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ABSTRACT
The wide availability of tracking devices has drastically increased
the role of geolocation in social networks, resulting in new com-
mercial applications; for example, marketers can identify current
trending topics within a region of interest and focus their products
accordingly. In this paper we study a basic analytics query on geo-
tagged data, namely: given a spatiotemporal region, find the most
frequent terms among the social posts in that region. While there
has been prior work on keyword search on spatial data (find the ob-
jects nearest to the query point that contain the query keywords),
and on group keyword search on spatial data (retrieving groups of
objects), our problem is different in that it returns keywords and
aggregated frequencies as output, instead of having the keyword
as input. Moreover, we differ from works addressing the streamed
version of this query in that we operate on large, disk resident data
and we provide exact answers. We propose an index structure and
algorithms to efficiently answer such top-k spatiotemporal range
queries, which we refer as Top-k Frequent Spatiotemporal Terms
(kFST) queries. Our index structure employs an R-tree augmented
by top-k sorted term lists (STLs), where a key challenge is to bal-
ance the size of the index to achieve faster execution and smaller
space requirements. We theoretically study and experimentally val-
idate the ideal length of the stored term lists, and perform detailed
experiments to evaluate the performance of the proposed methods
compared to baselines on real datasets.
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1. INTRODUCTION
Several online social media, such as Twitter, Instagram, Foursquare

and Facebook, allow users to geotag their social posts. This cre-
ates novel data analytics problems, such as detecting popular topic
trends or popular sites, most frequent trajectories, etc. In this pa-
per, we investigate a basic query on geotagged social data. Given
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a user-specified spatiotemporal region, we want to find the k most
frequent terms in the posts in this region. We refer to this problem
as the Top-k Frequent Spatiotemporal Terms (kFST) Query. As an
example, the user may want to know which terms have been pop-
ular around her current location over the past week, and thus her
query specifies a spatial circle with radius 2 miles around her and a
temporal interval of a week.

Our problem is different from recent works on the intersection
of keyword search and spatial querying. These works generally re-
turn one or more spatial objects, given a query that specifies both
a spatial and a keyword condition. In the context of geotagged so-
cial posts, these works would return one or more social posts. In
contrast, our queries only specify a spatial condition and (the most
frequent) terms are returned. Nevertheless, we leverage existing
work on spatial and text indexing. There is also recent work ad-
dressing the streamed version of the kFST query in main memory;
since we operate on large data that does not fit in memory, our focus
is on creating efficient indexing while also providing exact answers.
Section 2 discusses in detail previous related work.

A straightforward approach to address the kFST query, which
we include as a baseline in our experiments, is to simply index all
posts in an R-tree [16]. Given a query range the R-tree will provide
all relevant posts in that range. To get the query answer, the terms
of these posts need to be aggregated (using a group_by hash-based
aggregation scheme to compute the frequency per term) and then
sorted. Nevertheless, we found that performance degrades as the
query region (and thus the posts involved) increases.

A first method we propose is to materialize a sorted term list
(STL) for each leaf node of the R-tree, where each STL contains
pairs of terms and their frequencies, sorted by decreasing frequency.
To answer a kFST query we run a top-k algorithm [13] on the STLs
involved in the query range. Note that the additional space used by
the STLs on the leaf nodes does not increase the asymptotic space
complexity of the index (it is still linear; moreover duplicate terms
are aggregated). Unfortunately, performance will still deteriorate
once there are too many STLs involved (i.e. the query region in-
creases further), because top-k algorithms are known to degrade in
performance when the number of lists is very large.

We thus extend the use of STLs to the inner nodes of the R-tree
as well. Given a kFST query, if the MBR of an internal node is
fully contained in the query region, the STL in that node is used
in the top-k calculation (i.e. the search proceeds to lower nodes
only when their MBRs are partially contained in the query region).
This algorithm variant leads to fast query execution times, because
the number of STLs accessed for the top-k calculation is signifi-
cantly reduced. However, the inner level STLs add considerable



extra space to our index, since an inner STL is aggregating over
all the posts in its subtree (here each term is counted once for each
level of the R-tree). This is especially critical in free text data ob-
jects, such as social posts, given the huge size of the vocabulary of
user-generated content – typically in the millions of unique terms
(including names, numbers, typos, and so on).

To maintain the advantage offered by inner STLs while keeping
the indexing space low, we explore the use of partial STLs of fixed
length λ. We create a model of the access patterns of the top-k al-
gorithm on the indexing structure and a theoretical analysis, to de-
termine the optimal length λ of the prefix of each STL that should
be maintained, such as most top-k queries can be answered within
the STL (if more entries are needed for a query, we invoke recur-
sively a top-k algorithm on the child nodes). Note, that the use of
partial STLs does not imply loss of accuracy; our algorithms return
the exact top-k result.

In addition to the single-region variant of kFST, we present a
multi-region variant, where the user may be interested in terms that
are popular in one set of regions and not popular in another set of
regions. For example, the user may be interested to know what is
trending in her immediate neighborhood, but not trending in the
whole city, which may indicate a local event.

The multi-region problem variant is challenging in terms of avoid-
ing to access the same STLs multiple times – once for each query
region that contains their MBR. Further, it is challenging to de-
fine a termination threshold of a top-k algorithm when the entries
(terms) are sorted in the reverse order – in the above example, the
terms in the whole city should be naturally sorted in increasing fre-
quency because a lower frequency is more desirable, but the STL
are always sorted by decreasing frequency. That is, the aggregation
function is increasing on some STLs and decreasing on others.

The contributions of the paper can be summarized as follows:

• We propose STL-enhanced indexing and top-k algorithms to
solve the kFST problem. Both Random Access (RA) and
Non Random Access (NRA) variants are presented.

• We present a theoretical model to optimize the space require-
ments of the index structure by carefully pruning the length
of the STL lists and experimentally evaluate it’s accuracy.

• We experimentally explore the various indexing options from
no STLs to full and/or partial STLs and identify the space
versus query trade-offs.

• We extend our algorithms for the multi-region kFST prob-
lem and show that our multi-region approach is more effi-
cient than simply running the single-region algorithm multi-
ple times.

The rest of the paper is organized as follows: Section 2 discusses
related work, while Section 3 formulates the problem. Section 4
describes our index structure and Section 5 presents the model used
to estimate the STL size. We discuss an extension of our algorithms
to accommodate multiple query regions in Section 6. Our indexing
scheme and algorithms are evaluated in Section 7 while conclusions
appear in Section 8.

2. RELATED WORK
Spatial Aggregation There has been work on spatial aggrega-

tion, where the goal is to efficiently compute the aggregate func-
tion (e.g. count or sum) of the main quantity of the application
(e.g., sales) [21]. In our setting, this would solve the problem of
computing the frequency of a specific keyword given a spatial area.

However, kFST must handle millions of keywords and produce top-
k frequency rankings.

Top-k Spatial Keyword Query : A top-k spatial keyword query
retrieves the k objects that are closest to the query location and con-
tain the query keywords [14, 11]. This problem has also been stud-
ied in the context of spatially-annotated web objects, where the goal
is to combine both the textual content and the geolocation of Web
pages when performing Web search [10, 12]. The work in [28] ex-
amines jointly processing multiple top-k spatial keyword queries,
while the top-k spatial keyword query for continuously moving ob-
jects is studied in [29]. [20] examined spatiotemporal burstiness
queries which, given a set of terms identify (unusual frequency)
bursts of these terms in a given area. Those set of terms has to be
provided beforehand and the system will process the stream of data
to look for unusual spike in frequencies in those terms only.

More recently, the problem has been extended to return groups of
spatial objects that satisfy some properties. Specifically, [9] solves
the problem of retrieving a group of spatio-textual objects that col-
lectively cover the query keywords, are close to the query location
and have small inter-object distances; a generalization appears in
[6]. Again, the problem is different than kFST as posts or users
are returned and not terms. Several geo-social query variants are
examined in [5]. One of them, closest to our work, is the problem
of Top-k Frequent Social Keywords in Range, which computes the
top-k terms based on their frequency in pairs of friends in a spa-
tial range. Our problem differs because we aim to find the most
frequent terms in a spatial range not restricted by any social media
constraints. Even without this constraint, the algorithm in [5] will
take too long because the inverted lists are stored only in the leaf
nodes. In our experimental section we examine a similar approach
that stores an inverted list in the leaf nodes only (termed as STL-L,
Figure13). We find that as the size of the query region increases,
this solution starts performing poorly compared to our proposed
approaches.

