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ABSTRACT OF THE DISSERTATION

Keyword Search in Structured and Semistructured Databases

by

Vagelis Hristidis

Doctor of Philosophy in Computer Science

University of California, San Diego, 2004

Professor Yannis Papakonstantinou, Chairperson

Keyword search on documents has been extensively studied by the Infor-

mation Retrieval (IR) community. However, keyword search is becoming increas-

ingly useful for structured and semistructured databases, due to the popularity of

XML and the amount of text stored in databases. Keyword queries free the user

from the requirements of knowing the database schema, the role of the keywords

and a query language (SQL, XQuery).

Providing keyword search in databases is challenging on both the semantic

and the performance levels. We view a database as a data graph, which captures

both the relational and the XML model. A result of a keyword query is a subtree

of the data graph. The factors used to rank the results are (i) the IR scores of the

attribute values of the result, (ii) the structure of the result, and (iii) the authority

flow between the result and the keywords through the data graph (inspired by

PageRank). We show how these factors interplay and how they can be combined

in meaningful ways that allow efficient execution methods.

On the performance level, we present efficient algorithms to produce all

or the top-k results of a keyword query. We study two models: the middleware

model where the system lies on top of an already operational database system to

provide keyword querying, and the dedicated system where we handle the storage

of the data and precompute various data to offer real-time response times. The

execution techniques are thoroughly experimentally evaluated. Finally, we present

a novel technique to present the results to the user.

x



Chapter I

Introduction

I.A Searching Databases vs. Searching Documents

Databases and Information Retrieval (IR) have followed distinct ways,

mainly due the fact that databases used to store only rigidly structured data

and handle rigidly structured queries, which serve the purposes of particular well-

designed applications. In contrast, IR is employed for information discovery and

primarily studies how (unstructured) documents are ranked according to their

relevance to an unstructured query (typically a set of keywords).

However, due to the increasing availability of database data, the increas-

ing popularity of XML and the increasing amount of text stored in databases, it

has become imperative to allow unstructured queries on structured and semistruc-

tured databases, in addition to documents. The most popular type of unstructured

query is keyword queries, whose success is proven by Web search engines.

Keyword search is the most popular information discovery method be-

cause the user does not need to know either a query language or the underlying

structure of the data. The search engines available today provide keyword search

on top of sets of documents. In addition to documents, a huge amount of informa-

tion is stored in databases, but no simple way is available to discover information

in them, except by using structured languages (such as XQuery or SQL) where

1
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Complaints

prodId

custId

date

comments

Products

prodId

manufacturer

model

Customers

custId

name

occupation

Figure I.1: Schema of the Complaints database.

Complaints
tupleId prodId custId date comments

c1 p121 c3232 6-30-2002 “disk crashed after just one week of
moderate use on an IBM Netvista
X41”

c2 p131 c3131 7-3-2002 “lower-end IBM Netvista caught fire,
starting apparently with disk”

c3 p131 c3143 8-3-2002 “IBM Netvista unstable with Maxtor
HD”

Products
tupleId prodId manufacturer model

p1 p121 “Maxtor” “D540X”
p2 p131 “IBM” “Netvista”
p3 p141 “Tripplite” “Smart 700VA”

Customers
tupleId custId name occupation

u1 c3232 “John Smith” “Software Engineer”
u2 c3131 “Jack Lucas” “Architect”
u3 c3143 “John Mayer” “Student”

Figure I.2: An instance of the Complaints database.

the type(s) of each keyword must be specified, as well as the types of connections

between the objects.

I.B Keyword Search in Databases

Consider a customer-service database from a large vendor of computer

equipment. Figure I.1 shows the schema of the database, while Figure I.2 shows

a possible instance of the database. For example, the table Complaints(prodId,

custId, date, comments) logs each complaint received as a tuple with an internal
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identifier of the customer who made the complaint (custId), an identifier of the

main product involved in the complaint (prodId), when the complaint was made

(date), and a free-text description of the problem reported by the customer (com-

ments). The first tuple of this table corresponds to a complaint by customer c3232

about product p121, which, corresponds to a hard drive, on June 30, 2002.

Commercial RDBMSs generally provide querying capabilities for text at-

tributes that incorporate state-of-the-art information retrieval (IR) relevance rank-

ing strategies. This search functionality requires that queries specify the exact

column or columns against which a given list of keywords is to be matched. For

example, a query:

SELECT * FROM Complaints C

WHERE CONTAINS (C.comments, ’disk crash’, 1) > 0

ORDER BY score(1) DESC

on Oracle 9.1 1 returns the rows of the Complaints table above that match the

keyword query [disk crash], sorted by their score as determined by an IR relevance-

ranking algorithm. Intuitively, the score of a tuple measures how well its comments

field matches the query [disk crash].

The requirement that queries specify the exact columns to match can

be cumbersome and inflexible from a user perspective: good answers to a keyword

query might need to be “assembled” –in perhaps unforeseen ways– by joining tuples

from multiple relations. Furthermore, even for the case when the desired results

consist of a single tuple, this approach has the drawback that the link-structured

of the graph is ignored (see Chapter VI).

In the above example, the best answer for a keyword query [maxtor on

ibm netvista] is the tuple that results from joining the first tuple in both relations

on the prodId attribute. This join correctly identifies that the complaint by cus-

tomer c3232 is about a Maxtor disk drive (from the manufacturer attribute of the

Products relation) on an IBM Netvista computer (from the comments attribute of

1http://www.oracle.com.
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Figure I.3: Data graph of the Complaints database.

the Complaints relation).

I.C Data Model

We view a database as a labeled graph, which is a model that easily

captures both relational and XML databases. Every node (object) v has a set

of attributes, which represent the relational or XML attributes for relational and

XML databases respectively. A node of the data graph corresponds to a tuple

or XML node for relational and XML databases respectively. The edges typically

correspond to primary to foreign key relationships in relational databases, although

other types of semantic connections could be used as well. In XML databases,

the edges correspond to containment or ID-IDREF edges. Figure I.3 shows the

data graph corresponding to the database instance of Figure I.2. The data graph

conforms to a schema graph (Figure I.1) as we explain in Section II.A.

I.D Result of a Keyword Query

Free-form keyword search on databases has attracted recent research in-

terest. DBXplorer [6] works on relational databases, and given a keyword query,
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it joins tuples from multiple relations in the database to identify tuple trees with

all the query keywords (“AND” semantics). All such tuple trees are the answer to

the query. BANKS [9] assumes that the database is a graph with no schema and

calculates subtrees that contain the keywords. On the other hand, Goldman et al.

[22] define the result of a keyword query to be a set of nodes, which are closest to

the set of nodes that contain the keywords.

In this text we define two different versions of the problem to cover both

approach classes. The first version is the connection-as-result problem, where we

return a list of subtrees (result-trees) of the data graph, and the second is the

single-object version, where the answer is a set of nodes of the data graph ranked

according to their relevance to the query. The reasons why we treat the single-

object as a separate case are the following. First, queries with single objects (nodes)

as results are more intuitive and common. For example, Web search engines return

single pages instead of trees of interconnected pages. Second, given that attribute

values typically contain little text, it is unlikely that all the keywords of a query

will be found in a single node. On the other hand, it is likely that all keywords

are contained in a result-tree with an adequately big size. Hence, to avoid getting

empty results often, a different approach is required.

To rank the results, we use three factors, which to the best of our knowl-

edge include all the ranking methods proposed in prior work. The first factor is

the IR score of the individual attribute values of the nodes2. We chose the at-

tribute granularity (as opposed to tuple granularity) because the attribute value

is the smallest information unit in a database and usually does not depend on

the schema design decisions. To calculate the attribute value IR scores we lever-

age state-of-the-art IR relevance-ranking functionality already present in modern

RDBMSs, which allows the generation of high quality results for free-form keyword

queries. For example, a query [disk crash on a netvista] would still match the com-

ments attribute of the first Complaints tuple of Figure I.2 with a high relevance

2In Chapter VI we assume for simplicity that every node contains only one attribute.
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score, after word stemming (so that “crash” matches “crashed”) and stop-word

elimination (so that the absence of “a” is not weighed too highly).

The second factor is the structure of the result-tree. For example, we

could define the score of a tree to be inversely proportional to its size, since smaller

trees usually denote tighter semantic connection3. Another approach is to allow an

expert to rank the schemata of the results according to their semantic values. For

example, in an enterprise database, connecting a customer and a supplier through

an order denotes a tighter connection than connecting them through a common

nation where they do business.

The third factor is the authority flow between the nodes of the data graph.

This influences the degree of association (i) among the nodes of the result-tree, and

(ii) between the nodes of the result-tree and the nodes with the keywords. The

authority flow represents the probability that starting from a node of the data

graph we will reach another node, by following the edges of the data graph (see

Section VI.A for more details). This idea in inspired by PageRank [11], which

is used by Google4 to assign a global importance to the pages of the Web. For

example, if many customers with occupation “architect” issue a complaint about

product “Netvista”, there is a high association between the keyword “architect”

and the node “Netvista”.

All factors can be applied to both versions of the problem. However, in

this text, for the connection-as-result problem we focus on ranking methods that

combine the IR scores of the individual attribute values and the structure of the

result-tree (Chapter III), which are the factors adopted by relevant work [6, 9] as

well. For the single-object version, the structure of the result-tree is trivial. Hence,

to produce a high-quality ranking of the result nodes we focus on the degree of

association between the result nodes and the nodes that contain the keywords,

applying the authority flow factor (Chapter VI).

3Notice that this factor is not applicable to the single-object version of the problem except if we assign
different importance to different types of nodes.

4http://www.google.com
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We have created online demonstrations for the connection-as-result and

single-object problems on the DBLP5 publications database available at

http://www.db.ucsd.edu/XKeyword and http://www.db.ucsd.edu/ObjectRank re-

spectively.

I.E Presentation of Results

The presentation of the results faces two key challenges that have not been

addressed by prior systems. First, the results need to be semantically meaningful

to the user. Towards this direction, XKeyword [33] associates a minimal piece

of information, called target object, to each node and displays the target objects

instead of the nodes in the results. In the DBLP demo (Figure I.4) available at

http://www.db.ucsd.edu/XKeyword, XKeyword displays target object fields such

as the paper title and conference along with a paper. In the Complaints database

example we can view every tuple as a target object.

The second challenge is to avoid overwhelming the user with a huge num-

ber of often trivial results, as is the case of DBXplorer [6], which presents all trees

that connect the keywords. In doing so, they produce a large number of trees

that contain the same pieces of information many times. For example, consider

the keyword query “Netvista Smith” and the instance of the Complaints database

shown in Figure I.5, where we only show the type and the keywords of each node.

This instance contains four results:

N1 : c1 ← p1 → c3 → u1, N2 : c1 ← p2 → c2 → u2,

N3 : c1 ← p2 → c2 → u1, N4 : c1 ← p1 → c2 → u2

(I.1)

The above results contain a form of redundancy similar to multivalued dependen-

cies [54]: we can infer N3 and N4 from N1 and N2. In that sense, N3 and N4 are

trivial, once N1 and N2 are given. Such trivial results penalize performance and

overwhelm the user.
5http://dblp.uni-trier.de/
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(a) Query page (b) Presentation as a list of results

(c) Presentation using Presentation graphs

Figure I.4: XKeyword demo

c1: complaint

[Netvista

crashed]

p
1
: product

[Maxtor D540X]

p2: product

[Toshiba L210]

c
2
: complaint

[Sudden
Reboot]

u
1
: customer

[John Smith]

u
2
: customer

[Lou Smith]

Figure I.5: Multivalued dependencies in results
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Figure I.6: Presentation graph

XKeyword uses a novel presentation method, where the results are grouped

by their structure (schema). For every result schema s, a presentation graph is gen-

erated which contains all results of type s. At any point only a subset of the graph

is shown (see Figure I.4 (c)), as it is formulated by various navigation actions of

the user. Initially the user sees one result-tree r0. By clicking on a node of in-

terest the graph is expanded to display more nodes of the same type that belong

to result-trees that contain as many as possible of the other nodes of r0. Towards

this purpose we define a minimal expansion concept. For example, clicking on

the outlined paper node of Figure I.4 (c) displays all nodes of papers written by

“Vasilis” and for which there is a paper of “Yannis” cited by them, as shown in

Figure I.6.

I.F Efficient Execution

As mentioned in Section I.D, this text tackles two problem instances:

the connection-as-result problem where the IR scores of the attribute values along

with the tree structured are used to rank the results, and the single-object problem

where the random walk (authority flow) principles are used to rank the results.
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Figure I.7: Architecture of connection-as-result system [30].

Hence we study methods to optimize the execution of these problems.

I.F.1 Execution of Connection-as-Result Problem

The work on the performance level presented in this work is divided into

two classes. The first class [32, 30] consists of execution algorithms which operate at

a middleware level. That is, they operate on top of an already functioning database

system, and their only requirements are the existence of a full-text index on top of

the database and a querying interface to the database system. The second class [33]

of work focuses on how to store the data in order to allow efficient keyword search.

In particular, we describe methods to store XML data into relations, although the

same ideas can be applied to other data models as well.
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Execution Algorithms As we see in Figure I.7 (described in more detail in

Section III.A), the execution consists of three steps. First, the IR index of the

DBMS is queried to retrieve the locations of the keywords in the database. Second,

the Candidate Network Generator creates all possible ways to connect the keywords

using the keywords’ locations and the database schema. Each Candidate Network

(CN) corresponds to a join expression query. We present a CN Generator algorithm

which is complete (every result is produced by a CN) and non-redundant (if we

remove a CN, there is a database instance for which we miss a result). Finally,

the CNs (queries) are input to the Execution Engine which outputs a sequence of

queries to the database.

The Execution Engine module is the most challenging as we have found

that different methods are appropriate for different requirements of the query. In

particular, if we want to produce all the results (of size up to M), we have found

that the most efficient method is to submit the queries corresponding to the CNs

directly to the DBMS. Due to the nature of the problem, the CNs share join ex-

pressions. This offers an opportunity to build a set of intermediate results and

use them in the computation of multiple candidate networks. We show that the

selection of the optimal sequence of intermediate results to build is NP-complete

on the sum of the sizes of the CNs. Hence, we present a greedy algorithm that

produces an execution plan that calculates and uses intermediate results in evalu-

ating the CNs, which we show that performs very well. Finally an SQL statement

is produced for each line of the execution plan and these statements are passed to

the DBMS.

On the other hand, as is common in most IR applications, the user may

be interested only in the top-k results, since the number of results may be too big

as we discussed in Section I.E. We present and experimentally evaluate algorithms

that exploit this user behavior and efficiently produce the top ranked results for a

wide class of ranking functions.
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Data Storage The second class of optimization techniques assumes we have

control on the way the data is stored. This is particularly true in the case of

XML data, since there is not yet a standard way to store them. In this work we

study how XML data should be stored in a relational database system [10, 50,

20, 40, 16, 48, 8] to enable an efficient computation of the connections between

the keywords. XKeyword builds a set of connection relations, which precompute

particular path and tree connections on the schema graph. Connection relations

are similar to path indices [18] since they facilitate fast traversal of the database,

but also different because they can connect more than two objects and they store

the actual path between a set of target objects, which is needed in the answer of

the keyword query. A core problem is the choice of the set of connection relations

that are precomputed.

During execution, the optimizer of the Execution Engine inputs the CNs

and generates an execution plan. The key challenges of the optimizer are (a)

to decide which connection relations to use to efficiently evaluate each CN and

(b) to exploit the reusability opportunities of common subexpressions among the

CN’s (the latter is described above). Both decisions, which are NP-complete,

dramatically affect the performance as we show experimentally.

I.F.2 Execution of Single-Object Problem

Calculating the ObjectRank values in runtime is a computationally inten-

sive operation, especially given the fact that multiple users query the system. This

is resolved by precomputing an inverted index where for each keyword we have

a sorted list of the nodes with non-trivial ObjectRank for this keyword. During

run-time we employ the Threshold Algorithm [17] to efficiently combine the lists.

However, our approach induces the cost of precomputing and storing the inverted

index. Regarding the space requirements, notice that the number of keywords of a

database is typically limited, and much less than the number of users in a person-

alized search system [36]. Furthermore, we do not store nodes with ObjectRank
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below a threshold value (chosen by the system administrator), which offers a space

versus precision tradeoff. In Section VI.E.2 we show that the index size is small

relative to the database size for two bibliographic databases.

Regarding the index computation, we present and experimentally evalu-

ate two classes of optimizations. First, we exploit the structural properties of the

database graph. For example, if we know that the objects of a subgraph of the

schema form a Directed Acyclic Graph (DAG), then given a topological sort of the

DAG, there is an efficient straightforward one-pass ObjectRank evaluation. We

extend the DAG case by providing an algorithm that exploits the efficient evalu-

ation for DAGs in the case where a graph is “almost” a DAG in the sense that

it contains a large DAG subgraph. In particular, given a graph G with n nodes,

which is reduced to a DAG by removing a small subset of m nodes, we present an

algorithm which reduces the authority calculation into a system of m equations - as

opposed to the usual system of n equations. Furthermore, we present optimization

techniques when the data graph has a small vertex cover, or if it can be split into

a set of subgraphs and the connections between these subgraphs form a DAG.

Second, notice that the naive approach would be to calculate each keyword-

specific ObjectRank separately. We have found that it is substantially more ef-

ficient to first calculate the global ObjectRank, and use these scores as initial

values for the keyword-specific computations. This accelerates convergence, since

in general, objects with high global ObjectRank, also have high keyword-specific

ObjectRanks. Furthermore, we show how storing a prefix of the inverted lists

allows the faster calculation of the ObjectRanks of all nodes.

I.G Thesis Overview

Chapter II presents the data model and formalizes the problem. Chap-

ter III presents algorithms to answer keyword queries when the system is a mid-

dleware on top of an already operational database. Then, Chapter IV describes
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methods to present the results to a user in a meaningful way. Chapter V shows how

we can store XML data in a relational database system to allow efficient keyword

querying. Then, Chapter VI discusses in detail the authority flow factor. Finally,

we conclude and present future work in Chapter VII.



Chapter II

Definition of Result

This chapter presents the data model and defines the solution to a key-

word query. In particular, Section II.A describes our data model. Then, Sec-

tion II.B formally defines the problem. Sections II.C and II.D describe the user

criteria used to rank the results and the factors to implement these criteria on the

database. Finally Section II.F presents related work.

II.A Data Model

We view a database as a labeled graph, which is a model that easily

captures both relational and XML databases. The data graph D(VD, ED) is a

labeled directed graph where every node (referred as tuple in Chapter III where

we focus on relational data, and object in Chapter VI) v has a label λ(v), a nodeid

and a set of attributes. These attributes correspond to relational or XML attributes

for relational or XML databases respectively. Notice that we omit the primary and

foreign key attributes on the data graph, since their meaning is captured by the

edges. For example in the data graph of Figure I.3, node p1 has label Product and

attributes manufacturer and model. Each attribute contains a list of keywords.

For example, attribute occupation of node u1 contains the keyword list “Software,

Engineer”. In Chapter VI, we simplify by merging all attribute keyword lists of

each node into a single set of keyword, since we only rank according to the link-

15
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structure of the data graph.

One may assume richer semantics by including the metadata of a node

in the list of keywords. For example, the metadata “Product”, “manufacturer”,

“model” could be included in the keywords of node p1. The specifics of modeling

the metadata of a node are orthogonal to this work and will be neglected in the

rest of the text.

Each edge e from u to v is labeled with its role λ(e) (we overload λ)

and represents a relationship between u and v. For example, every “Product” to

“Complaint” edge of Figure I.3 has the label “has complaint”. When the role is

evident and uniquely defined from the labels of u and v, we omit the edge label.

For simplicity we will assume that there are no parallel edges and we will often

denote an edge e from u to v as “u → v”.

The schema graph G(VG, EG) (Figure I.1) is a directed graph that de-

scribes the structure of the data graph D. Every node has an associated label.

Each edge is labeled with a role, which may be omitted, as discussed above for

data graph edge labels. We say that a data graph D(VD, ED) conforms to a schema

graph G(VG, EG) if there is a unique assignment µ such that:

1. for every node v ∈ VD there is a node µ(v) ∈ VG such that λ(v) = λ(µ(v));

2. for every edge e ∈ ED from node u to node v there is an edge µ(e) ∈ EG

that goes from µ(u) to µ(v) and λ(e) = λ(µ(e)).

For relational databases, where we store the data for our prototypes and

experiments, each node s of the schema graph corresponds to a relation R and

each edge to a primary to foreign key relationship.

II.B Problem Definition

Given a data graph D, we define a node-tree T as a subtree of D. The

size of a node-tree is the number of nodes it contains. For relational databases, a

node-tree corresponds to a joining tree of tuples, which is defined as follows.
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Figure II.1: A many-to-many relationship

Definition 1 (Joining tree of tuples) Given a schema graph G for a database,

a joining tree of tuples T is a tree of tuples where each edge (ti, tj) in T , where

ti ∈ Ri and tj ∈ Rj, satisfies two properties: (1) (Ri, Rj) ∈ G, and (2) ti ⊲⊳ tj ∈

Ri ⊲⊳ Rj. Also, no tuple t is contained more than once in T . The size(T ) of a

joining tree T is the number of tuples in T .

A keyword query is a list of keywords Q = [w1, . . . , wm]. The result for

such a query is a list of node-trees T (which we call result-trees) ordered by their

Score(T,Q) score for the query, where Score(T,Q) is discussed below. (Ties are

broken arbitrarily.) We require that any node-tree T in a query result be minimal:

if a node t with zero score is removed from T , then the nodes remaining in T are

“disconnected” and do not form a tree. In other words, T cannot have a leaf node

with zero score.

A top-k keyword query is a keyword query where only the first k results

are returned to the user. As an example, for a choice of ranking function Score

the results for a top-3 query [Netvista Maxtor] over our Complaints database of

Figure I.3 could be (1) c3; (2) p2 → c3; and (3) p1 → c1. Finally, we do not allow

any node to appear more than once in a node-tree.

If there is a many-to-many relationship between two nodes (relations for

relational databases) of the schema graph, then the result-trees could have an

arbitrarily big size, which is only data bound. Figure II.1 shows an extreme case
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where there is a many-to-many relationship between two relations R,S. There

is a foreign to primary key relationship from Q to R and from Q to S on the

homonymous attributes. Suppose that attribute values c1 and dn contain the two

keywords of a query. The joining tree of tuples r1 ⊲⊳ q1 ⊲⊳ s1 ⊲⊳ q2 ⊲⊳ r2 ⊲⊳ · · · ⊲⊳

rk ⊲⊳ q2k−1 ⊲⊳ sk ⊲⊳ q2k ⊲⊳ · · · ⊲⊳ rn ⊲⊳ q2n−1 ⊲⊳ sn uses all tuples from all three

relations, as shown by the arrows in Figure II.1. So we see that the size of the

joining tree of tuples can only be bound by the dataset when there are many-to-

many relationships. Hence, we typically limit the maximum size M of a result-tree

to bound the total number of results.

An interesting special case arises for M = 1, that is, when the results

are single nodes. This is defined as a separate sub-problem for two reasons: First,

queries with single objects (nodes) as results are more intuitive and common. For

example, Web search engines return single pages instead of trees of interconnected

pages. Second, given that attribute values typically contain little text, it is unlikely

that all the keywords of a query will be found in a single node. On the other hand,

it is likely that all keywords are contained in a result-tree with an adequately big

size. Hence, to avoid getting empty results often, a different approach is required

when M = 1. We call this version of the problem single-object keyword search,

which is discussed in more detail in Chapter VI.

The problem version for M > 1 is called connection-as-result keyword

search, because the actual connections determine the score of a result. The key

challenge of this version is how to find the best possible ways to associate nodes

that contain subsets of the keywords of the query, in order to get a result-tree

that constitutes a meaningful answer to the query. This problem is the focus of

Chapters III-V.

Notice that this text focuses on databases that conform to a schema.

However, most of the ranking discussions of this chapter apply to semistructured

and unstructured databases as well.
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II.C Ranking Criteria

The ranking of a result-tree is subject to the criteria of every user. For

example in a complaints database (Figure I.1), a user may want to rank product-

complaint connections according to how related the nodes are to the keywords of

the query, or according to the global importance of the products in the database

and so on. We believe that the following criteria are close to the criteria that a

typical user would have in mind:

Global Importance. Every node in a database can be assigned a global impor-

tance for a specific application. For example in a complaints database, we could

assign to every customer an importance proportional to their amount of spending.

