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Abstract 

Despite the importance of ranked queries in numerous applications involving multi-criteria 
decision making, they are not efficiently supported by traditional database systems. In this paper, 
we propose a simple yet powerful technique for processing such queries based on multi-
dimensional access methods and branch-and-bound search. The advantages of the proposed 
methodology are: (i) it is space efficient, requiring only a single index on the given relation 
(storing each tuple at most once), (ii) it achieves significant (i.e., orders of magnitude) 
performance gains with respect to the current state-of-the-art, (iii) it can efficiently handle data 
updates, and (iv) it is applicable to other important variations of ranked search (including the 
support for non-monotone preference functions), at no extra space overhead. We confirm the 
superiority of the proposed methods with a detailed experimental study. 
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1. INTRODUCTION  

The ability to efficiently rank the “importance” of data, is crucial to many applications that involve multi-

criteria decision making. Consider a database of mutual funds, where each fund has two attributes (i) 

“growth”, indicating the recent increase of its asset, and (ii) “stability”, representing the overall volatility 

of its growth (low stability indicates high volatility). Figure 1 shows the attribute values (normalized to [0, 

1]) of 12 funds. Customers select the “best” funds for investment based on, however, different preferences. 

For example, an investor whose primary goal is capital conservation with minimum risk would prefer 

funds with high stability, while another client may prioritize both attributes equally. To express these 

requests in a uniform manner, the ranking system adopts a preference function f(t) which computes a 

score for every record t, and rates the relative importance of various records by their scores. Consider, for 

example, the linear preference function f(t)=w1⋅t.growth+w2⋅t.stability for Figure 1, where w1 and w2 are 

specified by a user to indicate her/his priorities on the two attributes. For w1=0.1, w2=0.9 (stability is 

favored), the best 3 funds have ids 4, 5, 6 since their scores (0.83, 0.75, 0.68, respectively) are the highest. 

Similarly, if w1=0.5, w2=0.5 (both attributes are equally important), the ids of the best 3 funds become 11, 

6, 12.  

 

fund id 1 2 3 4 5 6 7 8 9 10 11 12 
growth 0.2 0.1 0.3 0.2 0.3 0.5 0.4 0.6 0.7 0.6 0.7 0.7 
stability 0.2 0.5 0.3 0.9 0.8 0.7 0.3 0.1 0.2 0.5 0.6 0.5 

Figure 1: An example dataset 

The above operation, known as top-k ranked search, cannot be efficiently supported by conventional 

databases, and has received considerable attention in recent years. Informally, a top-k query specifies a 

preference function f(t), and returns the k tuples with the highest scores (a formal definition appears in 

Section 3). In particular, the preference function is not known in advance (otherwise, the problem is 

trivially solved by simply sorting the dataset according to the given function), and different queries may 

adopt distinct functions. In practice, a “good” ranking system should (i) answer any query with low cost, 

(ii) incur minimum space overhead, (iii) support database updates, and (iv) efficiently process variations 

of ranked searches (e.g., different types of preference functions, etc.).  

All the existing methods [CBC+00, HKP01, TPK+03, HP04] (reviewed in the next section) satisfy 

only part of the above requirements, and hence are inadequate for practical applications. Particularly, they 

require pre-computing and materializing significant amount of information, whose size can be several 

times larger than the original database. As a result, considerable re-computation is needed (to modify the 

materialized data) for each update. Furthermore, these methods focus exclusively on traditional top-k 

queries, and cannot be efficiently adapted to other variations of ranked search.  
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Motivated by these shortcomings, we provide a methodology for ranked retrieval that indeed 

satisfies all the “practical” requirements mentioned earlier, and has significantly wider applicability than 

the previous methods. Specifically, our technique uses only a single multi-dimensional index (e.g., R-

trees [G84, BKSS90]) that stores each tuple at most once, to answer all types of top-k queries (for all k, 

preference functions, and variations). Further, the index required is currently available in existing DBMS 

(Oracle, Informix, etc.), and hence, the proposed algorithms can be implemented with minimum effort. 

Specifically, our contributions are:  

• We reveal the close relationship between ranked search and the well-studied branch-and-bound 

processing framework. In particular, this framework significantly reduces the difficulty of the 

problem, and leads to novel solutions that are much simpler, but more powerful, than the previous 

ones.  

• We develop a new algorithm, BRS, which pipelines continuously the data records in descending order 

of their scores. We provide a detailed performance analysis of BRS, including a technique to estimate 

its query cost (in terms of the number of disk accesses).  

• We discuss several important variations of ranked retrieval, including (i) the constrained top-k query, 

which returns the k tuples with the highest scores among the records satisfying some selection 

conditions, (ii) the group-by ranked search, which retrieves the top-k objects for each group produced 

by a group-by operation, and (iii) the support of “non-monotone” preference functions (to be 

elaborated in Section 3).  

• We evaluate BRS using extensive experiments, and show that it outperforms the existing methods 

significantly on all aspects (including the query cost, space overhead, applicability to alternative 

forms of ranked search, etc.).  

The rest of the paper is organized as follows. Section 2 surveys the previous work on top-k search and 

other related queries. Section 3 formally defines the problem, and motivates its connection with the 

branch-and-bound paradigm. Section 4 presents BRS, analyzes its performance and describes a method 

for reducing the space requirements. Section 5 extends our methodology to other variations of top-k 

retrieval. Section 6 contains an extensive experimental evaluation, and Section 7 concludes the paper with 

directions for the future work.  

2. RELATED WORK 

Section 2.1 surveys methods for processing ranked queries, focusing primarily on the direct competitors 

of our technique. Then, Section 2.2 introduces branch-and-bound algorithms on R-trees that motivate our 

work.   
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2.1 Ranked Queries 

To the best of our knowledge, Onion [CBC+00] is the first ranked search algorithm in databases. 

Specifically, given a relational table T with d attributes A1, A2, …, Ad, Onion is optimized for linear 

preference functions  in the form f(t)=∑i=1~d(wi⋅t.Ai), where w1, w2, …, wd are d constants specified by the 

user. Each tuple is converted to a d-dimensional point, whose i-th (1≤i≤d) coordinate equals t.Ai. The 

motivation of Onion is that the result of a top-1 query must lie in the convex hull CX1 of the (transformed) 

points. Let CX2 be the convex hull of the points in T−CX1 (i.e., points that do not belong to CX1). Then, 

objects satisfying a top-2 query can always be found in the union of CX1 and CX2. In general, if CXi is the 

“layer-i” convex hull, a top-k query can be answered using only CX1, …, CXk. Based on these 

observations, Onion pre-computes the convex hulls of all layers, and materializes them separately on the 

disk. Given a query, it first scans the most-exterior hull, progresses to the inner layers incrementally, and 

stops when it detects that the remaining hulls cannot contain any other result.  

Onion is not applicable to non-linear preference functions (in which case the top-1 object, for 

example, does not necessarily lie in CX1). Even for linear functions, Onion incurs expensive pre-

processing and query costs. Specifically, it is well-known that the cost of computing the convex hull is 

O(nd/2) for n points in the d-dimensional space. Thus, Onion is impractical for large relations with more 

than three attributes, especially when updates are allowed (as they trigger the re-computation of the 

convex hulls). To answer a query, Onion needs to access at least one full hull CX1(T), whose size may be 

large in practice. In the worst case, when all the points belong to CX1(T), the whole database must be 

scanned.  

Currently the most efficient method for ranked queries is Prefer [HKP01, HP04]. Assume that all the 

records have been sorted in descending order of their scores according to an arbitrary preference function 

fV. The sorted list is materialized as a view V (which has the same size as the dataset). Consider a top-k 

query q with preference function fq. Obviously, if fV=fq, its result consists of exactly the first k tuples in the 

sorted list V, in which case the query cost is minimal (i.e., the cost of sequentially  scanning k tuples). The 

crucial observation behind Prefer is that, even in the general case where fV≠fq, we can still use V to answer 

q without scanning the entire view. Specifically, the algorithm examines records of V in their sorted order, 

and stops as soon as the watermark record is encountered. A watermark is the record such that, tuples 

ranked after it (in V) cannot belong to the top-k of fq, and hence do not need to be visited (see [HP04] for 

the watermark computation). Evidently, the number kV of records that need to be accessed (before 

reaching the watermark) depends on the similarity between fV and fq. Intuitively, the more different fV is 

from fq, the higher kV is. When fV and fq are sufficiently different, using V to answer q needs to visit a 

prohibitive number of records, even for a small k. To overcome this problem, Prefer materializes multiple 

views (let the number be m) V1, V2, ..., Vm, which sort the dataset according to different preference 
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functions fV1
, fV2

, …, fVm
. Given a query q, Prefer answers it using the view whose preference function is 

most similar to fq. Hristidis and Papakonstantinou [HP04] propose an algorithm that, given m, decides the 

optimal fV1
, fV2

, …, fVm
 to minimize the expected query cost.  

