edge from one domain to new unseen domains with high F1 scores.
LEONA shows poor performance on SNIPS dataset (see Table 2) as
compared to other datasets, especially for intents: “RateBook” and
“SearchScreeningEvent”. This poor performance further high-
lights our previous point (i.e., quality of the dataset) since SNIPS
dataset does not provide any textual descriptions for slot types.
Moreover, slot names (e.g., “object_name” and “object_type”)
convey very little semantic information, which exacerbates the
challenge for the model to perform well for unseen domains. Fi-
nally, the results on MultiWOZ dataset (see Table 4) highlights that
transferring knowledge to new unseen intents/domains is easier
when some similar intent/domain is there in the training set. For
example, the model is able to transfer knowledge for new unseen
target intent “Find Hotel” (i.e., not in the training) from other
similar intents such as, “Find Restaurant” and “Book Hotel” ef-
fectively. However, for the target domain “Find Attraction” that
does not have any similar domain in the training set, the model
shows relatively poor performance. Similar observations can also
be made other competing models.

Comparison for seen and unseen slot types. An unseen target
domains may have both unseen and seen slot types. The unseen
ones have never been seen during training, and seen ones might
have different contexts. For example, “date” is a common slot type
that may correspond to many different contexts in different do-
mains such as date of a salon appointment, date of a restaurant
booking, return date of a round-trip flight, and so on. We evaluate
the performance of the competing models on seen and unseen slot
types individually to test each model’s ability in handling com-
pletely unsen slot types. Table 6 presents results in further detail

where results for both seen and unseen slot types are reported sep-
arately. LEONA is consistently better than other models on seen as
well as unseen slot types. On average, our proposed model LEONA
shows 18% and 17% gains in F1 scores over the SOTA model for
seen and unseen slots, respectively. These gains are due to our slot-
independent I0B predictions (which provide effective templates for
seen slot types) and our context-aware similarity function (which
works well regardless whether slot types are seen or unseen). More-
over, all the models have better performance on seen slots than on
unseen ones as it is relatively easier to adapt to a new context (i.e.,
in new domain) for seen slots than to new unseen slots in an unseen
context. We also note that LEONA achieves a similar performance
on ATIS dataset for seen slots in the unseen target domain, when
compared with the results reported by SOTA supervised slot filling
methods in [65], i.e., F1 score of 0.952 vs 0.959 by our method.

Train on a certain percentage of intents/domains and test on
the rest. Large labeled training datasets are an important factor
in accelerating the progress of supervised models. To investigate
whether zero-shot models are affected by the size of training data
from different domains, we vary the size of the training data and
report results to quantify the effect. Table 7 presents results on all
datasets when the training set has data from = 25%, ~ 50%, and
~ 75% of the intents/domains and the rest are used for testing. The
choice of intents/domains to be in the training or testing sets is
done randomly, and average results are reported over five runs.
This setting is more challenging in two ways: models have access
to less training data and the test utterances come from multiple
domains. LEONA is at least 19.06% better (better F1 scores) than
other models for any percentage of unseen intents on any dataset.
Overall, the performance of LEONA improves as it gets access
to training data from more intents/domains, which is a desirable
behaviour. Moreover, we also observe that our model achieves 0.72
F1 score on SGD with only 25% of domains in the training data,

Linguistically-Enriched and Context-Aware Zero-shot Slot Filling

Conference’17, July 2017, Washington, DC, USA

Table 8: F1 scores for all competing models where the model is trained on one dataset and tested on the rest. This setting

resembles real-life scenarios.

Method | Train Dataset — SNIPS MultiwOZ SGD

Test Dataset — ATIS MultiwOZ SGD SNIPS MultiwOZ SGD SNIPS ATIS SGD SNIPS ATIS MultiwOZ
CT 0.0874 0.1099 0.0845 0.0589 0.0531 0.0646 0.0878 0.0616 0.1463 0.2290 0.1529
RZS 0.0915 0.1209 0.1048 0.0819 0.0912 0.1496 0.2103 0.0875 0.1905 0.3435 0.2134
Coach 0.1435 0.1191 0.1301 0.0976 0.0871 0.1201 0.1730 0.1102 0.1795 0.3383 0.1903
LEONA w/u I0B 0.1544 0.1433 0.1504 0.1156 0.1359 0.1242 0.1885 0.1258 0.2544 0.4714 0.2743
LEONA 0.2080 0.1832 0.1690 | 0.1436 0.1394 0.1361 | 0.1847 0.2662 0.1620 | 0.2761 0.5205 0.2884

Table 9: Ablation study of our model LEONA in the zero-shot
setting: averaged F1 scores for unseen target domains.

