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ABSTRACT
There has been a great deal of interest in the past few years onrank-
ing of results of queries on structured databases, including work
on probabilistic information retrieval, rank aggregation, and algo-
rithms for merging of ordered lists. In many applications, for exam-
ple sales of homes, used cars or electronic goods, data itemshave
a very large number of attributes. When displaying a (ranked) list
of items to users, only a few attributes can be shown. Traditionally,
these are selected manually. We argue that automatic selection of
attributes is required to deal with different requirementsof differ-
ent users. We formulate the problem as an optimization problem of
choosing the most “useful” set of attributes, that is, the attributes
that are most influential in the ranking of the items. We discuss
different variants of our notion of attribute usefulness, and propose
a hybrid Split-Pane approach that returns a composite of thetop
attributes of each variant. We conduct both a performance and a
user study illustrating the benefits of our algorithms in terms of ef-
ficiency and quality of explanation.

1. INTRODUCTION
In recent years, there has been a great deal of interest in developing
effective techniques for ad-hoc search and retrieval in structured
data repositories such as relational databases. In particular, a large
number of emerging applications require exploratory querying on
such databases; examples include users wishing to search databases
and catalogs of products such as homes, cars, cameras, restau-
rants, and so on. The following running example is frequently used
throughout the paper to illustrate key concepts.

Example 1: Consider an inventory database of an auto dealer,
which contains a single tableT with N rows andM attributes
where each tuple represents a car for sale. The table has numer-
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ous attributes that describe details of the car, such as Price, Make,
Model, Age, Zipcode, Mileage, EngineSize, NumCylinders, Acci-
dentHistory, SecuritySystem, AirConditioning, and so on.

Current database query languages such as SQL follow the
Boolean retrieval model, i.e., tuples that exactly satisfythe selec-
tion conditions laid out in the query are returned - no more and no
less. While extremely useful for the expert user, this retrieval model
is inadequate for ad-hoc retrieval by exploratory users whocan-
not articulate the perfect query for their needs - either their queries
are very specific, resulting in no (or too few) answers, or arevery
broad, resulting in too many answers. In the example above, asim-
ple conjunctive query such as “Select * from T where Model=sedan
and Price≤ 16000 and Mileage≤ 20000” may overwhelm the user
with too many answers.

To address the limitations of the Boolean retrieval model for such
queries, a technique that has received widespread attention in recent
years is that ofrankingof database query results. Ranking systems
typically compute ascoreof a tuple which represents the degree to
which the tuple is “relevant” for the query, and return a few tuples
with high scores (e.g., top-n tuples wheren is a small number such
as 10 or 100) to the user.

The ranking problem in databases has been extensively investi-
gated in recent years [11, 15, 10, 1, 9, 6]. The various ranking
techniques for database queries range from simple scoring func-
tions (e.g., similarity functions based on Euclidean distances with
pre-defined weights on attributes), to more sophisticated,query-
specific functions developed by domain experts or automatically
derived user preferences from previously available workloads (e.g.
[1, 6]). These sophisticated approaches hinge on their ability to
convert user queries - which typically specify simple selection con-
ditions on a small set of attributes - into comprehensive scoring
functions that also involve many other attributesin addition tothe
ones specified in the original query. In other words, these ranking
systems “extend” the original query by drawing on availableknowl-
edge of previous user preferences for the unspecified attribute val-
ues, much as a knowledgeable salesperson may suggest features of
potential interest to a customer who has given some initial require-
ments. In the auto database example above, for users seekingused
cars in New York, the ranking system may give higher scores to
cars with theft prevention systems, whereas for users seeking used
cars in Texas, cars with air conditioning systems may be favored.
Sections 2.2 and 5 contains further discussion on database ranking
methods.

However, the focus of this paper is not on new ranking models.
Rather, the main thrust of this paper is the introduction of an orthog-
onal problem in ad-hoc exploratory querying of database - that of
selecting the top-m attributesof query results (wherem << M ).



This problem is motivated by the fact that many domains of inter-
est have a very large number of attributes: for example, the number
of attributes in typical automotive and home databases ranges from
25 to a hundred or more, as can be easily verified from car sales
or homes web sites. With such a large number of attributes, itis
usually not possible to display all attributes for the top-n answers
to a query. Tabular displays of answers on web sites therefore typ-
ically display only a few attributes that are considered to be most
“useful” to the user. However, the decision on what attributes to
display is usually made manually, and fixed for all users, regardless
of what attributes are likely to be useful to a particular user. Con-
sequently, the answer tuples to a query may get displayed with a
fixed set of attributes that do not reveal important relevantdetails,
leading to a less-than-satisfying experience for the user.We thus
pose the following problem:

The Attribute Selection Problem Intuitively, the attribute se-
lection problem can be defined as follows.Given a query and a
ranking function for query results, return the top-m most useful
attributes of the answer tuples, wherem is a small number (e.g.,
m ≤ 15).

Of course, any principled approach for solving this problemwill
have to make reasonable assumptions about what it means for an
attribute to be useful to a user. In this paper we focus on one pri-
mary notion of attribute usefulness, which may be intuitively de-
scribed as:an attribute is considered useful if it plays an influen-
tial role in the computation of the top-n ranked answer tuples of a
query. In other words, we seek to determine those attributes that
best “explain” the top-n tuples returned by the ranking function.
Intuitively, these would correspond to the attributes thatan expert
would find useful in ranking tuples. Although a naive user maynot
have thought of specifying such attributes in the initial query, the
user is likely to find the attributes useful after seeing themin the
result.