Top-k Spatial Preference Queries: The work in [30] ranks ob-
jects based on their spatial neighborhood, i.e., find the top-k objects
(e.g., homes) whose aggregate distance from other objects (e.g.,
restaurants) is minimized. A follow-up work solves a similar prob-
lem, except that there is a distance threshold, e.g., within 5 miles
[25]. This problem is clearly different from kFST as we do not re-
turn posts but keywords of posts – we view each keyword in a post
as a data point, and we find keywords with high density.

Top-k Spatio-Temporal Queries: The works in [22, 26] ad-
dress the kFST query over streamed data on main memory; our
work differs in that (i) we consider large datasets that reside on
disk (thus indexing is necessary) and (ii) we provide exact (versus
approximate) results. Geo-Trend [22] is a framework for comput-
ing top-k trending keywords over spatiotemporal ranges, i.e., terms
whose frequencies are on the rise recently. A spatial grid is used
while the time period depends on the size of the system’s main
memory. Only the top-k trending results in each spatiotemporal
cell are maintained and combined to generate the query result.

AFIA [26] uses a multi-layer grid based index structure where
each cell of the grid maintains the k+1 most frequent terms as ma-
terialized summary as opposed to our carefully pruned λ terms
(λ >> k). Given that a top-k algorithm may need more than k
entries from each list, there is no guarantee that the resulting top-k
terms are 100% accurate. Instead, their output is divided into two
subsets, one with X terms (where X ≤ k) that are guaranteed to be
in top-k, and the rest k-X terms that are approximate top-k terms.
In addition to finding exact results, our work differs in that a model
is introduced to identify the length of all materialized summaries.

Finally, GARNET [19] addresses various trending queries on mi-



croblogs; initially data is stored in main memory which is periodi-
cally flushed to disk. The framework can support multiple contexts
including location. The spatial context is implemented by a fixed
grid layer while the temporal domain uses a multilayer index. For
each cell, and for each time unit (say day) they maintain a materi-
alized top-k list. To answer a kFST query, for each cell included in
the query region, they pick all lists that are included in the temporal
query range and they run a top-k algorithm. Hence, it is not guar-
anteed that the exact top-k result can be computed (without having
to access the raw tweets which defies the purpose of an index), as
more than k entries may be needed from the cells in some queries.
The time performance of their top-k algorithm (assuming it does
not need to access the raw tweets) would be similar to the per-
formance of our leaves-only, full-lists variant, which keeps an STL
only at the leaf nodes of the index (note that our index combines the
spatial and temporal dimensions). As we show in the experimental
section, our other algorithms clearly outperform that approach.

3. PROBLEM DEFINITION
LetD ={o1, o2, ..., oN} be a dataset withN objects, where each

object o ∈ D corresponds to a post and consists of a pair of at-
tributes < Loc, Terms >; o.Loc is a 3-dimensional point that
identifies the location of the post in space and time (e.g., o.Loc is
described by a triplet (x, y, T )). The attribute o.Terms = {t1, t2, ...}
denotes the collection of the post’s terms (and may include dupli-
cates). For simplicity in the following discussion (and examples)
we consider only the spatial location of a post; this can be easily
extended to add the post’s timestamp T and thus support spatio-
temporal queries (in Section 7 we also provide performance results
under spatio-temporal ranges).

Let V = {∪o∈Do.Terms} be the vocabulary with all terms.
Consider a dataset with 10 objects whose locations in 2D space are
shown in Figure 1(a); the terms of these objects are shown in Figure
1(b). The vocabulary {∪9

i=1ti} contains 9 terms.
The frequency of a term t ∈ V is denoted as f(t) = {fo1(t) +

fo2(t) + ...+ foN (t)}, where fo(t) denotes the number of times t
appears in o.Terms. Given a region R, the frequency of term t in
R is denoted as fR(t) = {

∑
foi(t)|oi.Loc ∈ R}.

kFST Query Definition (Single Region): A kFST query Q is
defined by the tuple < RQ, k >, where RQ denotes the region
of interest and k denotes the number of output terms. The goal
is to find the k terms : t1, t2, ..., tk, whose frequencies fRQ(t1),
fRQ(t2), ... , fRQ(tk) are the highest among all terms in V .

Consider the example in Figure 1. The dotted region in Fig-
ure 1(a) denotes the query region RQ. Assume the user is in-
terested in the top-2 terms (k = 2). Therefore, the goal is to
compute the two terms from {∪9

i=1ti} whose frequencies are the
maximum in the dotted region (i.e. in the Terms of five objects
{o1, o2, o3, o6, o7}).

We also explore the multi-region extension of kFST:< S+, [S−],
k >, which provides two sets of regions S+ (for inclusion) and an
optional S− (for exclusion) and identifies the top-k terms that are
popular in the S+ regions and not popular in the S− regions. Terms
in S+ are penalized if they are popular in any of the S− regions.
If only S+ is provided, kFST simply combines multiple regions
and identifies the top-k terms (if regions in S+ overlap, common
posts are not duplicated). As an example consider finding the top-k
most frequent terms in posts from all the Ivy League campuses over
2015 (S+). Based on the application, the user may choose to nor-
malize the term frequencies per campus. We can also identify the
terms which were most discussed in the Ivy League campuses and
were not popular in the US campuses over the same period (S−).

Note that this inclusion/exclusion can extend to higher dimensional
regions by adding more attributes to the R-tree.

4. PROPOSED INDEX STRUCTURE AND
ALGORITHMS

We assume that the full set D of posts is large and stored on
disk. Figure 2(a) shows the baseline approach that indexes the posts
with a multidimensional R-tree [16]. We use R-tree and not other
temporal indexes for spatiotemporal data, because we are indexing
points and not intervals. To solve the < RQ, k > query, we access
only the posts contained in RQ; their terms are collected, ordered
and the top-k terms are returned. Next, we present a suite of in-
dexes that enhance the R-tree with STLs and corresponding top-k
algorithms to efficiently solve the kFST problem, without having
to scan all objects that match the query region. Our approaches dif-
fer on which tree nodes (leaf/index) contain STLs and on whether
these STLs are full or partial. In the following discussion we refer
to each approach using the notation in Table 1.

4.1 Full Lists on Leaf Nodes Only (STL-L)
Since the number of terms can rapidly increase with RQ, a bet-

ter approach to compute the top-k terms, is to store sorted term
lists (STLs) for the leaf nodes of the R-tree. In particular, the
STL of a leaf node nl contains the aggregated term entries from
the object (posts) stored within the node’s MBR Rnl , sorted based
on the frequencies of the terms in that MBR. The total number
of entries in this STL, i.e. the vocabulary size, is |Vnl | where
Vnl = {∪o∈Do.Terms|o.Loc ∈ Rnl}. For each term t ∈ Vnl , we
have a term entry of the form < t, t.ObjectEntries, t.Freq >,
where t.ObjectEntries is a list of object entries that contain t.
Each entry in this list has the form < Loc, Freq > ≡ [∃o ∈ D
: Loc = o.Loc ∈ Rnl and Freq = fo(t) > 0]. Finally, the
third field t.Freq is the sum of all Freq values of the object en-
tries in t.ObjectEntries. The term entries in STL are sorted by
their Freq values in descending order. Figure 2(b) shows the STLs
for the two leaf nodes R3 and R4 of the R-tree in Figure 2(a). We
refer to this indexing scheme as STL-L, to denote that only the leaf
nodes of the R-tree have STL lists.

Algorithm Overview: To leverage the STL-L index we proceed
in two steps. First, the leaf nodes that intersect with the query re-
gion RQ are identified; then a top-k algorithm is applied on the
STLs of the intersected leafs nodes. If a leaf node is fully contained
in RQ its STL is used directly in the top-k algorithm; if it is par-
tially contained, then a partial STL list is created with the objects
that are contained in RQ, as explained below. Among the several
top-k algorithms in literature, we use two popular variations, the
Random Access (RA) and Non Random Access (NRA) [13, 24].
Note that RA is a modified (improved) version of TA. The specific
improvements are presented in Section 4.4.