Prefer is applicable to many “monotone” preference functions (discussed in Section 3), but requires 

that the function “type” (e.g., linear, logarithmic, etc.) should be known in advance. Views computed for 

one type of functions cannot be used to answer queries with other types of preferences. Therefore, to 

support h preference types, totally h⋅m views need to be stored, requiring space as large as h⋅m times the 

database size. Further, for a particular type, satisfactory query performance is possible only with a large 

number m of views. As an example, the experiments of [HP04] show that, to achieve good performance 

for top-10 queries on a relation with 4 attributes, m=40 views must be created! Since each tuple is 

duplicated in every view, when it is updated, all its copies must be modified accordingly, resulting in high 

overhead. Hence, this technique is advocated only if the data are static, and the system has huge amount 

of available space.  

Numerous papers (see [BCG02, BGM02, IAE02, CH02] and the references therein) have been 

published on top-k search when the information about each object is distributed across multiple sources. 

As an example, assume a user wants to find the k images that are most similar to a query image, defining 

similarity according to various features such as color, texture, pattern, etc. The query is submitted to 

several retrieval engines, each of which returns the most similar images based on a subset of the features, 

together with their similarity scores (e.g., the first engine will output images with the best matching color 

and texture, the second engine according to pattern, and so on). The problem is to combine the multiple 

outputs to determine the top-k images in terms of the overall similarity, by reading as few results from 

each source as possible. In this paper we consider all the data reside on a single local repository, as with 

Onion and Prefer. Nevertheless, our technique is complementary to the distributed top-k retrieval since it 

can be deployed to efficiently find the (partial) results at each source.  

Finally, Tsaparas et al. [TPK+03] propose a join index to efficiently rank the results of joining 

multiple tables. The key idea is to pre-compute the top-K results for every possible preference function, 

where K is a given upper bound on the number of records returned. Although this technique can be 

adapted to ranked search on a single table (as is our focus), its applicability is seriously limited since: (i) 

no top-k query with k>K can be supported, and (ii) it applies to tables with only two (but not more) 

attributes. Furthermore, even in its restricted scope (i.e., k<K and two dimensions), this method suffers 

from similar pre-computation problems as Prefer, or specifically, large space consumption and poor 

update overhead. In this paper, we discuss general top-k techniques applicable to arbitrary k and 

dimensionalities, and thus exclude [TPK+03] from further consideration.  
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2.2 Branch-and-Bound Search on R-Trees 

The R-tree [G84, BKSS90] is a popular access method for multi-dimensional objects. Figure 2a shows 

part of a 2D point dataset, and Figure 2b illustrates the corresponding R-tree, where each node can 

contain at most 3 entries. Each leaf entry stores a point, and nearby points (e.g., a, b, c) are grouped into 

the same leaf node (N4). Each node is represented as a minimum bounding rectangle (MBR), which is the 

smallest axis-parallel rectangle that encloses all the points in its sub-tree. MBRs at the same level are 

recursively clustered (by their proximity) into nodes at the higher level (e.g., in Figure 2b, N4, N5, N6 are 

grouped into N7), until the number of clusters is smaller than the node capacity. Each non-leaf entry stores 

the MBR of its child node, together with a (child) pointer. 
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(a) The dataset, node MBRs, and heap content in NN search  (b) The R-tree 

Figure 2: Nearest neighbor processing using R-Trees  

The branch-and-bound framework has been applied extensively to develop efficient search algorithms 

based on R-tree for numerous problems, including nearest neighbor search [RKV95, HS99], convex hull 

computation [BK01], skyline retrieval [KRR02, PTFS03], moving object processing [BJKS02], etc. In the 

sequel, we introduce the framework in the context of nearest neighbor retrieval, which is most related to 

ranked search as elaborated in the next section.  

Specifically, a k nearest neighbor (NN) query retrieves the k points closest to a query point. The best-

first (BF) [HS99] algorithm utilizes the concept of mindist defined as follows. The mindist of an 

intermediate entry equals the minimum distance between its MBR and the query point q, while for a leaf 

entry, mindist equals the distance between the corresponding data point and q. Figure 2b shows the 

mindist values of all the entries in the tree (these numbers are for illustrative purposes only, and are not 

actually stored) with respect to the query in Figure 2a (k=1). BF keeps a heap H that contains the entries 

of the nodes visited so far, sorted in ascending order of their mindist. Initially, H contains the root entries, 

and BF repeatedly de-heaps and processes the heap entry with the smallest mindist. Processing an 

intermediate entry involves fetching its child node, and inserting all its entries into H. In Figure 2, since 

E1 has the smallest mindist (among the root entries), BF removes it from H, visits its child node N1, and 
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en-heaps entries E4, E5, E6 together with their mindist. The next entry processed is E2 (it has the minimum 

mindist in H now), followed by E8. The next entry de-heaped is data point h, which is guaranteed to be the 

first NN of q [HS99], and hence the algorithm terminates. Figure 2a demonstrates the changes of the heap 

contents in the above process. In general, for a k NN query, the algorithm continues until k data points 

have been removed from H.  

BF is optimal in the sense that it only visits the nodes “necessary” for discovering k nearest 

neighbors. As discussed in [HS99, BBKK97] the “necessary” nodes include those whose MBRs intersect 

the search region, which is a circle centering at the query point q, with radius equal to the distance 

between q and its k-th NN (Figure 2a shows the region for k=1). The performance of BF has been 

extensively studied, and several cost models [PM97, BBKK97, B00] are proposed to predict the number 

of R-tree nodes accesses in processing a query.  

 3. PROBLEM DEFINITION  

Let T be a relational table with d numerical attributes A1, A2, …, Ad. For each tuple t∈T, denote t.Ai as its 

value on attribute Ai. Without loss of generality [CBC+00, HP04], we consider the permissible values of 

each attribute distribute in the unit range [0, 1] (i.e., t.Ai ∈ [0, 1]). We convert each tuple t to a d-

dimensional point whose i-th (1≤i≤d) coordinate equals t.Ai, and index the resulting points with an R-tree. 

Figure 3 shows the transformed points for the fund records of Figure 1 (e.g., t1 corresponds to the tuple 

with id 1, t2 for id 2, etc.), as well as the corresponding R-tree. In the sequel, we will use this dataset as 

the running example to illustrate the proposed algorithms. Although our discussion involves 2D objects, 

the extension to higher dimensionality is straightforward.  
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Figure 3: The multi-dimensional representation of data in Figure 1 

A preference function f takes as parameters the attribute values of a tuple t, and returns the score f(t) of 

this tuple. Given such a function f, a top-k ranked query retrieves the k records t1, t2, …, tk from table T 

with the highest scores. We denote the score of ti (1≤i≤k) as si, and without loss of generality, assume 

s1≥s2≥…≥sk. Special care should be taken when multiple objects achieve the k-th score sk (e.g., for the 
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top-1 query with f(t)=t.A2 in Figure 3, t11, t12, t9 have the same score s1=0.7). In this paper, we assume the 

query simply returns any of them. This assumption is made purely for simplicity: the discussion for other 

choices (e.g., reporting them all) is fundamentally identical, but involves unnecessary complications.  

A function f is increasingly monotone on the i-th dimension (1≤i≤d), if f(p1)<f(p2), for any two points 

p1 and p2 such that p1.Aj=p2.Aj on dimensions j≠i, and p1.Ai<p2.Ai (i.e., the coordinates of p1 and p2 agree 

on all the axes except the i-th one). Similarly, f is decreasingly monotone on the i-th dimension if, given 

any two points p1, p2 as above, f(p1)>f(p2) always holds. We say f is monotone, if it is (either increasingly 

or decreasingly) monotone on all dimensions; otherwise, f is a non-monotone.  

A popular monotone preference is the linear function f(t)=∑i=1~d(wi⋅t.Ai). Further, if wi>0 (<0), then 

f(t) is increasingly (decreasingly) monotone on the i-th axis. For example, f(t)=t.A1−t.A2 is increasingly 

monotone on Ai but decreasingly monotone on A2 (recall that a monotone function can be increasingly 

monotone on some attributes, but decreasingly monotone on the others). Some instances of non-monotone 

functions include non-linear polynomials (e.g., f(t)=t.A1
2−t.A1+2⋅t.A2), and functions with absolute 

operators (e.g., f(t)=|t.A1−0.5|+|t.A2−0.5|). We point out that, as will be discussed in Section 5.3, Onion 

and Prefer do not support non-monotone preferences, which are inherently more difficult to process than 

the monotone functions. 