In the auto example above, for New York customers the top at-
tributes may include SecuritySystem, whereas for Texas customers
the top attributes may include AirConditioning. We believethat
this notion of attribute usefulness is simple, intuitive, and covers
many important scenarios. Continuing to develop other notions of
attribute usefulness - e.g., scenarios where attributes may be useful
to users, yet have nothing to do with how the top tuples are selected
- is an intriguing research area that is left for future work (we dis-
cuss this issue briefly again in Section 2).

Our notion of attribute usefulness is quite broad, and several in-
teresting variants can be developed, each variant conveying differ-
ent types of information. We discuss these variants below, focusing
on their differences at an intuitive level - more precise definitions
are presented in Section 2.

1. Score-Based Attribute Selection:In this variant of attribute
selection, we are interested in determining the top-m attributes
that have the most influence in the computedscoresof the
top-n returned tuples of a query. To motivate this, consider
a query which seeks late model two-door sports cars. A rea-
sonable ranking function for such cars may be one where
Price and EngineSize have the largest influences in comput-
ing their scores. The task is thus to determine and return
these attributes.

2. Rank-Based Attribute Selection:This variant of attribute se-
lection is subtly different from the previous variant. Here
we are interested in determining the top-m attributes that are
most influential in ranking the top-n tuples higher than the
rest of the tuples also satisfying the query conditions. If we
consider the above query again, although Price and Engine-

Size may influence the scores the most, it may happen that
most tuples, even those outside the top-n, have similar prices
and engine sizes. Thus other attributes (such as Make or Age)
may have been critical in differentiating between the top-n
tuples and the rest.

3. Relative Rank-Based Attribute Selection:In this variant of
attribute selection, we wish to know the top-m attributes that
are most influential in preserving the relative rankings of the
returned top-n tuples amongst each other. Note that this third
variant is quite different from the second - there we wished
to know which attributes separated the top-n tuples from the
rest of the tuples, whereas here we wish to know which at-
tributes are most responsible for determining the particular
permutation in which the top-n tuples are returned. For ex-
ample, the relative ranks of the top-n tuples may most closely
match the relative ranks of the corresponding Mileage and
NumCylinders attribute values of these tuples.

The returned top attributes for each of the above variants con-
vey different types of information, each of which has a role to play
in helping the users compare the ranked answers to a query, and
in understanding why these answers were returned. We therefore
propose a hybrid approach, which we call theSplit-Paneapproach,
which returns and displays the top attributes from each of these
variants side-by-side. We show experimentally that this approach
is clearly more intuitive to users than the individual constituent ap-
proaches underlying Split-Pane, as well as other baseline attribute-
selection techniques considered.

Technical Challenges The key technical challenge is to automat-
ically come up with a selection of the top-m attributes that best
explain the score, rank or relative rank of tuples, based on the scor-
ing/ranking function, without any user intervention. In particular,
our user study shows that attribute selections must be basedon the
query, and a pre-defined query-independent selection has limited
performance; instead, the attribute selections must be computed au-
tomatically based on the scores/ranks of the query results.

The score-based attribute selection is perhaps the simplest of the
above variants in terms of algorithmic complexity, becauseif the
scoring function is known in advance, determining the influential
attributes is relatively straightforward - however, this problem be-
comes more interesting if we are not privy to the innards of the ac-
tual scoring function used, i.e., if the scoring function isviewed as
a black box. The other variants are more involved, because wehave
to determine useful attributes by analyzing how they affectthe final
rankings of the result tuples. One way of measuring the effect of a
setA of attributes on the rank (or relative rank) is to consider the
rankings that would be produced if only attributes inA were used.
We make this notion more precise later, and show that the selection
of a set of attributes that minimizes the rank error is NP-hard for
both the score- and the rank-based variants. We present algorithms
for these variants, based on a combination of greedy heuristics as
well as non-trivial partial computations of the attribute selections.

TheAttribute Orderingproblem has the additional requirement
of ordering the (selected) attributes in decreasing order of their use-
fulness. Such an ordering can be quite useful: for example, in de-
signing a tabular interface, where it may be preferable to place the
attributes from left to right in decreasing order of usefulness. We
use the termvertical rankingto denote the order in which tuples
appear, and the termhorizontal orderingto denote the ordering of
attributes.

Defining an attribute ordering is complicated by the fact that the
usefulness of an attribute (i.e., its influence on the vertical ranking)
is affected by what other attributes have been selected. We present



two greedy heuristics, based on two different ways of defining the
usefulness of an attribute, either ignoring or taking into account the
choice of other attributes. These greedy heuristics can also be used
for the attribute selection problem by selecting the topm attributes
from the attribute orderings they generate. We emphasize, however,
that the technical focus of this paper lies in the area of attribute
selection, with attribute ordering being an extension of our core
results on attribute selection.

Contributions We summarize the main contributions of our paper
as follows

1. We introduceattribute selection/orderingas a new database
retrieval model that complements the tuple ranking model,
yet is orthogonal to the specifics of the ranking function used.

2. We present several interesting variants of the attributeselec-
tion problem, where each variant conveys different informa-
tion to the user. We also present theSplit-Paneapproach,
which combines the top attributes from each of these vari-
ants.

3. We analyze the computational complexity of the different
variants of the attribute selection problem, and show that
most of them are NP-complete.