Configuration | SNIPS ATIS MultiwOZ SGD

Step 2 0.3689 0.6719 0.4792 0.6375
Step 3 0.3812 0.6915 0.4999 0.6407
Step2 +3 0.4013 0.7605 0.5412 0.6684
Step1+2 0.3820 0.6895 0.4936 0.6471
Step1+3 0.3866 0.7492 0.5594 0.6842

Step1+2+3 | 0.4394 0.8397 0.5832 0.7505

which once again validates the intuition that having better quality
data is very critical to adapt models to new unseen domains. Similar
results are observed on ATIS dataset (i.e., single domain dataset),
that highlights that knowledge transfer within a single domain
is easier, and models can do a very good job on unseen intents
even with a small amount of training data (e.g., 25% intents in the
training set). Similar conclusions hold true for other methods.
Train on one dataset and test on the rest of the datasets. This
setting closely resembles the real-world zero-shot setting, where a
model is trained on one dataset and tested on the rest. This is the
most challenging setting, since the test datasets come from purely
different distributions than those seen during training. Although
each domain within a dataset can be thought of as a different dis-
tribution, every dataset shows some similarity of expression across
different domains. Table 8 presents results of all competing models
for this setting. All models show relatively poor performance for
this challenging setting. However, LEONA is consistently better
than others; specifically, it is up to 56.26% better on F1 score than
the SOTA model. Our model achieves the best performance when
it is trained on the SGD dataset (relatively better quality dataset)
and tested on the rest. On the contrary, it shows the worst perfor-
mance, when trained on ATIS (i.e., single-domain) and tested on
the rest. Similar observations can be made for the other models.
These results once again highlight the importance of the quality and
comprehensiveness of the training dataset(s). Finally, this setting
also indicates that the current SOTA models are not yet ready to be
deployed in real-world scenarios and calls for more explorations
and research in this important yet challenging and less-explored
task of zero-shot slot filling.

Ablation study. To quantify the role of each component in our
model, we present an ablation study results in Table 9 over all
datasets. First, we study the significance of the pre-trained NLP
models in the first three rows in Table 9. To produce the results
in these rows, we used traditional word [5] and character [17]
embeddings instead of employing powerful pre-trained NLP models.

We observe that Step three, i.e., variant of the model that does not
use pre-trained NLP models and does not consider “I0OB” tags from
Step two, is the most influential component in the model, as it alone
can outperform the best performing SOTA model Coach [31], but
the margin is not significant (i.e., 0.3812 vs. 0.3739 on SNIPS, 0.6915
vs. 0.6874 on ATIS, 0.4999 vs. 0.4967 on MultiW0Z, and 0.6407 vs.
0.6363 on SGD). If “IOB” predictions from Step two are incorporated
into it (i.e., row Step 2 + 3) or pre-trained NLP models are employed
with it (i.e., row Step 1 + 3), its performance is further improved.
Moreover, if we just use Step two by predicting “IOB” tags and
assigning these “I0B” tags to the slot type with the highest similarity
(i.e., row Step 2), or combine Step one with Step two (i.e., row Step
1 + 2), we note that we do not achieve the best results.

5.2 Qualitative Analysis

In this experiment, we randomly selected 100 utterances in the un-
seen target domain “Restaurant” from the SGD dataset and visually
analyzed the performance of the competing models in extracting
the values of the slot type “restaurant_name” from the selected
utterances. The goal of this experiment is to visually highlight
the strengths/weaknesses of the competing models. We retrieved
the multi-dimensional numerical representations of the words in
the selected utterances from the final layers of each model and
reduced the number of dimensions of each representation to two
using t-SNE [35]. Figure 3 shows scatter plots for the resulting
2-dimensional representations for each model. We observe that all
models produce clear-cut clusters for each class: B, I, or O, which
indicates that all models are able to produce distinguishing repre-
sentations. However, LEONA produces better representations in
the sense that less words are misclassified. That is, there are less
violating data point in the clusters of LEONA in Figure 3 (c).