A concept closely related to monotonicity is the dominance relationship between a pair of points p1, 

p2. Specifically, we say p1 dominates p2 with respect to a monotone function f, if the following condition 

holds on every dimension i (1≤i≤d): p1.Ai≥p2.Ai (p1.Ai≤p2.Ai) if f is increasingly (decreasingly) monotone 

on this axis. For example, given f(t)=t.A1+t.A2 (increasingly monotone on both attributes), point t11 

(coordinate (0.7, 0.6)) dominates t7 (0.4, 0.3) in Figure 3, while, for f(t)=t.A1−t.A2, t9 dominates t7. Note 

that, the dominance relationship does not necessarily exist for all pairs of points. For instance, t11 and t7 do 

not dominate each other with respect to f(t)=t.A1−t.A2. Note that the concept of “dominance” is not 

applicable to non-monotone functions.  

We use a single R-tree on T to efficiently process all top-k queries, regardless of the value of k and 

the preference function used. Since the R-tree is a dynamic index, data updates are efficiently supported. 

Unlike Prefer, we do not assume any particular “type” of preferences, but aim at all preference “types” 

using the same tree. We achieve this by applying the branch-and-bound framework. To intuitively explain 

why the framework is useful in this scenario, we show the connection between top-k search and k NN 

retrieval. Consider a top-k query q with a preference function f(t) that is increasingly monotone on all 

dimensions. Let us formulate a k NN query qnn, whose query point lies at the “maximal corner” of the data 

space (the corner has coordinate 1 on all axes). Unlike a traditional NN query, however, the distance 

between a data point p and qnn is computed as dist(p, qnn)=f(qnn)−f(p). Obviously, the k objects that 
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minimize dist(p, qnn), maximize function f. Therefore, we have reduced the top-k query into a k-NN one, 

which, as discussed in Section 2.2, can be solved using the BF algorithm.  

Motivated by this, in the next section we present a new top-k algorithm BRS (Branch-and-bound 

Ranked Search) which is similar to BF, but fixes several problems that prevent its immediate application 

in ranked search. First, observe that in the dist(p, qnn) formulated earlier, the term f(qnn) is a constant, 

which implies that the introduction of qnn is essentially “dummy”. Namely, we needed it to clarify the 

connection between top-k and k NN, but it is not necessary in query processing. This is captured in BRS, 

which does not transform a ranked query to any k NN search, but solves it directly utilizing the 

characteristics of the problem. Second, the distance function dist(p, qnn) invalidates the mindist definition 

in BF (which is for the Euclidean distance). BRS is based on an alternative metric maxscore, and a novel 

algorithm that evaluates maxscore for intermediate entries. In the next section, we elaborate the details of 

BRS, focusing on monotone functions. Then, Section 5 extends the technique to other problem variations, 

including the support for non-monotone functions. 

4. RANKED SEARCH ON MONOTONE PREFERENCE FUNCTIONS 

Section 4.1 presents BRS for top-k queries, supporting arbitrary monotone functions, and Section 4.2 

analyzes its performance and proves its optimality. Section 4.3 introduces a technique that estimates the 

retrieval cost with the aid of histograms. Section 4.4 proposes a technique that reduces the space 

consumption.   

4.1 Problem Characteristics and BRS 

We aim at reporting the top-k objects in descending order of their scores (i.e., the tuple with the highest 

score is returned first, then the second highest, and so on). Towards this, we formulate the concept of 

maxscore, which replaces mindist in BF. For a leaf entry (a data point), maxscore simply equals its score 

evaluated using the given preference function f. The maxscore of an intermediate entry E, on the other 

hand, equals the largest score of any point that may lie in the subtree of E. Similar to mindist, maxscore is 

conservative since it may not be necessarily achieved by a point that actually lies in E. Next we explain 

how to compute maxscore (for intermediate entries), utilizing the following property of the dominance 

relationship.  

Lemma 4.1: Given two points p1, p2 such that p1 dominates p2 with respect to a monotone function f, 

then f(p1)≥f(p2).  

Proof: Due to symmetry, it suffices to prove the case where f is increasingly monotone on all axes. 

Since p1 dominates p2, p1.Ai≥p2.Ai on all dimensions 1≤i≤d. By the definition of “increasingly monotone”, 

we have f(p1.A1, p1.A2, …, p1.Ad) ≥ f(p2.A1, p1.A2, …, p1.Ad) ≥ f(p2.A1, p2.A2, …, p1.Ad) ≥ … ≥ f(p2.A1, 

p2.A2, …, p2.Ad), thus completing the proof.     ■  
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In fact, given the MBR of an intermediate entry E and any monotone function f, we can always find a 

corner of the MBR, which dominates all points in the MBR. The “dominating corner”, however, is not 

fixed, but instead varies according to f. As an example, consider f(t)=A1+A2 and entry E5 in Figure 3. 

Since f(t) is increasingly monotone on both dimensions, the dominating corner is the top-right corner of 

E5. For f(t)=A1−A2, however, the dominating corner becomes the bottom-right one. As a result, combining 

with Lemma 4.1, the maxscore of an intermediate entry is simply the score of its dominating corner.  

A naïve solution for identifying the dominating corner is to evaluate the scores of all the corners 

which, however, scales exponentially with the dimensionality d (i.e., there are totally 2d corners of a d-

dimensional box). In order to decrease the CPU time, we present an alternative method, which requires 

O(d) time. The idea is to decide the dominating corner by analyzing the “monotone direction” of f on each 

dimension (i.e., whether it is increasingly or decreasingly monotone). The monotone direction can be 

checked in O(1) time per axis by first arbitrarily choosing two points p1, p2 whose coordinates differ only 

on the dimension being tested, and then comparing f(p1) and f(p2). Further, the test needs to be performed 

only once, and the monotone directions can be recorded, using O(d) space, for future use. Figure 4 shows 

the pseudo-code of algorithm get_maxscore for computing maxscore, which decides the dominating 

corner p of a MBR E as follows. Initially, the coordinates of p are unknown, and we inspect each 

dimension in turn. If f is increasingly/decreasingly monotone on the i-th dimension, then we set the i-th 

coordinate of p to the upper/lower boundary of E on this axis. When the algorithm terminates, all the 

coordinates of p are decided, and the algorithm get_maxscore simply returns the score of p. 

 

Algorithm get_maxscore (M=(l1,h1, l2,h2,…, ld,hd), f) 
/* M is a MBR with extent [li, hi] along the i-th dimension (1≤i≤d), and f the preference function */ 
1. initiate a point p whose coordinates are not decided yet 
2. for i=1 to d  /* examine each dimension in turn */ 
3. if f is increasingly monotone on this dimension 
4. the i-th coordinate of p is set to hi  
5. else the i-th coordinate of p is set to li  
6. return f(p) 
end get_maxscore 

Figure 4: Algorithm for computing maxscore for monotone functions 

Lemma 4.2: Let intermediate entry E1 be in the subtree of another entry E2. Then the maxscore of E1 is 

no larger than that of E2, for any monotone or non-monotone function f. 

Proof: The correctness of the lemma follows from the fact that, every point in E1 lies in E2, too. 

Therefore, the maxscore of E2 is at least as large as that of E1.     ■ 

Based on these observations, BRS traverses the R-tree nodes in descending order of their maxscore 

values. Similar to BF (which accesses the nodes in ascending order of their mindist), this is achieved by 

maintaining the set of entries in the nodes accessed so far in a heap H, sorted in descending order of their 
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maxscore. At each step, the algorithm de-heaps the entry having the largest maxscore. If it is a leaf entry, 

then the corresponding data point is guaranteed to have the largest score, among all the records that have 

not been reported yet. Hence, it is reported directly. On the other hand, for each de-heaped intermediate 

entry, we visit its child node, and en-heap all its entries. The algorithm terminates when k objects have 

been de-heaped (they constitute the query result). Figure 5 formally summarizes BRS.  

 

Algorithm BRS (RTree, f, k} 
/* RTree is the R-tree on the data set, f is the preference function, and k denotes how many points to return */ 
1. initiate the candidate heap H  /* H takes entries in the form (REntry, key) and manages them in descending 

order of key (REntry is an entry in RTree) */ 
2. initiate a result set S with size k 
3. load the root of RTree, and for each entry e in the root 
4. e.maxscore=get_maxscore(e.MBR, f)  // invoke the algorithm in Figure 4 
5. insert (e, e.maxscore) into H 
6. while (S contains less than k objects)  
7. he=de-heap(H) 
8. if he is a leaf entry, then add he to S, and return S if it contains k tuples 
9. else for every entry e in he.childnode 
10. e.maxscore=get_maxscore(e.MBR, f)   
11. insert (e, e.maxscore) into H 
12. return S 
end BRS 

Figure 5: The BRS algorithm 

As an example, consider a top-1 query q with f(t)=A1+A2 in Figure 3. BRS first loads the root (node R) of 

the R-tree, and inserts its entries to the heap H with their maxscore (1.4, 1.3 for E5 and E6, respectively). 