Random Access (RA): At each iteration i, the RA algorithm
extracts the ith term entry te from each of the involved leaf STLs.
The sum of all te.F req values is considered as the threshold θ at
iteration i. Each time a new term t is seen, RA scans the other
STLs to compute the aggregate fRQ(t). Note that in our case, for
a given term entry te with the term t, if the leaf node nl of the
STL (that contains te) is fully contained in RQ then te.F req is
used in the fRQ(t) computation. Otherwise, te.ObjectEntries is
scanned to compute fRQ∩Rnl

(t) which contributes to the fRQ(t).
RA stops when it finds k terms whose frequencies are higher or
equal to the threshold θ value. As an example, consider the dotted
query region in Figure 1(a). Based on the R-tree in Figure 2(a), the
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Object Terms Object Terms

o1 {t1 ,t2, t4, t6} o6 {t1 ,t2, t5, t9}

o2 {t2 ,t2, t4} o7 {t1 ,t1, t4}

o3 {t1 ,t3, t4} o8 {t4 ,t5, t6, t9}

o4 {t6 ,t7, t8, t8} o9 {t2, t4, t9}

o5 {t4 , t5 , t9} o10 {t2 , t6, t7}

(a) Locations (b) Terms

Figure 1: Sample dataset containing 10 objects, (a) shows the locations and (b) shows the terms of the objects.

Term ObjectEntries Freq

t2 <o1.Loc,1>, <o2.Loc,2> 3

t4 <o1.Loc,1>, <o2.Loc,1>, <o3.Loc,1> 3

t1 <o1.Loc,1>, <o3.Loc,1> 2

t3 <o3.Loc,1> 1

t6 <o1.Loc,1> 1

Term ObjectEntries Freq

t1 <o6.Loc,1>, <o7.Loc,2> 3

t2 <o6.Loc,1> 1

t4 <o7.Loc,1> 1

t5 <o6.Loc,1> 1

t9 <o6.Loc,1> 1

STL of R3 STL of R4

…
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R1 R2R3
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R6 o10o3

R1 R2

R3 R4

o1 o2 o6 o7 o4 o5 o8 o9

R5 R6

R-Tree Structure

(a) (b)

Query Region

Figure 2: Spatial R-Tree for the sample dataset in Figure 1 and leaf level STLs

Index Description
STL-L full lists on leaf nodes only
STL-LI full lists on leaf and index nodes
STL-Li full lists on leaf nodes, partial lists in index nodes
STL-li partial lists on leaf and index nodes

Table 1: Different index types.

two leaf nodes R3 and R4 are fully contained in the query region.
Therefore RA executes on these two nodes’ STLs (Figure 2(b)).

Non Random Access (NRA): Similarly, NRA scans all the STLs
involved in top-k computation in parallel. Each time a new term t
is seen, NRA computes a Best Score and a Worst Score for that
term (for details see [13]) and stops when it finds k terms whose
Worst Scores are higher or equal to the threshold θ value.

4.2 Full Lists on All Nodes (STL-LI)
Solving the kFST query using leaf level STLs shows good per-

formance for relatively small query regions. However, as the size
of RQ increases, the number of intersected leaf nodes and thus the
number of involved STLs increases. This slows down both the RA
and NRA performance (see Figures 13a, 13b in the experimental
evaluation). One solution is to enhance our index structure adding
STLs to all inner level nodes of the R-tree. Figure 3 shows the STLs
for inner level nodes R1 and R2. Note that the ObjectEntries
fields are removed from the term entries of inner level STLs. This
is to improve space efficiency; we refer to this scheme as STL-LI.

Term Freq

t1 5

t2 4

t4 4

t3 1

t5 1

t6 1

t9 1

STL of R1

Term Freq

t4 3

t6 3

t9 3

t2 2

t7 2

t8 2

t5 2

STL of R2

…

Figure 3: Inner level STLs.

Using the additional inner level STLs, we consider a modified
tree traversal algorithm (Algorithm 2). Starting from the root node
of the R-tree, if an inner level node is fully contained in the query
region, then no further checking is required for the children of that
node. The STL of this fully contained node is used in the top-k
computation. However, if an inner level node overlaps with the
query region then its children nodes are checked. This process con-
tinues until we reach the leaf level where the leaf nodes that inter-
sect with the query region are identified. As before, if a leaf node
is not totally contained in the query region then we create an STL
only for the node’s posts that are contained.

Using the modified tree traversal algorithm, consider again the
query region in Figure 1(a). Based on the R-tree in Figure 2(a),
only the inner level node R1 is fully contained in the query region.
Therefore, no further checking is done and the top-k terms are re-
turned by the top-K algorithms (both RA and NRA) using only the
STL ofR1. This reduces the number of involved STLs from 2 to 1.

4.3 Considering Partial Lists(STL-Li, STL-li)
Unfortunately the STL-LI approach requires large space espe-

cially for the STLs at the higher level nodes. Figure 4 shows the
average number of term entries of a STL at different levels (level
4 corresponds to the index root). The number of term entries (and
thus the size of a STL) increases for the higher levels. Nevertheless,
we note that, both RA and NRA typically scan only a small sub-
set of the entries in a STL. We can thus exploit this early stopping
property to compute the expected number of accessed term en-
tries (λ) to be stored in an STL (addressed in Section 5). Using this
λ value we shrink the size of each inner level STL, which reduces
the overall space. The leaf level STLs still keep their full size (in
case the threshold algorithms cannot stop within the λ-sized inner
STLs, the leaf STLs can then provide any additional terms needed).
We refer to this index as STL-Li.

We proceed with how the threshold algorithms need to be mod-
ified for the kFST problem given that the inner level STLs con-
tain λ number of term entries while the leaf level STLs contain all
term entries. The overall approach is depicted in Algorithm 1. At
first, the algorithm finds the R-tree nodes whose STLs are involved
in top-k computation (line 1). After that, it executes the RA or
NRA to compute the top-k term entries using Algorithm 3 or 4 re-
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Algorithm 1 kFST − STL(RQ, k, root)
Require: Query Region RQ, number of output terms k and the

root node of R-tree root
Ensure: Return top-k terms with highest frequencies in RQ
1: N← FindCandidateNodes(RQ, root)
2: E← RA-STL(N , RQ, k) / NRA-STL(N , RQ, k)
3: T ← ∅
4: for each term entry te in E do
5: T ← T ∪ te.T erm
6: return T

spectively (line 2). The main component of these algorithms is the
repeat-until loop (lines 2 - 24 and lines 2 - 22 respectively).

The RA version (Algorithm 3), at each iteration i, scans the ith

term entry from each of the involved STLs (lines 5 - 8) and com-
putes the θ value (line 9). If the index i exceeds λ, Algorithm 5
is called (line 8) for each involved inner level STL to compute the
next term entry in sorted order. Algorithm 5 invokes Algorithm 3
recursively for the STLs of the child nodes. If a new term t is seen,
Algorithm 3 looks up the term t in all involved STLs and computes
the aggregate frequency (lines 11 - 20). Algorithm 6 is a support-
ing method used to compute the value of a term entry te in RQ. It
scans all the object entries in te.ObjectEntries, finds the object
entries that are contained in RQ and aggregates their frequencies.

The NRA version (Algorithm 4), at each iteration i, scans the
ith term entry from each of the involved STLs (lines 5 - 8) and
computes the tops value (line 9) which is the maximum possi-
ble value for any of the unseen term that may appear in any of
the later scan in that particular STL. Note that, when the index i
exceeds λ, Algorithm 5 is called (line 8) for each involved inner
level STL to compute the next term entry in sorted order. Algo-
rithm 5 invokes Algorithm 4 recursively for the STLs of the child
nodes. If a new term t is seen, Algorithm 4 adds it to the buffer
called SortedTopKElements. Then the Algorithm updates the
partial score of the term in the SortedTopKElements. This par-
tial score is used to calculate the bestScore and worstScore of each
of the terms in the buffer SortedTopKElements. The threshold
value θ is calculated in line 21 which is the summation of tops for
all the STLs involved in the calculation.

The advantage of using full STLs at the leaf nodes comes at the
expense of the full list space overhead. A remaining question is
whether we can actually reduce this overhead further. Such an ap-
proach would replace each full leaf STL with a partial one. In the
experimental section we term this approach as STL-li. We note that
a leaf node has a limited number of objects (based on the fixed page
size); thus if needed we could still compute the full STL.