We further analyze the results for two utterances: “Golden Wok
would be a great choice in ..” and “I would like to book a table at
8 Immortals Restaurant in ..”. RZS [51] is able to predict full slot
value (i.e., Golden Wok) of the slot “restaurant_name” in the first
utterance. However, we notice that RZS fails to capture the full value
(i.e., “8 Immortals Restaurant”) for the slot “restaurant_name”
in the other utterance, where it could partially extract “Immortals
Restaurant” and mistakenly assigns label O to the word “8”, which
led to subsequent wrong prediction for the word “Immortals” (i.e.,
predicted label B, whereas the true label is I). This misclassification
is also highlighted in Figure 3 (a) by coloring the wrongly predicted
words with red. Since RZS relies on the example value(s) and there
is a high variability across the lengths of slot values, along with the
diversity of expression, this model faces problems in detecting the
full slot values.

Conference’17, July 2017, Washington, DC, USA

Siddique et al.

40l Labels
B

I
30 o

Golden Immortals

great

t-SNE Dimension 2
t-SNE Dimension 2

choice

0 10 20 30 40
t-SNE Dimension 1

-20

(a) RZS

t-SNE Dimension 1

(b) Coach

20
Wok — o
Golden e
109 would pe
~ o 4
c 0 a\'ﬁﬁp\ 8
S as lase2se 9
E-101{ Ao,
a <
H . 8 Immortals
E -20
¥ Restaurant
Restaurant
=30
10 -10 0 10 20 30 40 50 60
t-SNE Dimension 1
(c) LEONA (this work)

Figure 3: t-SNE visualization of word representations from selected utterances; the selected utterances belong to the unseen do-
main “Restaurant” in SGD dataset and contain the slot type “restaurant_name”. Results are presented for the best performing

3 models.

We notice that Coach [31] fails to detect the value (i.e., Golden
Wok) for the slot “restaurant_name” in the first utterance. How-
ever, it successfully captures the slot value in the other utterance.
Since Coach relies on learning templates from seen domains and
exploits those for unseen domains, it fails to handle the deviation
of the unseen domains from the learned templates. LEONA is able
to detect full slot values for both utterances successfully, thanks to:
the slot-independent I0B predictions from Step two; the similarity
function in Step three which is robust to errors from the previous
steps; and the contextualization layers of the model. Finally, we ob-
served that our model also fails to fully detect very long slot values.
For example, slot values “Rustic House Oyster Bar And Grill”,
“Tarla Mediterranean Bar + Grill”, and “Pura Vida — Cocina
Latina & Sangria Bar” for the slot type “restaurant_name” are
challenging to detect in unseen domains not only because of their
long length, but also because of the presence of tokens like &, +,
and —, that further exacerbate the challenge. Note that other SOTA
models also fail to detect the above example slot values. We plan
to overcome this challenge in our future work by learning n-gram
phrase-level representations to detect such slot values in their en-
tirety.

6 RELATED WORK

We organize the related work into three categories: (i) supervised
slot filling, (ii) few-shots slot filling, and (iii) zero-shot slot filling.
Supervised Slot Filling,. Slot filling is an extensively studied re-
search problem in the supervised setting. Recurrent neural net-
works such as Long Short-Term Memory (LSTM) or Gated Recur-
rent Unit (GRU) networks that learn how words within a sentence
are related temporally [24, 36] have been employed to tag the in-
put for slots. Similarly, Conditional Random Fields (CRFs) have
been integrated with LSTMs/GRUs [21, 47]. The authors in [52, 58]
proposed a self-attention mechanism for sequential labeling. More
recently, researchers have proposed jointly addressing the related
tasks of intent detection and slot filling [14, 16, 29, 61, 65]. The
authors in [65] suggested using a capsule neural network by dy-
namically routing and rerouting information from wordCaps to
slotCaps and then to intentCaps to jointly model the tasks. Super-
vised slot filling methods rely on the availability of large amounts
of labeled training data from all domains to learn patterns of slot