On the other hand, in a publications database, the global importance of every

paper is the amount of authority flowing from other papers through citation edges

(see Chapter VI), similarly to the calculation of PageRank [11] for Web pages.

Relevance to Keywords. Every node u can be relevant to the keywords of the

query in two ways. First, u may contain some of the keywords, or more generally

be relevant to the keywords according to an Information Retrieval (IR) module,

which may consider stemming, synonyms and so on. This way corresponds to

the IR attribute value scores described below. Second, u may be connected to

nodes relevant to the keywords of the query. This relevance may be captured by

the probability that a random surfer of the data graph starting with the nodes

relevant to the keywords will reach u (Chapter VI).

Association between Nodes of Result-Tree. The score of a result-tree T is

higher if there is a tight semantic association between its nodes. The tightness

of this association can be defined either using only the edges of T or using the

whole data graph. The first approach [32, 6, 33, 30] is more appropriate for the

connection-as-result problem, because the actual structure of the result-tree is
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ranked. For example in a publications database, suppose that for the keyword

query [w1, w2] there are three result-trees paperw1

1 → paper2 → paperw2

3 , paperw1

1 →

paper4 → paperw2

5 , paperw1

1 → paper6 → paperw2

5 where the superscript w denotes

the containment of keyword w. Then, according to the first approach, all result-

trees receive the same score since they have the same structure. However, according

to the second approach the last two result-trees receive a higher score because there

is a tighter connection between paper1 and paper4 (through paper4, paper6) than

between paper1 and paper3 (only through paper3). A combination of the two

approaches is also possible.

Specificity. Typically a user prefers results that are specifically relevant to the

keywords as opposed to results that are relevant to a wide range of topics. The

specificity criterion can be included in the IR score of the attribute values ex-

plained below. Furthermore, in XRANK [26] the specificity is measured using a

decay factor proportional to the distance in terms of containing subelements of an

XML element from a keyword. The specificity criterion can staightforwardly be

integrated in our framework and is ignored in the rest of the text for simplicity

and space constraint reasons.

II.D Ranking Factors

Section II.C presented the criteria that a user can use to customize his/her

ranking. However, these criteria are abstract and cannot be straightforwardly

applied to the data graph to answer a keyword query. This section presents more

primitive ranking factors which can be combined to implement the ranking criteria

of Section II.C. To the best of our knowledge, these factors include all the ranking

methods proposed in prior work [22, 9, 6, 26]. The ranking factors are the following.
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IR score of attribute values. The first factor is the IR score of the individual

attribute values of the nodes1. We chose the attribute granularity (as opposed to

tuple granularity) because the attribute value is the smallest information unit in a

database and usually does not depend on the schema design decisions. To calcu-

late the attribute value IR scores we leverage state-of-the-art IR relevance-ranking

functionality already present in modern RDBMSs, which allows the generation of

high quality results for free-form keyword queries. For example, a query [disk crash

on a netvista] would still match the comments attribute of the first Complaints tu-

ple of Figure I.2 with a high relevance score, after word stemming (so that “crash”

matches “crashed”) and stop-word elimination (so that the absence of “a” is not

weighed too highly).

The functions used are traditional IR functions [47] which use factors like

term frequency (tf), inverse document frequency (idf), document length (dl) and

others. As an example, a state-of-the-art IR definition for a single-attribute scoring

function Score is as follows [51]:

Score(ai, Q) =
∑

w∈Q∩ai

1 + ln(1 + ln(tf))

(1 − s) + s dl
avdl

· ln
N + 1

df
(II.1)

where, for a word w, tf is the frequency of w in ai, df is the number of tuples in

ai’s relation with word w in this attribute, dl is the size of ai in characters, avdl

is the average attribute-value size, N is the total number of tuples in ai’s relation,

and s is a constant (usually 0.2).

Structure of Result-Tree. The second factor is the structure (that is, schema)

of the result-tree. One intuitive approach for many applications would be to define

the score of a tree to be inversely proportional to its size, since smaller trees

usually denote tighter semantic connection2. Another approach is to allow an

expert to rank the schemata of the results according to their semantic values. For

example, in an enterprise database, connecting a customer and a supplier through

1In Chapter VI we assume for simplicity that every node contains only one attribute.
2Notice that this factor is not applicable to the single-object problem except if we assign different

scores to different types of nodes.
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an order node denotes a tighter semantic connection than connecting them through

a common nation where they do business.

Authority Flow. The third factor reflects the influence of the link-structure of

the data graph in the ranking of the results. A typical mathematical notion to

measure the flow of authority between the nodes of the data graph is the random

walk probability of reaching a node starting from another node. This factor is

inspired by PageRank [11] and can be used to evaluate any of the criteria of

Section II.C. For example, to evaluate the global importance of a paper u in a

publications database, we calculate the probability that starting from any node of

the graph we are at u at a given time following a random outgoing edge in every

step. Similarly, to measure the relevance of u to a keywords w contained in node v,

we calculate the probability that starting from v we are at u at a given time. For

example, the “Data Cube” paper [24] is cited by many papers relevant to “OLAP”,

so it receives a top relevance ranking for the keyword query [OLAP]. Notice that the

authority flow factor is only applicable to databases where there is a natural flow

of authority between the nodes (e.g.: complaints database, publications database,

the Web and so on).

A large number of problems can be defined by considering subsets of the

ranking factors for the single-object and the connection-as-result problems. In this

text we thoroughly study two such problems, which we believe are intuitive and

provide the base to tackle other problems as well. In Chapters III-V we use the first

two ranking factors (IR scores of the attribute values and structure of result-tree)

to answer the connection-as-result problem (a subset of these factors was used in

relevant work [6, 9] as well). In Chapter VI we use the authority flow factor to

answer single-object queries, since the structure of the result-tree factor does not

make much sense for single-object results.

The attribute values’ IR score factor is applicable to both the single-

object and the connection-as-result problems, and is orthogonal to the other two
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Figure II.2: Example showing the relation between number of result-trees and

authority flow

factors. On the other hand, there is an interplay between the structure of the

result-tree and the authority flow factors as we discuss in Section II.D.1.

II.D.1 Number of Result-Trees vs. Authority Flow

In previous work, the authority flow factor [11, 29, 45] and the proximity

(structure of result tree) factor [22, 9, 6] were considered fundamentally different

ways of ranking the results of a keyword query. However, as we explain in this

section, there is interplay between them. More specifically, there is a correlation

between the authority flow between two nodes and the number of result-trees con-

taining them: When there are many result-trees connecting nodes u, v then there

is a good chance that there is high flow of authority between u, v, and inversely.

Hence, we can approximate the authority flow between u, v by counting (in a

weighted manner) the result-trees that contain them.

In order to use this approximation we must take into consideration the

probabilities of moving between adjacent nodes of the result-trees. For example

in Figure II.2, the result-tree T1 : paper1 → paper2 → paper5 represents less

authority transfer from paper1 to paper5 than T3 : paper1 → paper4 → paper6

does from paper1 to paper6. Also, T2 : paper1 → paper3 → paper5 carries no

authority from paper1 to paper5, because authority only flows along the direction

of the edges (authority only flows to cited papers and not to citing as we explain

in Chapter VI).
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However, this approximation suffers from the size error ES, which is due

to the fact that we limit the size of the result-trees to M , but authority may flow

along longer paths. In the example above, the path T4 : paper1 → paper7 →

paper8 → paper6 is ignored since it has size greater than M = 3.

Estimation of ES As we explain in Chapter VI, the authority flow is calculated

using the power method (Equation VI.1), which is an iterative method which

calculates the primary eigenvalue of a matrix A. To estimate ES we make the

following observation. Taking into account the result-trees of size up to M is

equivalent to executing the power method for M iterations. Hence, ES is equal

to the error of stopping the power method after M iterations. This problem has

been studied by the numerical linear algebra community [39], where they prove

that for positive symmetric (in the general case A is not symmetric, but no result

is available for asymmetric matrices) matrices the average relative error is ES =

O(ln(n)/k), where n is the dimension of A (number of nodes of the data graph,

n = |VD|) and k is the number of iterations (we set k = M for the estimation of

ES).

Error in ordering ES is the relative error of the authority of a specific node v

with respect to a base set consisting of the node u. However, since we are solving

a ranking problem, the ordering of the nodes with respect to a base set is more

important and not the actual values of the authorities of the nodes. That is, we

want to calculate the probability P (v, v′) = P (r(v) > r(v′)|a(v) > a(v′)) that

a node v has a higher actual authority r(.) than v′, given that v has a higher

approximate authority a(.).

To simplify the calculation of P (v, v′) we assume that (i) the absolute

error EA for both v and v′ is the same EA = ES ·(a(v)+a(v′))/2 (∼= ES ·a(v) ∼= ES ·

a(v′)), and (ii) the value of r(v) (r(v′)) is uniformly distributed between a(v)−EA

and a(v)+EA (a(v′)−EA and a(v′)+EA). Using these assumptions we can prove
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that

P (v, v′) = 0.5 +
(a(v) − a(v′))2

8 · E2
A

= 0.5 + 0.5 ·

(

a(v) − a(v′)

a(v) + a(v′)

)2

·
1

E2
S

(II.2)

Using the above value for ES, we have

P (v, v′) = 0.5 + 0.5 ·

(

a(v) − a(v′)

a(v) + a(v′)

)2

·
1

(O(ln(n)/M))2
(II.3)

From this equation it is clear that as the maximum size M of result-trees increases,

P (v, v′) goes to 1. Notice that the above analysis also applies for base sets consist-

ing of more than one nodes, since the error bound ES does not generally depend

on the size of the base set.

II.E Ranking Functions

In Section II.C we discussed what criteria can be used to customize the

ranking scheme to a specific application. Then, in Section II.D we present how

these criteria can be implemented on the data graph. However, so far we have not

presented any concrete way to combine these ranking factors to bring an order to

the results of a query. This section discusses how these factors can be combined

into meaningful ranking functions, which also allow efficient execution methods

as we show in Chapter III. In some parts of this section we switch from general

graph databases to relational databases, since they are used to store the data of

our prototypes.

The class of ranking functions described combine all criteria of Sec-

tion II.C. However, regarding the criterion of association between the nodes of

the result-trees, we only consider the structure of the result-tree and not the as-

sociation between the nodes of the result-tree through the whole data graph. The

reason we have ignored this sub-criterion in this thesis is that computing all the

pairwise association degrees between all nodes of the data graph is too expensive

to precompute and store. Furthermore, in this case the semantics become unclear

for more than two keywords.
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Before stating the ranking function for the connection-as-result problem,

which is the focus of this section, we present how previous works have addressed

the problem of ranking the results of a keyword query. Given a query Q, both

DISCOVER [32] and DBXplorer [6] assign a score to a result-tree T in the following

way:

Score(T,Q) =







1
size(T ) if T contains all words in Q

0 otherwise

Alternatively, BANKS [9] uses the following scoring scheme:3

Score(T,Q) =







fr(T ) + fn(T ) + fp(T ) if T contains all words in Q

0 otherwise

where fr(T ) measures how “related” the types (relations in relational databases)

of the nodes (tuples) of T are, fn(T ) depends on the weight of the nodes of T

–as determined by a PageRank-inspired technique–, and fp(T ) is a function of the

weight of the edges of T . XRANK [26], which ranks result-trees in XML databases,

calculates a PageRank-like score for each element of the tree and combines these

scores using an aggregation function like max or sum.

The approaches above capture the size and “structure” of a query re-

sult in the score that it is assigned, but do not leverage further the relevance-

ranking strategies developed by the IR community over the years. As discussed

in the introduction, these strategies –which were developed exactly to improve

document-ranking quality for free-form keyword queries– can naturally help im-

prove the quality of keyword query results over RDBMSs. Furthermore, modern

RDBMSs already include IR-style relevance ranking functionality over individual

text attributes, which we exploit to define our ranking scheme. Specifically, the

score that we assign to a result-tree T for a query Q relies on:

• Attribute value IR-style relevance scores Score(ai, Q) for each textual at-

tribute ai ∈ T and query Q, as determined by an IR engine at the RDBMS,

and

• A function Combine, which combines the single-attribute scores into a final

score for T and also ranks the structure of T .
3Reference [9] introduces several variations of this scheme (e.g., the node and edge terms above could

be multiplied rather than added).
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Note that this single-attribute scoring function can be easily extended to incorpo-

rate authority flow (i.e., PageRank-style “link”-based) scores [11, 26].

We now turn to the problem of combining single-attribute scores for a

result-tree T into a final score for the tree. Notice that the score for a sin-

gle node t is defined by viewing t as a tree of size 1. Let A = 〈a1, . . . , an〉

be a vector with all textual attribute values for T . We define the score of T

for Q as Score(T,Q) = Combine(Score(A,Q), size(T )), where Score(A,Q) =

〈Score(a1, Q), . . . , Score(an, Q)〉. Notice that instead of size(T ) we could use other

characteristics of T , as suited to the specifics of the application. For example, an

application expert could explicitly define a ranking of the tree structures according

to the available semanitc information. A simple definition for Combine is:

Combine(Score(A,Q), size(T )) =

∑

ai∈A Score(ai, Q)

size(T )
(II.4)

The definition for the Combine function above is a natural one, but of course other

such functions are possible. The query processing algorithms that we present in

Chapter III can handle any combining function that satisfies the following property:

Definition 2 (Node monotonicity) A combining function Combine satisfies the

node monotonicity property if, for every query Q and result-trees T and T ′ of

the same structure such that (i) T consists of nodes t1, . . . , tn while T ′ consists

of nodes t′1, . . . , t
′
n and (ii) Score(ti, Q) ≤ Score(t′i, Q) for all i, it follows that

Score(T,Q) ≤ Score(T ′, Q).

Notice that the ranking function Score(t, Q) for a single node can be arbitrary,

although in the above discussion we assume that the same formula (Equation II.4)

calculates the rank for both a single node and a tree of nodes. All ranking functions

for result-trees of which we are aware [6, 32, 9], including the one in Equation II.4,

satisfy the tuple-monotonicity property, and hence can be used with the execution

algorithms described in Chapter III.

In addition to the combining function, queries should specify whether

they have Boolean AND or OR semantics. The AND semantics assigns a score

of 0 to any result-tree that does not include all query keywords, while result-trees
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with all query keywords receive the score determined by Combine. In contrast,

the OR semantics always assigns a result-tree its score as determined by Combine,

whether the result-tree includes all query keywords or not.

In summary, the single-attribute Score function, together with the

Combine function of choice, assign relevance scores to result-trees either with AND

or with OR semantics. Chapter III outlines the architecture of our query process-

ing system, which efficiently identifies the result-trees with the highest relevance

scores for a given query.

II.F Related Work

The IR community has focused over the last few decades on improving the

quality of relevance-ranking functions for text document collections [47]. We refer

the reader to [51] for a recent survey. Our proposed query-processing system builds

on the IR work by exploiting the IR-style relevance-ranking functionality that

modern RDBMSs routinely include, typically over individual text attributes. For

example, Oracle 9i Text4 and IBM DB2 Text Information Extender5 use standard

SQL to create full text indexes on text attributes of relations. Microsoft SQL

Server 20006 also provides tools to generate full text indexes, which are stored as

files outside the database. All these systems allow users to create full-text indexes

on single attributes to then perform keyword queries. By treating these single-

attribute indexing modules as “black boxes,” our query processing system separates

itself from the peculiarities of each attribute domain or application. In effect, our

approach does not require any semantic knowledge about the database, and cleanly

separates the relevance-ranking problem for a specific database attribute –which is

performed by appropriate RDBMS modules– from the problem of combining the

individual attribute scores and identifying the top result-trees for a query.

Goldman et al. [22] tackle the single-object problem in a way similar

4http://technet.oracle.com/products/text/content.html.
5http://www.ibm.com/software/data/db2/extenders/textinformation/.
6http://msdn.microsoft.com/library/.
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to how we tackle the connection-as-result problem. A user query specifies two

sets of objects, the “Find” and the “Near” objects, which may be generated using

two separate keyword sets. The system then ranks the objects in Find according

to their distance from the objects in Near. In terms of our framework, this is

equivalent to finding all the result-trees and outputting the node of interest of the

smallest result-tree.

DBXplorer [6], DISCOVER [32] and BANKS [9] define the result of the

connection-as-result problem the same way we do. Their ranking functions have

been presented in Section II.E. Unlike DBXplorer and DISCOVER, our techniques

are not limited to Boolean-AND semantics for queries, and we can handle queries

with both AND and OR semantics. In contrast, DBXplorer and DISCOVER (as

well as BANKS) require that all query keywords appear in the tree of nodes or

tuples that are returned as the answer to a query. Furthermore, we employ ranking

techniques developed by the IR community, instead of ranking answers solely based

on the size of the result as in DBXplorer and DISCOVER.

Keyword search over XML databases has also attracted interest recently

[21, 33, 26]. Florescu et al. [21] extend XML query languages to enable keyword

search at the granularity of XML elements, which helps novice users formulate

queries. This work does not consider keyword proximity. Finally, XRANK [26]

proposes a ranking function for the XML result-trees, which combines the scores

of the individual nodes of the result-tree. The tree nodes are assigned PageRank-

style scores [11] off-line. These scores are query independent and do not incorporate

IR-style keyword relevance.



Chapter III

Efficient Execution

In this chapter we focus on relational databases, although the same tech-

niques are applicable to any labeled graph database, after it is stored in relational

format (Chapter V show how to store XML data in relational format). Hence,

we use the relational terminology (i.e., “joining tree of tuples” instead of “result-

tree”, “tuple” instead of “node”, “relation” instead of “schema node”, edge u → v

in data graph corresponds to primary to foreign key relationship from u to v) as

described in Chapter II. Furthermore, this chapter focuses on the connection-as-

result problem where the ranking is done according to two factors: the IR scores

of the attribute values of the result-tree, and the structure (schema) of the result-

tree. A key assumption we make in this chapter is that the system is a middleware

working on top of an already operational database system. Chapters V and VI

exploit precomputation opportunities to boost the performance of the system.

Section III.A presents the high-level architecture of the system. Then

Section III.B describes the Candidate Network generator algorithm. Sections III.C,

III.D present execution algorithms to retrieve all and the top-k results respectively.

Section III.E shows a detailed experimental evaluation of the system. Finally,

Section III.F discusses about related work.

30
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III.A Architecture

The architecture of our query processing system relies whenever possi-

ble on existing, unmodified RDBMS components. Specifically, our architecture

(Figure I.7) consists of the following modules:

III.A.1 IR Engine

As discussed, modern RDBMSs include IR-style text indexing function-

ality at the attribute level. The IR Engine module of our architecture exploits this

functionality to identify all database tuples that have a non-zero score for a given

query. The IR Engine relies on the IR Index, which is an inverted index that asso-

ciates each keyword that appears in the database with a list of occurrences of the

keyword; each occurrence of a keyword is recorded as a tuple-attribute pair. Our

implementation uses Oracle Text, which keeps a separate index for each relation

attribute. We combine these individual indexes to build the IR Index.1

When a query Q arrives, the IR Engine uses the IR Index to extract from

each relation R the tuple set RQ = {t ∈ R | Score(t, Q) > 0}, which consists

of the tuples of R with a non-zero score for Q. The tuples t in the tuple sets are

ranked in descending order of Score(t, Q), as required by the top-k query processing

algorithms described below.

III.A.2 Candidate Network Generator

The next module in the pipeline is the Candidate Network (CN) Genera-

tor, which receives as input the non-empty tuple sets from the IR Engine, together

with the database schema and an integer M , which specifies the maximum size of

the joining trees of tuples to be produced as we explain below. The key role of this

module is to produce CNs, which are join expressions to be used to create joining

trees of tuples that will be considered as potential answers to the query.

1In principle, we could exploit more efficient indexing schemes (e.g., text indexes at the tuple level)
as RDBMSs start to support them.
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CQ PQ CQ ← PQ CQ ← U{} → CQ CQ ← P {} → CQ

c3: 1.33 p1: 1 c3 ← p2: 1.17 c3 ← p2

c1: 0.33 p2: 1 c1 ← p1: 0.67 → c2: 1.11
c2: 0.33 c2 ← p2: 0.67

Figure III.1: CN results for the Complaints database and query [Maxtor Netvista],

where C stands for Complaints, P for Products, and U for Customers.

Specifically, a CN is a join expression that involves tuple sets plus perhaps

additional “base” database relations. We refer to a base relation R that appears

in a CN as a free tuple set and denote it as R{}. Intuitively, the free tuple sets

in a CN do not have occurrences of the query keywords, but help “connect” (via

foreign-key joins) the (non-free) tuple sets that do have non-zero scores for the

query. Each result T of a CN is thus a potential result of the keyword query. We

say that a joining tree of tuples T belongs to a CN C (T ∈ C) if there is a tree

isomorphism mapping h from the tuples of T to the tuple sets of C. For example,

in Figure I.2, (c1 ← p1) ∈ (ComplaintsQ ← ProductsQ). The input parameter M

bounds the size (in number of tuple sets, free or non-free) of the CNs that this

module produces. The details of the CN Generator are described in Section III.B.

The size of a CN is its number of tuple sets. All CNs of size 3 or lower

for the query [Maxtor Netvista] are shown in Figure I.7. Also notice that in this

section and in Figure I.7 we use the modified CN generator [30], as we explain in

Section III.B.

III.A.3 Execution Engine

The final module in the pipeline is the Execution Engine, which receives

as input a set of CNs together with the non-free tuple sets. The Execution Engine

contacts the RDBMS’s query execution engine repeatedly to identify the top-k

query results. Figure III.1 shows the joining trees of tuples produced by each CN,

together with their scores for the query [Maxtor Netvista] over our Complaints

example. The Execution Engine module is the most challenging to implement

efficiently, and is the subject of the next section.
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Figure III.2: The TPC-H schema (copied from www.tpc.org)

III.B Candidate Network Generator

There are two versions of the CN Generator. The original version [32]

focused on the AND-semantics problem and thus guaranteed that any result-tree

produced by any of the CNs contains all keywords. To do so, a new tuple set RK
i

is created for every combination K of the keywords w1 . . . wm and relation Ri. On

the other hand, the second version [30] of the CN Generator is more appropriate

for OR-semantics, although it can also be used for AND-semantics if an extra

post-filtering step is performed to check if every generated joining tree of tuples

contains all keywords. In this version, a single tuple set RQ
i is created for every

relation Ri which contains all tuples of Ri that contain any of the keywords of

query Q = [w1, .., wm], that is, RQ
i =

⋃

j∈1...m R
wj

i . We first present in detail the

algorithm for the first version and then we discuss the differences of the second

version. As a running example in this section we use the sample TPC-H2 database

of Figure III.3, which conforms to the schema of Figure III.2.

The Candidate Network Generator inputs the set of keywords w1, . . . , wm,

2www.tpc.org
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Figure III.3: Sample TPC-H database instance

the non-empty tuple sets Rw
i and the maximum CNs’ size M and outputs a com-

plete and non-redundant set of CNs. The key challenge is to avoid the generation

of redundant joining networks of tuple sets, which are defined below.

Definition 3 (Joining Network of Tuple Sets) A joining network of tuple sets

J is a tree of tuple sets where for each pair of adjacent tuple sets Rw
i , Rv

j in J there

is an an edge (Ri, Rj) in the schema graph G.

We show that the CN generation algorithm presented below is (i) com-

plete, ie., every joining tree of tuples is produced by a CN output by the algorithm,

and (ii) it does not produce any redundant CNs. Finally we give an example of

the algorithm’s execution steps.

We must ensure that the joining networks T of tuples that belong to a CN

are total (i.e., contain all keywords) and also are minimal, that is, there is no tuple

t with Score(t, Q) = 0 that can be removed without breaking the connectivity of

T . The condition that a joining network of tuple sets J must satisfy in order to

ensure that the produced joining networks of tuples j ∈ J are total is:

∀w ∈ {w1, . . . , wm},∃RK
i ∈ J, w ∈ K (III.1)

For example ORDERSSmith ⊲⊳ CUSTOMER{} ⊲⊳ ORDERS{} is not total with

respect to the keyword query “Smith, Miller”. Equation III.1 does not ensure

minimality. There are two cases when a joining network of tuples T is not minimal.
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1. A joining network of tuples T is not minimal if it has a tuple with no keywords

as a leaf. In this case we can simply remove this leaf. We carry this condition

to joining networks of tuple sets by not allowing free tuple sets as leaves. For

example

ORDERSSmith ⊲⊳ CUSTOMER{} ⊲⊳ ORDERSMiller ⊲⊳ CUSTOMER{}

is rejected since it has the free tuple set CUSTOMER{} as a leaf.