Clearly, λ depends on k (see Section 5). Hence, k needs to be

Algorithm 2 FindCandidateNodes(RQ, n)

Require: Query Region RQ, and the node n
Ensure: Return the set of candidate nodes from the subtree rooted

at n such that the STLs of the selected nodes are used for top-k
computation

1: if IsLeaf(n) then
2: if RQ ∩Rn 6= ∅ then
3: return {n}
4: else
5: return ∅
6: if Rn ⊆ RQ then
7: return {n}
8: else
9: N ← ∅

10: for each child c of n do
11: N← N ∪ FindCandidateNodes(RQ, c)
12: return N

Replace line 9 by:
9(a): θ ← θ + te.F req
9(b): tops[n]← te.F req
Replace line 10 by:
10(a): T ← te.T erm
10(b): for each t in T
Add the following lines between line 20 and 21:
(i) index← index of n′ inN
(ii) maxPossible← f ′ +

∑i<=Size(N )
i←index tops[i]

(iii) if Size(E) > k and maxPossible < E[k].Freq
break

Table 2: Changes on RA-STL to reduce random accesses.

known when building the partial lists. We argue that this is a rea-
sonable assumption for several applications. For example, Twitter
as of now displays the top-10 trending topics (or hashtags) for each
user (our work would allow for a more fine grained list of topics per
user). Other applications displayed on mobile screens have similar
constraints for k. Further, in the experimental section (Figure 15)
we show that the proposed algorithm performs well for up to 50%
larger k than the one originally provided.

4.4 Optimizations to the top-k Algorithms
Optimizing RA-STL: A standard RA algorithm makes random

accesses for all the terms it has seen. However, after the buffer
has at least k elements, there exist some terms which can never
make it to the top-k. As a result, we can avoid making random
accesses for such terms. Table 2 shows the necessary changes for
this optimization. We are using the array tops to keep track of the
values of each list/node in the current iteration. Later, we use this
value to calculate the maximum possible value (maxPossible) for
each term we encounter. If the k-th term in the buffer already has a
greater value that this maximum possible value, no further random
accesses are needed for that keyword.

We experimentally evaluated this optimization, using the setting
described in Section 7.1. The results appear in Figure 5 using the
RA-STL-Li as an example. The optimization speeds up the query
performance by around 7 times on average. In the rest of the paper,
all RA-STL algorithms use the optimized approach.

Optimizing NRA-STL: After implementing the NRA-STL al-
gorithm, we observed that the CPU time required for sorting the



Algorithm 3 RA-STL(N , RQ, k)
Require: Set of nodesN , the query region RQ and the number of

output term entries k
Ensure: Execute Random Access TA on the STLs of the nodes in
N and return the top-k term entries with highest frequencies

1: E ← ∅, i← 0
2: repeat
3: θ ← 0, f ← 0
4: for each node n inN do
5: L← getSTL(n)
6: te ← ith term entry in L
7: if te is null and NotIsLeaf(n) then
8: te ← GetTermEntry(n,RQ, i)
9: θ ← θ + te.F req

10: t← te.T erm
11: if t has not been seen yet then
12: f ′ ← 0
13: if isLeaf(n) then
14: f ′ ← ComputeTermFreq(te, RQ)
15: else
16: f ′ ← te.F req
17: for each node n′ inN do
18: if n′ 6= n then
19: do random access for term t on STL of n′ and

compute fRQ∩R′
n
(t)

20: f ′ ← f ′ + fRQ∩R′
n
(t)

21: E← E ∪ {< t, ∅, f ′ >}
22: f ←frequency of the kth term entry in E
23: i← i+ 1
24: until θ > f
25: return top-k term entries in E with highest frequencies
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Figure 5: Comparison between standard RA-STL-Li and our opti-
mized RA-STL-Li.

SortedTopKElements is high. We thus applied the following
optimizations. (i) Reduce Buffer Size : The work in [23] showed
that if the summation of the last seen value in all lists is less than
the k-th highest score in buffer then no keyword which has not been
seen in any input can end up in the top-k result. Hence once that
condition is true we do not add new keywords in the buffer. (ii)
Use QuickSelect: Initially, we were sorting the whole buffer to get
the k-th worst value (needed to decide if the calculation of top-k is
finished). Instead we use the QuickSelect algorithm [17] to fetch
the k-th highest value from the buffer without sorting it. (iii) Delay
Checking for Finish: We check if the algorithm is finished in ev-
ery 50 steps rather than every step. This significantly reduces the

Algorithm 4 NRA-STL(N , RQ, k)
Require: Set of nodesN , the query region RQ and the number of

output term entries k
Ensure: Execute NRA on the STLs of the nodes in N and return

the top-k term entries with highest frequencies
1: SortedTopKElements← ∅, i← 0
2: repeat
3: θ ← 0, f ← 0
4: for each node n inN do
5: L← getSTL(n)
6: te ← ith term entry in L
7: if te is null and NotIsLeaf(n) then
8: te ← GetTermEntry(n,RQ, i)
9: tops[n]← te.F req

10: t← te.T erm
11: if t has not been seen yet then
12: SortedTopKElements← tke(t)
13: else
14: tke← SortedTopKElements(t)
15: if isLeaf(n) then
16: tke.partialScore ← tke.partialScore +

ComputeTermFreq(te, RQ)
17: else
18: tke.partialScore← tke.partialScore+ te.F req
19: SortedTopKElements← tke(t)
20: θ ←

∑
n tops[n]

21: i← i+ 1
22: until SortedTopKElements[k].worstScore ≥ θ
23: return top-k term entries in E with highest frequencies

Algorithm 5 GetTermEntry(n,RQ, i)

Require: The node n, the query region RQ and the index i
Ensure: Return the ith term entry in the region Rn
1: N ← ∅
2: for each child c of n do
3: N← N ∪ c
4: E← (N)RA− STL(N , RQ, i)
5: return the ith term entry in E

CPU time. (iv) Sorting Efficiently: In case of ties among the term
scores in the buffer, the standard NRA algorithm sorts them based
on the best possible score. However, calculating the best possible
score involved redundant computations. Instead we are only sort-
ing the keywords whose worst possible score is equal to the k-th
worst possible score in the buffer.

Figure 6 depicts the experimental evaluation of these optimiza-
tions using NRA-STL-Li as example. The improvement over the
standard NRA-STL-Li is drastic (on average 50 times). In the rest,
all NRA-STL algorithms use the optimized approach.

5. COMPUTING THE EXPECTED STL SIZE
We would like to estimate how long the ranked lists of internal

nodes should be so as to minimize the chance that the top-k al-
gorithms of Section 4.3 will need to access more terms, while at
the same time keeping the length of the lists short to save space.
For that, we estimate the expected STL size λ accessed by our
top-k algorithms in two steps. In the first step, we estimate vec-
tor M = (m1,m2, ...,mh), where mi denotes the expected num-
ber of STLs involved in the top-k calculation from level i; h is the
height of the R-tree. Using M , we calculate λ in the second step.



Algorithm 6 ComputeTermFreq(te, RQ)

Require: The term entry te, and the query region RQ
Ensure: Return the frequency of te in the region RQ
1: f ← 0
2: for each object entry oe in te.ObjectEntries do
3: if oe.loc ∈ RQ then
4: f ← f + oe.freq
5: return f
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Figure 6: Comparison between standard NRA-STL-Li and our op-
timized NRA-STL-Li.

Step 1 - Calculate M: Given the query region RQ, we start
from the root level (level h) of the R-tree. At each inner level i
(2 ≤ i ≤ h), we estimate the expected number of nodes which are
fully contained in the query region and the region covered by the
contained nodes. The STLs of the contained nodes are involved in
the top-k calculation. Thus,mi for inner levels is equal to the num-
ber of contained nodes. The remaining query region (i.e. the query
region which is not covered by the contained nodes) is used as the
new query region for the next level i − 1. This process continues
until we reach the leaf level (i = 1) where the number of nodes that
intersect with the new query region is estimated as m1.

In the discussion below we use the parameters in Table 3. Con-
sider a d-dimensional unit dataspace ([0, 1)d) which contains the
N objects. An R-tree with height h and average node capacity
(fanout) f stores these N objects. Let, Ni be the number of nodes
at level i and Si = (si,1, si,2, ..., si,d) be the average size of a level
i node. Given N and f , to estimate the R-tree properties (h,Ni,Si)
we use the analysis described in [27].