usage. In contrast, we focus on the more challenging as well as
more practically relevant setting where new unseen domains are
evolving and training data is not available for all domains.
Few-shot Slot Filling. Few-shot learning requires a small amount
of training data in the target domain. Meta-learning based meth-
ods [10, 38, 39] have shown tremendous success for few-shot learn-
ing in many tasks such as few-shot image generation [46], image
classification [53], and domain adaptation [59]. Following the suc-
cess of such approaches, few-shot learning in NLP have been investi-
gated for tasks such as text classification [13, 56, 62], entity-relation
extraction [12, 33], and few-shot slot filling [11, 20, 32]. The authors
in [32] exploited regular expressions for few-shot slot filling, Pro-
totypical Network was employed in [11], and the authors in [20]
extended the CRF model by introducing collapsed dependency tran-
sition to transfer label dependency patterns. Moreover, few-shot
slot filling and intent detection have been modeled jointly [4, 23],
where model agnostic meta learning (MAML) was leveraged. Few-
shot slot filling not only requires a small amount of training data
in the target domain, but also requires re-training/fine-tuning. Our
model addresses the task of zero-shot slot filling where no training
example for the new unseen target domain is available and it can
seamlessly adapt to new unseen domains — a more challenging and
realistic setting.

Zero-shot Slot Filling. Zero-shot learning for slot filling is less
explored, and only a handful of research has addressed this chal-
lenging problem, albeit, with very limited experimental evaluation.
Coach [31] addressed the zero-shot slot filling task with a coarse-
to-fine approach. It first predicts words that are slot values. Then,
it assigns the predicted slot value to the appropriate slot type by
matching the value with the representation of description of each
slot type. RZS [51] utilizes example values of each slot type. It uses
character and word embeddings of the utterance and slot types
along with the slot examples’ embeddings, and passes the concate-
nated information through a bidirectional LSTM network to get the
prediction for each word in the utterance. CT [2] proposed LSTM
network and employed slot descriptions to fill the slots for each
slot type individually. The authors in [27] also employed LSTM,
slot descriptions, and attention mechanisms for individual slot pre-
dictions. To tackle the challenge of the zero-shot slot filling, we

Linguistically-Enriched and Context-Aware Zero-shot Slot Filling

leverage the power of the pre-trained NLP models, compute com-
plex bi-directional relationships of utterance and slot types, and
contextualize the multi-granular information to better accommo-
date unseen concepts. In a related, but orthogonal line of research,
the authors in [15, 28, 34] tackled the problem of slot filling in the
context of dialog state tracking where dialog state and history are
available in addition to an input utterance. In contrast, this work
and the SOTA models we compare against in our experiments only
consider an utterance without having access to any dialog state
elements.

7 CONCLUSION

We have presented a zero-shot slot filling model, LEONA, that can
adapt to new unseen domains seamlessly. LEONA stands out as
the first zero-shot slot filling model that effectively captures rich
and context-aware linguistic features at different granularities. Our
experimental evaluation uses a comprehensive set of datasets and
covers many challenging settings that stress models and expose
their weaknesses (especially in more realistic settings). Interest-
ingly, our model outperforms all state-of-the-art models in all set-
tings, over all datasets. The superior performance of our model is
mainly attributed to: its effective use of pre-trained NLP models
that provide domain-oblivious word representations, its multi-step
approach where extra insight is propagated from one step to the
next, its generalizable similarity function, and its contextualization
of the words’ representations. In the most challenging evaluation
setting where models are tested on a variety of datasets after being
trained on data from one dataset only, our model is up to 56.26%
more accurate (in F1 score) than the best performing state-of-the-
art model. It remains challenging for all models, including ours,
to identify slot values that are very long or that contain certain
tokens. We plan to further improve our model by incorporating
n-gram phrase-level representations to overcome this challenge
and allow our model to accurately extract slot values regardless of
their length or diversity.

REFERENCES

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

Ankur Bapna, Gokhan Tur, Dilek Hakkani-Tur, and Larry Heck. 2017. To-

wards zero-shot frame semantic parsing for domain scaling. arXiv preprint

arXiv:1707.02363 (2017).