2. T is not minimal if it contains the same tuple t twice. In this case we can

collapse the two occurrences of t. We carry this condition to joining networks

of tuple sets by detecting networks that are bound to produce non-minimal

joining networks of tuples, regardless of the database instance. According

to this condition, the joining network of tuple sets J = ORDERSSmith ⊲⊳

LINEITEM{} ⊲⊳ ORDERSMiller is ruled out because the structure of J

ensures that all the produced joining networks of tuples T = oS ⊲⊳ l ⊲⊳ oM

will contain the same tuple twice. To see this suppose that oS has primary

key p(oS). It is joined with l, so l has foreign key fORDERS(l) = p(oS). l will

also join with oM ∈ ORDERSMiller. So, it is p(oM) = fORDERS(l) = p(oS).

Hence oM ≡ oS ≡ oM,S and T cannot be minimal.

Theorem 1 presents a criterion that determines when the joining net-

works of tuples produced by a joining network of tuple sets J have more than one

occurrences of a tuple.

Theorem 1 A joining network of tuples T produced by a joining network of tuple

sets J has more than one occurrences of the same tuple for every instance of the

database if and only if J contains a subgraph of the form RK—SL—RL, where

R,S are relations and there is an edge R → S in the schema graph.

Proof: First we prove that if such a subgraph exists and the edge R → S is

contained in the schema graph, then all joining networks of tuples T produced

by J have more than one occurrences of the same tuple. Due to the isomor-

phism between T and J , T contains a joining network of tuples s[r1, r2], where
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r1 ∈ RK , r2 ∈ RM and s ∈ SL. Then we know from the primary to foreign key

relationships that p(r1) = fR(s) and p(r2) = fR(s). Hence p(r1) = p(r2). So

r1 ≡ r2.

Next we prove the inverse: If all joining networks of tuples produced by J

have more than one occurrences of the same tuple for every instance of the database

then a subgraph RK—SL—RM is part of J and the edge R → S is contained in

the schema graph. Equivalently, we prove that given J , if such a subgraph does

not exist then there is an instance I of the database for which J produces a joining

network of tuples T with no multiple occurrences of the same tuple. Recall that J

is a tree. We prove inductively on the size of T that we can construct T .

Induction Base: Obviously a joining network of tuples of size 0 (i.e., with no joins)

has no multiple occurrences of the same tuple, since it consists of a single tuple.

Induction Hypothesis: We assume that we can construct a joining network of tuples

Tn ∈ Jn, where Jn is a subtree of J of size n, such that:

∀RK , RM ∈ Jn,∀ti ∈ RK ,∀tj ∈ RM , ti, tj ∈ Tn ⇒ p(ti) 6= p(tj)

That is, for every pair of tuples in Tn that belong to the same relation R, the tuples

have different primary keys.

Induction Step: Now we prove that we can construct Tn+1 ∈ Jn+1, such that the

above condition holds for Tn+1. If the new tuple r belongs to the new tuple set

RK ∈ Jn+1 that is adjacent to SL ∈ Jn and tuple s ∈ SL and s ∈ Tn, we have two

cases:

• If the schema graph contains the edge R ← S, then we just assign a fresh

value to p(r) and also set fS(r) = p(s). (Recall, we have to prove that there

is an instance where there are no multiple occurrences. So, we are free to

choose the value of r in this instance.)

• If the schema graph contains the edge R → S, then we have to set p(r) =

fS(s). Hence, if there is another tuple r′ ∈ Tn and r′ ∈ RM with p(r) = p(r′)

it must also be p(r′) = fS(s). Given that the subgraph RK—SL—RM does
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not exist, the only way that fS(s) could propagate to p(r′) is to have a chain

of tuple sets RK ∼ RK1

1 ∼ · · · ∼ RKn
n ∼ RM ∈ Jn, where the inner tuple sets

of the chain have the same single attribute as both a foreign and a primary

key. This is not allowed, since we have assumed that no set of attributes

of any relation is both a primary and a foreign key for two other relations.

Hence, p(r) 6= p(r′).

2

Hence, we conclude to the following criterion.

Criterion 1 (Pruning Condition) A CN does not contain a subtree of the form

RK—SL—RL, where R and S are relations and the schema graph has an edge

R → S.

III.B.1 Candidate Networks Generation Algorithm

The candidate network generation algorithm is shown in Figure III.4.

First, we create the tuple set graph GTS. A node RK
i is created for each non-empty

tuple set RK
i , including the free tuple sets. An edge RK

i → RL
j is added if the

schema graph G has an edge Ri → Rj. The algorithm is based on a breadth-first

traversal of GTS. We keep a queue Q of “active” joining networks of tuple sets.

In each round we pick from Q an active joining network of tuple sets J and either

(i) discard J because of the pruning condition (Criterion 1) or (ii) output J as a

CN or (iii) expand J into larger joining networks of tuple sets (and place them

in Q). We start the traversal from all tuple sets that contain a randomly selected

keyword wt ∈ {w1, . . . , wm}.

An active joining network of tuple sets C is expanded according to the

following expansion rule: A new active joining network of tuple sets is generated for

each tuple set RK
i , adjacent to C in GTS, if either RK

i is a free tuple set (K = {})

or after the addition of RK
i to C every non-free tuple set of C (including RK

i )

contributes at least one keyword that no other non-free tuple set contributes, i.e.,
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Algorithm CN Generator

Input: tuple set graph GTS , M , w1, . . . , wm

Output: set of CNs with size up to M

{

Q: queue of joining networks of tuple sets

Pick a keyword wt ∈ {w1, . . . , wm}

for each tuple set RK
i where i = 1, . . . , n and wt ∈ K do

Add joining networks of tuple sets RK
i to Q

while Q not empty do {

Get head C from Q

if C satisfies the pruning condition then ignore C

else if C satisfies the acceptance conditions then output C

/*There is no reason to extend accepted joining networks of tuple sets*/

else

for each tuple set RK
i adjacent in GTS (ignoring edge direction) to a node of C

if (K = {} OR

6 ∃RL
j ∈ (C ∪ RK

i ), L 6= {} ∧ keywords(C ∪ RK
i ) = keywords((C ∪ RK

i ) − RL
j ))

/*Expansion rule*/

and (size of C < M) then {

if RK
i is adjacent to RL

j in C = RL
j [. . . ] then C ← RK

i [RL
j [. . . ]]

Put C in Q

}

else ignore RK
i

} }

Figure III.4: Algorithm for generating the candidate networks
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6 ∃RL
j ∈ (C ∪ RK

i ), L 6= {} ∧ keywords(C ∪ RK
i ) = keywords((C ∪ RK

i ) − RL
j )

where keywords(J) returns the union of keywords in the tuple sets of the joining

network of tuple sets J , i.e., keywords(J) =
⋃

RK
i ∈J K. A free tuple set may be

visited more than once. Each non-free tuple set is used at most once in each CN.

The reason is that, for all database instances, the result of a joining network of

tuple sets J with two occurrences of the same non-free tuple set RK
i is subsumed

by the result of a joining network of tuple sets J ′, generated by the algorithm, that

is identical to J but has R
{}
i instead of the second occurrence of RK

i .

In addition, the implementation never places in Q a joining network of

tuples sets J that has more than m leaves, where m is the number of keywords

in the query. For example, if the keywords are two then only joining paths of

tuple sets are placed in Q. Indeed, even if this rule were excluded the output of

the algorithm would be the same, since such a network J can neither meet the

acceptance conditions listed next nor be expanded into a network J ′ that meets

the acceptance conditions. Nevertheless, the rule leads to cleaner traces and better

running time.

The algorithm outputs a joining network of tuple sets J if it satisfies the

following acceptance conditions:

• The tuple sets of J contain all keywords, i.e., keywords(J) = {w1, . . . , wm}.

• J does not contain any free tuple sets as leaves.

An important property of the algorithm is that it outputs the CNs with

increasing size. That is, the smaller candidate networks, which are the better

solutions to the keyword search problem, are output first.

Theorems 2 and 3 prove the completeness and the minimality of the

results of the algorithm.

Theorem 2 (Completeness) Every solution of size M to the keyword query is

produced by a CN of size M , output by the CN generator.
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Proof: Suppose a result-tree T of size M is not produced by any CN. Obviously

T belongs to a CN C of size M not output by the algorithm. That is, C was either

not produced or it was produced and pruned or it did not meet the acceptance

conditions.

If C was not produced, then it either violated the expansion rule, so C

is subsumed by another candidate network C ′, or C contains a candidate network

C ′′. Hence T is not minimal since it contains another result-tree.

If C was pruned, then C satisfies the pruning condition. So T contains

two tuples t ≡ t′ and j is not minimal since we can just collapse t with t′. 2

Theorem 3 (No Redundancy) For each CN C output by the algorithm, given

the tuple set graph GTS
3, there is an instance I of the database that produces the

same tuple set graph GTS, contains a result joining tree of tuples T ∈ C and T

does not belong to any other CN.

Proof: The construction of the database instance I proceeds as follows: For each

CN C we produce a result-tree T ∈ C with the property that no tuple t ∈ T

that maps to a free tuple set TS ∈ C contains any keywords. This last condition

ensures that no tuple set that was empty when the CNs were generated will be

non-empty in I. Hence for each tuple set RK
i ∈ C, a tuple t ∈ Ri is generated that

contains all keywords in K. We also make sure that the primary to foreign key

relationships hold. We add to I the tuples of each such result-tree.

Now we prove that there is no other CN C ′ 6≡ C that produces J if C ′

is evaluated on I. C ′ is isomorphic to T , so it is also isomorphic to C. Also, C ′

contains the same keywords in each tuple set as T does in each tuple, so it also

has the same tuple sets with C in the tuple sets that map to each other through

the isomorphism, since each set of keywords is contained in exactly one tuple set

in a CN (by the expansion rule). Hence C ′ ≡ C. 2

3Notice that the CN generator does not examine the tuples of a specific tuple set, but only whether it

is empty or not.
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PART (P{}) ORDERS (O{})PARTSUPP (PS{}) LINEITEM (L{})

CUSTOMER (C{})

ORDERSMiller (OMiller)

ORDERSSmith (OSmith)

NATION (N{})

SUPPLIER (S{})

REGION (R{})

Figure III.5: Tuple set graph for first version of CN generator

Example. We present the execution of the CN generator algorithm for the key-

word query “Smith, Miller” on the TPC-H schema and the database instance in

Figure III.3, for M = 6. That is, we consider candidate networks having at most

5 joins. The tuple set graph is shown in Figure III.5.

Suppose we pick “Smith” as the wt of the algorithm. Hence we put

ORDERSSmith into the queue. The state of the queue and the CNs output in

each iteration are shown in Figure III.6. We use the obvious abbreviated names

for the relations. Since the query has only two keywords, only joining paths of

tuple sets are generated and eventually output.

In the second version [30] of the CN generator, the key difference is that

a single tuple set RQ
i is generated for every relation Ri. Hence the tuple-set graph

for the above example would be the one shown in Figure III.7. The only difference

in the algorithm of Figure III.4 is that we replace the expansion condition with

“The number of non-free tuple sets in CN C does not exceed the number of query

keywords m”. This constraint guarantees that we generate a minimum number of

CNs while not missing any result that contains all the keywords, which is crucial

for AND-semantics.

III.C All-Results Execution

This section describes an execution algorithm that we found to perform

well when we want to retrieve all the result-trees (of size up to M) of a keyword

query. We focus on AND-semantics and hence use the original CN generator as

described in Section III.B. Also, since we output all results, the efficient ranking
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# Queue/from/candidate networks output

1a OSmith

2a OSmith ⊲⊳ L{}/1a
b OSmith ⊲⊳ C{}/1a

3a OSmith ⊲⊳ L{} ⊲⊳ O{}(pruned)/2a
b OSmith ⊲⊳ L{} ⊲⊳ OMiller(pruned)/2a
c OSmith ⊲⊳ L{} ⊲⊳ PS{}/2a
d OSmith ⊲⊳ C{} ⊲⊳ O{}/2b
e OSmith ⊲⊳ C{} ⊲⊳ OMiller/2b
f OSmith ⊲⊳ C{} ⊲⊳ N{}/2b

4a OSmith ⊲⊳ L{} ⊲⊳ PS{} ⊲⊳ P {}/3c/ OSmith ⊲⊳ C{} ⊲⊳ OMiller

b OSmith ⊲⊳ L{} ⊲⊳ PS{} ⊲⊳ L{}/3c
c OSmith ⊲⊳ C{} ⊲⊳ O{} ⊲⊳ C{}(pruned)/3d
d OSmith ⊲⊳ C{} ⊲⊳ N{} ⊲⊳ C{}/3f

. . .

5a OSmith ⊲⊳ L{} ⊲⊳ PS{} ⊲⊳ P {} ⊲⊳ PS{}(pruned)/4a
b OSmith ⊲⊳ L{} ⊲⊳ PS{} ⊲⊳ L{} ⊲⊳ OMiller/4b
c OSmith ⊲⊳ C{} ⊲⊳ N{} ⊲⊳ C{} ⊲⊳ OMiller /4d
d OSmith ⊲⊳ C{} ⊲⊳ N{} ⊲⊳ C{} ⊲⊳ O{}/4d
e OSmith ⊲⊳ C{} ⊲⊳ N{} ⊲⊳ C{} ⊲⊳ N{}(pruned)/4d

. . .

6a OSmith ⊲⊳ C{} ⊲⊳ N{} ⊲⊳ C{} ⊲⊳ O{} ⊲⊳ C{}(pruned)/5d/ OSmith ⊲⊳
C{} ⊲⊳ N{} ⊲⊳ C{} ⊲⊳ OMiller

. . . / /OSmith ⊲⊳ L{} ⊲⊳ PS{} ⊲⊳ L{} ⊲⊳ OMiller

7 . . .

Figure III.6: Example

PART (P{}) ORDERS (O{})PARTSUPP (PS{}) LINEITEM (L{})

CUSTOMER (C{})

ORDERSQ (OQ)

NATION (N{})

SUPPLIER (S{})

REGION (R{})

Figure III.7: Tuple set graph for second version of CN generator
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Figure III.8: Architecture for all results execution

problem assumes secondary importance (in contrast to the top-k problem discussed

in Section III.D). Hence, to simplify this section and focus on the plan generation

problem (see below), we rank the results according to their size, although this

approach could easily be adapted to more complex ranking functions.

Architecture. The architecture (Figure III.8) is more detailed than the one

described in Section III.A to show two unique stages neccesary for this setting.

First, since we use the original CN generation algorithm, we need a Tu-

ple Set Post-Processor to creates a tuple set RK
i for every relation Ri and every

combination K of the keywords w1, . . . , wm. In particular, the Master Index in-

puts a set of keywords w1, . . . , wm and outputs a set of basic tuple sets R̄
wj

i for

i = 1, . . . , n and j = 1, . . . ,m. The basic tuple set R̄
wj

i consists of all tuples of

relation Ri that contain the keyword kj. The master index has been implemented

using the Oracle9i InterMedia Text extension, which builds full text indices on

single attributes of relations. Then the master index inspects the index of each
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attribute and combines the results.

Then the Tuple Set Post-Processor takes the basic tuple sets and produces

tuple sets RK
i for all subsets K of {w1, . . . , wm}, where

RK
i = {t|t ∈ Ri ∧ ∀w ∈ K, t contains w ∧

∀w ∈ {w1, . . . , wm} − K, t does not contain w} (III.2)

i.e., RK
i contains the tuples of Ri that contain all keywords of K and no other

keywords.

The tuple sets are obtained from the basic tuple sets using the following

formula.

RK
i =

⋂

w∈K

R̄w
i −

⋃

k∈{w1,...,wm}−K

R̄w
i (III.3)

Second, before the CNs are input to the execution module, they are pro-

cessed by the Plan Generator, which optimizes their evaluation. This optimization

is the key contribution of this section.

Definition 4 (Execution Plan) Given a set C1, . . . , Cr of CNs, an execution

plan is a list A1, . . . , As of assignments of the form Hi ← Bi1 ⊲⊳ · · · ⊲⊳ Bit where:

• Each Bij is either a tuple set or an intermediate result defined in a previous

assignment. The latter requires that there is an index k < i, such that Hk ≡

Bij .

• For each candidate network C there is an assignment Ai, that computes C.

For example, an execution plan for the keyword query shown in Fig-

ure III.8 is

T1 ← ORDERSSmith ⊲⊳ CUSTOMER{},

C1 ← T1 ⊲⊳ ORDERSMiller,

C2 ← T1 ⊲⊳ NATION{} ⊲⊳ CUSTOMER{} ⊲⊳ ORDERSMiller

where T1 is an intermediate result. The number of joins of this plan is 5, whereas

the number of joins to evaluate the two candidate networks without building any
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intermediate results would be 6. As the number of CNs increases the difference in

the number of joins increases dramatically.

Finally the execution plan is passed to the Plan Execution module,

which translates the assignments of the plan to SQL statements. The assignments

that build intermediate results are translated to “CREATE TABLE” statements

and the candidate network evaluation assignments to “SELECT-FROM-WHERE”

statements. The union of the results of these “SELECT-FROM-WHERE” state-

ments is the result of the keyword search and it is returned to the user.

Execution The Plan Generator module inputs a set of CNs and creates an exe-

cution plan to evaluate them as defined in Definition 4. The key optimization op-

portunity is that typically the CNs share join subexpressions. Efficient execution

plans store the common join expressions as intermediate results and reuse them in

evaluating the CNs. For example, in Figure III.8 we calculate and store the join ex-

pression ORDERSSmith ⊲⊳ CUSTOMER{}. CUSTOMER{} ⊲⊳ ORDERSMiller

is also a common join expression but it will not help to store both, as we explain

below.

The space of execution plans that can be generated for a set of candidate

networks is huge. We prune it by the following two assumptions: First, we define

every non-free tuple set to be a small relation, since its tuples are restricted to

contain specific keywords. The result of a join that involves a small relation is

also a small relation. Those assumptions lead to the conclusion that every join

expression of the plan must contain a small relation and, hence, all intermedi-

ate results are small. Note that both the assumptions and the conclusion follow

directly the Wong-Yousefi algorithm ([53]) of INGRES. Indeed, in practice, the in-

termediate results are sufficiently small to be stored in main memory as we discuss

in Section III.E.

Second, the plan generator only considers plans where the right hand side

of the assignments Hi ← Bi1 ⊲⊳ . . . ⊲⊳ Bit of Definition 4 are joins of exactly two
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arguments, i.e., t = 2. This policy is based on the assumption that the cost of

calculating and storing the results of both A ⊲⊳ B and A ⊲⊳ B ⊲⊳ C is essentially

the same with the cost for just calculating and storing the result of A ⊲⊳ B ⊲⊳ C,

if the DBMS optimizer selects to first calculate A ⊲⊳ B and then the result of

A ⊲⊳ B ⊲⊳ C. Hence we can store and possibly reuse later A ⊲⊳ B “for free”.

This assumption is very precise when there are indices on the primary

and foreign key attributes. Then the joins (and, in particular, the most expensive

ones) are executed in a series of index-based 2-way joins. The assumption always

held for the Oracle 8i DBMS that we used in our TPC-H-based experimentation.

(The assumption deviates from reality when there are no indices and the database

chooses multi-way merge-sort joins.)

In summary, the plan generator considers and evaluates the space of plans

where the joins have exactly two arguments. Note that once a plan P is selected

from the restricted space we outlined, the plan generator eliminates non-reused

intermediate results by inlining their definition into the single point where they

are used. That is, given two assignments

T ← A ⊲⊳ B

T ′ ← T ⊲⊳ C

if T is not used at any other place than the computation of T ′, the two assignments

will be merged into

T ′ ← A ⊲⊳ B ⊲⊳ C

Cost Model. The theoretical study of the complexity of selecting the optimal

execution plan is based on a simple cost model of execution plans: We assign a cost

of 1 to each join. We use this theoretical cost model in proving that the selection

of the optimal execution plan is NP-complete (Theorem 4). It is easy to see that

the problem is also NP-hard for the actual cost model described below.

The actual cost model exploits the fact that we can get the sizes of the

non-free tuple sets from the master index. We also assume that we know the
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selectivity of the primary to foreign key joins, which can be calculated from the

sizes of the relations. The actual cost model defines the cost of a join to be the size

of its result in number of tuples. (The cost model can easily be modified to work

for the size in bytes instead of the number of tuples.) The cost of the execution

plan is the sum of the costs of its joins. Notice that since there are indices on the

primary and foreign keys, the cost of a join is proportional to the size of its result,

since the joins will typically be index-based joins.

The problem of deciding which intermediate results to build and store

can be formalized as follows:

Problem 1 (Choice of intermediate results) Given a set of CNs, find the in-

termediate results that should be built, so that the overall cost of building these

results and evaluating the CNs is minimum.

Theorem 4 shows that Problem 1 is NP-complete on the sum of the sizes

of the CNs with respect to the theoretical cost model defined above.

Theorem 4 Problem 1 is NP-complete.

Proof Sketch: To prove that Problem 1 is NP-complete we need to reduce in

polynomial time a known NP-complete problem to it. We selected the problem

of data compression via textual substitution ([52]), where a source string needs to

be compressed by replacing common substrings with corresponding symbols from

a dictionary. Specifically, we considered the case of the external macro model,

where the dictionary is stored separately from the encoded data. The source data

is treated as a finite string over some alphabet. A source string is encoded as a pair

of strings, a dictionary and a skeleton. The skeleton contains characters of the input

alphabet interspersed with pointers to substrings of the dictionary. The dictionary

is also allowed to contain pointers to substrings of the dictionary. The source

string is recovered by substituting dictionary strings for pointers. As an example

consider the string w = aaBccDaacEaccFacac, which might be encoded under the

external macro model as x = aacc#(1, 2)B(3, 2)D(1, 3)E(2, 3)F (2, 2)(2, 2), where
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# separates the dictionary from the skeleton and a pointer is denoted as a pair

(n,m), where n indicates the position of the first character in the target and m

indicates the length of the target. In the data compression problem, the goal is to

minimize the size of the encoded string of the source string. In [52], it is proven

that this problem is NP-complete.

The mapping between the two problems goes as follows: The dictionary

represents the intermediate results in Problem 1 and the data map to the candi-

date networks. We assume that there is no overlap between the pointers to the

dictionary, that is, their targets do not overlap. We need this assumption because

for example we do not necessarily know the result of A ⊲⊳ B if we have stored the

result of A ⊲⊳ B ⊲⊳ C. Also, the scheme is recursive. That is, a macro body (i.e., a

string that is a target of a pointer) is allowed to itself contain pointers. We need

this, because for example A ⊲⊳ B ⊲⊳ C may use the result of A ⊲⊳ B. 2

III.C.1 Greedy algorithm

Figure III.9 shows a greedy algorithm that produces a near-optimal ex-

ecution plan, with respect to the actual cost model defined above, for a set of

CNs by choosing in each step the join m between two tuple sets or intermediate

results that maximizes the quantity frequencya

logb(size)
, where frequency is the number of

occurrences of m in the CNs, size is the estimated number of tuples of m and a, b

are constants. The frequencya term of the quantity maximizes the reusability of

the intermediate results, while the logb(size) term minimizes the size of the in-

termediate results that are computed first. We have experimented (Section III.E)

with multiple combinations of values for a and b and found that the optimal solu-

tion is closer approximated for {a, b} = {1, 0}, when the size of the CNs (and the

reusability) increases.

We perform a worst case time analysis of the greedy algorithm. The while

loop is executed at most |S| ·M times if every join has a frequency of 1, where |S|

is the number of candidate networks. The calculation of Z takes time |S| ·M . We
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Algorithm Select list of intermediate results

Input: set S of CNs of size ≤ M

Output: list L of intermediate results to build

{

while not all CNs in S have been added to L do {

Let Z be the set of all small join subexpressions of 1 join

contained in at least one CN in S;

Add the intermediate result m with the maximum
frequencya

logb(size)
value in Z to L;

Rewrite all CNs in S to use m where possible;

}

}

Figure III.9: Greedy algorithm for selecting a list of intermediate results to build

assume that we traverse a candidate network of size M1 in time O(M1). In each

step, we keep a hash table H with each intermediate result in Z and its frequency.