Since N objects are contained in N1 nodes at leaf level and
the average fanout factor is f , the number of leaf level nodes is
N1 = N

f
. Similarly N1 nodes are contained in N2 nodes at level

2, therefore N2 = N
f2

. Thus the number of nodes at level i is,

Ni =
N

f i
(1)

The height h of the R-tree is calculated as [27, 15],

h = 1 + dlogf
N

f
e (2)

To compute Si, we assume that the node sides are equal in all
dimensions (i.e. si,1 = si,2 = ... = si,d). Let si be the average
size of a level i node in all dimensions. Since f number of level
(i − 1) nodes are contained in a single node at level i, the number
of level (i− 1) nodes that contribute to a single side of level i node

Symbol Description
M = (m1,m2, ...,mh) expected number of STLs involved in the

top-k calculation from different level
h height of R-tree

Si = (si,1, si,2, ..., si,d) avg. size of an MBR at level i
Nr = (N1, N2, ..., Nh) number of MBRs at different levels
RQ = (q1, q2, ..., qd) size of query region

f avg. node capacity (fanout)
N number of objects

Table 3: Model Parameters

is d
√
f . Therefore si can be computed as,

si = (f1/d − 1).
1

(Ni−1)1/d
+ si−1 (3)

Here (Ni−1)
1/d is the average distance between the centers of

two consecutive level (i−1) node projections in a single dimension.
The detailed analysis is described in [27].

For simplicity, we assume that the query sides of RQ are also
equal in all dimensions (i.e. q1 = q2 = ... = qd = q). Given Ni
and si, the number of level i nodes that intersect with query region
qd is [27],

intersect(Ni, si, q) = Ni.(si + q)d (4)

As stated earlier, here we are interested in the estimation of the
number of fully contained nodes for inner levels (which is a subset
of intersected nodes computed in [27]). The next analysis describes
how we can estimate the number of contained nodes given the val-
ues Ni, si and q.

RQ

si
si si si

q q q

(a) case 1 (b) case 2 (c) case 3

Figure 7: Case analysis of si and q

Based on the values of si and q, there are three possible cases,
Case 1 (si > q): The node size is greater than the query region

(Figure 7(a)). Therefore, no node is contained in the query; this
means we have to go to next level (i− 1).

Case 2 (q ≥ 2si): In this case, we consider a d-dimensional
rectangle (the shaded region in Figure 7(b)) inside the query region
where each side of the inner rectangle is si distance far away from
the query rectangle. We argue that the nodes which intersect with
the inner rectangle are the nodes that are contained in the query
region. The number of nodes that intersect with the inner rectangle
is intersect(Ni, si, q − 2si). Let Ai be the region covered by the
contained nodes. Using a similar analysis as for the si calculation,
we can estimate the average size ai of a single side of Ai, by,

ai = (intersect(Ni, si, q − 2si)
1/d − 1).

1

(Ni)1/d
+ si (5)

The remaining uncovered region (i.e. qd − (ai)
d) is considered

as the new query region for the next level which can be divided into
small rectangles of size ( q−ai

2
)d. The number of small rectangles

is estimated as d(qd − (ai)
d)/( q−ai

2
)de



Case 3 (si ≤ q < 2si): In this case, only one node can be con-
tained in the query region assuming no overlapping between the
nodes at a given level (Figure 7(c)). This assumption is a reason-
able property for a good R-tree [7]. Using the similar analysis ex-
plained in case 2, the remaining uncovered region (i.e. qd − (si)

d)
is divided into d(qd − (si)

d)/( q−si
2

)de small rectangles of size
( q−si

2
)d. These small rectangles are considered as the new query

region for the next level.
To compute m1, we first compute the total number of leaf nodes

covered by the contained inner level nodes. We compute this value
as
∑h
i=2mif

i−1 since each contained node at level i (2 ≤ i ≤ h)
covers total f i−1 number of leaf nodes. We then subtract this value
from the total number of leaf nodes that intersect with the original
query qd. The exact formula used for m1 computation is,

m1 = intersect(N1, s1, q)−
h∑
i=2

mif
i−1 (6)

Algorithm 7 shows the pseudocode to computeM . At first, lines
1 − 4 compute the R-tree properties h, Ni and si. Then using the
R-tree properties, the second for loop (lines 7− 21) computes the
M . Each iteration of the for loop corresponds to a level of R-tree.
Lines 8−9 computem1 for the leaf level and lines 10−21 compute
mi for the inner levels (2 ≤ i ≤ h). The variable factor stores
the number of query rectangles at a level i.

Algorithm 7 ComputeM(N, f, d, q)

Require: The number of objects N , the fanout factor f , the di-
mensionality d and the average size of query region side q

Ensure: Return the vector M
1: Calculate h using Equation 2
2: s0 ← 0
3: for i← 1 to h do
4: Calculate Ni and si using Equations 1 and 3 respectively
5: factor ← 1
6: q′ ← q
7: for i← h to 1 do
8: if i = 1 then
9: Calculate m1 using Equation 6

10: else
11: if q′ < si then
12: mi ← 0
13: else if q′ ≥ 2si then
14: mi = factor × intersect(Ni, si, q′ − 2si)
15: Calculate ai using Equation 5
16: factor ← factor × d((q′)d − (ai)

d)/( q
′−ai
2

)de
17: q′ ← q′−ai

2
18: else
19: mi ← factor × 1

20: factor ← factor × d((q′)d − (si)
d)/( q

′−si
2

)de
21: q′ ← q′−si

2
22: return M = {m1,m2, ...,mh}

Step 2 - Calculate STL size λ: The analysis in this step is based
on the assumption that the frequencies of terms in the whole corpus
(i.e. the collection of all terms in the dataset) follow the Zipf distri-
bution. This is true [18] for the collection of documents collected
from several online sources: Myspace[1], Twitter[4], Slashdot[3].

We first consider calculating λ for the RA algorithm. Let each
object have x number of terms on average. Therefore, the total
number of terms (including duplicates) in the whole corpus is Nx.

Let p be the rank of a term and freq(p,Nx) denote the frequency
of the pth term in the ordered frequency list of a dataset containing
Nx terms. The Zipf law states that the frequency of a term is in-
versely proportional to its rank in the frequency list. Thus the Zipf
parameter c (which is collection specific) is given by:

c = p
freq(p,Nx)

Nx
(7)

Using Equation 7, the frequency freq(p,Nx) of a term at any
arbitrary rank p can be computed which is cNx

p
.

In our case, each level i node of the R-tree contains on average
Nx/Ni terms. Therefore, the frequency of the pth term in the STL
of a level i node is ciNx

Nip
. Similarly the frequency of the pth term in

the STL of the query region qd is cqq
dNx

p
. The above assumes that

the exact frequency of each accessed term from any STL is known,
which is a property of the RA algorithm.

Note that a top-k algorithm works by computing the threshold
value at successive index p which is the sum of all pth frequency
values in the STLs that are involved in top-k calculation. Given
Nx, q and M , the threshold value at an index p is computed as,

θ(p, q,Nx,M) =

h∑
i=1

mi
ciNx

Nip
(8)

The top-k threshold algorithm stops at an index pwhen the thresh-
old value equals or drops below the kth frequency value in the
query region qd. Therefore the expected list size is computed as,

λRA(k, q,Nx,M) = min
p
{θ(p, q,Nx,M) ≤ cqq

dNx

k
} (9)

When considering the NRA algorithm, the scan may have to go
further than RA; the reason is that when we have accessed the first
p terms of each STL, we may only know the partial final frequency
of some terms. The NRA algorithm terminates when two condi-
tions hold at the same time: (a) the minimum score of the k-th best
term so far, y, is higher than the threshold, and (b) that score is
also higher than the maximum score of other partially seen terms.
Computing the optimal λ requires knowledge of the correlation of
the term frequencies across lists. Instead, we compute a conser-
vative estimation (overestimate), by assuming that we have only
seen each term in only one list. Then, the larger MBRs dominate
the scores, and hence we can assume that y equals the kth term
of the largest MBR, where the largest MBR can be assumed to be
one level below the query region qd; that is, the largest MBR has
area qd/f . Given these assumptions, the conservative estimation
of λ for NRA is given by (we further justify the choice of λ in
Appendix A):

λNRA(k, q,Nx,M) = min
p
{θ(p, q,Nx,M) ≤ cqq

dNx

kf
} (10)

6. MULTI-REGION QUERIES
With multi-region kFST queries a user can combine or exclude

terms from multiple regions. Consider for example the month be-
fore the US elections. It would be interesting to know about the
popular terms that appear in social media in some states combined
(e.g. the battleground states, say Florida and North Carolina) to
see how the public opinion is formed in those states. One can also
normalize the term frequencies within each respective state so that
larger states do not dominate the top-k calculations. We may also
be interested in excluding terms that are popular in “blue" states
(e.g. New York and California) so as to identify the terms that are
of interest to the republican voters in the battleground states.