[3] Jerome R Bellegarda. 2014. Spoken language understanding for natural inter-
action: The siri experience. In Natural interaction with robots, knowbots and
smartphones. Springer, 3-14.

[4] Hemanthage S Bhathiya and Uthayasanker Thayasivam. 2020. Meta Learning
for Few-Shot Joint Intent Detection and Slot-Filling. In Proceedings of the 2020
5th International Conference on Machine Learning Technologies. 86-92.

[5] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword information. Transactions of the Association
for Computational Linguistics 5 (2017), 135-146.

[6] Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning.
2015. A large annotated corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326 (2015).

[7] Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier,
David Leroy, Clément Doumouro, Thibault Gisselbrecht, Francesco Caltagirone,
Thibaut Lavril, et al. 2018. Snips voice platform: an embedded spoken language
understanding system for private-by-design voice interfaces. arXiv preprint
arXiv:1805.10190 (2018).

[8] Douglass Cutting, Julian Kupiec, Jan Pedersen, and Penelope Sibun. 1992. A
practical part-of-speech tagger. In Third Conference on Applied Natural Language

Processing. 133-140.
[9] Abhinav Dhall, Roland Goecke, Shreya Ghosh, Jyoti Joshi, Jesse Hoey, and Tom

Gedeon. 2017. From individual to group-level emotion recognition: Emotiw 5.0.

[2

[10

[11

[12

=
&

(14

[15

[16

(18

[19

[20

[21]

[22

[23]

[24

[25

[26

[27

(28]

[29

[30

[31]

[32

(33]

[34

Conference’17, July 2017, Washington, DC, USA

In Proceedings of the 19th ACM international conference on multimodal interaction.
524-528.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. arXiv preprint arXiv:1703.03400
(2017).

Alexander Fritzler, Varvara Logacheva, and Maksim Kretov. 2019. Few-shot classi-
fication in named entity recognition task. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing. 993-1000.

Tianyu Gao, Xu Han, Ruobing Xie, Zhiyuan Liu, Fen Lin, Leyu Lin, and Maosong
Sun. 2020. Neural Snowball for Few-Shot Relation Learning.. In AAAL 7772-7779.
Ruiying Geng, Binhua Li, Yongbin Li, Xiaodan Zhu, Ping Jian, and Jian Sun.
2019. Induction networks for few-shot text classification. arXiv preprint
arXiv:1902.10482 (2019).

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li Huo, Tsung-Chieh Chen, Keng-
Wei Hsu, and Yun-Nung Chen. 2018. Slot-gated modeling for joint slot filling
and intent prediction. In Proceedings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers). 753-757.

Pavel Gulyaev, Eugenia Elistratova, Vasily Konovalov, Yuri Kuratov, Leonid Pu-
gachev, and Mikhail Burtsev. 2020. Goal-oriented multi-task bert-based dialogue
state tracker. arXiv preprint arXiv:2002.02450 (2020).

Dilek Hakkani-Tir, Gokhan Tiir, Asli Celikyilmaz, Yun-Nung Chen, Jianfeng
Gao, Li Deng, and Ye-Yi Wang. 2016. Multi-domain joint semantic frame parsing
using bi-directional rnn-Istm.. In Interspeech. 715-719.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher.
2016. A joint many-task model: Growing a neural network for multiple nlp tasks.
arXiv preprint arXiv:1611.01587 (2016).

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2017. Deep semantic
role labeling: What works and what’s next. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
473-483.

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou, Yijia Liu, Han Liu, and Ting
Liu. 2020. Few-shot Slot Tagging with Collapsed Dependency Transfer and Label-
enhanced Task-adaptive Projection Network. arXiv preprint arXiv:2006.05702
(2020).

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF models for
sequence tagging. arXiv preprint arXiv:1508.01991 (2015).

Rahul Jha, Alex Marin, Suvamsh Shivaprasad, and Imed Zitouni. 2018. Bag of
experts architectures for model reuse in conversational language understanding.
In Proceedings of the 2018 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 3
(Industry Papers). 153-161.