The next node visited is the child N5 of E5 (since E5 has higher maxscore than E6), followed by E2, after 

which the content of H becomes {(E6, 1.3), (t6, 1.2), (t5, 1.1), (t4, 1.1), (E1, 0.8)}. The next entry removed 

is E6, and then E4, and at this time H={(t11, 1.3), (t12, 1.2), (t6, 1.2), (t10, 1.1), (t5, 1.1), …}. Since now the 

top of H is a data point t11, the algorithm returns it (i.e., it has the largest score), and terminates. Note that, 

similar to BF for NN search, BRS can be modified to report the tuples in descending score order, without 

an input value of k (e.g., the user may terminate the algorithm when satisfied with the results).   

4.2 I/O Optimality 

Similar to BF, BRS (of Figure 5) is optimal, since it visits the smallest number of nodes to correctly 

answer any top-k query. The optimal cost equals the number of nodes, whose maxscore values are larger 

than the k-th highest object score sk. Note that, a node visited by BRS may not necessarily contain any 

top-k result. For example, consider an intermediate node E1 with maxscore larger than sk, while the 

maxscore of all nodes in its subtree is smaller than sk (this is possible because E1.maxscore is only an 

upper bound for the maxscore of nodes in its subtree). In this case, none of the child nodes of E1 will be 

accessed, and therefore, no point in E1 will be returned as a top-k result. However, even in this case, 
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access to E1 is inevitable. Specifically, since E1.maxscore>sk, there is a chance for some point in E1 to 

achieve a score larger than sk, which cannot be safely ruled out unless the child node of E1 is actually 

inspected. Based on this observation, the next lemma establishes the optimality of BRS.  

Lemma 4.3: BRS algorithm is optimal for any top-k query, i.e., it accesses only the nodes whose 

maxscore values are larger than sk (the k-th highest object score). 

Proof: We first show that BRS always de-heaps (i.e., processes) the (leaf and intermediate) entries in 

descending order of their maxscore. Equivalently, let E1, E2 be two entries de-heaped consecutively (E1 

followed by E2); it suffices to prove E1.maxscore≥E2.maxscore. There are two possible cases: (i) E2 

already exists in the heap H when E1 is de-heaped, and (ii) e2 is in the child node of e1. For (i), 

E1.maxscore≥E2.maxscore is true because H removes entries in descending order of their maxscore, while 

for (ii) E1.maxscore≥E2.maxscore follows Lemma 4.2. To prove the original statement, consider any node 

N whose maxscore is smaller than sk, which is the k-th highest object score (let o denote the object 

achieving this score). According to our discussion earlier, BRS processes o before the parent entry E of N, 

meaning that at the time o is reported, N has not been visited.     ■ 

The optimality of BRS can be illustrated in a more intuitive manner, using the concept of “identical 

score curve” (ISC). Specifically, the ISC is a curve corresponding to equation f(t)=v, which consists of 

points in the data space whose scores equal v. Figures 6a and 6b illustrate the ISCs of f(t)=A1+A2=1.3 and 

f(t)=A1⋅A2=0.35, respectively. An important property of ISC f(t)=v is that it divides the data space into two 

parts, referred to as “large” and “small” parts in the sequel, containing the points whose scores are strictly 

larger and smaller than v, respectively. In Figures 6a and 6b, the larger parts are demonstrated as the 

shaded areas. Let sk be the k-th highest object score of a top-k query. Then, the ISC f(t)=sk defines a 

“search region”, which corresponds to the larger part of the data space divided by f(t)=sk. According to 

Lemma 4.3, to answer the query, BRS accesses only the nodes whose MBRs intersect the search region 

(the maxscore of any other node must be smaller than sk). In Figure 6a (6b), the plotted ISC f(t)=1.3 (0.35), 

where 1.3 (0.35) is the highest (3rd highest) object score according to f(t). Thus, to answer the top-1 (-3) 

query in Figure 6a (6b), BRS visits the root, N5, N2, N6, N4, as their MBRs intersect the shaded area.  

An interesting observation is that, for top-k queries with small k, BRS visits only the nodes whose 

MBRs are close to the corners of the data space, i.e., its node accesses clearly demonstrate a “locality” 

pattern. This has two important implications. First, nodes whose MBRs are around the center of the data 

space may never be retrieved, which motivates a space-reduction technique in Section 4.4. Second, 

consecutive executions of BRS are likely to access a large number of common nodes. Hence, the I/O cost 

of BRS can be significantly reduced by introducing a buffer (for caching the visited disk pages), as 

confirmed in the experiments.   
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Figure 6: The identical score curves 

4.3 Query Cost Estimation 

In practice, the system should be able to estimate the cost of a top-k query, in order to enable query 

optimization for this operator. Motivated by this, we develop a method that can predict the I/O overhead 

of BRS for any monotone preference function. For simplicity, we aim at estimating the number of leaf 

node accesses because (i) it dominates the total cost, as is a common property of many algorithms based 

on indexes [TS96], and (ii) the extension to the other levels of the tree is straightforward.  

Our technique adopts multi-dimensional histograms [MD88, APR99, BGC01, GKTD00]. 

Specifically, a histogram partitions the data space into disjoint rectangular buckets, the number of which 

is subject to the amount of the available main memory. The goal of partitioning is to make the data 

distribution within each bucket as uniform as possible (i.e., the overall distribution is approximated with 

piecewise-uniform assumption). We maintain two histograms: the first one HISdata on the given (point) 

dataset, and the other HISleaf on the MBRs of the leaf nodes. In HISdata, each bucket b is associated with 

the number b.num of points in its extent, while for HISleaf, we store in each bucket b (i) the number b.num 

of leaf MBRs whose centroids fall inside b, and (ii) the average extent b.ext of these MBRs.  

For simplicity, our implementation adopts the equi-width histogram [MD88], which partitions the 

data space into cd regular buckets (where c is a constant called the histogram resolution).  Figures 7a and 

7d demonstrate the buckets of HISdata and HISleaf (c=4) for the dataset and leaf MBRs in Figure 3, 

respectively. In Figure 7d, for each non-empty bucket, the upper and lower numbers correspond to b.num 

and b.ext respectively (e.g., the number 2.5 of the non-empty bucket in the first row is the average of the 

width and height of MBR N2). It is worth mentioning that, both HISdata and HISleaf can be maintained 

efficiently: whenever there is a change in the dataset or leaf level, it is intercepted to update HISdata or 

HISleaf respectively (histogram updates are well-studied in [BGC01]). 
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Figure 7: Equi-width histograms and procedures in query estimation 

To estimate the query cost, we first predict the size of the search region SR based on HISdata. Consider the 

top-3 query with preference function f(t)=t.A1⋅t.A2 in Figure 6b. To predict its SR, we first sort the 

centroids of all the buckets in HISdata, in descending order of their scores. In Figure 7a, the sorted order is 

b44 (the subscript indicates the 4-th row, 4-th column, counting from the bottom and left respectively), b43, 

b33, b32, … Then, we incrementally increase SR by examining the buckets in the sorted order, until SR 

contains expectedly k points. For example, to process the first bucket b44, we focus on the ISC (identical 

score curve) passing its centroid, i.e., f(t)=t.A1⋅t.A2=f(b44)=0.81 (we denote the centroid using the same 

symbol as the bucket). The shaded area in Figure 7a illustrates the SR decided by this ISC. In this case, 

since b44 is the only bucket intersecting SR, the number of points in SR can be estimated as 

b44.num⋅area(b44∩SR)/area(b44)=0 (since b44.num=0).  

In general, to estimate the expected number of points in a search region, we inspect all the buckets 

that intersect it. In particular, for each such bucket b, we compute its contribution (i.e., the number of 

points in b that fall in SR), and sum up the contributions of all buckets as the final estimate. Since the 

point distribution in a bucket is uniform, the contribution of a bucket b equals b.num⋅area(b∩SR)/area(b), 

where area(b∩SR) and area(b) denote the areas of b and the intersection between b and SR, respectively. 

Unfortunately, for general preference functions, b∩SR is usually an irregular region whose area is 

difficult to compute. We solve this problem numerically using the monte-carlo method as follows. A set 

of points (let the number be α) is first generated randomly inside the bucket. Then, the number β of points 

falling in SR is counted (this can be done by evaluating the score of each point), after which 

area(b∩SR)/area(b) can be roughly calculated as β/α.  

Continuing the example, since the current SR contains too few points (less than k=3), it needs to be 

expanded. Thus, we examine the second bucket b43 in the sorted list, take the ISC passing its centroid, and 

estimate the number of points in the new SR as described above. As shown in Figure 7b, the SR intersects 

a non-empty bucket b33, and hence, the estimated number is a non-zero value e43 (the subscript indicates 

the value is obtained when inspecting b43). Figure 7c shows the further expanded SR according to the next 
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bucket b33. Assuming that the estimated value e33>3, the current SR needs to be shrunk based on e33 and 

e43 (i.e., the previous estimate). We obtain the final SR according to the ISC f(t)= (k−e43)(f(b33)−f(b43))/e33−e43

+f(b43), i.e., the position of this ISC is obtained by interpolating linearly1 the ISCs that produced e33 and 

e43. Figure 7d illustrates the final SR. 