Hence we check if an intermediate result is already in H and increase its frequency

in O(1). Finding the intermediate result in H that maximizes frequencya

logb(size)
takes time

|S| ·M . The rewriting step also takes time |S| ·M . Hence the total execution time

takes in the worst case time O((|S| · M)2).

The greedy algorithm may output a non optimal list of intermediate re-

sults. However, in special cases the greedy is guaranteed to produce the optimal

plan. One such case is described by the theorem below:

Theorem 5 The greedy algorithm for (a, b) = (1, 0) is optimal for m = 2 key-

words, when each of them is contained in exactly one relation.

Proof: Keywords w1, w2 are contained in relations R1, R2 respectively. Hence

every CN will be a joining sequence of tuples with tuple sets Rw1

1 , Rw2

2 as ends.

Suppose that the join subexpression I ⊲⊳ S is selected in an iteration of the al-

gorithm, where I is a previously built intermediate result (or R1 or R2 in the

first step) and S is a tuple set or an intermediate result. Assume WLOG that
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I = Rw1

1 ⊲⊳ · · · ⊲⊳ R. If I ⊲⊳ S belongs to n1 CNs and I belongs to n2 of them

(n2 ≤ n1), the benefit (decrease of overall cost) of building I ⊲⊳ S is n2 − 1. Since

n2 decreases as the algorithm progresses, so does the benefit of the selected subex-

pression. Notice that by building I ⊲⊳ S, it is not possible to decrease the benefit of

a subexpression that will be selected next except for the benefit of subexpressions

of the form I ⊲⊳ S ⊲⊳ Q. But the total benefit of all such subexpressions is less or

equal to the benefit of I ⊲⊳ S 4, because all candidate networks that contain these

subexpressions, also contain I ⊲⊳ S. Hence, building I ⊲⊳ S leads to an optimal

solution. So the greedy algorithm is optimal. 2

III.D Top-k Execution

This section presents algorithms to efficiently retrieve the top-k result-

trees of a keyword query on a relational database. These algorithms work for

monotone ranking functions (Definition 2) as the one of Equation II.4. Further-

more, the primary focus of this section is OR-semantics (AND-semantics can be

implemented by adding a postprocessing step to check if all keywords are contained

in the joining trees of tuples) and hence we use the second version of the CN gen-

erator (Section III.B). The architecture used is the one described in Section III.A.

The presented algorithms handle the following core operation in our sys-

tem: given a set of CNs together with a set of non-free tuple sets, the Execution

Engine needs to efficiently identify the top-k joining trees of tuples that can be

derived. First, we describe the Naive algorithm, a simple adaptation of the query

processing algorithm used in DBXplorer [6]. Second, we present the Sparse algo-

rithm, which improves on the Naive algorithm by dynamically pruning some CNs

during query evaluation. Third, we describe the Single Pipelined algorithm, which

calculates the top-k results for a single CN in a pipelined way. Fourth, we present

the Global Pipelined algorithm, which generalizes the Single Pipelined algorithm to

4This does not hold for more than 2 keywords, because building I ⊲⊳ S affects the benefit of all
subexpressions adjacent to both R and S.
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multiple CNs and can then be used to calculate the final result for top-k queries.

Finally, we introduce the Hybrid algorithm, which combines the virtues of both the

Global Pipelined and the Sparse algorithms, and is shown to outperform all other

approaches in Section III.E.

III.D.1 Naive Algorithm

The Naive algorithm issues a SQL query for each CN for a top-k query.

The results from each CN are combined in a sort-merge manner to identify the

final top-k results of the query. This approach is an adaptation of the execution

algorithm of DBXplorer [6] for keyword-search queries. As a simple optimization

in our experiments, we only get the top-k results from each CN according to the

scoring function, and we enable the top-k “hint” functionality, available in the

Oracle 9.1 RDBMS.5 In the case of Boolean-AND semantics, the Naive algorithm

(as well as the Sparse algorithm presented below) involves an additional filtering

step on the stream of results to check for the presence of all keywords.

III.D.2 Sparse Algorithm

The Naive algorithm exhaustively processes every CN associated with a

query. We can improve query-processing performance by discarding at any point

in time any (unprocessed) CN that is guaranteed not to produce a top-k match

for the query. Specifically, the Sparse algorithm computes a bound MPS i on the

maximum possible score of a tuple tree derived from a CN Ci. If MPS i does not

exceed the actual score of k already produced tuple trees, then CN Ci can be safely

removed from further consideration. To calculate MPS i, we apply the combining

function to the top tuples (due to the monotonicity property in Definition 2) of

the non-free tuple sets of Ci. That is, MPS i is the score of a hypothetical joining

tree of tuples T that contains the top tuples from every non-free tuple set in Ci.

As a further optimization, the CNs for a query are evaluated in ascending size

order. This way, the smallest CNs, which are the least expensive to process and

5This hint to the optimizer has not significantly improved performance in our experiments.
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are the most likely to produce high-score tuple trees using the combining function

above, are evaluated first. As we discuss in Section III.E, the Sparse algorithm is

the method of choice for queries that produce relatively few results.

III.D.3 Single Pipelined Algorithm

The Single Pipelined algorithm (Figure III.10) receives as input a can-

didate network C and the non-free tuple sets TS 1, . . . ,TS v that participate in C.

Recall that each of these non-free tuple sets corresponds to one relation, and con-

tains the tuples in the relation with a non-zero match for the query. Furthermore,

the tuples in TS i are sorted in descending order of their Score for the query. (Note

that the attribute Score(ai, Q) and tuple Score(t, Q) scores associated with each

tuple t ∈ TS i are initially computed by the IR Engine, as we described, and do

not need to be re-calculated by the Execution Engine.) The output of the Single

Pipelined Algorithm consists of a stream of joining trees of tuples T in descending

Score(T,Q) order.

The intuition behind the Single Pipelined algorithm is as follows. We

keep track of the prefix S(TS i) that we have retrieved from every tuple set TS i;

in each iteration of the algorithm, we retrieve a new tuple t from one TSM , after

which we add it to the associated retrieved prefix S(TSM). (We discuss the choice

of TSM below.) Then, we proceed to identify each potential joining tree of tuples

T in which t can participate. For this, we prepare in advance a parameterized

query that performs appropriate joins involving the retrieved prefixes. (Figure I.7

shows the parameterized query for the CN CQ ← PQ.) Specifically, we invoke

this parameterized query once for every tuple (t1, . . . , tM−1, t, tM+1, . . . , tv), where

ti ∈ S(TS i) for i = 1, . . . , v and i 6= M . All joining trees of tuples that include

t are returned by these queries, and are added to a queue R. We cannot output

these trees until we can guarantee that they are one of the top-k joining trees for

the original query. Notice that a naive execution of this algorithm would prevent

us from producing any results until all candidate trees are computed and rank-
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Single Pipelined Algorithm(C, Q, k, Score(.), TS 1, . . . ,TS v){

01. h(TS i): top unprocessed tuple of TS i (i.e., not yet added to S(TS i))

02. S(TS i): prefix of TS i retrieved so far; initially empty

03. R: queue for not-yet-output results, by descending Score(T,Q)

04. Execute parameterized query q(h(TS 1), . . . , h(TS v))

05. Add results of q to R

06. Output all results T in R with Score(T,Q) ≥ maxv
i=1 MPFS i

07. For i = 1, . . . , v move h(TS i) to S(TS i)

08. While (fewer than k results have been output) do {

09. Get tuple t = h(TSM), where MPFSM = maxv
i=1 MPFS i

10. Move t to S(TSM)

11. For each combination (t1, . . . , tM−1, tM+1, . . . , tv) of tuples

where ti ∈ S(TS i) do {

12. Execute parameterized query q(t1, . . . , tM−1, t, tM+1, . . . , tv)

13. Add results of q to R}

14. Output all new results T in R with Score(T,Q) ≥ maxv
i=1 MPFS i}}

Figure III.10: The Single Pipelined algorithm.



54

ordered. As we discuss next, we bound the score that tuple trees not yet produced

can achieve, hence circumventing this limitation of naive algorithms.

In effect, the Single Pipelined algorithm can start producing results before

examining the entire tuple sets. For this, we maintain an effective estimate of the

Maximum Possible Future Score (MPFS)6 that any unseen result can achieve,

given the information already gathered by the algorithm. Specifically, we analyze

the status of each prefix S(TS i) to bound the maximum score that an unretrieved

tuple from the corresponding non-free tuple set can reach. (Recall once again that

non-free tuple sets are ordered by their tuple scores.) To compute MPFS , we

first calculate MPFS i for each non-free tuple set TS i as the maximum possible

future score of any tuple tree that contains a tuple from TS i that has not yet been

retrieved (i.e., that is not in S(TS i)):

MPFS i = max{Score(T,Q) | T ∈ TS 1 1 · · · 1 (TS i − S(TS i)) 1 · · · 1 TS v}

Unfortunately, a precise calculation of MPFS i would require multiple

database queries, with cost similar to that of computing all possible tuple trees

for the queries. As an alternative to this expensive computation, we attempt to

produce a (hopefully tight) overestimate MPFS i, computed as the score of the

hypothetical tree of tuples consisting of the next unprocessed tuple ti from TS i

and the top-ranked tuple ttopj of each tuple set TS j, for j 6= i. Notice that MPFS i

is an overestimate of MPFS i because there is no guarantee that the tuples ti and

ttopj will indeed participate in a joining tree of C. However, MPFS i is the best

estimate that we can produce efficiently without accessing the database and, as we

will see, results in significant savings over the naive executions. Following a similar

rationale, we also define an overestimate MPFS for the entire candidate network

C, as MPFS = maxi=1,...,v MPFS i. A tentative result from R (see Figure III.10)

is safely returned as one of the top-k results if its associated score is no less than

MPFS .
6Notice that MPS , as defined in Section III.D.2, is equivalent to MPFS before the evaluation of the

CN begins (i.e., before any parameterized query is executed).



55

tree of 3

free tuple

sets

TS1 

tupleId  score 

a1  7 

a2  5 

a3  1 

 

TS3 

tupleId  score 

c1  8 

c2  5 

c3  2 

 

TS2 

tupleId  score 

b1  9 

b2  6 

b3  1 

 

R: Queue of Results 

T  score 

a1~b2~c1  3.5 

a2~b2~c1  3.16 

 

MPFS
1
 = (1+9+8)/6 = 3 MPFS

2
 = (1+7+8)/6 = 2.66

MPFS
3
 = (5+7+9)/6 = 3.5

MPFS = 3.5

 

 

 
S(TS

1
) S(TS

2
)

S(TS
3
)

next

next of next

iteration

next next

Figure III.11: Snapshot of a Single Pipelined execution.

Another key issue is the choice of the tuple set from which to pick the next

tuple t. One simple possibility is to pick tuple sets randomly, or in a round-robin

way. Instead, the Single Pipelined algorithm picks the “most promising” tuple set,

which is defined as the tuple set that can produce the highest ranked result. Using

this heuristic, we pick the next tuple from the tuple set TSM with the maximum

value of MPFS i (i.e., MPFSM = maxi MPFS i). The experiments of Section III.E

show that this choice of tuple set results in better performance over random or

round-robin choices.

Example 1 Figure III.11 shows a snapshot of an execution of the Single Pipelined

algorithm on a hypothetical database. The candidate network C has three free and

three non-free tuple sets. The thick dotted lines denote the prefix of each tuple

set retrieved so far. The combining function of Equation II.4 is used. The first

result of R is output because its score is equal to MPFS. In contrast, the second

result cannot yet be safely output because its score is below MPFS. Suppose that

we now retrieve a new tuple c2 from the tuple set with maximum MPFS i. Further,

assume that no results are produced by the associated parameterized queries when

instantiated with c2. Then, MPFS 3 = 2+7+9
6

= 3 and MPFS = 3. Hence now the

second result of R can be output.

The correctness of this algorithm relies on the combining function satis-

fying the tuple monotonicity property from Definition 2. Notice that the following
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extra step is needed for queries with AND semantics: Before issuing a parame-

terized query, we check if all query keywords are contained in the tuples that are

passed as parameters. As we will see in Section III.E, the Single Pipelined algo-

rithm is not an efficient choice when used separately for each CN, but is the main

building block of the efficient Global Pipelined algorithm described below.

III.D.4 Global Pipelined Algorithm

The Global Pipelined algorithm (Figure III.12) builds on the Single

Pipelined algorithm to efficiently answer a top-k keyword query over multiple CNs.

The algorithm receives as input a set of candidate networks, together with their

associated non-free tuple sets, and produces as output a stream of joining trees of

tuples ranked by their overall score for the query.

The key idea of the algorithm is the following. All CNs of the keyword

query are evaluated concurrently following an adaptation of a priority preemptive,

round robin protocol [13], where the execution of each CN corresponds to a process.

Each CN is evaluated using a modification of the Single Pipelined algorithm, with

the “priority” of a process being the MPFS value of its associated CN.

Initially, a “minimal” portion of the most promising CN Cc (i.e., Cc has

the highest MPFS value) is evaluated. Specifically, this minimal portion corre-

sponds to processing the next tuple from Cc (lines 12–17). After this, the priority

of Cc (i.e., MPFS c) is updated, and the CN with the next highest MPFS value is

picked. A tuple-tree result is output (line 18) if its score is no lower than the cur-

rent value of the Global MPFS , GMPFS , defined as the maximum MPFS among

all the CNs for the query. Note that if the same tuple set TS is in two different

CNs, it is processed as two separate (but identical) tuple sets. In practice, this is

implemented by maintaining two open cursors for TS .

Example 2 Figure III.13 shows a snapshot of the Global Pipelined evaluation of

a query with five CNs on a hypothetical database. At each point, we process the

CN with the maximum MPFS, and maintain a global queue of potential results.
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Global Pipelined Algorithm(C1, . . . , Cn, k, Q, Score(.)){

01. Let vi be the number of non-free tuple sets of CN Ci

02. h(TS i,j): top unprocessed tuple of Ci’s j-th tuple set TS i,j

03. S(TS i,j): prefix of TS i,j retrieved so far; initially empty

04. R: queue for not-yet-output results, by descending Score(T,Q)

05. For i = 1 . . . n do {

06. Execute parameterized query qi(h(TS i,1), . . . , h(TS i,vi
))

07. /* qi is the parameterized query for CN Ci */

08. Add results of qi to R

09. For j = 1, . . . , vi move h(TS i,j) to S(TS i,j)}

10. Output all results T in R with Score(T,Q) ≥ GMPFS

11. While (fewer than k results have been output) do {

12. /* Get tuple from most promising tuple set of most promising CN */

13. Get tuple t = h(TS c,M), where MPFSM for CN Cc is highest

14. Move t to S(TS c,M)

15. For each combination (t1, . . . , tM−1, tM+1, . . . , tvc
) of tuples

where tl ∈ S(TS c,l) do{

16. Execute parameterized query qc(t1, . . . , tM−1, t, tM+1, . . . , tvc
)

17. Add results of qc to R}

18. Output all new results T in R with Score(T,Q) ≥ GMPFS}}

Figure III.12: The Global Pipelined algorithm.
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Figure III.13: Snapshot of a Global Pipelined execution.

After a minimal portion of the current CN C is evaluated, its MPFS is updated,

which redefines the priority of C.

Example 3 Consider query [Maxtor Netvista] on our running example. We con-

sider all CNs of size up to 2, namely C1: ComplaintsQ; C2: ProductsQ; and C3:

ComplaintsQ ← ProductsQ. These CNs do not include free tuple sets because of

the restriction that CN cannot include free “leaf” tuple sets. (The minimum size

of a CN with free tuple sets is three.) The following tuple sets are associated with

our three CNs:
C1: TS 1,1 C2: TS 2,1

tupleId Score(t, Q)
c3 1.33
c2 0.33
c1 0.33

tupleId Score(t, Q)
p1 1
p2 1

C3: TS 3,1 C3: TS 3,2

tupleId Score(t, Q)
c3 1.33
c2 0.33
c1 0.33

tupleId Score(t, Q)
p1 1
p2 1

Following Figure III.12, we first get the top tuple from each CN’s tuple set

and query the database for results containing these tuples (lines 5–9). Therefore, we

extract (line 10) the result-tuples c3 and p1 from C1 and C2 respectively. No results

are produced from C3 since c3 and p1 do not join. The MPFSs of C1, C2, and C3 are
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0.33, 1, and 1.17 (= (1.33+1)/2), respectively. Hence GMPFS = 1.17. c3 is output

since it has score 1.33 ≥ GMPFS. On the other hand, p1 is not output because its

score is 1 < GMPFS. Next, we get a new tuple for the most promising CN, which

is now C3. The most promising tuple set for C3 is TS 3,2. Therefore, p2 is retrieved

and the results of the parameterized query q3(c3, p2) (which is c3 ← p2) are added

to R. Notice that q3 is the query SELECT * FROM TS 3,1, TS 3,2, Complaints c,

Products p WHERE TS 3,1.tupleId =? AND TS 3,2.tupleId =? AND TS 3,1.tupleId =

c.tupleId AND TS 3,2.tupleId = p.tupleId AND c.prodId = p.prodId. Now, the MPFS

bounds of C1, C2, and C3 are 0.33, 1, and 0.67 (= (0.33+1)/2), respectively. Hence

GMPFS = 1. c3 ← p2 is output because it has score 1.165 ≥ GMPFS. Also, p1 is

output because it has score 1 ≥ GMPFS.

Just as for Single Pipelined, the correctness of Global Pipelined relies on

the combining function satisfying the tuple-monotonicity property of Definition 2.

As we will see in our experimental evaluation, Global Pipelined is the most efficient

algorithm for queries that produce many results.

III.D.5 Hybrid Algorithm

As mentioned briefly above, Sparse is the most efficient algorithm for

queries with relatively few results, while Global Pipelined performs best for queries

with a relatively large number of results. Hence, it is natural to propose a Hybrid

algorithm (Figure III.14) that estimates the expected number of results for a query

and chooses the best algorithm to process the query accordingly.

The Hybrid algorithm critically relies on the accuracy of the result-size

estimator. For queries with OR semantics, we can simply rely on the RDBMS’s

result-size estimates, which we have found to be reliable. In contrast, this esti-

mation is more challenging for queries with AND semantics: the RDBMS that we

used for our implementation, Oracle 9i, ignores the text index when producing es-

timates. Therefore, we can obtain from the RDBMS an estimate S of the number

of tuples derived from a CN (i.e., the number of tuples that match the associated
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Hybrid Algorithm(C1, . . . , Cn, k, c, Q, Score(.)){

01. c is a tuning constant

02. Estimate = GetEstimate(C1, . . . , Cn)

03. If Estimate > c · k then execute Global Pipelined

04. else execute Sparse}

Figure III.14: The Hybrid algorithm.

join conditions), but we need to adjust this estimate so that we consider only tuple

trees that contain all query keywords. To illustrate this simple adjustment, con-

sider a two-keyword query [w1, w2] with two non-free tuple sets TS1 and TS2. If we

assume that the two keywords appear independently of each other in the tuples,

we adjust the estimate S by multiplying by
|TS

w1

1
|·|TS

w2

2
|+|TS

w2

1
|·|TS

w1

2
|

|TS1|·|TS2|
, where TSw

i is

the subset of TSi that contains keyword w. (An implicit simplifying assumption

in the computation of this adjustment factor is that no two keywords appear in

the same tuple.) We evaluate the performance of this estimator in Section III.E.7

III.E Experiments

Section III.E.1 evaluates the pruning capabilities of the original CN gen-

erator algorithm presented in Section III.B. Then, Sections III.E.2 and III.E.3

evaluate the algorithms to retrieve all the results and the top-k results of a key-

word query respectively.

III.E.1 CN generator

We measure the pruning efficiency of the CN generator. In particular,

we measured how many joining networks of tuple sets are ruled out based on the

7Of course, there are alternative ways to define a hybrid algorithm. (For example, we could estimate
the number of results for each CN C and decide whether to execute the Single Pipelined algorithm over C

or submit the SQL query of C to the DBMS.) We have experimentally found some of these alternatives
to have worse performance than that of the algorithm in Figure III.14.
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#keyw JNTS K JNTS L CNs neTS’s
2 25 5.355 4.485 2.96
3 55.22 13.86 9.27 4.35
4 85.69 33.88 24.03 5.91
5 101 37.3 26 7.12

(a) Fix maximum candidate networks’ size to 4

MaxCNsize JNTS K JNTS L CNs neTS’s
2 0.95 0.95 0.95 2.96
3 3.72 2.36 2.12 2.96
4 25 5.355 4.485 2.96
5 422.88 10.36 6.4 2.96
6 6941 24.75 11.45 2.96

(b) Fix number of keywords to 2

MaxCNsize JNTS K JNTS L CNs neTS’s
2 0.59 0.59 0.59 4.35
3 5.01 3.91 3.35 4.35
4 55.22 13.86 9.27 4.35
5 639.61 50.49 29.51 4.35
6 7532 223 103.66 4.35

(c) Fix number of keywords to 3

Figure III.15: Evaluation of the candidate network generator
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pruning conditions of the CN generator. We use the TPC-H schema (Figure III.2)

but we do not a the TPC-H dataset in this experiment, because we want to control

the distribution of the number of occurrences of each keyword. So, we randomly put

the keywords of the keyword query in the relations. Each keyword is contained in a

relation R with probability a · log(size(R)), where size(R) is the number of tuples

in R as defined in the TPC-H specifications for scale factor SF=1. We selected a =

1
10·log2(6,000,000)

. This means that the probability that a keyword is contained in the

LINEITEM relation, which is the largest one, is 1
10

, since size(LINEITEM) =

6, 000, 000. This probability is about 1
100

for the REGION relation, which is the

smallest one. We measure three numbers of joining networks of tuple sets for each

execution of the experiment.

1. JNTS K is the number of joining networks of tuple sets of size up to M

that have the following properties:

• They contain all keywords of the keyword query, i.e., they are total.

• No non-free tuple set can be replaced by a free tuple set and still have

all keywords in the joining network of tuple sets.

2. JNTS L is the number of joining networks of tuple sets that have only non-

free tuple sets as leaves in addition to the above properties.

3. CNs is the number of candidate networks generated. Those candidate net-

works have one more property in addition to the above properties; they do

not produce joining networks of tuples with more than one occurrences of

the same tuple (Criterion 1).

We also measure the number of non-empty basic tuple sets (neTS’s) generated

in each execution. Figure III.15 shows the average results of the experiment for

1000 executions. Notice that the ratio CNs
JNTS L

decreases as the maximum size of

the output candidate networks increases, i.e., Criterion 1 prunes more when the

candidate networks are larger. The reason is that the trigger of Criterion 1 has

more places to happen in a large candidate network.
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III.E.2 All-Results algorithms

We evaluate the all-result algorithms presented in Section III.C with de-

tailed performance evaluation on a TPC-H database. First, we compare the plans

produced by the greedy to the ones produced by the optimal, where the optimal

execution plan is computed using an exhaustive algorithm. Then, we compare the

speedup in runtime performance for generating and executing the execution plan

using the greedy and the optimal algorithm compared to the naive method, where

no intermediate results are built. Finally, we compare the overall execution times

of the system for some typical keyword queries to the naive method and to the

optimal method.

We use the TPC-H database to conduct the experiments. The size of the

database is 100MB. We use Oracle 9i, running on a Xeon 2.2GHz PC with 1GB

of RAM. The system has been implemented in Java and connects to the DBMS

through JDBC. The master index is implemented using the full-text Oracle9i inter-

Media Text extension. The basic tuple set of relation R for keyword w is produced

by merging the tuples returned by the full-text index on each attribute of R. We

found out that each keyword is contained on the average in 3.5 relations, that is,

3.5 non-empty basic tuple sets are created for each keyword.

The tuple sets and the intermediate results are stored in tables in the

KEEP buffer pool of Oracle 9i, which retains objects in memory, thus avoiding

I/O operations. We dedicated 70MB to the KEEP buffer pool. The display time

is not included in the measured execution time.