Jason Krone, Yi Zhang, and Mona Diab. 2020. Learning to Classify Intents and
Slot Labels Given a Handful of Examples. arXiv preprint arXiv:2004.10793 (2020).
Gakuto Kurata, Bing Xiang, Bowen Zhou, and Mo Yu. 2016. Leveraging sentence-
level information with encoder Istm for semantic slot filling. arXiv preprint
arXiv:1601.01530 (2016).

John Lafferty, Andrew McCallum, and Fernando CN Pereira. 2001. Conditional
random fields: Probabilistic models for segmenting and labeling sequence data.
(2001).

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. 2016. Neural architectures for named entity recognition. arXiv
preprint arXiv:1603.01360 (2016).

Sungjin Lee and Rahul Jha. 2019. Zero-shot adaptive transfer for conversational
language understanding. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 6642-6649.

Miao Li, Haoqi Xiong, and Yunbo Cao. 2020. The sppd system for schema guided
dialogue state tracking challenge. arXiv preprint arXiv:2006.09035 (2020).

Bing Liu and Ian Lane. 2016. Attention-based recurrent neural network models
for joint intent detection and slot filling. arXiv preprint arXiv:1609.01454 (2016).
Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and Verena Rieser. 2019. Bench-
marking natural language understanding services for building conversational
agents. arXiv preprint arXiv:1903.05566 (2019).

Zihan Liu, Genta Indra Winata, Peng Xu, and Pascale Fung. 2020. Coach: A Coarse-
to-Fine Approach for Cross-domain Slot Filling. arXiv preprint arXiv:2004.11727
(2020).

Bingfeng Luo, Yansong Feng, Zheng Wang, Songfang Huang, Rui Yan, and
Dongyan Zhao. 2018. Marrying up regular expressions with neural networks: A
case study for spoken language understanding. arXiv preprint arXiv:1805.05588
(2018).

Xin Lv, Yuxian Gu, Xu Han, Lei Hou, Juanzi Li, and Zhiyuan Liu. 2019. Adapt-
ing meta knowledge graph information for multi-hop reasoning over few-shot
relations. arXiv preprint arXiv:1908.11513 (2019).

Yue Ma, Zengfeng Zeng, Dawei Zhu, Xuan Li, Yiying Yang, Xiaoyuan Yao, Kaijie
Zhou, and Jianping Shen. 2019. An end-to-end dialogue state tracking system

Conference’17, July 2017, Washington, DC, USA

[35]

[36

[40]

[41

[42

[43]

[44]

[45

[46]

[47]

[49]

with machine reading comprehension and wide & deep classification. arXiv
preprint arXiv:1912.09297 (2019).

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579-2605.

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng, Dilek
Hakkani-Tur, Xiaodong He, Larry Heck, Gokhan Tur, Dong Yu, et al. 2014. Using
recurrent neural networks for slot filling in spoken language understanding.
IEEE/ACM Transactions on Audio, Speech, and Language Processing 23, 3 (2014),
530-539.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

Alex Nichol, Joshua Achiam, and John Schulman. 2018. On first-order meta-
learning algorithms. arXiv preprint arXiv:1803.02999 (2018).

Alex Nichol and John Schulman. 2018. Reptile: a scalable metalearning algorithm.
arXiv preprint arXiv:1803.02999 2, 3 (2018), 4.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532-1543.
Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. In Proc. of NAACL.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Olga Uryupina, and
Yuchen Zhang. 2012. CONLL-2012 shared task: Modeling multilingual unrestricted
coreference in OntoNotes. In Joint Conference on EMNLP and CoNLL-Shared Task.
1-40.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

Lance Ramshaw and Mitch Marcus. 1995. Text Chunking using Transformation-
Based Learning. In Third Workshop on Very Large Corpora. https://www.aclweb.
org/anthology/W95-0107

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav
Khaitan. 2019. Towards scalable multi-domain conversational agents: The schema-
guided dialogue dataset. arXiv preprint arXiv:1909.05855 (2019).

Scott Reed, Yutian Chen, Thomas Paine, Adron van den Oord, SM Eslami, Danilo
Rezende, Oriol Vinyals, and Nando de Freitas. 2017. Few-shot autoregressive
density estimation: Towards learning to learn distributions. arXiv preprint
arXiv:1710.10304 (2017).