 Having obtained the estimated SR, we proceed to predict the number of leaf accesses based on 

Lemma 4.3, utilizing the following observation: if an MBR E intersects an SR, then the centroid of E lies 

in an “expanded search region”, which is obtained by extending SR towards the negative direction of each 

dimension by l/2, where l is the projection length of E on that dimension. Based on the idea, for each 

bucket b in HISleaf, we expand SR by b.ext/2 towards the negative direction of all dimensions. Let SR' be 

the expanded search region. Then, the number of leaf MBRs (whose centroids fall) in b that intersect SR 

can be estimated as b.num⋅area(b∩SR')/area(b) (i.e., the contribution of b to the final estimate).  

To compute area(b∩SR')/area(b), we again resort to the monte-carlo method (for the same reasons 

as in computing area(b∩SR)/area(b)). Particularly, to test if a point (generated randomly in b) is in SR', 

we increase its coordinates by b.ext/2 on all axes, and check if the resulting point falls in SR (by 

computing its score). The total number of leaf nodes visited equals the sum of the contributions of all the 

buckets. Figure 7d demonstrates the expanded SR with respect to buckets b33 and b42, where SR is 

expanded by 0.5 and 1.25, respectively (the estimate of the other buckets is 0). Judging from the 

intersection areas (between the expanded SR and the corresponding buckets), the final predicted cost is 

close to 2 leaf accesses, which is the real query cost as shown in Figure 6.  

Although we used an equi-width histogram as an example, the above discussion can be easily 

extended to any histogram with the same bucket representation. In particular, if the first few levels of the 

underlying R-tree can be pinned in memory (as is often the case in practice), we can treat the MBRs of 

the memory-resident nodes as the buckets, and perform cost estimation as described earlier. 

4.4 Reducing the Size of the R-tree 

In practice, the number k of objects requested by a query is expected to be small compared to the 

cardinality of the dataset. Interestingly, if all the queries aim at obtaining no more than K tuples (i.e., k<K), 

where K is an appropriate constant (for most applications, in the order of 100 [TPK+03]), some records 

may never be retrieved, regardless of the concrete (monotone) preference functions. These “inactive” 

records can be safely removed from the R-tree (without affecting the query results), thus reducing the 

space requirements. In Figure 6a, for example, it can be verified (as explained shortly) that t10, t3, t7 are 

                                                 
1 Strictly speaking, linear interpolation is not the best interpolation in all cases. Nevertheless, we apply it anyway 
since it is simple and produces satisfactory estimation as shown in the experiments.   
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inactive for top-1 queries, while the inactive records for K=2 include t10 and t7 (all points are active for 

K≥3).  

To analyze the properties of active data, let us first consider, without loss of generality, preference 

functions that are increasingly monotone on all dimensions. Recall that, for such functions, a point p1 

dominates p2 if the coordinates of p1 are larger than those of p2 on all dimensions. A crucial observation is 

that, an object is inactive for top-K, if and only if it is dominated by at least K other objects. For instance, 

if K=1, then t10 in Figure 6a is inactive since it is dominated by t11. In fact, the active records for K=1 

consist of t4, t5, t6, t11, which constitute the skyline [PTFS03] of the dataset.  

We present a solution that is applicable to any K. To apply the proposed algorithm, we need to select 

a representative function, which can be any function increasingly monotone on all axes, e.g., f(t)=t.A1⋅t.A2. 

Similar to BRS, we maintain all the entries in the nodes visited so far using a heap H, and process them in 

descending order of their maxscore according to f(t). Unlike BRS, however, new heuristics are included to 

prune nodes that cannot contain any active record. To illustrate, assume that we want to discover the 

active set for K=2, on the dataset in Figure 6a. Initially, H contains root entries E5, E6 with maxscore 0.45, 

0.42 respectively. Since E5 has higher maxscore, its child N5 is retrieved, leading to H={(E2, 0.45), (E6, 

0.42), (E1, 0.15)}). The nodes visited next are N2 and N6, after which H={(t11, 0.42), (t12, 0.35), (t6, 0.35), 

(t10, 0.3), (t5, 0.24), (E3, 0.21), (t4, 0.18), (E1, 0.15)}. The entry t11 that tops the heap currently, is the first 

active object, and is inserted into the active set AS. Similarly, the next object t12 is also added to AS, which 

contains K=2 records now, and will be taken into account in the subsequent processing. Specifically, for 

each leaf (intermediate) entry de-heaped from now on, we add it to AS (visit its child node) only if it is not 

dominated by more than K (=2) points currently in AS. Continuing the example, since t6 is not dominated 

by any point in AS, it is active, while t10 is inactive as it is dominated by t11, t12. For the remaining entries 

in H, t5 and t4 are inserted to AS, while E3 and E1 are pruned (they are dominated by t11, t12), meaning that 

they cannot contain any active object. The final active set includes AS={t11, t12, t6, t5, t4}.  

Extending the above method to preference functions with other dimension “monotone direction” 

combinations is straightforward. For example, in Figure 6a, to find the active set for functions 

increasingly monotone on A1 but decreasingly on A2, we only need to replace the representative function 

to f(t)=(−t.A1)⋅t.A2 (or any function conforming to this monotone-direction combination). In general, the 

final active records include those for all the combinations. We index the active set with an R-tree, which 

replaces the original R-tree (on the whole dataset) in answering top-k queries (k≤K). It is worth 

mentioning that, this technique of reducing the space overhead is best suited for static datasets. If data 

insertions/deletions are frequent, the active set needs to be maintained accordingly, thus compromising 

the update overhead.  
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5. ALTERNATIVE TYPES OF RANKED QUERIES 

In the last section, we have shown that conventional top-k search (of any monotone preference function) 

can be efficiently supported using a single multi-dimensional access method. In this section, we 

demonstrate that this indexing scheme also permits the development of effective algorithms for other 

variations of the problem, which are difficult to solve using the existing methods. Specifically, Section 

5.1 discusses ranked retrieval on the data satisfying certain range conditions, and Section 5.2 focuses on 

the “group-by ranked query”, which finds multiple top-k lists in a subset of the dimensions 

simultaneously. Finally, Section 5.3 concerns top-k queries for non-monotone preference functions. 

5.1 Constrained Top-k Queries 

So far our discussion of ranked search considers all the data records as candidate results, while in practice 

a user may focus on objects satisfying some constraints. Typically, each constraint is specified as a range 

condition on a dimension, and the conjunction of all constraints forms a (hyper-) rectangular constraint 

region. Formally, given a set of constraints and a preference function f, a constrained top-k query finds 

the k objects with the highest scores, among those satisfying all the constraints. Consider, for example, 

Figure 8, where each point captures the current price and turnover of a stock. An investor would be 

interested in only the stocks whose price (turnover) is in the range (0, 0.5] ((0.6, 0.8]). In Figure 8, the 

qualifying stocks are those (only t5, t6) in the dashed constraint region. The corresponding constrained 

top-1 query with f(t)=t.price+t.turnover returns t6, since its score is higher than t5. In this example, the 

constraint region is a rectangle, but, in general, a more complex region may also be issued by a user (e.g., 

the user may be interested only in stocks satisfying t.price + t.turnover < 1.5).  
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Figure 8: A constrained top-1 query  

With some minor modifications, BRS can efficiently process any constrained top-k query. Specifically, 

the only difference from the original BRS is that an intermediate entry is inserted into the heap H, only if 

its MBR intersects the constraint region CR. For the query in Figure 8, after retrieving the root, the 

algorithm only inserts E5 into H, but not E6 (as no point in its subtree can satisfy all the constraints). 
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Further, the maxscore of E5 is calculated as that of the intersection between its MBR and CR. In particular, 

the rationale of taking the intersection is to exclude points in E5 falling outside CR from the maxscore 

computation. In this example, the maxscore of E5 equals 0.13 (instead of 0.14, as for the top-1 query with 

the same f(t) on the whole dataset). Next the algorithm visits the child N5 of E5, and inserts only entry E2 

(E1 is pruned since it does not intersect CR). Finally, the algorithm accesses N2, returns t6, and finishes. 

Following a derivation similar to Section 3.2, it is easy to show that the modified BRS also achieves the 

optimal I/O performance for all queries. Figure 8 demonstrates the ISC (identical score curve) passing the 

final result t6. The optimal cost here corresponds to the number of nodes (N5, N2) whose MBRs intersect 

the shaded region, which is bounded by the ISC and CR.  

The existing methods cannot support constrained top-k queries efficiently. As discussed in 

[CBC+00], Onion needs to create a separate set of convex hulls for each constraint region, assuming that 

possible constraints are known in advance. Prefer, on the other hand, treats a constrained query simply as 

a normal one (i.e., ignoring all the range conditions). Specifically, it examines objects in descending order 

of their scores, and stops when k constraint- qualifying objects have been found. In contrast, our 

algorithm concentrates the search on only the qualifying objects, and thus avoids the overhead of 

inspecting unnecessary data.   