The naive method does not produce any intermediate results – it simply

executes each candidate network. The execution times for both the naive method

and reuse evaluation method, which builds and reuses intermediate results, depend

on the status of the cache of the DBMS. In order to eliminate this factor we

warm-up the cache before executing the experiments. The warm-up is done by

executing the SQL queries corresponding to the candidate networks produced by

the candidate network generator. Hence, we are certain that the warm-up does
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#keyw Cost(O)
Cost(G)

2 1
3 0.96
4 0.96
5 0.97

MaxCN Cost(O)
Cost(G)

2 1
3 1
4 0.96
5 0.93
6 0.90

(a) Fix CN size to 4 (b) Fix # keywords to 3

Figure III.16: Evaluation of the Plans of the Greedy Algorithm

not favor the reuse method more than the naive method.

Quality of Greedy. The quality of the plans produced by the greedy algorithm

are very close to the quality of the plans produced by the optimal. We use the

same settings with the above experiment. In Figure III.16 we show how well the

plans produced by the greedy algorithm perform on the average, compared to the

optimal plans for (a = 1, b = 0) for 50 executions. In about 70% of the cases the

generated plans turn out to be identical and in the cases where they are different,

the differences are fairly small.

Evaluation of Plan Generator. In this experiment we measure the speedup that

the system’s plan generator induces. In particular, we compare the time spent in

the Plan Generator and Plan Execution modules against the baseline provided by

the naive method. We also compare the optimal method against the baseline of

the naive method. In detail, the measured methods are:

1. Reuse method. We calculate the execution plan using the greedy algorithm

for three different combinations of values for a, b. In particular, {a, b} ∈

{(1, 0), (0, 1), (1, 0.3)}. Recall that a and b are the weights we assign to the

reusability and the size of the intermediate results respectively.

2. Naive method. We evaluate the candidate networks without using any inter-

mediate results.

3. Optimal method. We calculate the optimal execution plan using an exhaus-

tive algorithm.

In each execution of the experiment we randomly select m keywords from the
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Figure III.17: Speedup when using intermediate results

set of words that are contained in the TPC-H database. Then we use the master

index to generate the tuple sets and the candidate network generator calculates the

candidate networks of size up to M . The execution continues separately for each

of the execution methods. We executed the experiment 200 times and measured

the average speedup T ime(Naive)
T ime(other method)

, which indicates that the reuse methods (or

the optimal) are T ime(Naive)
T ime(other method)

times faster than the naive.

The results are shown in Figure III.17. The optimal method is always

worse than the naive due to the great time overhead in discovering the optimal

execution plan. Notice in Figure III.17 (a) that the speedup decreases when the

number of keywords is greater than 4, because there are more distinct tuple sets

in the candidate networks and hence the reusability opportunities decrease since

the candidate networks’ size is fixed to 4. Also notice in Figure III.17 (b) how the

greedy algorithm with {a, b} = {0, 1} performs better than the one with {a, b} =

{1, 0} when the sizes of the candidate networks are smaller than 5. This happens

because the reusability opportunities increase as the size of the candidate networks

increases, so the frequency factor of the greedy algorithm becomes dominant. In

general, the (a = 1, b = 0) and (a = 1, b = 0.3) options perform better as the

difference between the size of the candidate networks and the number of keywords

increases, since this creates more opportunities for reusability.

Execution times. Finally, we measure the average absolute execution times to
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Figure III.18: Execution times

answer a keyword query using the three methods described above. The execution

times in this experiment include the time to generate the candidate networks using

the candidate network generator, but not the time to build the tuple sets, which

takes from 2 to 4 seconds and could be considerably reduced by using a more

efficient master index implementation [6]. The TPC-H dataset is not suitable for

this experiment, because it has less than 500 distinct keywords, which are repeated

thousands of times. Hence, we inserted into the 100MB TPC-H database, 100 new

tuples to each relation. These tuples contain 50 new keywords and each keyword is

contained in exactly 50 tuples in two different relations (two non-empty basic tuple

sets are created for each keyword). In each execution, the keyword query consists

of two randomly selected keywords from the 50 new keywords. Figure III.18 shows

the average execution times for the three methods for 100 executions. Again, notice

the superiority of the (a = 1, b = 0) and (a = 1, b = 0.3) methods when the size of

the candidate networks increases, which happen also to be the toughest cases from

a performance point of view. The a = 1 parameter leads the greedy to exploit the

opportunities for reusing intermediate results.

III.E.3 Top-k algorithms

In this section we experimentally compare the various algorithms de-

scribed above. For our evaluation, we use the DBLP8 data set, which we de-

8http://dblp.uni-trier.de/
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composed into relations according to the schema shown in Figure III.19. Y is an

instance of a conference in a particular year. PP is a relation that describes each

paper pid2 cited by a paper pid1, while PA lists the authors aid of each paper pid.

Notice that the two arrows from P to PP denote primary-to-foreign-key connec-

tions from pid to pid1 and from pid to pid2. The citations of many papers are not

contained in the DBLP database, so we randomly added a set of citations to each

such paper, such that the average number of citations of each paper is 20. The

size of the database is 56MB. We ran our experiments using the Oracle 9i RDBMS

on a Xeon 2.2-GHz PC with 1 GB of RAM. We implemented all query-processing

algorithms in Java, and connect to the RDBMS through JDBC. The IR index is

implemented using the Oracle 9i Text extension. We created indexes on all join

attributes. The same CN generator is used for all methods, so that the execution

time differences reflect the performance of the execution engines associated with

the various approaches. The CN generator time is included in the measured times.

However, the executions times do not include the tuple set creation time, which is

common to all methods.

Global Pipelined needs to maintain a number of JDBC cursors open at

any given time. However, this number is small compared to the hundreds of

open cursors that modern RDBMSs can handle. Also notice that the number of

JDBC cursors required does not increase with the number of tables in the schema,

since it only depends on the number of relations that contain the query keywords.

In environments where cursors are a scarce resource, we can avoid maintaining

open cursors by reading the whole non-free tuple sets (which are usually very

small) into memory during Global Pipelined execution. Furthermore, to reduce

the overhead of initiating and closing JDBC connections, we maintain a “pool” of

JDBC connections. The execution times reported below include this JDBC-related

overhead.

The parameters that we vary in the experiments are (a) the maximum

size M of the CNs, (b) the number of results k requested in top-k queries, and (c)
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C(cid,name)

Y(yid,year,cid)

P(pid,title,yid)

A(aid,name)

PP(pid1,pid2)

PA(pid,aid)

Figure III.19: The DBLP schema graph (C stands for “conference,” Y for “con-

ference year,” P for “paper,” and A for “author”).

the number m of query keywords. In all the experiments on the Hybrid algorithm,

we set the tuning constant of Figure III.14 to c = 6, which we have empirically

found to work well. We compared the following algorithms:

• The Naive algorithm, as described in Section III.D.1.

• The Sparse algorithm, as described in Section III.D.2.

• The Single Pipelined algorithm (SA), as described in Section III.D.3. We

execute this algorithm individually for each CN, and then combine the results

as in the Naive algorithm.

• The Global Pipelined algorithm (GA), as described in Section III.D.4.

• SASymmetric and GASymmetric are modifications of SA and GA, respec-

tively, where a new tuple is retrieved in a round robin fashion from each of

the non-free tuple sets of a CN, without considering how “promising” each

CN is during scheduling.

• The Hybrid algorithm, as described in Section III.D.5.

The rest of this section is organized as follows. First, we consider queries

with Boolean-OR semantics, where keywords are randomly chosen from the DBLP

database. Then, we repeat these experiments for Boolean-AND queries, when

keywords are randomly selected from a focused subset of DBLP.

Boolean-OR Semantics

Effect of the maximum allowed CN size. Figure III.20 (a) shows the average

query execution time over 100 two-keyword top-10 queries, where each keyword is
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Figure III.20: OR semantics
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Figure III.21: OR semantics

selected randomly from the set of keywords in the DBLP database. GA, GASym-

metric, and Hybrid are orders of magnitude faster than the other approaches.

Furthermore, GA and GASymmetric perform very close to one another (drawn

almost as a single line in Figure III.20 (a)) because of the limited number of non-

free tuple sets involved in the executions, which is bounded by the number of

query keywords. This small number of non-free tuple sets restricts the available

choices to select the next tuple to process. These algorithms behave differently

for queries with more than two keywords, as we show below. Also notice that SA

and SASymmetric behave worse than Naive and Sparse, because the former have

to evaluate the top results of every CN (even of the long ones), where the cost of

the parameterized queries becomes considerable.

Effect of the number of objects requested. Next, we fix the maximum CN

size M = 6 and the number of keywords m = 2, and vary k. The average execution
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Figure III.22: AND semantics

times over 100 queries are shown in Figure III.20 (b). Notice that the performance

of Naive remains practically unchanged across different values of k, in contrast

to the pipelined algorithms whose execution time increases smoothly with k. The

reason is that k determines the size of the prefixes of the non-free tuple sets that we

need to retrieve and process. Naive is not affected by changes in k since virtually all

potential query results are calculated before the actual top-k results are identified

and output. The Sparse algorithm is also barely affected by k, because the values

of k that we use in this experiment require the evaluation of an almost identical

number of CNs. Also, notice that, again, GA and GASymmetric perform almost

identically.

Effect of the number of query keywords. In this experiment (Figure III.21 (a)),

we measure the performance of the various approaches as the number of query key-

words increases, when k = 10 and M = 6. SA and SASymmetric are not included

because they perform poorly for more than two query keywords, due to the large

number of parameterized queries that need to be issued. Notice that GASymmet-

ric performs poorly relative to GA, because of the larger number of alternative

non-free tuple sets to choose the next tuple from. Also notice that Hybrid and GA

are again orders of magnitude faster than Naive. In the rest of the graphs, we then

ignore Naive, SA, and SASymmetric because of their clearly inferior performance.

Effect of the query-result size. This experiment discriminates the performance
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Figure III.23: AND semantics

of GA and Sparse by query-result size. Figure III.21 (b) shows the results of the

experiments averaged over 100 two-keyword top-10 queries, when M = 6. The

performance of Sparse degrades rapidly as the number of results increases. In

contrast, GA scales well with the number of results, because it extracts the top

results in a more selective manner by considering tuple trees rather than coarser

CNs.

Boolean-AND Semantics

We now turn to the evaluation of the algorithms for queries with Boolean-

AND semantics. To have a realistic query set where the query results are not

always empty, for this part of the experiments we extract the query keywords

from a restricted subset of DBLP. Specifically, our keywords are names of authors

affiliated with the Stanford Database Group. We compare Sparse, GA and Hybrid.

Effect of M , k, and m. Figures III.22 (a) (m = 2, k = 10), III.23 (a) (m = 2,

M = 6), and III.22 (b) (k = 10, M = 6) show that Hybrid performs almost

identically as Sparse: for AND semantics, the number of potential query results

containing all the query keywords is relatively small, so Hybrid selects Sparse for

almost all queries. Notice in Figure III.22 (a) that the execution time increases

dramatically from M = 4 to M = 5 because of a schema-specific reason: when M =

5, two author keywords can be connected through the P relation (Figure III.19),

which is not possible for M = 4.
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OR semantics AND semantics

Figure III.24: Quality of the result-size estimates (2-keyword queries; maximum

CN size M=6).

Effect of the query-result size. Figure III.23 (b) (m = 2, k = 10, M = 6)

shows that, unlike in Figure III.21 (b), the execution time decreases as the total

number of results increases: when there are few results, the final filtering step that

the algorithms perform to check that all keywords are present tends to reject many

candidate results before producing the top-10 results. Figure III.23 (b) also shows

that the performance of GA improves dramatically as the total number of results

increases. In contrast, the performance of Sparse improves at a slower pace. The

reason is that GA needs to process the entire CNs when there are few results for

a query, which is more expensive than executing Sparse in the same setting.

Discussion

The main conclusion of our experiments is that the Hybrid algorithm

always performs at least as well as any other competing method, provided that the

result-size estimate on which the algorithm relies is accurate. (Figure III.24 shows

the accuracy of the estimator that we use for a set of queries created using randomly

chosen keywords from DBLP.) Hybrid usually resorts to the GA algorithm for

queries with OR semantics, where there are many results matching the query. The

reason why GA is more efficient for queries with a relatively large number of results

is that GA evaluates only a small “prefix” of the CNs to get the top-k results. On

the other hand, Hybrid usually resorts to the Sparse algorithm for queries with
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AND semantics, which usually have few results. Sparse is more efficient than GA9

because in this case we have to necessarily evaluate virtually all the CNs. Hence

GA, which evaluates a prefix of each CN using nested-loops joins, has inferior

performance because it does not exploit the highly optimized execution plans that

the underlying RDBMS can produce when a single SQL query is issued for each

CN.

III.F Related Work

The work of the Candidate Network Generator reminds of algorithms for

answering queries on universal relations [53]. However there are many important

differences between universal relations and this work: First, there is the obvious

difference that the user of a Universal Relation (UR) needs to know the attributes

where the keywords are, in contrast to the user of the system of this work. Second,

we create efficient queries that find all connections between the tuples that contain

the keywords. In doing so, our system, unlike the UR, has to find connections whose

size may not be schema bound and many of them are pruned by the Candidate

Network Generator. Finally, in addition to finding the useful connections, we

exploit the fact that the connections are “correlated”, in the sense that they share

join expressions. This leads to a special query optimization algorithm, which is

tuned to the specifics of our problem.

One of the criteria that we use to decide that a join expression J is

not a candidate network is whether the joining networks of tuples produced by J

contain more than one occurrences of the same tuple. Our approach for deciding

this property can be viewed as a special case of the chase technique with inclusion

dependencies presented in [4]. Our algorithm is simpler, faster and decidable, since

it focuses on primary to foreign key relationships.

BANKS answers keyword queries by searching for Steiner trees [44] con-

taining all keywords, using heuristics during the search. Goldman et al. [22] use

9When a query produces no results, Sparse has the same performance as Naive.
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a related graph-based view of databases. They rank the objects in the Find set

according to their distance from the objects in the Near set, using an algorithm

that efficiently calculates these distances by building “hub indexes.” A drawback

of these approaches is that a graph of the database tuples must be materialized

and maintained. Furthermore, the important structural information provided by

the database schema is ignored, once the data graph has been built.

DBXplorer [6] exploits the RDBMS schema, which leads to relatively ef-

ficient algorithms for answering keyword queries because the structural constraints

expressed in the schema are helpful for query processing. This system relies on

a similar architecture, on which we also build in this text (Section III.A). Our

techniques improve on previous work in terms of efficiency by exploiting the fact

that free-form keyword queries can generally be answered with just the few most

relevant matches. Our work then produces the “top-k” matches for a query fast,

for moderate values of k.

The use of common subexpressions by the Plan Generator is a form of

multi-query optimization [49, 19, 46]. However the candidate networks have special

properties that allow us to develop a more straightforward and efficient algorithm.

The first property is that the candidate networks have small relations [53] as leaves,

which dramatically prunes the space of useful common subexpressions when ap-

plying the Wong-Yusefi algorithm [53]. Second, the candidate networks are not

random queries, but share common subexpressions by the nature of their genera-

tion as we see in Section III.B. The techniques of [19] cannot be applied in this

context since they concentrate on finding common subexpressions as a post-phase

to query optimization and our system does not have access to the DBMS optimizer.

The problem of processing “top-k” queries has attracted recent attention

in a number of different scenarios. The design of the pipelined algorithms that we

propose in this paper faces challenges that are related to other top-k work (e.g.,

[43, 17, 31, 12]). However, our problem is unique in that we need to join (ranked)

tuples coming from multiple relations in unpredictable ways to produce the final
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top-k results.

Natsev et al. [42] extend the work by Fagin et al. [17] by allowing different

objects to appear in the source “lists,” as opposed to assuming that the lists have

just attribute values for a common set of objects. As a result, the objects from the

lists need to be joined, which is done via user-defined aggregation functions. The

Single Pipelined algorithm of Section III.D.3 can be regarded as an instance of the

more general J∗ algorithm by Natsev et al. [42]. However, J∗ does not consider

predicates over “connecting” relations (i.e., free tuple sets in the terminology of

Section III.A). Also, during processing J∗ buffers all incomplete results, which

would be inefficient (or even infeasible) for our setting, where all combinations of

tuples from the non-free tuple sets are candidate results (i.e., may join through the

free tuple sets). Finally, Ilyas et al. [35] independently developed a top-k algorithm

for ranked join queries, which only differs from the Single Pipelined algorithm in

the heuristic used to choose the next tuple set from which to retrieve the next

tuple.



Chapter IV

Presentation of Results

In Section II.B we defined a result-tree as a subtree of the data graph D

that contains all the keywords (AND-semantics). However, the actual presentation

of the result-trees was not discussed, as is the case for other relevant works [6, 9, 26]

as well. In this chapter we show that the presentation of results is challenging for

two reasons: First, a single node of the data graph may not be meaningful by

itself to be output if it is not augmented with additional information. We solve

this by defining minimum “information units” in the data graph, which we call

target objects as we explain in Section IV.A. Second, the number of resul-trees for

a keyword query is often large due to a form of redundancy as we describe below.

This hinders the user from discovering the result he/she desires. To solve this, we

propose (Section IV.B) a novel presentation method to allow the user to navogate

into the results.

IV.A Minimum Information Units

To ensure that the result of a keyword query is semantically meaningful

for the user we introduce the notion of target objects. For every node n in the data

graph we define (using the schema graph, as we will see later) a segment of the

data graph, called target object of the node n (or simply called target object when

the node n is obvious from the context). Intuitively, a target object of a node n
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person

order

lineitem

part

nation
["US"]

partkey
[1002]

name
["TV"]

quantity
[10 ]

shipdate
[Nov  13 2001]

name
["John"]

date
[Nov  3 2001]

person

order

lineitem

nation
["US"]

quantity
[10 ] shipdate

[Oct  14 2001]

name
["Mike"]

date
[Oct  4 2001]

order

lineitem

quantity
[10 ]

shipdate
[Oct  15 2001]

date
[Oct  3 2001]

part

partkey
[1005]

name
["TV"]

lineitem

quantity
[6]

shipdate
[Oct  14 2001]

supplier linepart

supplier linepart

supplier linepart

supplier linepart

part

partkey
[1008]

name
["VCR"]

product

prodkey
[2005]

descr
["set of VCR
and DVD "]

service_call

date
[Nov  13 2001]

descr
[DVD error]

part

partkey
[1009]

name
["VCR"]

subpartsubpart

Figure IV.1: Sample XML document

person

order

lineitem

part

*

*


nation
partkey name

quantity shipdate

name

date

supplier linepart

subpart

*

product

prodkey descr

service_call

*

date descr

Figure IV.2: TPC-H based schema graph
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is a piece of data that is large enough to be meaningful and able to semantically

identify the node n while, at the same time, is as small as possible. For example,

consider the result-tree N0 for the keyword query [John VCR] on the data graph

of Figure IV.11 conforming to the schema graph of Figure IV.2.

N0 : name[John] ← person ← supplier ← lineitem →

linepart → part → subpart → part → name[VCR]

The user would like to know which is the part number of the VCR, which

is the part p of which the VCR is a subpart, which line item includes p, and what

is the last name of John.2

The target objects provide us such information. It makes sense to output

the “partkey” of the VCR part as well as the name and “partkey” of the TV. On

the other hand it would not make sense to output all the subparts of the TV or the

orders of the person. They could be too many and of no interest in semantically

identifying the node. Hence, we define the person element with the name and

nation subelements to be a target object, and the part with the “partkey” and

name to be another target object.

Given a result-tree T with nodes v1, . . . , vn there is a corresponding tar-

get object tree t,3 which is a tree whose nodes is a minimal set of target ob-

jects {t1, . . . , tm} such that for every node nk ∈ T there is a tl ∈ t such that

target(nk) = tl. There is an edge from a target object ti to a target object tj if

there is an edge (or as path of dummy nodes as defined below) from a node that

belongs to ti to a node that belongs to tj.

Specification of Target Objects The target objects are defined from an ad-

ministrator using the Target Schema Segment (TSS) graph described next. A TSS

graph is an uncycled graph whose nodes are called target schema segments. The

1This graph is the XML data graph that will be used as a running example in Chapter V.
2For simplicity we do not include a last name field in the figures.
3The definition does not guarantee the uniqueness of t. The nodes of T may be split in minimal sets

of target objects in multiple ways. However, this is of limited practical importance since in practice it
is unlikely that target objects overlap with each other in ways that enable a result-tree to be split in
multiple ways in target objects.
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Figure IV.4: Target decomposition of DBLP

TSS graph is derived from a partial mapping of the nodes of the schema graph

G. A node tS is created in GTSS for each set S = {s1, . . . , sw} of nodes of G that

are mapped to tS. Some nodes in G, which are called dummy schema nodes, are

not mapped to any node in GTSS, because they do not carry any information.

For example supplier, subpart and linepart are dummy schema nodes. An edge

(tS, tS′) is created in GTSS if the schema graph has nodes s ∈ S and s′ ∈ S ′,

that are connected directly through an edge (s, s′) or indirectly through a path

of dummy schema nodes. Typically we assign to a node tS of the TSS graph a

name that is the label of the “most representative” schema graph node s ∈ S. For

example, the TSS node corresponding to {person, name, nation} is named person

(see Figure IV.3).

Figure V.7 illustrates the TSS graph behind the DBLP demo at

www.db.ucsd.edu/XKeyword. Notice the semantic explanations, with the obvi-

ous meanings, that annotate the edges. Each edge is annotated with two semantic

explanations: the first explains the connection in the direction of the edge and the
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second in the reverse direction. Similarly, the semantic explanations of the TPC-H

TSS graph are shown in Figure IV.3.

Given the TSS graph, it is straightforward to define a target decomposition

of the data graph into target objects, connected to each other. For example a

target object decomposition of the schema of Figure IV.2 and the corresponding

TSS graph are shown in Figure IV.3. The target object tree of the result-tree N0

presented above is highlighted in Figure IV.1.

IV.B Presentation Graphs

In its simplest result presentation method (Figure I.4 (b)) the XKeyword

[33] demo spawns multiple threads, evaluating various plans for producing target

object trees, and outputs target object trees as they come. The smaller trees,

which are intuitively more important to the user, are usually output first, since

they require smaller execution times. The threads fill a queue with target object

trees, which are output to the user page by page as in web search engine interfaces.

The naive presentation method described above provides fast response

times, but may flood the user with results, many of which are trivial. In partic-

ular, as we explained in Section I.E, a redundancy similar to the one observed in

multivalued dependencies emerges often. Displaying to the user results involving

multivalued dependencies is overwhelming and counter-intuitive. XKeyword faces

the problem by providing an interactive interface that allows navigation and hides

the trivial results, since it does not display any duplicate information as we show

below.

XKeyword’s interactive interface presents the results grouped by the can-

didate networks (see Section III.A.2) they conform to. Intuitively, target object

trees that belong to the same candidate network have the same types of target

objects and the same type of connections between them. XKeyword groups the

results for each candidate network to summarize the different connection types
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(schemata) between the keywords and to simplify the visualization of the result.

XKeyword compacts the results’ representation and offers a drill-down

navigational interface to the user. In particular, a presentation graph PG(C)

(Figure I.4 (c)) is created for each candidate network C. The presentation graph

contains all nodes that participate in some target object tree of C. A sequence of

subgraphs PG0(C), . . . , PGn(C) are active and are displayed at each point, as a

result of the user’s actions. The initial subgraph, PG0(C), is a single, arbitrarily

chosen target object tree m of C, as shown in Figure I.4 (c).

An expansion PGi+1(C) of PGi(C) on a node n of type N is defined as

follows. All distinct nodes n′, of type N , of every target object tree m′ of C are

displayed and marked as expanded (Figure I.6). Note that we have to consider

the statement “of type N” in a restricted sense: A candidate network may involve

the same schema type in more than one roles (as is the case with tuple variable

aliases in SQL.) For example, in Figure I.6 there are “paper” objects connected to

Yannis and “paper” objects connected to Vasilis. We consider those two classes

of “paper” objects to be two different types as far as presentation graphs are

concerned. In addition a minimal number of nodes of other types are displayed,

so that the expanded nodes appear as part of target object trees. More formally,

given a presentation graph instance PGi(C), its expansion PGi+1(C) on a node n

of type N has the following properties: (a) PGi(C) is a subgraph of PGi+1(C),

(b) for each target object tree m′ ∈ C, where the node n′ ∈ m′ is of type N , n′ is

included in PGi+1(C), (c) for each node v ∈ PGi+1(C) there is a target object tree

z contained in PGi+1(C), such that v ∈ z, and (d) there is no instance PG′
i+1(C)

satisfying the above properties and the set of nodes of PG′
i+1(C) is subset of the

nodes of PGi+1(C).