4. We present algorithms for the different variants of attribute
selection, based on a combination of greedy heuristics as
well as non-trivial partial computations of attribute selec-
tions. In some instances we prove that our algorithms are
optimal.

5. We performed user studies and detailed performance evalu-
ations to show that the attribute selection problem is useful,
and can be efficiently solved by the Split-Pane approach.

Related Work The most closely related works to ours are in the
areas of ranking of query results, feature selection, and data visual-
ization. We describe related work in detail in Section 5, butoutline
key differences here. Work in the area of ranking of query results
(such as [11, 15, 10, 1, 9, 6]) do not consider the problem of or-
dering/choosing important attributes from a large set of attributes.
Although the problem of choosing attributes is related to the area of
feature selection ([14]), our work differs from the extensive body
of work on feature selection in several ways: (1) our goal is to ex-
plain the ranking of results to end users, not to reduce the cost of
building a mining model such as classification or clustering, and
(2) our approaches measure the amount by which theranksof the
top-n tuples changes when a subset of attributes are used in score
computations, whereas feature selection approaches are not based
on changes in ranks. Data visualization systems form another cate-
gory of related work, but to our knowledge none of the relatedwork
in this area (e.g. [16, 20, 2]) has considered the problem of choos-
ing what attributes to display that influence the rankings ofresults.
See Section 5 for more details on related work.

The rest of this paper is organized as follows. Section 2 describes
the problem framework and notation. Section 3 presents results on
complexity, while greedy algorithms are presented in Section 4.
Section 5 describes related work. Section 6 presents quality and
performance studies, and Section 7 concludes the paper.

2. SYSTEM FRAMEWORK
Our dataset consists of a relation (or view)R which hasN tuples

t1, . . . , tN andM attributesA = a1, . . . , aM . Let t[ai] denote the
value of tuplet for attributeai. Let queryQ specify conditions on
some subset of attributesAQ (we shall frequently use upper-case

alphabets such asA andAQ to refer to subsets of the attributes set
A).

In the following subsection we first review various tuple rank-
ing functions. Later we formally introduce the attribute selection
problem, which is the main focus of this paper.

2.1 Review of Tuple Ranking Functions
Most common methods to rank the result tuples of queryQ are

centered around developing a scoring functionS(Q, t) that assigns
relevance scores to tuplet. A few (top-n) of the most relevant
tuples are then returned in decreasing order of relevance score to
the user. Numerous scoring functions have been developed inthe
literature, ranging from Euclidean distance functions (primarily for
numeric data), cosine similarity functions, as well as complex func-
tions based on probabilistic retrieval models. We briefly discuss
some common scoring functions here; also see Section 5 and the
references therein. Some of these scoring functions only operate
on the attributes specified by the query - i.e., on a projection over
theAQ columns - while others try and extend the query with ad-
ditional query conditions such that all attributes are specified, yet
others attempt to directly seek out correlations between the query
values and the unspecified attribute values of the tuple.

In solving our problem, it is often necessary for us to determine
the “contribution” of certain attributes in scoring. Consequently,
we assume scoring functions to be of the formS(Q, A, t), where
A is an optional set of attributes that specifies which attributes are
to be utilized when computing the score of the tuple - i.e., the re-
maining attributes are “masked out”, or ignored from the scoring
calculations. (The setA is not to be confused with the setAQ; the
latter is the subset of attributes specified by the query). The ability
to mask certain attributes is a reasonable requirement on scoring
functions, and as we shall see below, most common scoring func-
tions possess this property. Moreover, attributes maskingis used
for the primary purpose of solving our attribute selection problem,
and is not used in the tuple ranking problem.

A simple class of scoring functions is theadditivescoring func-
tion, defined as follows. Let weightswi be associated with each
attributeai, and let functionfi(x, y) return a value in[0..1] in-
dicating how related valuex is to y for values in the domain of
attributeai. Let Q specify equality conditions on some set of at-
tributesAQ, and let the value specified for anyai ∈ AQ be vi.
Then

S(Q,A, t) =
�

ai∈AQ∩A

(wi ∗ fi(t[ai], vi)) (1)

An example of an additive scoring (used in our experiments) is
a weighted version of the Euclidean function (henceforth referred
to asWeightedL2), defined as follows. For categorical attributes
fi(x, y) = 1 if x = y (or x ∈ y if we allow y to be a set of
values), and is0 otherwise. For numerical attributesfi = 1 −
(nx − ny)2, wherenx andny are the normalized1 values ofx and
y in the range[0..1]. Such scoring functions are usually defined
by domain experts, although in certain applications the user may
specify some of the weights in addition to some attribute values.
Some applications may even automatically extend a user query so
that all attributes get assigned weights as well as query values.

Another common example of additive scoring functions is the
cosine similarityfunction (used in [1] for ranking database query
results) which computes the normalized dot product betweenthe
query and the tuple values. In certain applications (e.g., keyword

1We normalize using the minimum and maximum values for the
domain ofai; other standard normalization techniques are also pos-
sible.
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queries in [3]), scoring functions aremultiplicative, i.e., the final
score is a product of the contributions of the scores of each attribute.
Multiplicative scoring functions can be converted to additive func-
tions by viewing the scores on a log-scale.