Nils Reimers and Iryna Gurevych. 2017. Optimal hyperparameters for deep Istm-
networks for sequence labeling tasks. arXiv preprint arXiv:1707.06799 (2017).
Erik F Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition. arXiv preprint c¢s/0306050
(2003).

Burr Settles. 2004. Biomedical named entity recognition using conditional random
fields and rich feature sets. In Proceedings of the International Joint Workshop on
Natural Language Processing in Biomedicine and its Applications (NLPBA/BioNLP).
107-110.

Siddique et al.

Fei Sha and Fernando Pereira. 2003. Shallow parsing with conditional random
fields. In Proceedings of the 2003 Human Language Technology Conference of the
North American Chapter of the Association for Computational Linguistics. 213-220.
Darsh J Shah, Raghav Gupta, Amir A Fayazi, and Dilek Hakkani-Tur. 2019. Ro-
bust zero-shot cross-domain slot filling with example values. arXiv preprint
arXiv:1906.06870 (2019).
Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chenggi
Zhang. 2017. Disan: Directional self-attention network for rnn/cnn-free language
understanding. arXiv preprint arXiv:1709.04696 (2017).
Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for
few-shot learning. In Advances in neural information processing systems. 4077—
4087.
Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 conference
on empirical methods in natural language processing. 1631-1642.
Rupesh Kumar Srivastava, Klaus Greff, and Jirgen Schmidhuber. 2015. Highway
networks. arXiv preprint arXiv:1505.00387 (2015).
Shengli Sun, Qingfeng Sun, Kevin Zhou, and Tengchao Lv. 2019. Hierarchical
attention prototypical networks for few-shot text classification. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). 476-485.
Charles Sutton and Andrew McCallum. 2006. An introduction to conditional
random fields for relational learning. Introduction to statistical relational learning
2 (2006), 93-128.
Zhixing Tan, Mingxuan Wang, Jun Xie, Yidong Chen, and Xiaodong Shi. 2017.
Deep semantic role labeling with self-attention. arXiv preprint arXiv:1712.01586
2017).
(Oriol)Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.
Matching networks for one shot learning. In Advances in neural information
processing systems. 3630-3638.
Jason Weston, Sumit Chopra, and Antoine Bordes. 2014. Memory networks.
arXiv preprint arXiv:1410.3916 (2014).
Puyang Xu and Ruhi Sarikaya. 2013. Convolutional neural network based tri-
angular crf for joint intent detection and slot filling. In 2013 ieee workshop on
automatic speech recognition and understanding. IEEE, 78-83.
Leiming Yan, Yuhui Zheng, and Jie Cao. 2018. Few-shot learning for short text
classification. Multimedia Tools and Applications 77, 22 (2018), 29799-29810.
Steve Young. 2002. Talking to machines (statistically speaking). In Seventh Inter-
national Conference on Spoken Language Processing.
Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, Raghav Gupta, Jianguo Zhang,
and Jindong Chen. 2020. MultiWOZ 2.2 : A Dialogue Dataset with Additional
Annotation Corrections and State Tracking Baselines. In Proceedings of the 2nd
Workshop on Natural Language Processing for Conversational Al Association for
Computational Linguistics, Online, 109-117. https://doi.org/10.18653/v1/2020.
nlp4convai-1.13
Chenwei Zhang, Yaliang Li, Nan Du, Wei Fan, and Philip S Yu. 2018. Joint
slot filling and intent detection via capsule neural networks. arXiv preprint
arXiv:1812.09471 (2018).

https://www.aclweb.org/anthology/W95-0107
https://www.aclweb.org/anthology/W95-0107
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Formulation
	2.2 Pre-trained NLP Models
	2.3 Conditional Random Fields

	3 Approach
	3.1 Embedding Layer
	3.2 Encoding Layer
	3.3 CRF Layer
	3.4 Similarity Layer
	3.5 Contextualization Layer
	3.6 Prediction Layer
	3.7 Training the Model

	4 Experimental Setup
	4.1 Datasets
	4.2 Evaluation Methodology
	4.3 Competing Methods
	4.4 Implementation Details

	5 Results
	5.1 Quantitative Analysis
	5.2 Qualitative Analysis

	6 Related Work
	7 Conclusion
	References