In the implementation of XKeyword, an expansion on a node n occurs

when the user clicks on n. Notice also that if the expanded nodes are too many to

fit in the screen then only the first 10 are displayed.

On the other hand, a contraction PGi+1(C) of PGi(C) on an expanded
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node n of type N is defined as follows. All nodes of type N , except for n, are hidden.

In addition a minimum number of nodes of types other than N are hidden, while

satisfying the restriction that for each node in PGi+1(C) there is a containing

target object tree in PGi+1(C) (see condition (c) below). More formally, given

a presentation graph instance PGi(C), its contraction PGi+1(C) on an expanded

node n of type N has the following properties: (a) PGi+1(C) is a subgraph of

PGi(C), (b) n is the only node in PGi+1(C) of type N , (c) for each node v ∈

PGi+1(C) there is a target object tree z contained in PGi+1(C), such that v ∈

z, and (d) there is no instance PG′
i+1(C) satisfying the above properties while

PG′
i+1(C) has more nodes than PGi+1(C). In the implementation of XKeyword,

similar to the expansion, a contraction on an expanded node n occurs when the

user clicks on n.

The presentation graphs model allows the user to navigate into the re-

sults without being overwhelmed by a huge number of similar target object trees.

Furthermore, if he/she is looking for a particular result it is easy to discover it by

focusing on one node at a time.



Chapter V

Storage of XML Data

In Chapter III we assumed that we build a middleware system on top of

an already operational database. In this chapter we tackle the problem of how to

store the data to allow efficient execution. We assume that the original data is in

XML format and the underlying storage is a relational DBMS, which is a common

setting in recent work [10, 50, 20, 40, 16, 48, 8]. However, the same principles are

applicable to other data formats as well.

V.A Architecture

The architecture of this system (Figure V.1) differs from the architecture

described in Section III.A, because there is load (preprocessing) stage (in addition

to the execution stage), where the XML data is stored into relations. Also, during

execution the Optimizer is responsible to select the best relations to use from the

ones built during the load stage.

Load Stage In the load stage the decomposer (Section V.B) inputs the schema

graph, the TSS graph (see Section IV.A) and the XML (data) graph and creates

the following structures:

1. A master index, which stores for each keyword w a list of triplets of the form

〈TO id, node id, schema node〉 where TO id is the id of the target object

83
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Figure V.1: Architecture

that contains the node of type schema node with id node id, which contains

w. The node id 1 and schema node are needed when calculating the score

of a candidate network, since as we describe below, the generated relations

only store target object id’s.

2. A set of statistics specifying: (a) the number s(S) of nodes of type S in the

XML graph and (b) the average number c(S → S ′) of children of type S ′ for

a random node of type S.

3. BLOBs of target objects, which given an object id instantly return the whole

target object.

4. A decomposition of the TSS graph into fragments, which correspond to con-

nection relations that allow efficient retrieval of target object trees.

Figure V.2 shows a valid decomposition of the TSS graph of Figure IV.3,

where the thick arrows and the closed dotted curves denote single edge and multiple

edge fragments respectively. We map each fragment into a connection relation.

1node id is needed to distinguish two nodes of the same type and of the same target object.
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POL P_id O_id L_id

PaPa  Pa1_id  Pa2_id

LP_ref  L_id P_id

LPa_ref   L_id PA_id

LPr_ref   L_id Pr_id

PS  P_id S_id

Person

Order

*
*

Service_call

* Part

*

Product

Lineitem

Figure V.2: TSS graph Decomposition

For example, P → O → L (in short POL, since the arrows are unambiguously

implied by the TSS graph) is the connection relation that corresponds to the

fragment in the dotted line. It stores the connections among the Person, Order and

Lineitem TSS’s. LPref is the connection relation that corresponds to the fragment

(indicated by the thick dotted line) containing the reference edge between Lineitem

and Person.

Query Stage The query stage is similar to the one described in Section III.A. A

minor difference is that the CN Generator works on the TSS schema graph instead

of the schema graph. Hence, instead of candidate networks, it outputs candidate

TSS networks. The output candidate TSS networks for M = 5 are:

CTSSN1: PartTV,name → PartV CR,name

CTSSN2: PartTV,name → Part → PartV CR,name

CTSSN3: PartTV,name → Part → Part →

PartV CR,name

CTSSN4: PartTV,name ← Lineitem ← Order →

Lineitem → PartV CR,name

CTSSN5: PartTV,name ← Lineitem ← Order →

Lineitem → ProductV CR,descr

For example, CTSSN2 corresponds to the CN

nameTV ← part → subpart → part → subpart
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Lineitem

Part*
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*

POL P_id O_id L_id

PaPa  Pa1_id  Pa2_id

LP_ref  L_id P_id

LPa_ref   L_id PA_id

Product
LPr_ref   L_id Pr_id

Service_call

*
PS  P_id S_id

OLPa O_id L_id Pa_id

Figure V.3: Another TSS Graph Decomposition

The second difference in this architecture is the Optimizer module, which

is an adaptation of the Plan Generator of Section III.C which is explained in

Section V.C. It uses the schema information on the connection relations and the

available statistics to generate the best Execution Plan that evaluates the set of

candidate TSS networks.

V.B Decompositing XML

The decomposition of the TSS graph into fragments determines how the

connections of the XML graph are stored in the database, and consequently the

generated execution plan for the candidate TSS networks. We have found that the

selected decomposition can dramatically change the performance of the system.

Example 4 Consider the keyword query [TV VCR] and CTSSN4: PartTV,name ←

Lineitem ← Order → Lineitem → PartV CR,name from Section V.A. CTSSN4

requires three joins given the decomposition of Figure V.2. Consider the TSS

graph decomposition of Figure V.3, which includes an OLPa fragment. With this

decomposition, CTSSN4 can be evaluated with a single join OLP TV,part.name
1

OLP V CR,part.name.

Often we need to build unfolded fragments that contain the same TSS

more than once, to store the same edge of the TSS graph more than once, as shown

in the example below.
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Figure V.4: Unfolded TSS Graph Decompositions

Example 5 Consider the network CTSSN2: PartTV,name → Part → PartV CR,name

of Section V.A. This network connects three Part nodes by following the Part →

Part edge twice. Under any non-unfolded decomposition this network cannot be ex-

ecuted without a join. However, the first unfolded TSS graph of Figure V.4, which

“unrolls” the PartPart cycle, allows the creation of the Part → Part → Part

fragment, which can evaluate CTSSN2 without a join.

Similarly, CTSSN4 can be evaluated without a join, if we create the

Part ← Lineitem ← Order → Lineitem → Part fragment on the second unfolded

TSS graph of Figure V.4, where the Order → Lineitem edge has been “split”, i.e.,

the Order TSS has two children Lineitem TSS’s. Notice that not all edges of the

unfolded TSS graphs have to be in the decomposition. For example in the second

unfolded TSS graph of Figure V.4, the second Lineitem → Person edge is not in

a fragment, since there is a fragment for the first Lineitem → Person edge.

Definition 5 (Walk Set, Unfolded TSS Graph) A walk set of a TSS graph

G, denoted WS(G), is the set of all possible walks in G. A graph Gu is an unfolded

TSS graph of the TSS graph G if WS(Gu) = WS(G).

Definition 6 TSS Graph Decomposition A decomposition of a TSS graph G is a

set of fragments F1, . . . , Fn, where for each fragment F 〈N,E〉 there is an unfolded

TSS graph Gu of G, such that F is a subgraph of Gu. Every edge of G has to be

present in at least one fragment.

Lemma 1 Any candidate TSS network can be evaluated given a TSS graph de-



88

composition with the properties of Definition 6.

The size of a fragment is the number of edges of the TSS graph that it

includes. Note that a TSS graph decomposition is not necessarily a partition of

the TSS graph – a TSS may be included in multiple fragments (Figure V.3).

Each fragment F = 〈N,E〉 corresponds to a connection relation R, where

each attribute corresponds to a TSS and is of type ID2. A tuple is added to R for

each subgraph of type F in the target object graph, which is the representation of

the XML graph in terms of target objects, that is, each node of the target object

graph is a target object. Connection relations are a generalization of path indexes

[18].

V.B.1 Decomposition Tradeoffs

There is a tradeoff between the number of fragments that we build and

the performance of the keyword queries, as we show in Section V.E. Assume that

we consider solutions to the keyword queries which contain up to M target objects.

That is, the maximum size of a candidate TSS network is M . The one extreme

is to create the minimal decomposition, where a fragment is built for each edge of

the TSS graph. Then, each candidate TSS network C requires S − 2 joins to be

evaluated, where S is the size of C.

The other extreme is the maximal decomposition, where a fragment F is

built for every possible candidate TSS network C. F is created by replacing the

non-free TSS’s of C with free TSS’s. Then C is evaluated with zero joins. Clearly,

the maximal decomposition is not feasible in practice due to the huge amount of

space required.

The clustering and indexing of the connection relations are critical be-

cause they determine the performance of the joins. In the maximal decomposition,

a multi-attribute index is created for every valid (i.e., the keywords can be on

these attributes) combination of attributes of every connection relation. In all

2In RDBMS’s we use the “integer” type to represent the “ID” datatype.
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non-maximal decompositions, we found (Section V.E) that the performance is

dramatically improved when a connection relation R is clustered on the direction

that R is used. For example, consider the execution plan of Section V.A. If the

evaluation of CTSSN3 ← PaPa(TV,part1.name)
1Pa2 id=Pa1 id PaPa 1Pa2 id=Pa1 id

PaPa(V CR,part2.name) starts from the left end, then all three PaPa connection re-

lations should be clustered from left to right. If creating all clusterings for each

fragment is too expensive with respect to space, then single attribute indices are

created on every attribute of the connection relations, since we found that multi-

attribute indices are not used by the DBMS optimizer to evaluate join sequences.

The number of joins to evaluate the query Q corresponding to a candi-

date TSS network is critical, because of the nature of Q, which always starts from

“small” connection relations. Also, the connection relations only store ID’s and

have every single attribute index, which makes the joins index lookups. The sig-

nificance of the number of joins was verified experimentally (Section V.E). Hence,

we specify for each decomposition an upper bound B to the number of joins to

evaluate any candidate TSS network of size up to M . For example B = 0 and

B = M − 2 for the maximal and minimal decompositions respectively.

Given B, we generally prefer to build fragments of small sizes to limit

the space of storing them. Theorem 6 proves that we can bound the size of the

fragments of the decomposition.

Theorem 6 There is always a decomposition D, whose fragments’ maximum size

is L = ⌈ M
B+1

⌉ and any candidate TSS network of size up to M is evaluated with at

most B joins.

Proof: Assume that D is the decomposition that contains exactly all possible

fragments of size L. We show how to evaluate a candidate TSS network C of size

M (if the size is smaller than M it is an easier case) using D. First we partition the

edges of C into connected sets of size L. Notice that the last set s may have size

smaller than L. The number of sets is ⌈M/L⌉ = B +1. Each such set corresponds



90

to a fragment in D. For the last set s we pick a fragment that contains s. Hence

we have to join B + 1 fragments, which needs B joins.

Depending on the TSS graph, we may need to build all possible fragments

of size L to satisfy the constraint B on the number of joins. Theorem 7 shows such

a class of TSS graphs. 2

Theorem 7 If all edges of the TSS graph are star (“*”) edges and ∃L ∈ N, such

that M = L · (B + 1), then the decomposition D must contain all fragments of size

L to satisfy the constraint B on the number of joins.

Proof sketch: Assume that a fragment F of size L is not in D. We show that

there is a candidate TSS network C that cannot be evaluated with B joins. C is

constructed as follows: If r is the root of F then, we replicate F B + 1 times and

make their root common. Then C needs more than B joins if F is not available.

♦

Often it is not efficient to build all fragments of size L, because a fragment

may take up too much space despite its small size (in number of edges). This

happens when the corresponding connection relation of a fragment has a non-

trivial multivalued dependency (MVD), as the PaLOLPa fragment in Figure V.4,

which has the MVD O id →→ L1 id, Pa1 id. We say that a fragment has an MVD

when its corresponding connection relation has an MVD.

Theorem 8 A fragment F has a non-trivial MVD iff F contains a path

p = (e1, . . . , en) and ∃ei ∈ {e1, . . . , en},∃ej ∈ {e1, . . . , en}, i < j, and

• ei ∈ {
∗
←−,

ref
−−→,

∗
→
ref

,
∗
←
ref

} and

• ej ∈ {
∗
−→,

ref
←−−,

∗
→
ref

,
∗
←
ref

} and

• 6 ∃l, i < l < j − 1, el ∈ {→} ∧ el+1 ∈ {←}

Proof sketch: Assume that R is the corresponding connection relation of F . First

we prove that if F contains p, then F has an MVD. We assume that V is the set
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of nodes of F . We can assume that there is no star edge e ∈ {ei+1, . . . , ej−1}. If

there were, we would consider the path p′ = {ei, . . . , e} or p′ = {e, . . . , ej} if e is
∗
−→ or

∗
←− respectively. For the same reason we assume that there are no ref edges

in {ei+1, . . . , ej−1}. Assume that ei = (vi, v
′
i) and ej = (vj, v

′
j). By the hypothesis

no l exists, so there is a one-to-one relationship between v′
i and vj. Also, by the

hypothesis it is obvious that one-to-many relatioships exist between v′
i and vi, and

vj and v′
j. Hence, R has the MVD v′

i →→ vi ∪ VL, where VL is the set of nodes of

p on the left of vi.

The inverse specifies that if R has an MVD then the conditions of the

theorem hold. Assume that the MVD is vm →→ Vm, where vm ∈ V and Vm ⊆ V .

If the MVD is non-trivial there must be a one-to-many relationship from vm to an

attribute vi ∈ Vm and from vm to an attribute v′
l ∈ (V −Vm−vm). If the hypothesis

about l did not hold, then F would be empty since R=πVm∪vm
R 1vm=vm

πV −Vm
R,

by the definition of an MVD. ♦

We classify TSS graph fragments and decompositions based on the storage

redundancy in the corresponding connection relations. Connection relations that

correspond to a single edge in the TSS graph, by definition are always in 4NF. Some

wider connection relations, for example the OLPa relation of Figure V.3 can be

in 4NF, however most of them will not be in 4NF. Non-MVD, no-4NF connection

relations, are called inlined connection relations. A fragment is 4NF, inlined, or

MVD, if the resulting connection relation is 4NF, inlined, or MVD respectively.

There are two classes of fragments that should never be built because no

candidate TSS network can efficiently use them. We call such fragments useless:

1. If a fragment F contains a choice TSS T and more than one children of T ,

then F is useless, since the children of T can never be connected through T .

For example, the fragment PaLPr is useless since Lineitem is a choice TSS.

2. A fragment that contains the construct T1
l1−→ T

l2←− T2 is useless, if l1 6= ref

and l2 6= ref , because T1 and T2 are never connected through T . For example,

the fragment L1PrL2 is useless since two Lineitem target objects cannot
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Figure V.5: Replacing an MVD with a non-MVD fragment

connect through a Part target object.

We ignore useless fragments in the decomposition algorithm presented

below.

Decomposition Algorithm. We use two different decompositions. First, an

inlined, non-MVD decomposition generated by the algorithm of Figure V.6 is built,

where B is the maximum number of joins and M is the maximum candidate TSS

network size. This decomposition is used to efficiently generate the top-k results

(MTTON’s) in the web search engine-like presentation, and the top-1 MTTON

of each CN C which corresponds to the initial instance of the presentation graph

of C. Second, the minimal decomposition is built, which is used along with the

inlined, non-MVD decomposition in the on-demand expansion of the presentation

graphs. The algorithm in Figure V.6:

• satisfies the B constraint on the number of joins

• avoids building MVD fragments if possible

• builds non-MVD fragments of size larger than L = ⌈ M
B+1

⌉ if they can elimi-

nate MVD fragments of size L

We say that a candidate TSS network C is covered by a decomposition

D when C can be evaluated with at most B joins.

Given M = 5 and B = 1, Figure V.5 shows how the candidate TSS

network S ← P → O → L → Pr is covered if we build the non-MVD fragment

POLPr of size L + 1 instead of the MVD fragment SPO of size L.
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Decomposition Algorithm(B,M){

Add to the decomposition D the non-MVD fragments of size ≤ L;

Create a list Q of all candidate TSS networks of size up to M not covered by D;

Add all possible non-MVD fragments of size greater than L, that help in covering at

least one candidate TSS network C ∈ Q and remove C from Q;

Add the minimum number of MVD fragments of size up to L

to cover all candidate TSS networks in Q;

}

Figure V.6: Decomposition Algorithm

V.C Execution Stage Optimizer

The optimizer inputs a set of candidate TSS networks and the containing

lists of the keywords. Its goal is to minimize the cost of evaluating the candidate

TSS networks by:

• making the best use of the available fragments and

• exploiting reusability opportunities of common subexpression among the can-

didate TSS networks.

The optimization consists of two stages: (a) rewrite the candidate TSS

networks using the available fragments and (b) discover and exploit reusability

opportunities among the rewritten candidate TSS networks. The second stage

is covered in Section III.C, where heuristics are proposed that use the statistics

calculated in the load stage.

Both stages refer to NP-complete problems (Theorems 9, 4). To make

things worse, the two stages interact because depending on the rewriting, the

reusability opportunities change. Fortunately, it turns out that we can execute the

two stages sequentially and still produce an efficient execution plan, because it is

rare that an optimal rewriting will reduce the reusability opportunities, because

candidate TSS networks which are close enough to share common subexpressions
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are usually rewritten using the same set of fragments.

Theorem 9 The following problem is NP-complete: Given the simple cost model

where each join has cost one, and a set of relational views (fragments), rewrite a

query (candidate network) using these views to minimize the evaluation cost.

Proof: See [27]. 2

Definition 7 (Rewriting) A rewriting R of a candidate TSS network N is a

graph of fragments, such that:

• N is a subgraph of R (containment) and

• if any fragment is removed from N, it is no longer a rewriting of R (mini-

mality)

In a non-redundant decomposition there is exactly one rewriting for each

candidate TSS network. The key concerns when rewriting a candidate TSS network

N are (a) to exploit the clustering of the selected fragments and (b) to minimize the

sizes of the intermediate results. The optimizer calculates the cost of evaluating a

rewriting R applying the Wong-Yusefi algorithm and the cost estimations presented

in [53]. The evaluation starts from the leaves which are the “small” relations and

the join paths meet on one or more “meeting” fragments. The most efficient join

method on the meeting fragments is the index join. Notice that the sizes of the

non-free TSS’s, which are needed in the cost calculation, are calculated from the

containing list of the keyword

The number of rewritings is theoretically exponential on the number of

fragments, but in practice it is fairly small, given that the size of the candidate

TSS networks is bound and the number of fragments that contain each edge of

the schema graph is limited. Hence the optimizer can efficiently select an optimal

rewriting with respect to the cost model of [53].
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Figure V.7: Target decomposition of DBLP

V.D Related Work

XML data is stored in a relational database [10, 50, 20, 40, 16, 48, 8], to

allow the addition of structured querying capabilities in the future and leverage

the indexing capabilities of the DBMS’s. Some of these works [20, 40, 16] did not

assume knowledge of an XML schema. In particular, the Agora project employed

a fixed relational schema, which stores a tuple per XML element. This approach

is flexible but it is much less competitive than the other approaches, because of

the performance problems caused by the large number of joins in SQL queries.

This work is different because it exploits the schema information to store the

relationships between the target object id’s of the XML data. The actual data are

stored in XML BLOB’s which are introduced in [8].

V.E Experiments

To evaluate the performance of the system we performed a set of ex-

periments. We measure the performance of the keyword queries for various de-

compositions of the XML schema, for top-k (described in Section III.D) and full

results. Notice that we use a simple ranking function [32, 6, 33] that assigns a

score 1/size(T ) to a result-tree T .

We use the DBLP XML database with the schema shown in Figure V.7.

The citations of many papers are not contained in the DBLP database, so we

randomly added a set of citations to each such paper, such that the average number
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of citations of each paper is 20. We use Oracle 9i, running on a Xeon 2.2GHz PC

with 1GB of RAM. XKeyword has been implemented in Java and connects to

the underlying DBMS through JDBC. The master index is implemented using

the full-text Oracle 9i interMedia Text extension. Clustering is performed using

index-organized tables.

Decompositions. We assume that the maximum candidate TSS network size

is M = 7 and focus on the case of two keywords. Notice that we select a big M

value to show the importance of the selected decomposition. The absolute times

are an order of magnitude smaller when we reduce M by one. We require that

the maximum number of joins is B = 2, hence from Theorem 6 it is L = 3. We

compare five different decompositions:

1. The XKeyword decomposition created by the algorithm of Figure V.6.

2. The Complete decomposition, which consists of all fragments of size L.

3. The MinClust decomposition, which is the minimal decomposition with all

possible clusterings for each fragment.

4. The MinNClustIndx decomposition, which is the minimal decomposition

with single attribute indices on every attribute of the ID relations.

5. The MinNClustNIndx decomposition, which is the minimal decomposition

with no indices or clustering.

We compare the average performance of these decompositions to output

the top-k results for each candidate network. The results are shown in Figure V.8

(a). Notice that the Complete decomposition is slower than MinClust although

it requires a smaller number of joins, because of the huge size of the fragments

that correspond to relations with multi-valued dependencies and the more effi-

cient caching performed in the MinClust decomposition. Also notice that the

non-clustered decompositions (the results for MinNClustNIndx are not shown,
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Figure V.8: Execution times

because they are worse by an order of magnitude) perform poorly for the top-k

results.

Figure V.8 (b) shows the average execution times to output all the results

for each candidate network. Notice that the MinNClustNIndx is the fastest,

since the full table scan and the hash join is the fastest way to perform a join

when the size of the relations is small relatively to the main memory and the disk

transfer rate of the system, which is the case here, since all relations of the minimal

decomposition have just two id (integer) attributes.



Chapter VI

ObjectRank

This chapter describes in detail the authority flow ranking factor (Sec-

tion II.D). In particular, we focus on the single-object problem Section II.B, for

which we show that there are efficient ways to calculate the authority flow (Ob-

jectRank [7]) scores. On the other hand, applying the authority flow factor to

measure the association between the nodes of result-trees (Section II.C) is more

challenging on the performance and semantics level and is left as future work.

Section VI.A presents the basics of the PageRank algorithm. Then, Sec-

tion VI.B defines the data model and the semantics of the solution to the problem.

Section VI.C presents the architecture of ObjectRank, and Section VI.D describes

algorithms to calculate the ObjectRank scores. Finally, Sections VI.E and VI.F

experimentally evaluate the system and discuss related work respectively.

VI.A Background

We describe next the essentials of PageRank and authority-based search,

and the random surfer intuition. Let (V,E) be a graph, with a set of nodes

V = {v1, . . . , vn} and a set of edges E. A surfer starts from a random node (web

page) vi of V and at each step, he/she follows a hyperlink with probability d or

gets bored and jumps to a random node with probability 1 − d. The PageRank

value of vi is the probability r(vi) that at a given point in time, the surfer is at vi.

98
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If we denote by r the vector [r(v1), . . . , r(vi), . . . , r(vn)]T then we have

r = dAr +
(1 − d)

|V |
e (VI.1)

where A is a n × n matrix with Aij = 1
OutDeg(vj)

if there is an edge vj → vi in

E and 0 otherwise, where OutDeg(vj) is the outgoing degree of node vj. Also,

e = [1, . . . , 1]T .

The above PageRank equation is typically precomputed before the queries

arrive and provides a global, keyword-independent ranking of the pages. Instead of

using the whole set of nodes V as the base set, i.e., the set of nodes where the surfer

jumps when bored, one can use an arbitrary subset S of nodes, hence increasing

the authority associated with the nodes of S and the ones most closely associated

with them. In particular, we define a base vector s = [s0, . . . , si, . . . , sn]T where si

is 1 if vi ∈ S and 0 otherwise. The PageRank equation is then

r = dAr +
(1 − d)

|S|
s (VI.2)

Regardless of whether one uses Equation VI.1 or Equation VI.2 the

PageRank algorithm solves this fixpoint using a simple iterative method, where

the values of the (k+1)-th execution are calculated as follows:

r(k+1) = dAr(k) +
(1 − d)

|S|
s (VI.3)

The algorithm terminates when r converges, which is guaranteed to hap-

pen under very common conditions [41]. In particular, A needs to be irreducible

(i.e., (V,E) be strongly connected) and aperiodic. The former is true due to the

damping factor d, while the latter happens in practice.