A generalscoring function is a more complex function in which
terms cannot be separated according to the attribute they refer to.
An example of such a scoring function, which is used in our exper-
iments, is theConditionalscoring function based on probabilistic
information retrieval models (defined in Chaudhuri et al. [6])

S(Q, A, t) = �
aj∈C

p(t[aj ]) ∗ �
aj∈C,ai∈AQ∩A

p(vi, t[aj ]) (2)

whereC = A − (AQ ∪ A) and p() is a function defining the
popularity (for one argument) and correlation (for two arguments)
of values in the query workload and database. More details onthe
Conditional scoring function can be found in [6].

Execution Model for Tuple Ranking Functions Although we as-
sume that we are provided with a black box vertical scoring func-
tion S(Q, A, t), the way such a scoring function is implemented
greatly affects the performance of our attribute selectionalgorithms,
since it determines which algorithms are feasible and efficient. We
define two interfaces (Figure 1) for the vertical ranking black box,
which are natural and supported by previous works like Faginet al.
[11], Chaudhuri et al. [6], the PREFER system [15] and Bruno et
al. [4].

In particular, thepipelining interfaceS(Q, A) inputs the query
Q, a setA of attributes to be utilized (i.e., not masked out) and a
relationR and outputs a stream of tuplest ∈ R ranked descend-
ing according toS(Q, A, t) along with their scores (scores are not
needed in some cases). The cost incurred in using this interface
is the number of tuples retrieved (we can stop retrieving tuples at
any time). Thesingle-result interfaceS(Q, A, t) inputsQ, A and a
tuplet and outputs the scoreS(Q, A, t). This interface incurs unit
cost.

2.2 The Attribute Selection Problem
As we have emphasized in the introduction, our focus is on the

attribute selection problem. Given a relationR, a scoring function
S(Q, A, t), a numbern of requested result-tuples, and a number
m of requested attributes, we are concerned with the problem of
selecting a subsetA of m attributes that were the “most influential”
in the computation of the top-n ranked answer tuples. A design
goal for our techniques is that they should be able to work with
any scoring function. We now formally define the three problem
variants mentioned in the introduction.

1. Score-Based Attribute Selection: In this version of the problem,
we are interested in determining the top-m attributes that have the

most influence in the computedscoresof the top-n returned tuples
of a query. LetTopn be the set of top-n tuples returned by the
query. LetA be any subset ofm attributes. Thescore distance,
SDist(A, A) is defined as

SDist(A, A) =
�

t∈Topn

(S(Q,A, t) − S(Q, A, t))2 (3)

Intuitively, SDist(A,A) measures how close the scores of the
top tuples are to the true scores if only a subset of attributes A
were involved in the calculations. The objective is to determine
the subsetA that minimizesSDist. Although this problem vari-
ant is simpler than the others, we argue that it is not trivial. For
example, even in the case of the additive scoring model wherethe
weights may be known beforehand, we cannot pre-determineA by
simply taking them attributes with the largest weights. This is be-
cause as Equation 1 shows, the contribution of theith attribute to
the score of a tuplet is wi ∗ fi(t[ai], vi), and the second factor
can only be determined at runtime. For example, the weight ofthe
Price attribute may be more than the weight of Mileage, however,
for a specific query the top tuples returned may contain cars whose
prices differ greatly from the desired price, but whose mileages
are very close to the desired mileage (see Section 6 for an experi-
mental comparison of score-based versus simpler weight-based at-
tribute selection approaches). This problem is exacerbated in the
case where weights are not known beforehand and where scoring
schemes assign “query specific” weights to unspecified attributes
(e.g., for users seeking late model sports cars, EngineSizemay get
higher weight than for users seeking economy cars). Likewise, this
problem is more involved for more general scoring functionswhere
the contributions of each attribute cannot be easily separated from
the others.

2. Rank-Based Attribute Selection: In this version of the problem,
we are interested in determining the top-m attributes that are most
influential in ranking the top-n tuples higher than the rest of the
tuples. LetL be the ranked list (or permutation) of all tuples when
ranked by the scoring function with all attributes contributing to the
scoring - i.e., when the database is ranked byS(Q,A, t). Let LA

be the ranked list when only a subsetA of m attributes contribute
to the scoring - i.e., when the database is ranked byS(Q,A, t). The
rank distance, RDist(A, A) is defined as

RDist(A, A) =
�

t∈Topn

|L(t) − LA(t)| (4)

whereL(t) denotes the position (or rank) of elementt in L.
Intuitively, L is the “ground truth” ranking, andRDist(A,A)

measures how closelyLA approximatesL with respect to the top-
n tuples. Note that this measure of comparing ranked lists is based
on Spearman’sfootrule formulafor comparing ranked lists [7], the
only difference being it only considers theTopnsubset of the ele-
ments of the two permutations.2 The objective is to determine the
subsetA that minimizesSDist.

This version of the problem is subtly different from the score-
based version. For example, if we consider a user seeking late
model sports cars, although Price and EngineSize may influence
the scores the most, it may happen thatmost tuplesthat satisfy the
2We could have used other metrics such asKendall Tau, but Spear-
man’s footrule is more appropriate for our more problem because
the ranks of subsets of the tuples are used in comparing rankings.
Our metrics can also be extended using the partial ranking metrics
defined by Fagin et al [9] in case the scoring function produces
many ties. Likewise, our metrics can also be extended to givemore
importance to tuples at higher positions in the lists (as in [21]).



query condition, even those outside the top-n, have similar prices
and engine sizes. Thus other attributes (such as Make or Age)may
have been critical in differentiating between the top-n tuples and
the rest.