Straightforward approach: To solve the multi-region kFST we
can simply run the algorithm separately for each region (the R-tree
will be traversed multiple times) and then add/subtract the frequen-
cies of the top-k terms in different regions to obtain the terms which
have the maximum frequencies combined.

Proposed approach: It is more efficient to compute the multiple
regions kFST in a single traversal of the R-Tree. The case where the
kFST contains only included regions is simple: to find terms which
are popular in all these areas we add the term frequencies for STLs
belonging to these regions. The more interesting case is when the
kFST contains excluded regions. If a term t is found in one of the
excluded regions’ STL, its score is penalized by subtracting t’s fre-
quency in that STL. Furthermore, the threshold calculation is also
affected. For the RA algorithm, finding t in the excluded region
adds zero to the threshold (since we subtract, this is the highest
value from the excluded STL). Similarly, for the NRA the tops
value for this particular STL would be zero (which is the maximum
possible value for any of the unseen terms in that list).

Consider the example in Figure 2 assuming that R3 is an in-
cluded region while R4 is an excluded region. At the first itera-
tion, RA accesses the first position in each STL, i.e., terms t1 and
t2. RA finds these terms in all STLs and computes their scores:
fRQ(t1) = 3 − 2 = 1 and fRQ(t2) = 3 − 1 = 2. The θ value at
this point is 3+0 = 3. The algorithm proceeds and scans the terms
at the second position, t4 and t2. The score of t4 is 3− 1 = 2. At
this point, the top-2 terms are t4 and t2 (ties are broken arbitrarily).
The θ value at position 2 is 3 + 0 = 3 which is higher than the
frequencies of t4 and t2. At the next position we see no new terms
but θ becomes 2 + 0 = 2 which is no higher than the frequencies
of t4 and t2. RA ends and t4 and t2 are the top-2 terms.

The detailed modifications needed so that RA-STL (Algorithm
3) and NRA-STL (Algorithm 4) work for multiple regions appear
in Appendix B. We denote the multi-region algorithm variants by
prepending the “MR-” prefix, e.g., MR-RA-STL-Li.

7. EXPERIMENTAL EVALUATION
We proceed with the experimental evaluation results. Table 4

depicts the name convention used for the algorithms presented in
the experiments (where x refers to the kind of STLs used).

7.1 Setup
All experiments are performed on a 3.4GHz Intel Core i7-3770

CPU, 16GB RAM machine running Windows 10 OS.
Datasets: For our experiments, we crawled 15,124,195 geo-

tagged, english-based tweets using the Twitter streaming API [4].
The temporal domain covered two years (2012, 2013) while the
spatial domain was the whole world. We removed the stop key-
words from the tweet text to get meaningful top-k terms. After
removing the stop keywords, each tweet has 9 terms on average.
We term this as the 15M dataset. To measure scalability perfor-
mance we also used two artificial datasets that had 50M and 100M
tweets. These datasets have the same temporal domain as the 15M
dataset; to create the 50M and 100M datasets, for each real tweet
we added 4 and 8 (respectively) artificial tweets by changing the
original tweet’s geolocation .

Index Structure: All tweets in each dataset are indexed by an
R-tree. The page (node) size is set to 8KB which corresponds to
a maximum of 100 entries; the average fanout factor f is 70. We
store the STLs of the R-tree nodes in a column family using Cas-
sandra 2.0.5. To improve the efficiency of the threshold algorithms
(both RA and NRA), we divide each STL into pages of size 250
entries and store each STL page as a separate row in the column
family. The row key is the concatenation of the STL identifier and
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Figure 8: Estimated and Actual average number of STLs involved
in the top-k calculation for different query region selectivities for
the 15M dataset.

Algorithm * Description
NRA-STL-x Sequential access in STL-x
RA-STL-x Random access in STL-x

MR-NRA-STL-x Multi-Region NRA-STL-x
MR-RA-STL-x Multi-Region RA-STL-x

RTreeScan Baseline 1
POSTGIS Baseline 2

* x = L or LI or Li or li

Table 4: List of Algorithms.

the page index. Furthermore, to facilitate random access on each
STL (RA algorithm), we store the terms of a given STL in a sep-
arate column family. Here, each term is stored as a separate row,
where the row key is the concatenation of the STL identifier and
the term. The value is the frequency of that term in this STL.

In the first baseline method (RTreeScan), we use R-tree to find
the tweets that are inside the query region; their term aggregation
is performed very fast using a hash map (in main memory).

In the second baseline method (POSTGIS), we use the PostGIS
[2] spatial database extender to index the tweets. We first run a
query to find the tweets that are inside the query region and then
we aggregate their term frequency using a hash map residing in
main memory.

Query Distribution: For simplicity, the query regions used in
the experiments have square faces. The term “query selectivity"
denotes the fraction of the total dataset area (or volume) covered
by the query. Our datasets cover the total area of the earth, i.e.,
196.9 million sq. miles. Hence, our smallest selectivity, which is
0.00001 corresponds to 1970 sq. miles, and so on. For the smaller
dataset of 15M tweets, this corresponds to an average of 150 tweets
per query, while for our largest selectivity of 0.05 there are about
750,000 tweets on average. For the larger datasets 50M and 100M,
our smallest selectivity 0.00001 has 500 and 1000 and our largest
selectivity 0.05 has 2500,000 and 5000000 respectively. For each
query selectivity the results are averaged over 100 different queries
with that selectivity. The default value of k is set to 10 in all ex-
periments except Figure 15 where we consider queries with various
values of k.

7.2 Model Validation
We first compare the theoretically estimated number of STLs in-

volved in a query (
∑h
i=1mi, where mi is calculated by Algorithm

7) to the actual number of STLs (averaged over multiple queries).
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Figure 9: Calculating the Zipf parameter for different levels of the R-tree (15M dataset).
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Figure 10: Estimated λ and average stopping points of RA-STL-
Li and NRA-STL-Li for different query region selectivities (15M
dataset).
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Figure 11: Space requirements (15M dataset).

Figure 8 shows the estimated value and the average number of
STL/nodes calculated by Algorithm 2 for different query selectivi-
ties using the 15M dataset (this algorithm is used by both RA and
NRA). As expected, the number of STLs increases with the query
selectivity. Overall the model behaves well (slightly underestimat-
ing the actual value); this is to be expected because our analysis
assumes uniform distribution for the object locations, while in prac-
tice, the tweet locations follow a skewed distribution.

As mentioned in Section 5, our model assumes that the terms in
the tweets follow the Zipf distribution and that this also holds for
the tweets at each node of the R-tree. Figure 9 depicts the average
term frequency vs. rank (p) for the STLs at different levels of the
R-tree (level 1 corresponds to the leaf nodes) for the 15M dataset.
The slope of each graph corresponds to the Zipf parameter (c) at
each level. As it can be seen the values of c are similar across
levels (validating our assumption). For computing λ, we set the
query region Zipf parameter (cq) equal to the average c across all
levels of the R-tree.

Figure 10 shows the theoretically estimated λRA and λNRA, us-
ing Equations 9 and 10 respectively, along with the actual average
STL list length accessed by the RA-STL-Li and NRA-STL-Li al-

gorithms respectively for the 15M dataset, for various query selec-
tivities.