5.2 Group-by Ranked Search 

A group-by top-k query first groups the records by a (discrete) attribute AG, and then retrieves the top-k 

tuples for each group, using a preference function that evaluates the score of an object according to the 

remaining attributes (excluding AG). Consider a database that stores the following information of hotels: 

the price (one night’s rate), distance (from the town center), and class (five-star, four-star, etc.). A group-

by top-k instance would find the best k hotels in each class (i.e., AG=class), i.e., the result consists of 5 

lists, the first containing the best 1-star hotels, the second the best 2-star hotels and so on. A naïve 

solution is to build a 2D R-tree (on price and distance) for the hotels of each class, so that the top-k list of 

a class can be found using the corresponding R-tree. However, these R-trees cannot be used to process 

general ranked queries (e.g., those involving all three attributes). Recall that our goal is to use a single 

“global” index on all attributes (in this case, a 3D R-tree) to handle all query types. To achieve this, we 

provide a method that answers any group-by query using directly the global index. 

An important observation is that the top-k objects in each group can be retrieved using constrained 

top-k search. To find the top-k i-star hotels (1≤i≤5), for instance, we can apply the modified BRS in 

Section 5.1, with the constraint region being a 2D plane that is perpendicular to the “class” axis, and 

crosses this axis at i. Issuing a separate constrained query for each group, however, may access the same 

node multiple times (e.g., the root, obviously, must be loaded in each query), thus compromising the 
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processing time. In particular, the query cost increases linearly with the number g of groups, and may be 

prohibitive if g is large. To remedy this, we propose the Group-by BRS (GBRS) algorithm of Figure 9, 

which finds the results of all groups by traversing each node at most once. The key idea is to process all 

the constrained queries in a simultaneous manner, by maintaining g top-k lists L1, L2, …, Lg, storing the 

top-k objects for each query. In particular, the i-th object (1≤i≤k) inserted to list Lj (1≤j≤g) is guaranteed 

to be the one with the i-th highest score for the j-th (constrained) query. Therefore, GBRS terminates as 

soon as all the lists contain k objects.  

 

Algorithm get_g-maxscore (E=(l1,h1, l2,h2,…, ld,hd), f, g, Li) 
/* E is a MBR with extent [li, hi] along the i-th dimension (1≤i≤d), f a preference function on the non-grouped 
attributes, g is the number of groups and Li the result list of the i-th constrained query (1≤i≤g) */ 
1. if the lists Li of all queries qi spanned by E contain k objects, return −∞ 
2. let E' be the projection of E onto the non-grouped attributes 
3. return get_maxscore(E', f)  //invoke the algorithm in Figure 4 
end get_maxscore 

Algorithm GBRS (RTree, f, k, g} 
/* RTree is the R-tree on the dataset, f is the preference function, k denotes how many points to return, and g is the 
number of groups */ 
1. initiate the candidate heap H  /* H takes entries in the form (REntry, key) and manages them in descending 

order of key (REntry is an entry in RTree) */ 
2. initiate g lists L1, L2, …, Lg with size k 
3. load the root of RTree, and for each entry e in the root 
4. e.maxscore=get_g-maxscore(e.MBR, f, g, Li)   
5. insert (e, e.maxscore) into H 
6. while (some Li (1≤i≤k) contains less than k objects)  
7. he=de-heap(H) 
8. if (get_g_maxscore(he.MBR, f, g, Li)=−∞) continue; //to de-heap the next entry 
9. if he is a leaf entry then add he to the list Li of the query corresponding to its group  
10. else for every entry e in he.childnode 
11. e.maxscore=get_g-maxscore(e.MBR, f)   
12. if e.maxscore≠−∞ then insert (e, e.maxscore) into H 
13. return L1, L2, …, Lg 
end GBRS 

Figure 9: The group-by top-k algorithm 

Given an MBR E, a constrained query q is said to be spanned by E, if the group represented by q is 

covered by the projection of E on AG. We define the g-maxscore of E as follows: (i) it equals −∞, if all the 

queries spanned by E have already found k objects; (ii) otherwise, it is the maxscore of E (i.e., according 

to f(t)). Unlike maxscore, the g-maxscore of E may change during the execution of GBRS. In particular, 

at the beginning, g-maxscore is set to maxscore, but becomes −∞ as soon as all queries E spans have 

retrieved their top-k, and stays at this value afterwards. GBRS, similar to BRS, uses a heap H to manage 

all the entries that have been encountered so far, but differs from BRS in two ways. First, the entries in H 

are sorted by their g-maxscore. Second, every time an entry E is de-heaped, its g-maxscore is re-
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computed. If its current g-maxscore is not −∞, we visit its subtree (for an intermediate E) or add it to the 

appropriate result list Li (for a leaf E); otherwise, E is simply discarded. 

In the above discussion, we assume that the g lists L1, L2, …, Lg can be stored in memory. If this is 

not true, our algorithm can be easily modified to process as many groups as possible at a time, subject to 

the available amount of memory. Neither Onion nor Prefer is applicable to group-by top-k retrieval. 

Specifically, in Onion (Prefer) the convex hulls (views) computed in the original data space (involving all 

the dimensions) are useless for ranked search in individual groups. As a result, to support group-by search, 

both methods require dedicated pre-computation (for all possible groups), thus significantly increasing the 

space consumption (especially if multiple axes can be the grouping dimensions). 

5.3 Non-Monotone Preference Functions 

The existing methods on ranked search assume monotone preference functions. One major difficulty 

supporting non-monotonicity is the lack of “dominance” relationship between a pair of points (recall that, 

“dominance” is coupled with the increasing/decreasing monotonicity on individual axes, which is 

undefined for non-monotone preferences). For Onion, the absence of “dominance” invalidates the 

underlying assumption that the result of a top-1 query lies on the convex hull (as mentioned in Section 2.1, 

this assumption holds only for linear preferences). Prefer, on the other hand, relies on the pre-sorted 

object scores according to some selected functions. For non-monotone functions, however, the ordering of 

object scores according to a query preference can deviate significantly from all the pre-computed 

orderings, thus impairing the pruning ability of this technique.  

BRS, however, can be adapted to support a large number of non-monotone preference functions f. In 

particular, the algorithm in Figure 5 is applicable as long as the maxscore of an MBR E can be correctly 

evaluated, with respect to the given f. Note that, the original maxscore computation algorithm (Figure 4) 

is not applicable since, in the non-monotone case, the point in E achieving the highest score is not 

necessarily a corner of E (again, due to the invalidation of “dominance”). Instead, we can compute the 

maxscore following a different approach, assuming that f has partial derivative everywhere on all 

dimensions.  

Recall that the goal of computing maxscore is to maximize f(t.A1, t.A2, …, t.Ad), given that li≤t.Ai≤hi 

for (1≤i≤d). The standard mathematical way to solve this problem is as follows. Take the derivative of f 

with respect to each variable t.Ai, and set the resulting formula to 0. Thus, we obtain i equations ∂f/∂t.Ai 

=0. Each solution of this equation set gives the coordinates of an extreme point that, if falling in E, may 

achieve the maxscore for E. Let SE be a set of all such points. Then, the maxscore in E equals the 

maximum score of the points in SE, and the points on the boundary of E. Note that equation set ∂f/∂t.Ai =0 
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(1≤i≤d) only needs to be solved once, and the solution can be used in the maxscore computation of all 

MBRs.  

As an example, consider f(t)=−(t.A1−0.5)2⋅(t.A2−0.5)2, and an MBR E whose A1-projection is an 

interval [0.6, 0.8], and its A2-projection is [0.4, 0.6]. We take ∂f/∂t.A1=−2(t.A2−0.5)2⋅(t.A1−0.5), and 

∂f/∂t.A2=−2(t.A1−0.5)2⋅(t.A2−0.5). Setting both equations to 0, we obtain the only solution t.A1=0.5, 

t.A2=0.5 (i.e., SE has only one element). Hence, the maxscore of E may equal the score of point (0.5, 0.5) 

(if this point is covered by E), or the score of some point on the boundary of E. Here, (0.5, 0.5) falls out of 

E; the maxscore must be achieved by a point on the boundary of E. Hence, we consider each edge of E in 

turn, which essentially performs the above process recursively in a lower dimensional space. We illustrate 

this by inspecting the left edge of E, i.e., t.A1=0.6. With this equality condition, f(t) becomes 

−0.01⋅(t.A2−0.5)2, which takes its maximum value 0 at t.A2=0.5. Since (0.6, 0.5) is a point in E, this is the 

point having the largest score among all the points on the left edge. In fact, carrying out the above idea to 

the other edges, it is easy to verify that 0 is indeed the maxscore of E. 