This problem is also related to thefeature selectionproblem in
classification algorithms in machine learning - the similarities and
differences are discussed in more detail in Section 5 (also see our
experiments in Section 6).

3. Relative-Rank Based Attribute Selection: In this problem, we
wish to know the top-m attributes that are most influential in pre-
serving the relative rankings of the returned top-n tuples amongst
each other. The formal specification of the problem is very similar
to the second problem variant - except that we replace the entire
database with the top-n tuples only. LetL′ be the corresponding
ranked list for the setTopn, i.e., when the tuples ofTopnare ranked
by the scoring function with all attributes contributing tothe scor-
ing. Let L′

A be the ranked list (permutation ofL′) when only a
subsetA of them attributes contributes to the scoring - i.e., when
the database is ranked byS(Q, A, t). The relative-rank distance,
RRDist(A, A) is defined as

RRDist(A, A) =
�

t∈Topn

|L′(t) − L′
A(t)| (5)

whereL′(t) denotes the position (or rank) of elementt in L′.
The semantics of this problem variant are quite different from

the second variant - there we wished to know which attributessep-
arated the top-n tuples from the rest of the tuples, whereas here we
wish to know which attributes are most responsible for determining
the particular permutation in which the top-n tuples are returned.
Thus, these attributes serve to more carefully differentiate among
the returned tuples than any of the previous problems. For exam-
ple, the relative ranks of the top-n tuples may most closely match
the relative ranks of the corresponding Mileage and NumCylinders
attribute values.

Discussion While the above problem variants are the main focus
of this paper, we take the opportunity to briefly discuss several other
interesting variations which are part of our ongoing work but we do
not describe here due to lack of space. One such variant is thePer-
Tuple Attribute Selection problem, where instead of being restricted
to choosing the same set ofm attributes for all the top-n returned
tuples, we can choose to display attributes on a per-tuple basis - that
is, different attributes can be chosen for each returned tuple. This
allows a more detailed look into each returned tuple than would
otherwise be achievable with the previous variants. For example,
fuel efficiency may not be considered useful enough to display in
general, but it may be worth mentioning for a car with exceptionally
good fuel efficiency.

In fact, the per-tuple attribute selection problem has an interest-
ing sub-variant - determiningbadas well asgoodattributes. Intu-
itively, an attribute for a tuple is bad (respectively good)if, without
its influence, the tuple’s ranking improves (respectively degrades).
Knowledge of such attributes provides more fine-grained under-
standing of the reasons behind a specific tuple’s final rank that
would otherwise be overlooked by the more aggregated variants,
e.g., it is useful to know that a specific car has poor gas mileage,
even if it is exemplary in other respects.

TheMultiple Queries Attribute Selectionproblem is yet another
variant where, given a set of queries - such as a representative query
workload indicative of the type of users of the system - the task is to
choose the top-m attributes that arecollectivelythe most influential
in rankings the results of these queries. As an example, consider an
auto dealer preparing an advertisement listing a number of cars in

a tabular fashion, highlighting the attributes that the dealer feels
would be most important for the typical customer.

Finally, we mention that in some applications users may find cer-
tain attributes to be useful even if they havevery little to do with
the ranking of tuples. E.g., users may be always interested in seeing
attributes of products such as Vehicle Identification Number (VIN)
and Price - perhaps for looking up more information from an ex-
ternal database - whereas in most applications ranking functions
ignore serial numbers, and in some applications price may not be
an influential attribute in ranking. Continuing to develop this and
other notions of attribute usefulness is an intriguing research area
that is left for future work.

3. COMPLEXITY RESULTS
In this section we analyze the computational complexity of the

variants of the attribute selection problem. We show that some of
the variants are NP-Complete, and outline several greedy heuristics
that are shown to be optimal in certain cases.

3.1 Rank-Based Attribute Selection
In this subsection we shall show that the rank-based attribute se-

lection problem is intractable, thus necessitating the development
of heuristic and approximation methods for finding the bestm at-
tributes. To prove intractability, we shall consider a simplified ver-
sion of our problem, which we call theTopOneTupleproblem.

Recall thatR is a relation withN tuples over an attribute set
A with |A| = M . Consider only queriesQ that specify equality
conditions on the specified setA of attributes, i.e., conditions such
asai = vi for all ai ∈ A. Let the scoring function be the simple
additive function defined as thedot productbetween the query and
the tuple, i.e.,

S(Q, A, t) =
�

ai∈A

t[ai] · vi

TopOneTuple Problem: Given a queryQ, let t be the highest
ranked tuple by the above scoring function. Given an integerm <
M , is there a subsetA ⊂ A of m attributes, such that when all
attributes other thanA are masked out, the highest ranked tuple
remains ast?

THEOREM 1. The TopOneTuple problem is NP-Complete.

Proof: Clearly the problem is inNP as a solution can be easily ver-
ified in polynomial time. To prove NP-Hardness, we shall reduce
from theVertex-Coverproblem [13], which is defined as follows:
Given a graphG = (V, E) consisting ofv vertices ande edges,
and an integerk, is there a subset ofk vertices such that each edge
has an endpoint in this set?

Given an instance of the Vertex-Cover problem, we shall con-
struct an instance of the TopOneTuple problem as follows. Con-
sider a relationR with v attributes ande + 1 tuples. Each edge
(p, q) is represented as a tuple where the values of attributesp and
q are each0 and the remaining attribute values are eachv/(v − 1).
In addition, there is a special tuplet in which all attribute values
are1. We define a queryQ that specifies1 for all attribute values.
We complete the instance of TopOneTuple by settingm = k.