The estimated λRA follows closely the actual RA-STL prefix
length. We further observe that at the lower selectivities the model
slightly overestimates, because at these selectivities, the query re-
gion is small enough that it typically contains/overlaps only leaf
nodes. However, the model does not account for all partially con-
tained nodes and their terms; it thus assumes that the algorithm has
access to fewer terms than in reality. In case of RA-STL, when a
term is first encountered its exact score is calculated. If fewer terms
are seen, the chance that the threshold will be exceeded decreases.
In contrast, for higher selectivities the model slightly underesti-
mates, as the query is large enough to contain inner nodes. Our
model assumes that an inner node is contained as long as the query
region exceeds the inner node size; in that case the model uses a
higher level STL. A higher level STL contains terms with higher
frequencies dominating the top-k calculation. In reality however,
there may be smaller inner nodes not fully contained by the query
and thus the RA-STL will access children nodes and involve many
lower level STLs. As a result, the top-k calculation finishes later
than what the model estimates.

As expected, the estimated λNRA overestimated the list prefix
length, because Equation 10 makes a conservative assumption that
a term appears in one STL while in practice, it typically appears in
multiple STLs. Nevertheless, the estimated λNRA closely follows
the trend of the actual accessed length.

For the rest of the experiments with the 15M dataset, we pick
λRA = λNRA = 220, which is given by Equation 10 for λNRA
for middle selectivities. We know that this is an overestimation of
the list length for both RA and NRA, so this choice ensures that
there is low probability of needing to access more than 220 terms
for any list. Figures 12(a),(b) show the query processing time for
different values of λ for RA-STL-Li and NRA-STL-Li respectively,
using query selectivity 0.002 for the 15M dataset. In both cases
the performance initially improves drastically as λ increases and
stabilizes when λ > 220. Similarly, for the 50M and 100M dataset,
we chose λ as 430 and 650 respectively.

7.3 STL Approaches Comparison
Index Size: Figure 11 depicts the space requirements for the four
approaches (STL-L, STL-LI, STL-Li and STL-li) and the two base-
lines, RTreeScan and POSTGIS for the 15M dataset. For each
method, we show the space needed by the R-tree, the STLs and
Term index (the Term index is the Cassandra column store used
to facilitate the random accesses (RA); hence it is not needed for
the NRA algorithms). Since the R-tree is identical in all STL ap-
proaches, its size is the same; this is also the space used by RTreeS-
can. The POSTGIS approach uses the GiST index for indexing
the data. The STL-L approach stores STLs only for the leaf level
nodes, thus it requires the least STL storage among all STL-based



(a) RA-STL-Li (b) NRA-STL-Li

Figure 12: Avg. processing time for different STL sizes (λ) for query selectivity of 0.002 (15M dataset).

Index Structure 15 M 50 M 100 M
STL-Li 3.45 19.64 42.76

RTreeScan 2.13 8.97 19.54
POSTGIS 5.64 22.36 50.79

Table 5: Index size for various datasets (in GB).

approaches. At the other end, the STL-LI approach stores full STLs
for all nodes and thus uses the largest space. STL-Li replaces the
inner lists with partial STLs saving on the STL space; STL-li uses
the least space. The Term index space relates to the terms in the
STLs used hence it behaves similarly to the STL space. Table 5
shows the space required for STL-Li, RTreeScan and POSTGIS for
various datasets for spatio-temporal queries.
kFST Query Processing: Figures 13a and 13b present the single-
region kFST query performance comparison for the four approaches
(STL-L, STL-LI, STL-Li and STL-li) using the RA and NRA algo-
rithms respectively for the 15M dataset. In all cases, the query time
increases with the query selectivity. Note that, when the query re-
gion is less than the MBR size of level 2 nodes, only leaf level STLs
are involved in RA-STL-x and NRA-STL-x. For these selectivities
all four approaches perform similarly. As the query size increases,
some leaf level STLs are replaced by the inner level STL(s) for
the STL-Li, STL-li and STL-LI approaches which start to perform
better than STL-L. As expected, the full list case (STL-LI) has the
best performance; nevertheless, both partial list approaches (STL-
Li and STL-li) show similar performance. This is because with
λ = 220 the partial STLs are sufficient to answer the query regions
greater than the size of the level 2 nodes (as Figure 12 also showed).
Among the partial list approaches, STL-li is slightly slower than
STL-Li since it has to compute some leaf lists from scratch.

Given the space and query time trade-offs, the STL-Li is a good
compromise for both the RA and NRA algorithms (offering space
close to the minimum of STL-L and query times close to the STL-
LI). Next, we compare the NRA-STL-Li and RA-STL-Li with RTreeS-
can and POSTGIS the 15M dataset. The results appear in Figure
14 (note the logarithmic scale on the query time). The NRA-STL-
Li consistently outperforms the other methods. Interestingly, the
RA-STL-Li is slower than the RTreeScan baseline; the reason is
the many random accesses it performs as the number of STLs in-
creases.

We also examined the sensitivity of our approach (NRA-STL-
Li) to the value of k. As discussed in Section 4.3, the partial lists
assume that k is known in advance. In Figure 15 we assume that λ
was computed using k = 10 and examine the behavior of the NRA-
STL-Li algorithm when the query uses different k (varied from 5
to 20) on the 15M dataset. As it can be seen from the Figure, the
partial list algorithm is faster that the baselines for k up to 15.
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Figure 13: Avg. processing time for different query selectivities
(15M dataset).

7.4 Spatio-Temporal Query Experiments
We proceed with a comparison between NRA-STL-Li, RtreeS-

can for the (more general) spatio-temporal queries. The tempo-
ral dimension of the dataset spans over 2 years. To create spatio-
temporal queries, we first varied the temporal range from 1 hour
(corresponding to selectivity 0.00001) to 1 month (for 0.05) and
then computed the needed spatial selectivity so that the total selec-
tivity is the value shown in Figure 16. Please note that We run this
experiment on the 100M dataset. Like our previous experiments,
NRA-STL-Li outperforms both RTreeScan and POSTGIS.

Scalability: We also examine how our algorithm scales. In this
experiment, we use all datasets 15M, 50M and 100M tweets and we
compared RTreeScan, POSTGIS and NRA-STL-Li using a spatio-
temporal query (constructed as above) with selectivity of 0.002.
The result is shown in Figure 17. NRA-STL-Li outperforms both
baselines (note the log scale). As we increase the size of the dataset
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Figure 14: Comparing RA-STL-Li, NRA-STL-Li, POSTGIS and
RTreeScan for different selectivity of query regions (15M dataset).
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Figure 15: Query performance for different values of k when STLs
were created using k=10 (15M dataset).

for the same selectivity, the algorithms have to process more and
more data. Hence the query time for all the algorithms increases.

7.5 Discussion
From the experiments presented above we come to the following

conclusions: Among the approaches presented, including the base-
lines RTreeScan and POSTGIS, the best performance (considering
query time and space requirements) is given by the NRA-STL-Li
algorithm. Here is an ordering of the algorithms from the fastest to
the slowest:

NRA-STL-Li > NRA-STL-L > POSTGIS > RTreeScan > RA-
STL-Li > RA-STL-L

Note that all the NRA-STL-x algorithms are faster compared to
the RA-STL-x algorithms. NRA is faster because our data resides
on the disk, which is at least an order of magnitude slower to access
randomly, and the depth of access by NRA is only around 2 times
more on average. RA could be faster in different scenarios.

Further, the performance advantage of the partial STL-based al-
gorithms (NRA-STL-Li, RA-STL-Li), incurs very small space over-
head as compared to the algorithms that do not maintain any in-
ternal node STLs (NRA-STL-L, RA-STL-L, RTreeScan) and the
POSTGIS approach.

We also found (see Appendix C) that the Multi-Region version
of the algorithms MR-RA-STLs-x and MR-NRA-STLs-x perform
better compared to the versions where we run RA-STL-x and NRA-
STLs-x multiple times, as they traverse the R-tree more efficiently.

As an anecdotal evidence for the usefulness of our system from a
user’s perspective, we ran a spatio-temporal query which covers the
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Figure 16: Comparing NRA-STL-Li, RTreeScan and POSTGIS for
different spatio-temporal query selectivities (100M dataset).
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Figure 17: Comparing performance of NRA-STL-Li, RTreeScan
and POSTGIS for different dataset sizes and selectivity 0.002.