The notion of the base set S was suggested in [11] as a way to do person-

alized rankings, by setting S to be the set of bookmarks of a user. In [29] it was

used to perform topic-specific PageRank on the Web. We take it one step further

and use the base set to estimate the relevance of a node to a keyword query. In
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Parameter
property

Parameters

Application

- specific

authority transfer

rates, global

ObjectRank calculation,

damping factor

Combination

of scores

normalization scheme,

global ObjectRank

weight, AND or OR

semantics

Performance epsilon, threshold

Table VI.1: Parameters of ObjectRank

particular, the base set consists of the nodes that contain the keyword as explained

next.

VI.B Data Model and Semantics

In this section we formally define the framework of ObjectRank, and

show how ObjectRank ranks the nodes of a database with respect to a given

keyword query, given a set of calibrating (adjusting) parameters (Table VI.1). In

particular, Section VI.B.1 describes how the database and the authority transfer

graph are modeled. Section VI.B.2 shows how the keyword-specific and the global

ObjectRanks are calculated and combined to produce the final score of a node.

Section VI.B.3 presents and addresses the challenges for multiple-keyword queries.

Finally, Section VI.B.4 discusses how the frequency of the keywords in taken into

account and Section VI.B.5 compares our approach to HITS [38].

VI.B.1 Data Graph, Schema, and Authority Transfer Graph

The data graph D(VD, ED) and the schema graph G(VG, EG) have been

defined in Section II.A. In this section to simplify, we assume that every node

has a single attribute and the label (value) of this attribute is the label (value) of
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the node. Another (from the example of Section II.A) example of a data and the

corresponding schema graph is shown in Figures VI.1 and VI.2.

Authority Transfer Schema Graph. From the schema graph G(VG, EG), we

create the authority transfer schema graph GA(VG, EA) to reflect the authority

flow through the edges of the graph. This may be either a trial and error process,

until we are satisfied with the quality of the results, or a domain expert’s task.

In particular, for each edge eG = (u → v) of EG, two authority transfer edges,

ef
G = (u → v) and eb

G = (v → u) are created. The two edges carry the label of

the schema graph edge and, in addition, each one is annotated with a (potentially

different) authority transfer rate - α(ef
G) and α(eb

G) correspondingly. We say that

a data graph conforms to an authority transfer schema graph if it conforms to the

corresponding schema graph. (Notice that the authority transfer schema graph

has all the information of the original schema graph.)

Figure VI.3 shows the authority transfer schema graph that corresponds

to the schema graph of Figure VI.2 (the edge labels are omitted). The motivation

for defining two edges for each edge of the schema graph is that authority poten-

tially flows in both directions and not only in the direction that appears in the

schema. For example, a paper passes its authority to its authors and vice versa.

Notice however, that the authority flow in each direction (defined by the authority

transfer rate) may not be the same. For example, a paper that is cited by im-

portant papers is clearly important but citing important papers does not make a

paper important.

Notice that the sum of authority transfer rates of the outgoing edges of

a schema node u may be less than 11, if the administrator believes that the edges

starting from u do not transfer much authority. For example, in Figure VI.3,

conferences only transfer 30% of their authority.

Authority Transfer Data Graph. Given a data graph D(VD, ED) that con-

forms to an authority transfer schema graph GA(VG, EA), ObjectRank derives an

1In terms of the random walk model, this would be equivalent to the disappearance of a surfer.
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authority transfer data graph DA(VD, EA
D) (Figure VI.4) as follows. For every edge

e = (u → v) ∈ ED the authority transfer data graph has two edges ef = (u → v)

and eb = (v → u). The edges ef and eb are annotated with authority transfer rates

α(ef ) and α(eb). Assuming that ef is of type ef
G, then

α(ef ) =







α(ef
G

)

OutDeg(u,e
f
G

)
, if OutDeg(u, ef

G) > 0

0, if OutDeg(u, ef
G) = 0

(VI.4)

where OutDeg(u, ef
G) is the number of outgoing edges from u, of type ef

G. The au-

thority transfer rate α(eb) is defined similarly. Figure VI.4 illustrates the authority

transfer data graph that corresponds to the data graph of Figure VI.1 and the au-

thority schema transfer graph of Figure VI.3. Notice that the sum of authority

transfer rates of the outgoing edges of a node u of type µ(u) may be less than

the sum of authority transfer rates of the outgoing edges of µ(u) in the authority

transfer schema graph, if u does not have all types of outgoing edges.

VI.B.2 Importance vs. Relevance.

The authority flow factor described in this chapter can be applied to all

the criteria of Section II.C. However, as we mentioned above we do not tackle

the “association between nodes of result-tree” criterion. The other two criteria
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(“global importance” and “relevance to keywords” are combined and calculated as

we describe below.

The score of a node v with respect to a keyword query w is a combination

of the global ObjectRank rG(v) of v and the keyword-specific ObjectRank rw(v).

We propose the following combining function, although other functions may be

used as well:

rw,G(v) = rw(v) · (rG(v))g (VI.5)

where g is the global ObjectRank weight, which determines how important the

global ObjectRank is. Notice that g may be accessible to the users or fixed by the

administrator. The calculations of the keyword-specific and the global ObjectRank

are performed as follows (we assume single-keyword queries at this point).

Keyword-specific ObjectRank. Given a single keyword query w, ObjectRank

finds the keyword base set S(w) (from now on referred to simply as base set when

the keyword is implied) of objects that contain the keyword w and assigns an

ObjectRank rw(vi) to every node vi ∈ VD by resolving the equation

rw = dArw +
(1 − d)

|S(w)|
s (VI.6)

where Aij = α(e) if there is an edge e = (vj → vi) in EA
D and 0 otherwise, d

controls the base set importance, and s = [s1, . . . , sn]T is the base set vector for

S(w), i.e., si = 1 if vi ∈ S(w) and si = 0 otherwise.

The damping factor d determines the portion of ObjectRank that an ob-

ject transfers to its neighbors as opposed to keeping to itself. It was first introduced

in the original PageRank paper [11], where it was used to ensure convergence in

the case of PageRank sinks. However, in addition to that, in our work it is a

calibrating factor, since by decreasing d, we favor objects that actually contain

the keywords (i.e., are in base set)as opposed to objects that acquire ObjectRank

through the incoming edges. Typical values for d are 0.85 for normal behavior and
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Figure VI.5: Authority transfer schema graph for Complaints database.

0.1 to favor objects that actually contain the keywords.

Global ObjectRank. The definition of global ObjectRank is different for differ-

ent applications or even users of the same application. In this chapter, we focus on

cases where the global ObjectRank is calculated applying the random surfer model,

and including all nodes in the base set. The same calibrating parameters are avail-

able, as in the keyword-specific ObjectRank. Notice that this way of calculating

the global ObjectRank, which is similar to the PageRank approach [11], assumes

that all nodes (pages in PageRank) initially have the same value. However, there

are many applications where this is not true.

For example, consider a complaints database (Figure VI.5), which stores

the complaint reports of customers regarding products of the company. Also, each

complaint may reference another complaint, and there is a sales table. Assume we

wish to rank the complaint reports according to their urgency, given that the goal

of the company is to keep the “good” customers satisfied, and the “goodness” of

a customer is the total sales associated with him/her. Then, the base set for the

computation of the global ObjectRank is the set of customers, and each customer is

given a base ObjectRank proportional to his/her total sales amount. A reasonable

assignment of authority transfer rates is shown in Figure VI.5.

VI.B.3 Multiple-Keywords Queries.

We define the semantics of a multiple-keyword query “w1, . . . , wm” by

naturally extending the random walk model. We consider m independent random

surfers, where the ith surfer starts from the keyword base set S(wi). For AND
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7.44 28.43 Access Path Selection in a RDBMS. Patricia G. Selinger, SIGMOD 1979
2.04 102.1 R-Trees: A Dynamic Index Structure for Spatial Searching. Antonin Guttman, SIGMOD 1984
1.73 112.7 The K-D-B-Tree: A Search Structure For Large … Indexes. John T. Robinson, SIGMOD 1981
41.02 3.08 DataGuides: Enabling Query … Optimization in Semistructured... Roy Goldman, VLDB 1997

Figure VI.6: Top 5 papers on “XML Index”, with and without emphasis on “XML”

semantics, the ObjectRank of an object v with respect to the m-keywords query

is the probability that, at a given point in time, the m random surfers are simul-

taneously at v. Hence the ObjectRank rw1,...,wm(v) of the node v with respect to

the m keywords is

rw1,...,wm(v) =
∏

i=1,...,m

rwi(v) (VI.7)

where rwi(v) is the ObjectRank with respect to the keyword wi.

For OR semantics, the ObjectRank of v is the probability that, at a given

point in time, at least one of the m random surfers will reach v. Hence, for two

keywords w1 and w2 it is

rw1,w2(v) = rw1(v) + rw2(v) − rw1(v)rw2(v) (VI.8)

and for more than two, it is defined accordingly. Notice that [29] also sums the

topic-sensitive PageRanks to calculate the PageRank of a page.

VI.B.4 Weigh keywords by frequency

A drawback of the combining function of Equation VI.7 is that it favors

the more popular keywords in the query. The reason is that the distribution of Ob-

jectRank values is more skewed when the size |S(w)| of the base set S(w) increases,

because the top objects tend to receive more references. For example, consider two

results for the query “XML AND Index” shown in Figure VI.6. Result (b) corre-

sponds to the model described above. It noticeably favors the “Index” keyword
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over the “XML”. The first paper is the only one in the database that contains

both keywords in the title. However, the next three results are all classic works on

indexing and do not apply directly to XML. Intuitively, “XML” as a more specific

keyword is more important to the user. Indeed, the result of Figure VI.6 (a) was

overwhelmingly preferred over the result of Figure VI.6 (b) by participants of our

relevance feedback survey (Section VI.E.1). The latter result contains important

works on indexing in semistructured, unstructured, and object-oriented databases,

which are more relevant to indexing of XML data. This result is obtained by using

the modified formula:

rw1,...,wm(v) =
∏

i=1,...,m

(rwi(v))g(wi) (VI.9)

where g(wi) is a normalizing exponent, set to g(wi) = 1/log(|S(wi)|). Using the

normalizing exponents g(“XML”) and g(“Index”) in the above example is equiva-

lent to running in parallel g(“XML”) and g(“Index”) random walks for the “XML”

and the “Index” keywords respectively.

VI.B.5 Compare to single base set approach

One can imagine alternative semantics to calculate the ObjectRank for

multiple keywords, other than combining the single-keyword ObjectRanks. In

particular, consider combining all objects with at least one of the keywords into a

single base set. Then a single execution of the ObjectRank algorithm is used to

determine the scores of the objects. Incidentally, these semantics were used in the

HITS system [38]. We show that such “single base set” semantics can be achieved

by combining single-keyword ObjectRank values applying appropriate exponents.

Furthermore, we explain how our semantics avoid certain problems of “single base

set” semantics.

In order to compare to the “single base set” approach for AND semantics

(Equation VI.7), we consider two scenarios and assume without loss of generality

that there are two keywords. First, assume that we only put in the base set
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Timber: A Native XML

Database

Updates for Structure

Indexes

FastMap: A fast

Algorithm for Indexing...

A Unified Approach for

Indexed and non-

Indexed Spatial Joins

Blobworld: A System for

Region-based Image

Indexing and Retrieval

DataGuides: Enabling

Query Formulation and

Optimization in

Semistructured

Databases

The R*-tree: An

efficient and robust

access method for

points and rectangles

Base Set

Figure VI.7: Example where “HITS” approach fails in AND semantics.

S objects that contain both keywords. These objects will be in both keyword-

specific base sets as well, so these objects and objects pointed by them will receive

a top rank in both approaches. Second, if S contains objects containing any of

the two keywords, we may end up ranking highest an object that is only pointed

by objects containing one keyword. This cannot happen with the keyword-specific

base sets approach. For example, in Figure VI.7, the “single base set” approach

would rank the R∗ paper higher than the DataGuides paper for the query “XML

AND Index”, even though the R∗ paper is irrelevant to XML.

For OR semantics (Equation VI.8), the base set S in the“single base

set” approach is the union of the keyword-specific base sets. We compare to an

improved version of the “single base set” approach, where objects in base set are

weighted according to the keywords they contain, such that infrequent keywords

are assigned higher weight. In particular, if an object contains both keywords, for

a two keyword query, it is assigned a base ObjectRank of (1−d) · ( 1
|S(w1)|

+ 1
|S(w2)|

).

Then, using the Linearity Theorem in [36], we can prove that the ObjectRanks

calculated by both approaches are the same.

VI.C Architecture

Figure VI.8 shows the architecture of the ObjectRank system, which is

divided into two stages. The preprocessing stage consists of the ObjectRank Execu-



109

Figure VI.8: System Architecture.

tion module, which inputs the database to be indexed, the set of all keywords that

will be indexed, and a set of parameters (the rest of the adjusting parameters are

input during the query stage). In particular these parameters are: (i) the damping

factor d, (ii) the authority transfer rates α(eG)’s of the authority transfer schema

graph GA, (iii) the convergence constant epsilon which determines when the Ob-

jectRank algorithm converges, and (iv) the threshold value which determines the

minimum ObjectRank that an object must have to be stored in the ObjectRank

Index.

The ObjectRank Execution module creates the ObjectRank Index, which

is an inverted index, indexed by the keywords. For each keyword w, it stores a

list of 〈id(u), rw(u)〉 pairs for each object u that has rw(u) ≥ threshold. The pairs

are sorted by descending rw(u) to facilitate an efficient querying method as we

describe below. The ObjectRank Index has been implemented as an index-based

table, where the lists are stored in a CLOB attribute. A hash-index is built on top

of each list to allow for random access, which is required by the Query module.

The Query module inputs a set of sorted 〈id(u), rw(u)〉 pairs lists

L1, . . . , Lm and a set of adjusting parameters, and outputs the top-k objects ac-

cording to the combining function (Equation VI.7 or VI.8). In particular, these

parameters are: (i) the semantics to be used (AND or OR), (ii) the normalization
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scheme, i.e., the exponents to use, and (iii) the global ObjectRank weight. The

naive approach would be to make one pass of all lists to calculate the final Objec-

tRank values for each object and then sort this list by final ObjectRank. Instead,

we use the Threshold Algorithm [17] which is guaranteed to read the minimum

prefix of each list. Notice that the Threshold Algorithm is applicable since both

combining functions (Equations VI.7 and VI.8) are monotone, and random access

is possible on the stored lists.

Finally, the Database Access module inputs the result ids and queries the

database to get the suitable information to present the objects to the user. This

information is stored into an id-indexed table, that contains a CLOB attribute

value for each object id. For example, a paper object CLOB would contain the

paper title, the authors’ names, and the conference name and year.

VI.D Index Creation Algorithms

This section presents algorithms to create the ObjectRank index. Sec-

tion VI.D.1 presents an algorithm for the case of arbitrary authority transfer data

graphs DA. Sections VI.D.2 and VI.D.3 show how we can do better when DA is a

directed acyclic graph (DAG) and “almost” a DAG respectively (the latter prop-

erty is explained in Section VI.D.3). In Sections VI.D.4 and VI.D.5, we present

optimizations when the authority transfer graph has a small vertex cover, or is a

DAG of subgraphs. Finally, Section VI.D.6 presents optimization opportunities

based on manipulating the initial values of the iterative algorithm.

VI.D.1 General algorithm

Figure VI.9 shows the algorithm that creates the ObjectRank Index. The

algorithm accesses the authority transfer data graph DA many times, which may

lead to a too long execution time if DA is very large. Notice that this is usually not

a problem, since DA only stores object ids and a set of edges which is small enough
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CreateIndex(keywordsList, epsilon, threshold, α(.), d){

01. For each keyword w in keywordsList do {

02. While not converged do

03. /*i.e., ∃v, |r(k+1)(v) − r(k)(v)| > epsilon*/

04. MakeOnePass(w,α(.), d);

05. StoreObjectRanks();

06. }

}

MakeOnePass(w,α(.), d) {

07. Evaluate Equation VI.6 using the r from the previous iteration on the right side;

}

StoreObjectRanks() {

08. Sort the 〈id(i), r(vi)〉 pairs list by r(vi) and store it in inverted index,

after removing pairs with r(vi) < threshold;

}

Figure VI.9: Algorithm to create ObjectRank Index

to fit into main memory for most databases. Notice that lines 2-4 correspond to the

original PageRank calculation [11] modulo the authority transfer rates information.

VI.D.2 DAG algorithm

There are many applications where the authority transfer data graph is a

DAG. For example a database of papers and their citations (ignoring author and

conference objects), where each paper only cites previously published papers, is a

DAG. Figure VI.10 shows an improved algorithm, which makes a single pass of the

graph DA and computes the actual ObjectRank values. Notice that there is no

need for epsilon any more since we derive the precise solution of Equation VI.6, in

contrast to the algorithm of Figure VI.9 which calculates approximate values. The

intuition is that ObjectRank is only transferred in the direction of the topological

ordering, so a single pass suffices. Notice that topologically sorting a graph G(V,E)

takes time Θ(V + E) [15] in the general case. In many cases the semantics of the
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database can lead to a better algorithm. For example, in the papers database,

we can efficiently topologically sort the papers by first sorting the conferences by

date. This method is applicable for databases where a temporal or other kind of

ordering is implied by the link structure.

CreateIndexDAG(keywordsList, threshold, α(.), d){

01. Topologically sort nodes in graph DA;

02. /*Consecutive accesses to D′A are in topological order.*/

03. For each keyword w in keywordsList do {

04. MakeOnePass(w,α(.), d);

05. StoreObjectRanks();

06. }

}

Figure VI.10: Algorithm to create ObjectRank Index for DAGs

In the above example, the DAG property was implied by the semantics.

However, in some cases we can infer this property by the structure of the authority

transfer schema graph GA, as the following theorem shows.

Theorem 10 The authority transfer data graph DA is a DAG if and only if

• the authority transfer schema graph GA is a DAG, or

• for every cycle c in GA, the subgraph D′A of DA consisting of the nodes (and

the edges connecting them), whose type is one of the schema nodes of c, is a

DAG.

VI.D.3 Almost-DAG algorithm

The most practically interesting case is when the authority transfer data

graph DA is almost a DAG, that is, there is a “small” set U of backedges, and if

these edges are removed, DA becomes a DAG. Notice that the set U is not unique,

that is, there can be many minimal (i.e., no edge can be removed from U) sets of
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backedges. Instead of working with the set of backedges U , we work with the set

L of backnodes, that is, nodes from which the backedges start. This reduces the

number of needed variables as we show below, since |L| ≤ |U |.

In the papers database example (when author and conference objects are

ignored), L is the set of papers citing a paper that was not published previously.

Similarly, in the complaints database (Figure VI.5), most complaints reference

previous complaints. Identifying the minimum set of backnodes is NP-complete2

in the general case. However, the semantics of the database can lead to efficient

algorithms. For example, for the databases we discuss in this paper (i.e, the

papers and the complaints databases), a backnode is simply an object referencing

an object with a newer timestamp.

The intuition of the algorithm (Figure VI.11) is as follows: the Objec-

tRank of each node can be split to the DAG-ObjectRank which is calculated ignor-

ing the backedges, and the backedges-ObjectRank which is due to the backedges.

To calculate backedges-ObjectRank we assign a variable ci to each bac-

knode ci (for brevity, we use the same symbol to denote a backnode and its Objec-

tRank), denoting its ObjectRank. Before doing any keyword-specific calculation,

we calculate how ci’s are propagated to the rest of the graph DA (line 5), and store

this information in C. Hence Cij is the coefficient with which to multiply cj when

calculating the ObjectRank of node vi. To calculate C (lines 13-15) we assume

that the backedges are the only source of ObjectRank, and make one pass of the

DAG in topological order.

Then, for each keyword-specific base set: (a) we calculate the DAG-

ObjectRanks r′ (line 7) ignoring the backedges (but taking them into account

when calculating the outgoing degrees), (b) calculate ci’s solving a linear system

(line 8), and (c) calculate the total ObjectRanks (line 10) by adding the backedge-

ObjectRank (C · c) and the DAG-ObjectRank(r′). Each line of the system of line

8 corresponds to a backnode ci ≡ vj (i.e., the ith backnode is the jth node of the

2Proven by reducing Vertex Cover to it.
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CreateIndexAlmostDAG(keywordsList, threshold, α(.), d){

01. c: vector of ObjectRanks of backnodes;

02. Identify backnodes, and topologically sort the DAG (DA without the backedges) D′A;

03. /*Consecutive accesses to D′A are in topological order.*/

04. /*Backedges are considered in D′A for α(.) .*/

05. C=BuildCoefficientsTable();

06. For each keyword w in keywordsList do {

07. Calculate ObjectRanks vector r′ for D′A executing MakeOnePass(w,α(.), d);

08. Solve c = C · c + r′;

09. /*D denotes keeping only the lines of D corresponding to backnodes.*/

10. r = C · c + r′

11. StoreObjectRanks();

12. }

}

BuildCoefficientsTable(){

13. For each node vj do

14. r(vj) = d ·
∑

backnode ci points at vj
(α(ci → vj) · ci)+

d ·
∑

non−backnode vl points at vj
(α(vl → vj) · r(vl));

15. Return C, such that r = C · c

}

Figure VI.11: Algorithm to create ObjectRank Index for almost DAGs

topologically sorted authority transfer data graph D′A), whose ObjectRank ci is

the sum of the backedge-ObjectRank (Cj · c) and the DAG-ObjectRank (r′j). The

overline notation on the matrices of this equation selects the L lines from each

table that correspond to the backnodes. We further explain the algorithm using

an example.

Example 6 The graph DA is shown in Figure VI.12 (a). Assume d = 0.5 and

all edges are of the same type t with authority transfer rate α(t) = 1. First we

topologically sort the graph and identify the backnodes c1 ≡ P5, c2 ≡ P4. Then we

create the coefficients table C (line 5), as follows:
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Figure VI.12: Almost DAG.

r(P1) = 0

r(P2) = 0.5 · 0.5 · c2 = 0.25 · c2

r(P3) = 0.5 · c1

r(P4) = 0.5 · r(P2) + 0.5 · 0.5 · r(P3) = 0.125 · c1 + 0.125 · c2

r(P5) = 0.5 · 0.5 · r(P3) + 0.5 · 0.5 · r(P4) = 0.156 · c1 + 0.031 · c2

C =























0 0

0 0.25

0.5 0

0.125 0.125

0.156 0.031























Assume we build the index for one keyword w contained in nodes P1, P3.

We calculate (line 7) ObjectRanks for D′A (taken by removing the backedges (dotted

lines) from DA).
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r(P1) = 0.5

r(P2) = 0.5 · 0.5 · r(P1) = 0.125

r(P3) = 0.5

r(P4) = 0.5 · 0.5 · r(P3) + 0.5 · r(P2) = 0.188

r(P5) = 0.5 · 0.5 · r(P4) + 0.5 · 0.5 · r(P3) + 0.5 · 0.5 · r(P1) = 0.297

r′ = [0.5 0.125 0.5 0.188 0.297]T

Solving the equation of line 8:





c1

c2



 =





0.156 0.031

0.125 0.125









c1

c2



+





0.297

0.188





we get: c = [0.361 0.263]T , where the overline-notation selects from the matrices

the 5-th and the 4-th lines, which correspond to the backnodes c1 and c2 respectively.

The final ObjectRanks are (line 10): r = [0.5 0.190 0.680 0.266 0.361]T .

This algorithm can be viewed as a way to reduce the n × n ObjectRank

calculation system of Equation VI.6, where n is the size of the graph, to the much

smaller |L| × |L| equations system of line 8 of Figure VI.11. Interestingly, the two

equations systems have the same format r = Ar+b, only with different coefficient

tables A,b. The degree of reduction achieved is inversely proportional to the

number of backnodes.