Clearly, when no attributes are masked out,t is the highest ranked
tuple for this queryQ, since its score isv, whereas the score of any
of the other tuples is(v − 2)v/(v − 1).

Now suppose the instance of Vertex-Cover has a solution. Let
AQ be the subset ofk vertices such that all edges inE have an
endpoint inAQ. Suppose we mask out the attributes not inAQ. It
is easy to see thatt will remain the highest ranked tuple as its score



will be k, whereas each of the other tuples will have at least one
0 among the values of the attributes ofAQ and hence will have a
maximum score of(k − 1)v/(v − 1).

To prove the reverse, assume that the instance of TopOneTuple
has a solution. LetAQ be the set of thek attributes that have not
been masked out, thent will remain the highest ranked tuple with
a score ofk. This is only possible if each of the other tuples has at
least a0 in one of the attributes ofAQ. If this was not so, then the
score of such a tuple would have beenkv/(v − 1), which is larger
than the score oft which is a contradiction. HenceAQ represents
a solution for the Vertex-Cover instance.2

Thus, rank-based attribute selection is NP-complete.

3.2 Score-Based Attribute Selection
It intuitively appears that score-based attribute selection is easier

than rank-based attribute selection, and indeed, as we shall shortly
show, unlike rank-based attribute selection which is NP-Complete
even for additive scoring functions, simple optimal score-based
attribute selection algorithms exist for additive scoringfunctions.
However, if we allowarbitrarily complexscoring functions, score-
based attribute selection can easily be seen to be NP-Complete by
a simple reduction from TopOneTuple.

THEOREM 2. The score-based attribute selection problem is
NP-Complete for general scoring functions

Proof: (sketch) Given a TopOneTuple problem instance, create a
score-based attribute selection instance where the score of a tuple
is its rankin the TopOneTuple’s database. I.e., scores of tuples are
in the range [1..N]. It is trivial to see that the score-basedattribute
selection problem is NP-Complete.2

Note that in the above proof, the scoring function was very con-
trived, as it had to examine the entire database to determinethe
score of a tuple. In practice, scoring functions are much simpler,
and we shall show in the next section that for additive scoring func-
tions, simple greedy algorithms suffice. (In contrast, rank-based
attribute selection is NP-Complete even for additive scoring func-
tions).

4. ALGORITHMS FOR ATTRIBUTE SELEC-
TION

In this section we present algorithms to solve the differentat-
tribute selection problem variants. In particular, we firstpresent
at a high level the optimal and two greedy algorithms. In Sec-
tion 4.1, we specify when the greedy algorithms are optimal.Then
we describe the implementation of the greedy algorithms fordiffer-
ent variants of the attribute selection problem, given the execution
interfaces of Figure 1. In Section 4.2, we present algorithms for
rank-based as well as relative rank-based attribute selection, and in
Section 4.3 we present algorithms for score-based attribute selec-
tion.

Optimal Algorithm Due to lack of space we simply sketch the
details of theoptimal algorithm. For example, in the case of rank-
based selection, the optimal algorithm calculates all combinations
of M attributes in groups of up tom and for each group invokes
a pipelining interface to fetch answers and calculate the rank dif-
ference. The complexity isMCm, that is, exponential onm. The
same (or worse) complexity applies for the other versions aswell.

Greedy Algorithms Let Dist(A, A) be generic notation for
SDist(A, A), RDist(A, A) or RRDist(A,A). TheNon Cumu-
lative Greedy Algorithmstarts with an empty setA, and in each it-
eration, adds attributeai not already inA that minimizes the value

Algorithm Rank-GreedyCum(R, Q, m, n)
{
01. Invoke pipelining interfaceS(Q,A) with output streamL

and store top-n tuples ofL in list L′

02. A = ∅ /*A is the set of attributes selected so far*/
03. for eachj in 1, . . . , m do

{ /*repeat until we find top-m attributes*/
04. for eachai in A− A do

{ /*Invoke M − |A| pipelining interfaces*/
05. Invoke pipelining interfacesS(Q, A ∪ {ai})

with output streamsLi

06. P (Li) = ∅
/*P (Li) is the prefix ofLi retrieved so far*/

}
07. for eachi in 1, . . . , M − |A| do

{ /*retrieve tuples in parallel*/
08. If not all tuples inL′ are inP (Li) then

{
09. Retrieve top tuple fromLi and add it toP (Li)
10. CalculateMinPossibleRDist(L, Li) /* Equation 6 */

}
11. If all tuples inL′ are inP (Li) andRDist(A, A ∪ {ai})

< minl6=iMinPossibleRDist(L, Ll) then
12. addai to A, and break

}
}

13. returnA
}

Figure 2: Cumulative Greedy Algorithm for Rank-based At-
tribute Selection

of Dist(A, {ai}), stopping whenm attributes have been picked.
In contrast, theCumulative Greedy Algorithmstarts with an empty
setA, and in each iteration, adds attributeai not already inA that
minimizesDist(A, A ∪ {ai}), stopping whenm attributes have
been picked.3.

4.1 Optimality of Greedy Algorithms
We show that in the special case of score-based attribute selec-

tion for additive scoring functions, both the greedy algorithms are
optimal.

THEOREM 3. Both cumulative and non-cumulative score-based
greedy algorithms are optimal for additive scoring functions.