Catalan region in Spain during the month of October 2013. Among
the top-10 frequent tweet terms were terms like ‘barcelona’, ‘madrid’,
‘xavi’, ‘fcbarcelona’. These directly correspond to the famous el
clasico soccer match between Real Madrid and FC Barcelona, which
was held on 26 October, 2013.
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8. CONCLUSIONS AND FUTURE WORK
We proposed an indexing scheme that adds sorted term lists (STLs)

for fast answering of top-k most frequent term queries over spatio-
temporal ranges. Our approach uses a theoretical model to re-
duce the size of the STLs without sacrificing the query time per-
formance. We presented RA and NRA algorithms that operate on
top of the proposed index structures. The NRA algorithm with par-
tial STLs was found to have the best performance (when consider-
ing query time and space). We also presented efficient multi-region
versions of the algorithms. As future work, we plan to enhance our
STL approach with a distributed threshold algorithm (like [8]) so as
to process even larger volumes of data. Further, we will study how
the proposed indexes can handle high-throughput streaming data.
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APPENDIX
A. JUSTIFICATION FOR CHOICE OF PRE-

COMPUTED PREFIX LENGTH
Note that in Equations 9 and 10 we computed the expected pre-

fix length E(p). We will now justify that setting the precomputed
prefix length λ to E(p) is an effective choice. Let p be a vari-
able representing the prefix length that a query accesses in an STL.
Figure 18a shows the distribution of p for our 15M tweets dataset
for query selectivity of 0.002 across all accessed STLs. For our
theoretical analysis, we assume that p follows the binomial dis-
tribution, which has a similar shape; that is, we have Prob(p) =(
n
p

)
·P p(1−P )n−p, where n and P are parameters of the binomial

distribution, which has mean E(p) = nP .

(a) Distribution of accessed prefix lengths

(b) Cost vs. precomputed prefix length

Figure 18: Trade-off between accessed prefix length and execution
cost (time).

The expected cost Cost(λ) of accessing a partial STL has two



components: (i) the cost of RA on the precomputed prefix length,
which is a · p, where a is a constant (representing the average cost
of accessing an item in the list) and p is the prefix length; (ii) a · f ·
(p−λ) for the access to the f children of the involved nodes when
p > λ terms are needed. Hence,

Cost(λ) = a ·
∑
p=1..l

(Prob(p) · p)+

a · f ·
∑

p=(λ+1)..l

(Prob(p) · (p− λ))
(11)

Note that λ takes values from 0 to l, where l is the maximum
length of the STL if we would store all its terms. To plot the cost
function, we select the following concrete values: a = 1 (its choice
does not affect the shape), f = 100 (which is a typical branching
factor for R-trees, which we also use in our experiments; increasing
it would make the graph more steep), and l = 450 (increasing
further has no effect as the probability is almost 0 for larger values).
For the binomial, we used P = 0.5, n = 400, so E(p) = 200
(different values of P make the binomial curve wider or narrower).
Figure 18b shows that there is a clear elbow at λ = 200, which
is also the mean prefix length E(p). Equations 9 and 10 indeed
compute E(p) using the properties of the R-tree and the terms’
distribution. Figure 12 shows experimentally the same behavior of
the cost (time) as a function of λ.

B. ALGORITHMIC MODIFICATIONS FOR
MULTI-REGION QUERIES

The modifications needed so that RA-STL (Algorithm 3) works
for multiple regions appear in Table 6. The original line 8 needs
to run once for each region in {S+, S−}; hence we replace it with
8(a-d). The calculation of θ in line 9 will also have to be modified
to accommodate Included and Excluded regions. Line 14 which
computes the individual term frequency for leaves should run once
for each of the query regions (replaced by 14(a-b)). The calculation
of the term frequency f depends on the type of STL the term comes
from; thus line 20 is changed accordingly (opi is an addition opera-
tion for STLs from Included Regions and subtraction operation for
Excluded Regions).

The following modifications are needed on NRA-STL (Algo-
rithm 4) to support multiple region kFST queries. Line 8 needs to
run once for each region in the region list. It is thus replaced with
8(a-d) as shown in Table 7. In Line 9, the calculation of tops[n]
will also have to be modified to accommodate the Included and Ex-
cluded regions. If the node is in an Included region, its value will
be the frequency of the term, otherwise, it will be 0. In lines 16
and 18, we have to modify the calculation of the term frequency f
for the each region in the list depending on which list the region
belongs to (we add for an Included Region and subtract for and
Excluded Region as shown).

Replace line 8 by:
8(a): for each RQ in {S+, S−} do
8(b): te ← GetTermEntry(n,RQ, i)
8(c): if te is not null then
8(d): break
Replace line 9 by:
9(a): if n in S+ then θ ← θ + te.F req
9(b): else if n in S− then θ ← θ + 0
Replace line 14 by:
14(a): for each RQ in {S+, S−} do
14(b): f ′ ← f ′ + CompTermFreq(n, te, RQ)
Replace line 20 by:
20(a): f ′ ← f ′(opi)fRQ∩R′

n
(t)

Table 6: Changes to Random Access (RA) for Multi-Region kFST.

Replace line 8 by:
8(a): for each RQ in {S+, S−} do
8(b): te ← GetTermEntry(n,RQ, i)
8(c): if te is not null then
8(d): break
Replace line 9 by:
9(a): if n in S+ then tops[n]← te.F req
9(b): else if n in S− then tops[n]← 0
Replace line 16 by:
16(a): tke.partialScore← tke.partialScore (opi)

CompTermFreq(te, RQ)
Replace line 18 by:
18(a): tke.partialScore← tke.partialScore (opi) te.F req

Table 7: Changes to Non-Random Access (NRA) for Multi-Region
kFST.

C. MULTI-REGION QUERY EXPERIMENTS
We proceed with the evaluation of the multi-region kFST algo-

rithms. In these experiments we used the 15M dataset. Specifically,
we compare the “straight-forward approach” which uses single-
region algorithms as modules (denoted as RA-STL-Li and NRA-
STL-Li in this experiment), and the optimized multi-region ver-
sions (MR-RA-STL-Li and MR-NRA-STL-Li). We compared the
algorithms for two regions (both ‘included’), where the “straight-
forward” approach runs RA-STL-Li or NRA-STL-Li once for each
region. Figures 19a and 19b show that the Multi-Region algorithms
perform better. This is because a single region algorithm has to run
multiple times (in this case twice) and hence traverse the R-tree
multiple times. Further, the NRA variants perform better than the
RA, as is the case for single-region queries.

Next we consider queries when both ‘included’ and ‘excluded’
regions are present. For this experiment, given a selectivity, we
randomly select 2 regions as included and another 2 regions as ex-
cluded. Figure 20a and Figure 20b depict the comparisons. The
MR-RA-STL-Li and MR-NRA-STL-Li approaches are again faster.

In terms of the number of MBR accesses, if a single-region query
accesses n MBRs, the multi-region query accesses at most m ∗ n
MBRs, where m is the number of regions. The best scenario is
when there is very large overlap in which case it accesses close to
n MBRs (as the R-tree access paths overlap as well). In terms of
the number of STLs involved in the query, if a single region query
reads l STLs, the multi-region query reads m ∗ l STLs in the worst
case and around l in the best case (when the m regions have very
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(a) RA-STL-Li vs MR-RA-STL-Li.
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(b) NRA-STL-Li vs MR-NRA-STL-Li.

Figure 19: Multi-region query processing using ‘included’ regions.

large overlap to each other). The exact overhead depends on how
far the regions are from each other.

D. COMPARISON TO APPROXIMATE SO-
LUTIONS

We finally compare our approach with the approximate solution
of AFIA [26]. AFIA keeps k + 1 items in their materialized lists
in each grid cell. We emulate its performance by keeping only
k + 1 items in all of our STLs. The top-k algorithm is forced to
terminate if it crosses the k + 1 STL term. We then compare the
returned top-k terms with the (exact) solution that our algorithm
would provide. Figure 21 shows the average percentage of error
for the approximate approach with k = 10 (using the 15M dataset).
The error is computed as missed/k where missed corresponds to
the number of terms in the correct answer that are not included
in the approximate answer (i.e., we do not consider the position
of a term in the returned answer). The error increases with the
selectivity since the number of STLs involved in the calculation
increases, and so does the number of lists for which we have to
access beyond the k+1st term.
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(a) RA-STL-Li vs MR-RA-STL-Li
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(b) NRA-STL-Li vs MR-NRA-STL-Li

Figure 20: Multi-region query processing using ‘included’ and ‘ex-
cluded’ Regions.
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Figure 21: Percentage of error for the approximate solution using
different selectivities (15M dataset).