BRS offers exact results to all non-monotone functions for which the equation set ∂f/∂t.Ai=0 (1≤i≤d) 

can be accurately solved. For some functions f, however, ∂f/∂t.Ai may become excessively complex so 

that the equation set (and hence, maxscore) can only be solved using numerical approaches (see 

[PFTV02]). In this case, BRS provides approximate answers, i.e., the scores of the top-k objects returned 

may be slightly lower than those of the real ones. The precision of these results depends solely on the 

accuracy of the numerical method used. Finally, the algorithms discussed in Sections 5.1, 5.2 can also be 

extended to support non-monotone functions in the same way.  

6. EXPERIMENTS 

In this section, we experimentally study the efficiency of the proposed methods, deploying synthetic 

datasets similar to those used to evaluate the Prefer system [HP04] (i.e., currently the best method for 

ranked search). The data space consists of d (varied from 2 to 5) dimensions normalized to [0, 1]. Each 

dataset contains N (ranging from 10k to 500k) points following the Zipf or correlated distribution. 

Specifically, to generate a Zipf dataset, we decide the coordinate of a point on each axis independently, 

according to the Zipf [Z49] distribution (the generated value is skewed towards 0). The creation of a 

correlated dataset follows the approach in [HP04]. Particularly, the attribute values of a tuple t on the first 

⎣d/4⎦+1dimensions are obtained randomly in [0, 1]. Then, on each remaining axis i (⎣d/4⎦+2≤i≤d), the 

attribute value t.Ai is set to (∑i−1
j=1cj⋅t⋅Aj)−⎣∑i−1

j=1cj⋅t⋅Aj⎦, where cj is a random constant in [0.25, 4]. Datasets 
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created this way have practical correlated coefficients2 (around 0.5) [HP04].  

We compare BRS (and its variants) to Onion and Prefer. Performance is measured as the average 

number of disk accesses in executing a “workload” consisting of 200 queries retrieving the same number 

k of objects. Unless otherwise stated, the preference function f(t) of each query is a linear function 

f(t)=∑i=1~d(wi⋅t.Ai), where the weights wi are randomly generated in [−1, 1]. Further, the weights are such 

that no two queries have the same function. Linear functions are selected as the representative preference 

because they are popular in practice, and constitute the optimization goal in most previous work 

[CBC+00, HKP01, TPK+04].  

The disk page size is set to 4k bytes. An R*-tree [BKSS90] is created on each dataset, with node 

capacities of 200, 144, 111, 90 entries in 2, 3, 4 and 5 dimensions, respectively. We disable the system 

cache in order to focus on the I/O characteristics of each method, except in scenarios that specifically aim 

at studying the buffered performance. All the experiments are performed on a Pentium IV system with 

1GB memory. Section 5.1 first illustrates the results for processing conventional top-k queries, and then 

Section 5.2 evaluates the techniques for other variations.  

6.1 Evaluation of Conventional Ranked Search 

We first demonstrate the superiority of BRS over the existing methods, and the efficiency of techniques 

estimating its query costs. Then, we evaluate the effect of space reduction, as well as the performance of 

BRS for non-linear monotone functions.  

• Query cost comparison  

Since the performance of Prefer depends on the number of materialized views (each equal in size to the 

entire database), we first decide how many views should be used by Prefer for the subsequent 

experiments. Towards this, we use 3D (Zipf and correlated) datasets with cardinalities N=100k, and 

compare the cost of BRS and Prefer in processing a workload of top-250 queries.  

Figure 10 shows the speedup of BRS (i.e., calculated as the cost of Prefer divided by that of BRS), 

as a function of the number of views in Prefer. When both methods consume the same amount of space 

(i.e., only 1 view for Prefer), BRS is more than 20 times faster. This is expected because, in this case, 

Prefer relies on the tuple ordering according to a single function, and therefore, incurs prohibitive 

overhead for queries whose preference functions are significantly different.  In particular, Prefer starts 

outperforming BRS after its number of views reaches 15 and 13 for Zipf and correlated datasets, 

respectively. In the sequel, we report the performance of Prefer with 3 views (i.e., allowing Prefer to 

consume an amount of space 3 times larger than BRS). 

                                                 
2 The correlated coefficient COR measures the degree of correlation between different attributes of a relation. Given 

two attributes A1 and A2, COR is cov(A1,A2)/(s1·s2), where cov(A1,A2)=E(A1·A2)−E(A1)·E(A2), and si= E{[Ai−E(Ai)]
2}. 
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Figure 10: Speedup of R-trees over Prefer (d=3, N=100k, k=250) 

Figure 11 compares the performance of alternative algorithms for Zipf (first row) and correlated data 

(second row). Specifically, Figures 11a and 11d plot the number of page accesses (per query) in retrieving 

various numbers k of objects, using datasets with d=3 and N=100k. It is clear that BRS outperforms 

Onion and Prefer significantly, and the difference increases with k. Onion, on the other hand, is by far the 

most expensive method, i.e., its cost is up to 5 times higher than Prefer, and almost 100 times than BRS. 

Since Onion is considerably slower than the other solutions in all the experiments, we omit it from further 

discussion.  

To study the effect of dimensionality, in Figures 11b and 11e, we fix k=250, N=100k, and measure 

the query overhead as d varies. Both BRS and Prefer deteriorate as d increases due to, however, different 

reasons. The deterioration of BRS is mainly caused by the well-known structural degradation of R-trees in 

higher dimensional spaces [B00]. For Prefer, the number of views required to maintain the same query 

cost grows exponentially with d [HP04]. Thus, given the same space limit (i.e., 3 views), its performance 

drops very fast as d grows. For all the dimensionalities tested, BRS is consistently faster than Prefer by an 

order of magnitude.  

Figures 11c and 11f compare the two methods for datasets of different cardinalities N (k=250 and 

d=3). Interestingly, the performance of BRS is hardly affected by N. To explain this, note that as N 

increases, both the node MBRs and search regions actually decrease (recall that, the search region, 

defined in Section 4.2, is the part of the data space divided by the ISC f(t)=sk, where sk is the k-th highest 

object score). As a result, the number of nodes whose MBRs intersect the search region (i.e., the cost of 

BRS) is not affected seriously. On the other hand, for larger datasets, Prefer needs to inspect a higher 

number of records before reaching the watermark (see Section 2.1), which explains its (serious) 

performance degradation. 
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Figure 11: Comparison of alternative methods 

The next experiment studies the effect of an LRU buffer on the query overhead. Specifically, we increase 

the buffer up to 10% of the database size, and measure the number of page faults of BRS. Figure 12 

shows the results of both data distributions with k=3, d=3, N=100k, respectively. BRS achieves 

significant improvement even with a small buffer. Particularly, the average cost is less than 1 page access 

when the buffer size is 6% of the dataset! This is not surprising since, as mentioned in Section 4.2, the 

search regions of all queries are around the corners of the data space, meaning that the sets of nodes 

visited by successive queries may have large overlap. As a result, there is a high probability that a node 

requested by a query already resides in the buffer (i.e., it was accessed by previous queries), thus reducing 

the I/O cost. Also observe that the cost does not decrease further when the buffer is larger than 6%, 

indicating that the optimal I/O performance has been achieved.  
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Figure 12: Performance of BRS vs buffer size (k=250, d=3, N=100k) 

Prefer, on the other hand, receives much less improvement and is slower than BRS by two orders of 

magnitude (therefore, it is omitted from Figure 12). This is expected because, given a node capacity of 

144 entries, the dataset (with 100k tuples) occupies 700 pages on the disk, so a 6% cache size contains 40 

pages. As shown in Figure 11, Prefer accesses on the average 200 pages for each query, which indicates 

that a query can avoid at most 20% (=40/200) node accesses. Furthermore, the materialization of more 

views leads to even less improvement since they share the same cache space. 

• Quality of cost prediction 

Having established the query efficiency of BRS, we proceed to evaluate the method (proposed in Section 

4.3) that predicts its cost using histograms. We adopt the equi-width histogram, which as mentioned in 

Section 4.3, partitions the data space into cd equal-size buckets, where c is the histogram resolution, and d 

the dimensionality. Two histograms (with the same resolution) are maintained to store the distributions of 

the data and leaf MBRs, respectively. The resolution decreases with the dimensionality in order to keep 

the memory consumption approximately the same. In particular, we use c=50, 30, 14, 6, for d=2, 3, 4, 5, 

respectively. To apply the monte-carlo method described in Section 4.3, we set α=500 in all cases. The 

precision is measured as the average estimation error for all the queries in a workload3. Formally, let acti 

and esti denote the actual and estimated numbers of node accesses for the i-th query (1≤i≤200); then the 

error is calculated as (1/200)⋅∑i=1~200(|acti−esti|/acti).  