The linear, first-degree equations system of line 8 can be solved using any

of the well-studied arithmetic methods like Jacobi and Gauss-Seidel [23], or even

using the PageRank iterative approach which is simpler because we do not have

to solve each equation with respect to a variable. The latter is shown to perform

better in Section VI.E.2.



117

Product1

Complaint2

Product2

Complaint1
Complaint3

Product3

Complaint4

Complaint5

Hubs Set

Figure VI.13: Hierarchical-graph.

VI.D.4 Algorithm for graphs with small vertex cover

Similarly to the almost-DAG case, we can reduce the ObjectRank cal-

culation to a much smaller system (than the one of Equation VI.6) if authority

transfer data graph DA contains a relatively small vertex cover H. For example,

consider a subset of the complaints database (Figure VI.5) consisting of the prod-

ucts and the complaints (without the reference edge to other complaints). Then

H is the set of the products (Figure VI.13).3 We call the nodes of H hub-nodes.

The intuition of the algorithm is the following: Let r(hi) be the Objec-

tRank of hub-node hi. First, the ObjectRank of every non-hub-node i is expressed

as a function of the ObjectRanks of the hub-nodes pointing to i. Then the r(hi)

is expressed as a function of the non-hub-nodes pointing to hi. This expression

is equal to r(hi), so we get |H| such equations for the |H| hub-nodes. Hence we

reduce the computation to a |H| × |H| linear, first-degree system. Notice that we

omit the details of the optimizations of Sections VI.D.4 and VI.D.5 due to lack of

space.

VI.D.5 Serializing ObjectRank Calculation

This section shows when and how we can serialize the ObjectRank calcu-

lation of the whole graph DA(VD, EA
D) over ObjectRank calculations for disjoint,

non-empty subsets L1, . . . , Lr of VD, where L1∪· · ·∪Lr ≡ VD. The calculation is se-

rializable if we first calculate the ObjectRanks for L1, then use these ObjectRanks

to calculate the ObjectRanks of L2 and so on.

3A complaint can refer to more than one products.
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Figure VI.14: Serializable Graph.

For example, consider the subset of the papers database consisting of the

papers, their citations and the authors, where authority is transferred between the

papers and from a paper to its authors (and not vice versa). Figure VI.14 shows

how this authority transfer data graph can be serialized. In particular, we first

calculate the ObjectRanks for the nodes in L1 and then for the nodes in L2, as we

elaborate below.

To define when the calculation is serializable, we first define the graph

D′A(V ′, E ′) with V ′ = {L1 ∪ · · · ∪ Lr} and E ′ = {(Li, Lj)|∃(vi, vj) ∈ EA
D ∧ vi ∈

Li∧vj ∈ Lj}. That is, there is an edge (Li, Lj) in D′A if there is an edge between two

nodes vi ∈ Li, vj ∈ Lj of DA. The following theorem defines when the ObjectRank

calculation is serializable.

Theorem 11 The ObjectRank calculation for DA is serializable iff D′A is a DAG.

The algorithm works as follows: Let L1, . . . , Lr be topologically ordered.

First, the ObjectRanks of the nodes in L1 are computed ignoring the rest of DA.

Then we do the same for L2, including in the computation the set I of nodes (and

the corresponding connecting edges) of L1 connected to nodes in L2. Notice that

the ObjectRanks of the nodes in I are not changed since there is no incoming

edge from any node of L2 to any node in I. Notice that any of the ObjectRank

calculations methods described above can be used in each subset Li.
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VI.D.6 Manipulating Initial ObjectRank values

All algorithms so far assume that we do a fresh execution of the algo-

rithm for every keyword. However, intuitively we expect nodes with high global

ObjectRank to also have high ObjectRank with respect to many keywords. We

exploit this observation by assigning the global ObjectRanks as initial values for

each keyword specific calculation.

Furthermore, we investigate a space vs. time tradeoff. In particular,

assume we have limitations on the index size. Then we only store a prefix (the

first p nodes) of the nodes’ list (recall that the lists are ordered by ObjectRank) for

each keyword. During the query stage, we use these values as initial values for the p

nodes and a constant (we experimentally found 0.03 to be the most efficient for our

datasets) for the rest4. Both ideas are experimentally evaluated in Section VI.E.2.

VI.E Experiments

In Section VI.E.1 we show that the ObjectRank system produces results

of high quality. Then in Section VI.E.2 we evaluate the performance of the system.

VI.E.1 Quality Evaluation

To evaluate the quality of the results of ObjectRank, we conducted two

surveys. The first was performed on the DBLP database, with eight professors

and Ph.D. students from the UC, San Diego database lab, who were not involved

with the project. The second survey used the publications database of the IEEE

Communications Society (COMSOC) 5 and involved five senior Ph.D. students

from the Electrical Engineering Department.

4Notice that, as we experimentally found, using the global ObjectRanks instead of a constant for
the rest nodes is less efficient. The reason is that if a node u is not in the top-p nodes for keyword
k, u probably has a very small ObjectRank with respect to k. However u may have a great global
ObjectRank.

5http://www.comsoc.org
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Each participant was asked to compare and rank two to five lists of top-

10 results for a set of keyword queries, assigning a score of 1 to 10, according

to the relevance of the results list to the query. Each result list was generated

by a different variation of the ObjectRank algorithm. One of the results lists in

each set was generated by the “default” ObjectRank configuration which used

the authority transfer schema graph of Figure VI.3 and d = 0.85. The users

knew nothing about the algorithms that produced each result list. The survey

was designed to investigate the quality of ObjectRank when compared to other

approaches or when changing the adjusting parameters.

Effect of keyword-specific ranking. First, we assess the basic principle of

ObjectRank, which is the keyword-specific scores. In particular, we compared the

default (that is, with the parameters set to the values discussed in Section VI.B)

ObjectRank with the global ranking algorithm that sorts objects that contain the

keywords according to their global ObjectRank (where the base-set contains all

nodes). Notice that this is equivalent to what Google does for Web pages, modulo

some minor difference on the calculation of the relevance score by Google. The

DBLP survey included results for two keyword queries: “OLAP” and “XML”.

The score was 7:1 and 5:3 in favor of the keyword-specific ObjectRank for the first

and second keyword query respectively. The COMSOC survey used the keywords

“CDMA” and “UWB (ultra wideband)” and the scores were 4:1 and 5:0 in favor

of the keyword-specific approach respectively.

Effect of authority transfer rates. We compared results of the default Objec-

tRank with a simpler version of the algorithm that did not use different authority

transfer rates for different edge types, i.e., all edge types were treated equally. In

the DBLP survey, for both keyword queries, “OLAP” and “XML”, the default Ob-

jectRank won with scores 5:3 and 6.5:1.5 (the half point means that a user thought

that both rankings were equally good) respectively. In the COMSOC survey, the

scores for “CDMA” and “UWB” were 3.5:1.5 and 5:0 respectively.
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Effect of the damping factor d. We tested three different values of the damping

factor d: 0.1, 0.85, and 0.99, for the keyword queries “XML” and “XML AND

Index” on the DBLP dataset. Two points were given to the first choice of a user

and one point to the second. The scores were 2.5 : 8 : 13.5 and 10.5 : 11.5 : 2

(the sum is 24 since there are 8 users times 3 points per query) respectively for the

three d values. We see that higher d values are preferred for the “XML”, because

“XML” is a very large area. In contrast, small d are preferable for “XML AND

Index”, because few papers are closely related to both keywords, and these papers

typically contain both of them. The results were also mixed in the COMSOC

survey. In particular, the damping factors 0.1, 0.85, and 0.99 received scores of

5:6:4 and 4.5:3.5:7 for the queries “CDMA” and “UWB” respectively.

Effect of changing the weights of the keywords. We compared the combin-

ing functions for AND semantics of Equations VI.7 and VI.9 for the two-keyword

queries “XML AND Index” and “XML AND Query”, in the DBLP survey. The

use of the normalizing exponents proposed in Section VI.B.3 was preferred over the

simple product function with ratios of 6:2 and 6.5:1.5 respectively. In the COM-

SOC survey, the same experiment was repeated for the keyword query “diversity

combining”. The use of normalizing exponents was preferred at a ratio of 3.5:1.5.

VI.E.2 Performance Experiments

In this section we experimentally evaluate the system and show that cal-

culating the ObjectRank is feasible, both in the preprocessing and in the query

execution stage. For the evaluation we use two real and a set of synthetic datasets:

COMSOC is the dataset of the publications of the IEEE Communications Society

6, which consists of 55, 000 nodes and 165, 000 edges. DBLPreal is a subset of the

DBLP dataset, consisting of the publications in twelve database conferences. This

dataset contains 13, 700 nodes and 101, 500 edges. However, these datasets are too

small to evaluate the index creation algorithms. Hence, we also created a set of

6http://www.comsoc.org
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artificial datasets shown in Table VI.2, using the words of the DBLP dataset. The

outgoing edges are distributed uniformly among papers, that is, each paper cites

on average 10 other papers. The incoming edges are assigned by a non-uniform

random function, similar to the one used in the TPC-C benchmark 7, such that

the top-10% of the most cited papers receive 70% of all the citations.

name #nodes #edges
DBLP30 3,000 30,000

DBLP100 10,000 100,000

DBLP300 30,000 300,000

DBLP1000 100,000 1,000,000

DBLP3000 300,000 3,000,000

Table VI.2: Synthetic Datasets.

To store the databases in a RDBMS, we decomposed them into relations

according to the relational schema shown in Figure VI.15. Y is an instance of a

conference in a particular year. PP is a relation that describes each paper pid2

cited by a paper pid1, while PA lists the authors aid of each paper pid. Notice that

the two arrows from P to PP denote primary-to-foreign-key connections from pid

to pid1 and from pid to pid2. We ran our experiments using the Oracle 9i RDBMS

on a Xeon 2.2-GHz PC with 1 GB of RAM. We implemented the preprocessing and

query-processing algorithms in Java, and connect to the RDBMS through JDBC.

C(cid,name)

Y(yid,year,cid)

P(pid,title,yid)

A(aid,name)

PP(pid1,pid2)

PA(pid,aid)

Figure VI.15: Relational schema.

The experiments are divided into two classes. First, we measure how fast

the ObjectRank Execution module (Figure I.7) calculates the ObjectRanks for

all keywords and stores them into the ObjectRank Index, using the CreateIndex

7http://www.tpc.org/tpcc/
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algorithm of Figure VI.9. The size of the ObjectRank Index is also measured.

This experiment is repeated for various values of epsilon and threshold, and various

dataset sizes. Furthermore, the General ObjectRank algorithm is compared to the

almost-DAG algorithm, and the effect of using various initial ObjectRank values is

evaluated. Second, the Query module (Figure VI.8) is evaluated. In particular, we

measure the execution times of the combining algorithm (Section VI.C) to produce

the top-k results, for various values of k, various numbers of keywords m, and OR

and AND semantics.

Preprocessing stage

threshold time (sec) nodes/keyword size (MB)
0.3 3702 84 2.20

0.5 3702 67 1.77

1.0 3702 46 1.26

Table VI.3: Index Creation for DBLPreal for epsilon = 0.1

threshold time (sec) nodes/keyword size (MB)
0.05 80829 9.4 1.17

0.07 80829 8.3 1.08

0.1 80829 7.7 1.03

Table VI.4: Index Creation for COMSOC for epsilon = 0.05

epsilon time (sec) nodes/keyword size (MB)
0.05 3875 67 1.77

0.1 3702 67 1.77

0.3 3517 67 1.77

Table VI.5: Index Creation for DBLPreal for threshold = 0.5

General ObjectRank algorithm. Tables VI.3 and VI.4 show how the storage

space for the ObjectRank index decreases as the ObjectRank threshold of the stored

objects increases, for the real datasets. Notice that DBLPreal and COMSOC have

12, 341 and 40, 577 keywords respectively. Also notice that much fewer nodes per
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epsilon time (sec) nodes/keyword size (MB)
0.05 80829 7.7 1.03

0.07 77056 7.7 1.03

0.1 74337 7.7 1.03

Table VI.6: Index Creation for COMSOC for threshold = 0.1
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Figure VI.16: Evaluate almost-DAG algorithm.

keyword have ObjectRank above the threshold in COMSOC, since this dataset

is more sparse and has more keywords. The time to create the index does not

change with threshold since threshold is not used during the main execution loop

of the CreateIndex algorithm. Tables VI.5 and VI.6 show how the index build

time decreases as epsilon increases. The reason is that fewer iterations are needed

for the algorithm to converge, on the cost of lower accuracy of the calculated

ObjectRanks. Notice that the storage space does not change with epsilon, as long

as epsilon < threshold.

Table VI.7 shows how the execution times and the storage requirements

for the ObjectRank index scale with the database size for the DBLP synthetic

datasets for epsilon = 0.05 and threshold = 0.1. Notice that the average number

of nodes having ObjectRank higher than the threshold increases considerably with

the dataset size, because the same keywords appear multiple times.

General ObjectRank vs. almost-DAG algorithm. Figure VI.16 compares

the index creation time of the General ObjectRank algorithm (Gen-OR) and two
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dataset time (sec) nodes/keyword size (MB)
DBLP30 2933 6 0.3

DBLP100 11513 21 0.7

DBLP300 45764 65 1.7

DBLP1000 206034 316 7.9

DBLP3000 6398043 1763 43.6

Table VI.7: Index Creation for Synthetic Datasets.

versions of the almost-DAG algorithm, on the DBLP1000 dataset, for various

number of backnodes. The algebraic version (Alg-A-DAG) precisely solves the

c = C · c + r′ system using an off the self algebraic solver. The PageRank version

(PR-A-DAG) solves this system using the PageRank [11] iterative method. The

measured times are the average processing time for a single keyword and do not

include the time to retrieve the base-set from the inverted text index, which is

common to all methods. Also, the time to calculate C is omitted, since it C is

calculated once for all keywords, and it requires a single pass over the graph. The

Iterative part of the execution times corresponds to the one pass we perform on

the DAG subgraph to calculate r′ for almost-DAG algorithms, and to the multiple

passes which consist the whole computation for the General ObjectRank algorithm.

Also, notice that epsilon = 0.1 for this experiment (the threshold value is

irrelevant since it does not affect the processing time, but only the storage space).

The time to do the topological sorting is about 20 sec which is negligible compared

to the time to calculate the ObjectRanks for all keywords.

Initial ObjectRanks. This experiment shows how the convergence of the Gen-

eral ObjectRank algorithm is accelerated when various values are set as initial

ObjectRanks. In particular, we compare the naive approach, where we assign an

equal initial ObjectRank to all nodes, to the global-as-initial approach, where the

global ObjectRanks are used as initial values for the keyword-specific ObjectRank

calculations. We found that on DBLPreal (COMSOC), for epsilon = 0.1, the

naive and global-as-initial approaches take 16.3 (15.8) and 12.8 (13.7) iterations
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respectively.

Furthermore, we evaluate the space vs. time tradeoff described in Sec-

tion VI.D.6. Tables VI.8 and VI.9 show the average number of iterations for

epsilon = 0.1 on DBLPreal and COMSOC respectively for various values of the

precomputed list length p.

List length p iterations
13700 1

13000 1.2

8000 1.8

2500 3

800 8.7

100 13.3

0 16.3

Table VI.8: Number of iterations for various lengths of precomputed lists for DBL-

Preal

List length p iterations
55000 1

54000 2.9

30000 5.3

13000 6.5

1600 7.8

400 10.7

25 13

0 15.8

Table VI.9: Number of iterations for various lengths of precomputed lists for COM-

SOC

Query Stage Experiments

Figures VI.17 (a) and VI.17 (b) show how the average execution time

changes for varying number of requested results k, for two-keyword queries on

DBLPreal and COMSOC respectively. We used the index table created with

epsilon = 0.1 (0.05) and threshold = 0.3 (0.1) for DBLPreal (COMSOC). The
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Figure VI.17: Varying k

times are averaged over 100 repetitions of the experiment. Notice that the time

does not increase considerably with k, due to the fact that about the same num-

ber of random accesses are needed for small k values, and the processing time

using the Threshold Algorithm is too small. Also notice that the times for COM-

SOC are slightly smaller than DBLPreal, because the inverted lists are shorter.

Figures VI.18 (a) and VI.18 (b) show that the execution time increases almost

linearly with the number of keywords, which again is due to the fact that the disk

access time to the ObjectRank lists is the dominant factor, since the processing

time is too small. Finally, notice that the execution times are shorter for OR se-

mantics, because there are more results, which leads to a smaller prefix of the lists

being read, in order to get the top-k results.

VI.F Related Work

We first present how state-of-the-art works rank the results of a keyword

query, using traditional IR techniques and exploiting the link structure of the data

graph. Then we discuss about related work on the performance of link-based

algorithms.

Traditional IR ranking. As we discussed in previous chapters, all major database
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Figure VI.18: Varying # of keywords

vendors offer tools [2, 3, 1] for keyword search in single attributes of the database.

That is, they assign a score to an attribute value according to its relevance to the

keyword query. The score is calculated using well known ranking functions from

the IR community [47], although their precise formula is not disclosed. Recent

works [9, 32, 33, 6] on keyword search on databases, where the result is a tree of

objects, either use similar IR techniques [9], or use the simpler boolean semantics

[32, 33, 6], where the score of an attribute is 1 (0) if it contains (does not contain)

the keywords.

The first shortcoming of these semantics is that they miss objects that

are very related to the keywords, although they do not contain them. The second

shortcoming is that the traditional IR semantics are unable to meaningfully sort

the resulting objects according to their relevance to the keywords. For example,

for the query ”XML”, the paper [25] on Quality of Service that uses an XML-

based language, would be ranked as high as a classic book on XML [5]. Again, the

relevance information is hidden in the link structure of the data graph.

Link-based semantics. The notion of importance has been defined in the context

of the Web using PageRank [11], where a global score is assigned to each Web

page as we explain in Section VI.A. However, directly applying the PageRank

approach in our problem is not suitable as we explain above. HITS [38] employs
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mutually dependant computation of two values for each web page: hub value and

authority. In contrast to PageRank, it is able to find relevant pages that do not

contain the keyword, if they are directly pointed by pages that do. However, HITS

does not consider domain-specific link semantics and does not make use of schema

information.

Richardson et al. [45] propose an improvement to PageRank, where the

random surfer takes into account the relevance of each page to the query when

navigating from one page to the other. However, they require that every result

contains the keyword, and ignore the case of multiple keywords. Haveliwala [29]

proposes a topic-sensitive PageRank, where the topic-specific PageRanks for each

page are precomputed and the PageRank value of the most relevant topic is used

for each query. Both works apply to the Web and do not address the unique

characteristics of structured databases, as we discuss above. Furthermore, they

offer no adjusting parameters to calibrate the system according to the specifics of

an application.

Recently, the idea of PageRank has been applied to structured databases

[26, 34]. XRANK [26] proposes a way to rank XML elements using the link struc-

ture of the database. Furthermore, they introduce a notion similar to our Ob-

jectRank transfer edge bounds, to distinguish between containment and IDREF

edges. Huang et al. [34] propose a way to rank the tuples of a relational database

using PageRank, where connections are determined dynamically by the query work-

load and not statically by the schema. However, none of these works exploits the

link structure to provide keyword-specific ranking. Furthermore, they ignore the

schema semantics when computing the scores.

Performance. A set of works [28, 14, 36, 37] have tackled the problem of im-

proving the performance of the original PageRank algorithm. [28, 14] present

algorithms to improve the calculation of a global PageRank. Jeh and Widom [36]

present a method to efficiently calculate the PageRank values for multiple base sets,

by precomputing a set of partial vectors which are used in runtime to calculate the
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PageRanks. The key idea is to precompute in a compact way the PageRank values

for a set of hub pages (we omit the details for brevity reasons), through which most

of the random walks pass. Then using these hub PageRanks, calculate in runtime

the PageRanks for any base set consisting of nodes in the hub set. However, our

problem is simpler, since the number of keywords is much smaller than the number

of users in a personalization system. Also, in our case it is not possible to define

a set of hub nodes, since any node of the database can be part of a base set.



Chapter VII

Conclusions and Future Work

VII.A Conclusions

In this text we tackled the problem of keyword search in structured and

semistructured databases. In particular, given a data graph and a schema graph,

we look for subtrees of the data graph that are relevant to the keywords and

rank these result-trees according to their relevance. Many works [9, 22, 6, 26]

have proposed ways to rank the result-trees using various factors. We presented

a framework that captures all previous approaches, which ranks the result-trees

according to three factors: (i) the IR scores of the attribute values of the result-

trees, (ii) the structure of the result-trees, and (iii) the authority flow between the

result-trees and the keywords through the data graph (inspired by PageRank).

We showed that there is an interplay between the last two factors, which

were considered unrelated in previous work [29, 45, 22, 9, 6]. In particular, we

explain (Section II.D.1) that the number of result trees connecting two nodes is an

approximation of the authority flow between them.

Using a combination of the three factors we can capture the semantics

of any reasonable ranking criterion. In Section II.C, we present the three most

common criteria which are: the global importance of the node of the result-trees,

the relevance of the nodes to the keywords, and association between the nodes of

131
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the result-trees. Furthermore, we show how these factors can be combined using

a combining function in meaningful ways that allow efficient execution methods.

On the performance level, we present efficient algorithms to produce all

or the top-k results of a keyword query. We study two models: the middleware

model where the system lies on top of an already operational database system to

provide keyword querying, and the dedicated system where we handle the storage

of the data and precompute various data to offer real-time response times. In the

middleware model (Chapter III), the only interaction to the database system is the

creation of full-text indices on the attributes of interest, and submitting and receiv-

ing the results of queries. On the other hand, the dedicated system (Chapter V)

decides how to store the data in order to allow fast query response times. Also,

the authority flow values (Chapter VI) for each keyword are precomputed and

stored in an inverted index. Then, in execution time these values are efficiently

combined to produce the final result. The execution techniques are thoroughly

experimentally evaluated.

Finally, in Chapter IV we presented a novel technique to present the

results to the user. In particular, instead of overwhelming the user with a list of

all result-trees, we group them by their structure (i.e., by the candidate network

that generated them). Then, the user can navigate into these presentation graphs

to discover the desirable result.

VII.B Future Work

The semantics of proximity search in database graphs have always been

point of debate. The distance between two nodes in terms of number of edges

does not always reflect their semantic distance. Also, it is not clear what the

equivalent of a document is in a structured database. I plan to create an adjustable

framework to accommodate various schemes for the ranking of the results of a

keyword query and the semantic distance between the nodes, and evaluate various
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configurations in scientific applications, like Geographic Information Systems (GIS)

and Bioinformatics. Also, this text has assumed that the only source of semantics of

the database is the schema graph. However, other semantic source, like ontologies,

may be available and offer an opportunity to improve the quality of the results.

On the performance level, the execution methods in this text were based

on a three stage architecture consisting of an inverted index, a CN generator and an

execution module. We plan to investigate alternative execution paradigms, which

are not necessarily based on evaluating a set of CNs. In particular, we look into

various materialization schemes, including materializing path expressions spanning

along one or multiple paths. Also, a tighter integration of the inverted index

with the execution engine will offer superior performance. Another performance

challenge is to efficiently estimate the expected number of results, which is crucial

in selecting the right execution method as we explain in Section III.D, and relax

the query in case of empty-answer queries.

Furthermore, we have focused on databases with a well defined schema.

We plan to investigate how these ideas apply to databases with partial schema

description or no schema.

The authority flow factor is a relatively new concept and hence has in-

troduced multiple challenges, on the performance and the semantics level. How

can the database schema accelerate the iterative algorithm? What tradeoffs exist

between precomputation and on-the-fly execution? Is there a way to incrementally

calculate the ObjectRanks in the presence of updates? On the semantic level, a

key issue is to find ways to adapt the ObjectRank method to work for databases

where the authority flow is not straightforward (as in bibliographic databases).

Also, is there a way to automatically adjust the system parameters according to

the users’ behavior?

Finally, we wish to create a framework to combine the query capabilities

of various modules in order to offer greater querying poer to the user. For exam-

ple, combining an ObjectRank module with a traditional SQL module can answer
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questions of the form: Find all authors from UCSD (SQL part) which are author-

itative in databases (ObjectRank part). Such a framework imposes challenges on

the syntactic, semantic and performance level. In particular, we have to define

a way to syntactically combine various query languages, and rank the results of

a composite query using the ranking semantics of the individual modules. Also,

we need to efficiently combine the results from the modules to get the composite

result.
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