Proof: The scoring function is shown in Equation 1. Form = 1
the greedy is obviously optimal. We assume it is optimal form =
l, that is, we have selected a setA of l attributes that minimize
SDist(A, A). If we add attribute ai to A then
SDist(A, A∪{ai}, S) - SDist(A, A) = SDist(A, {ai}). Hence,
we must chooseai that minimizesSDist(A, {ai}). That is, the
non-cumulative greedy algorithm is optimal. Also, maximizing
SDist(A, {ai}) is equivalent to maximizingSDist(A, A∪{ai})
in the additive case, so the cumulative greedy is also optimal. 2

Notice that none of the greedy algorithms are optimal for the
score-based attribute selection problem for general scoring func-
tions (e.g., Equation 2).

3Both greedy algorithms can also be designed to operate in re-
verse, i.e., start with the complete attribute set and remove at-
tributes one by one. While such a procedure has the potentialfor
greater stability, it is significantly less efficient when weconsider
thatm << M , and thus we do not pursue it any further.



4.2 Rank-Based Attribute Selection Algorithm
We present the cumulative greedy algorithm for the rank-based

attribute selection problem, which is the most complex version.
This algorithm exploits the pipelining interfaces and extracts mini-
mal prefixes from the output streams to perform attribute selection.
The non-cumulative greedy is a straightforward modification (sim-
plification) and is not presented due to space concerns.

The intuition of the algorithm, which is shown in Figure 2, is
the following. First, we compute the top-n results from the query
output streamL (i.e., with all attributesA utilized), and store them
in list L′. Then we compare a set of candidate combinations of at-
tributes (to be utilized) with respect to theirRDist distance from
A, by invoking a pipelining interface for each of them and retriev-
ing a minimal prefix from each that guarantees that our choiceis
correct. One attribute at a time is greedily added to the combina-
tions of attributes form iterations. Figure 3 shows an instance of
the execution of the algorithm.

In more detail, the algorithm starts by computing the listL′ of the
top-n results ofQ by invoking the pipelining interfaceS(Q,A),
i.e., by utilizing all attributes. Then we retrieve tuples from M
pipelining interfacesS(Q, {a1}), . . . , S(Q, {aM}) in parallel. For
each streamLi, we maintain the minimum possible rank-based
distanceMinPossibleRDist(A, {ai}), which is the tightest lower
bound onRDist(A, {ai}) given the prefixP (Li) that has currently
been retrieved.

The parallel retrieval from theLi’s terminates when all tuples
t ∈ L′ have been retrieved from a streamLi and the value of
RDist(A, {ai}) is smaller thanMinPossibleRDist(L, Ll) for all l 6=
i. At this point,ai is added to the setA.

In the(j + 1)-th iteration, wherej attributes have already been
chosen, the next attribute is chosen by considering theM − j al-
ternatives created by adding each remaining attribute to the current
A. We repeat untilm attributes have been added toA.

Calculation of MinPossibleRDist MinPossibleRDistis calculated
by Equation 6.

MinPossibleRDist(LQ, Li, S) =
�

t∈L′

minTupleDist(L(t), Li(t)) (6)

where recall thatL(t) is the position of tuplet in list L, and
minTupleDist(L(t), Li(t)), which is defined in Equation 7, de-
notes the minimum possible distance between the positions of tuple
t in L andLi.

minTupleDist(L(t), Li(t)) =

=

���
��

|L(t) − Li(t)|, if tuple t ∈ P (Li)
0, if tuple t 6∈ P (Li) and |P (Li)| < L(t)
|L(t) − |P (Li)| − 1|, if tuple t 6∈ P (Li)

and |P (Li)| ≥ L(t)

(7)

whereP (Li) denotes the prefix of the listLi that has been retrieved
so far.

The three branches of the equation correspond to the cases where
tuple t has already been retrieved fromLi, has not been retrieved
and less thanL(t) tuples have been retrieved fromLi, and has not
been retrieved but more thanL(t) tuples have been retrieved from
Li, respectively.

The astute reader will notice that Equation 6 does not always
compute the tightest minimum possible score, because if thethird
branch of Equation 7 is used forn′ of then tuples ofL′, it is not
possible that alln′ of them will be found on the|P (Li)| + 1-st

position ofLi. Hence, we add�n′

l=1
l to the third branch of Equa-

tion 7.
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Figure 3: Instance of execution of rank-based cumulative
greedy algorithm.

Algorithm Score-GreedyCum (R, Q, m, n)
{
1. Invoke pipelining interfaceS(Q,A) with output streamL

and store top-n tuples ofL in list L′

2. A = ∅ /*A is the set of attributes selected so far*/
3. for eachj in 1, . . . , m do

{/*repeat until we find top-m attributes*/
4. for eachai in A− A do

{
5. for each tuplet ∈ L′ do

/*Invoke n single-result interfaces*/
6. Invoke single-result interfacesS(Q, A ∪ {ai}, t)
7. SDist(A, A ∪ {ai})=� t∈L′ |S(Q,A, t) − S(Q, A, t))|

}
7. findai with minimumSDist(A, A ∪ {ai}) and add it toA

}
8. returnA
}

Figure 4: Cumulative Greedy Algorithm for Score-Based At-
tribute Selection

Also notice that at an intermediate stage of the algorithm, it is
possible that by adding any attribute toA, the distance will in-
crease. That is, theRDist(A, A) calculated in line 11 is larger
than the one calculated in the previous iteration. In this case, we
terminate the algorithm and outputA (|A| < m).