Figure 13 demonstrates the error rate for the same experiments as in Figure 11. It is clear that our 

prediction is highly accurate, yielding maximum error 18%. Further, the error decreases with the number 

k of objects retrieved (Figures 13a), increases with dimensionality d (Figure 13b), and remains roughly 

the same for different dimensionalities N (Figure 13c). Specifically, the improved accuracy for larger k 

happens because probabilistic prediction approaches generally perform better as the output cardinality 

increases. Further, due to the space constraint (500k bytes) on histograms, the histogram resolution 

decreases as d grows, leading to a coarser approximation of the data distribution, and hence, lower 

                                                 
3 In our experiments, the variance of the error for individual queries is not significant.  
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precision. The steady accuracy with respect to N can be explained by the stable performance of BRS 

illustrated in Figures 11c and 11f, again confirming the close connection between estimation accuracy and 

output cardinality.  
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Figure 13: Accuracy of cost estimation for BRS 

Figure 14 shows the average time to produce the estimation for a single query on the Zipf datasets (the 

results for correlated are similar, and hence, omitted). As expected, the estimation overhead increases 

with k and d since in both cases a larger number of buckets need to be considered (in deciding the search 

region size and query cost, respectively). The overhead decreases for higher N, because larger cardinality 

results in a smaller search region, which in turn diminishes the number of buckets that intersect the region 

(and hence need to be examined). The longest time required is around 20ms, indicating that the proposed 

method can be efficiently integrated in practical query optimization. Note, however, that, as shown in 

Figure 12, the cost of BRS in the presence of a buffer larger than 4% is negligible, rendering query 

optimization for this case trivial.  
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Figure 14: Estimating time (Zipf data) 

• Effect of space reduction 

The next set of experiments aims at studying the benefits of the algorithm in Section 4.4 for reducing the 

R-tree size, in case that k is no larger than a constant K. Figure 15a shows the space saving (measured as a 

percentage over the database size) for various values of K, using 3D datasets with 100k points. Note that, 

for K=1, our method eliminates 99% (95%) of the Zipf (correlated) dataset (in other words, only 1% (5%) 

of the records may ever be retrieved by a top-1 query). As expected, the saving diminishes for larger K, 
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but nevertheless, the reduced Zipf (correlated) R-tree is only around 10% (20%) of the original size, even 

for answering top-500 queries. The space saving is generally smaller for correlated data. To explain this, 

consider the application of the algorithm to the 2D datasets in Figure 16 for top-1 retrieval. The set of 

points that needs to be stored includes all points in the 4 skylines, viewed from each corner of the data 

space, respectively. For Zipf (where all the dimensions are independent), the skylines consist of points 

close to the corners (illustrated using enlarged dots in Figure 16a). For correlated, in addition to points 

around the corners, the skylines also contain the points on the two indicated edges; hence, more data 

points must be retained than for Zipf data.      
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Figure 15: Percentage of reduced space over the dataset 
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Figure 16: Points retained after the space reduction 

Figure 15b demonstrates the space saving as a function of dimensionality d, setting the other parameters 

to their median values. Less space can be saved for larger d (up to 20%) because (i) the chance that a 

point dominates another, decreases in higher dimensionality [PTFS03], and (ii) the number of possible 

monotone-direction combinations increases exponentially with d. Figure 15c plots the saving when N 

varies, and indicates a gradual increase of saving. This is most obvious for the Zipf dataset, where, no 

matter how large the dataset is, the number of points (close to the data space corners) that need to be 

retained is always limited. Similar observations hold for correlated.  

• Performance for non-linear monotone functions 

The last experiments in this Section evaluate the efficiency of BRS for non-linear functions. For this 



 28 

purpose we select three types of popular monotonic functions: (i) simple quadratic: f(t)=∑i=1~d(wi⋅t.Ai
2), (ii) 

exponential: f(t)=∑i=1~d(wi⋅e t.Ai ), and (iii) logarithmic: f(t)=∑i=1~d(wi⋅ln(t.Ai)). For each query, wi is 

randomly generated in [−1, 1]. Figure 17 shows the query cost as a function of k for datasets with d=3, 

N=100k. BRS is very efficient (less than 30 page accesses) for all types of functions. Prefer and the 

results by varying the other parameters are omitted since the diagrams are similar to those reported in 

Figure 11.  
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Figure 17: Performance of BRS for non-linear functions (d=3, N=100k) 

6.2 Evaluation of Complex Ranked Search 

In the sequel, we study the performance of BRS for constrained top-k queries, group-by ranked search, 

and non-monotone preference functions. Onion and Prefer are not considered because they either result in 

exactly the same costs as for conventional ranked retrieval (shown in Section 6.1), or are not applicable at 

all (i.e., to non-monotone functions). We use 3D (Zipf and correlated) datasets with 100k records, and 

linear functions for queries with monotone preferences.  

• Cost of constrained ranked processing 

We generate workloads of constrained queries in the same way as conventional top-k, except that each 

query is associated with an equal-sized constraint region, which is a d-dimensional box with identical 

extents along all dimensions. The position of a region follows the underlying data distribution (e.g., the 

region distribution for a Zipf dataset is also Zipf). Regions of different queries have distinct positions. 

Figure 18 illustrates the performance of BRS (with the modifications described in Section 5.1) for 

retrieving 250 objects, as a function of the constrained size, represented using the length of a constraint 

region (e.g., for d=3, a region with size 0.1 has a volume 0.1% of the data space). Interestingly, the query 

overhead initially increases (from very low values) when size is small, but stabilizes when the region is 

sufficiently large. This is because, for small windows, the performance of BRS depends mainly on the 

region size, while the cost converges to that of a normal ranked query (without any constraint) for 
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sufficiently large windows.  
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Figure 18: Performance of BRS for constrained ranked queries (k=250, d=3, N=100k) 

• Efficiency of group-by top-k search 

To examine the efficiency of GBRS in Section 5.2, we create 3D datasets as follows. First, a 2D dataset 

with 100k points is generated following the Zipf or correlated distribution. Then, each point is associated 

with a “group id”, an integer selected randomly in [1, gnum], where gnum is the total number of groups. 

We compare GBRS with the alternative approach that executes multiple (separate) constrained queries 

(one for each group). The results are shown in Figure 19, for both distributions, where it is clear that 

GBRS is significantly faster, and the difference increases with gnum.    

GBRS Multiple constrained queries  

   

0

50

100

150

200

250

300 number of node accesses

2 4 6 8 10
number gnum of groups  

number of node accesses

0

50

100

150

200

250

300

2 4 6 8 10
number gnum of groups  

(a) Zipf (b) Correlated 
Figure 19: Performance of GBRS (k=250, d=3, N=100k) 

• Performance for non-monotone functions 

Finally, we demonstrate the ability of BRS to support non-monotone functions. For this purpose, we 

experiment with polynomial preference functions in the form: f(t)=∑d
i=1∑

deg
j=1(cij⋅t.Ai 

j), where deg is the 

degree of the function varied from 2 to 4, and cij a constant randomly generated in [−1, 1]. It is worth 

mentioning that, for deg=2, the resulting quadratic functions differ from the “simple quadratic” tested in 

Figure 17 (which is always monotone). Exact solutions are returned for all queries. Using 3D datasets 

with cardinalities 100k, Figure 20 plots the query cost as a function of k, for polynomials of degrees 2, 3, 

4, respectively. BRS answers all queries with no more than 70 I/O accesses, or less than 10% of the total 



 30 

tree size (the trees for these datasets contain around 750 nodes).  
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Figure 20: Performance of BRS for non-monotone functions (d=3, N=100k) 

To summarize, although consuming only a fraction of the space required by other methods, BRS 

processes queries significantly faster (usually by orders of magnitude). Further, it supports complex 

variations of ranked retrieval beyond the scope of the existing approaches, at no additional space 

overhead. 

6. CONCLUSION  

In spite of the importance of ranked queries in numerous applications, the existing solutions are not 

efficient because they either incur high processing overhead or consume excessive space. In this paper, 

we propose BRS, a novel approach that solves the problem using branch-and-bound algorithms. 

Specifically, BRS requires only a single off-the-shelf R-tree built on the ranking attributes of a given 

relation, and efficiently answers all top-k queries, regardless of (i) the number k of objects retrieved, (ii) 

the preference function used, and (iii) the additional search requirements (e.g., constrained or not). As 

confirmed with extensive experiments, BRS significantly outperforms the existing alternatives on all 

aspects including query time, space overhead, and applicability.   

Although our discussion focused on R-trees, BRS can be used with other multi-dimension access 

methods (e.g., SR-trees [KS97], X-trees [BKK96], A-trees [SYUK00]), especially in high-dimensional 

spaces where the performance of R-trees degrades. Another direction for future work is to address the 

“approximate ranked query” that retrieves any k tuples whose scores are within a specified range from the 

best ones. Such tuples may be equally good in practice with the actual results (provided that the 

approximate range is small), but much faster to compute. Furthermore, it would be interesting to process 

top-k queries in data streaming environments where the data are not known in advance. Instead, the goal 

is to compute and continuously maintain the best results as new tuples arrive and the old ones are deleted 

or expire.  
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