The relative rank-based version of the algorithm differs inthat
once the Top-n results ofQ are calculated, the execution interfaces
view them as the database instead ofR.

Time Complexity The algorithm invokesM + (M − 1) + · · · +
(M − m + 1) = m(2M − m + 1)/2 = O(m · M) pipelining
interfaces and retrieves a minimal prefix of the output stream from
each of them. Ifp is the average number of tuples retrieved from
each output stream, the time complexity isO(m · M · p). If richer
interfaces for the scoring function are available, more efficient algo-
rithms are possible. For example, if the scoring function isknown
and is monotone, and buffering is available, then we could use the
Threshold Algorithm [11] to combine the originalM streams to
the next level ofM − 1 streams without re-invoking the pipelining
interfaces.

4.3 Score-Based Attribute Selection Algorithm
The greedy algorithms for score-based attribute selectionare sig-

nificantly simpler. Figure 4 shows the cumulative greedy algorithm
for this case. Once the top-n resultsL′ are retrieved, we repeat-



edly invoke the single-result interface to get the score of the tu-
ples in L′ for each candidate attribute. We choose the attribute
that minimizes the score-based distance function over all tuples in
L′ and repeat the above process untilm attributes have been se-
lected. The number of invocations of the single-result interface is
n(M + (M − 1) · · · + (M − m + 1) = nm(2M −m + 1)/2 =
O(n · m · M). Hence the time complexity isO(n · m · M) since
the single-tuple interface has unit cost.

5. RELATED WORK
Dimensionality reduction and feature selection are somewhat re-

lated and well studied problems, but differ in key respects.Dimen-
sionality reduction (Faloutsos and Lin [12], Keogh et al. [17]) aims
at mapping high dimensional data to lower dimensional data,while
preserving some metrics, such as distances, to the best possible ex-
tent. Applications of dimensionality reduction include indexing of
data using index structures that work well only in lower dimen-
sions. In our context we are not interested in distances between the
data points, or distances from arbitrary query points, but rather in
the similarity of data points to a specific query. Further, dimen-
sionality reduction can compute new axes, whereas in our context
a computed axis will be meaningless to the user, and we can only
use existing dimensions (attributes) as axes.

There has been extensive work on feature selection in the area
of classification machine learning. Guyon and Elisseeff [14] pro-
vide an excellent overview of feature selection, while feature se-
lection for text classification is discussed in Yang and Pederson
[22]. Among the three variants, Rank-based attribute selection is
most closely related to feature selection, because in essence we
wish to select attributes that best distinguish the top-n tuples of a
query from the rest. For e.g., if we imagine a hypothetical Boolean
class attribute that is set totrue for each of the top-n tuples and
false otherwise, the problem is similar to determining the best
m attributes (or features) of a classifier attempting to accurately
disambiguate the top-n tuples from the rest. However, the main
differences are:

1. In feature selection, the important features are determined
as an useful preprocessing step before building the classifier
(and this is usually done by selecting attributes that are highly
correlated with the class attribute), whereas in our problem,
the scoring function is already available (albeit as a black
box), and we wish to determine its most influential attributes
that explain the high ranks of the top-n tuples.

2. RDist measures the amount by which theranksof the top-n
tuples changes when a subset of attributes are used in score
computations, whereas feature selection approaches are not
based on changes in ranks. As an example, consider two at-
tributesai andaj , each over the domain{1, 2, 3}. Let the
top-n tuples returned by a query have the following values
for these attributes:(3, 3), (3, 3), . . . , (3, 3), (2, 1). Let the
remainingN − n tuples have the following values for these
attributes: (3, 3), (1, 2), (1, 2), . . . , (1, 2). From the sym-
metry, it is quite clear that feature selection methods cannot
distinguish betweenai andaj because both are equally cor-
related with the hypothetical boolean class attribute (men-
tioned above). However,RDist(A, {ai}) = 1, whereas
RDist(A, {aj}) = N − n (since thenth tuple in the top-n
will be placed at the very bottom of the table if we ranked
only according to the values ofaj ).

In Section 6 we experiment with a baseline feature selectionap-
proach based on selecting attributes that are most correlated to the

top-n tuples by using the chi-square measure after suitable dis-
cretization of numeric attributes. Feature selection techniques are
less appropriate for the other proposed variants, score-based and
relative rank-based.

Although there has been a significant amount of work on visual
interfaces to databases (e.g. VisDB [16], Polaris [20] and Tioga-2
[2]) none of this work has addressed the selection of attributes to
display. Feature selection has been used in the context of infor-
mation visualization, but the goals (which are similar to those of
dimensionality reduction) have been preservation of distance met-
rics or clusters (Rheingans and desJardins [19]) and not ranking.

Techniques to find top-K results where the overall score is a com-
bination of scores on individual attributes are described by Fagin
et al. [11, 10] and Hristidis et al. [15]. Different ways of com-
paring (and combining, or aggregating) rankings are compared by
Dwork et al. [8]. These include measures such as the Kendallτ
method, and Spearman’s footrule. Ranking comparison and rank
aggregation in the context of ranking with ties is describedin Fagin
et al. [9].

In the context of querying on items with multiple attributes, the
problem of ranking the query results in the presence of many an-
swers is considered by Agrawal et al. [1] and Chaudhuri et al.[6].
In particular, [6] exploits the query workload (past user queries) to
discover user preferences (popularity of attribute valuesand corre-
lations between them), which are then used in ranking the results.
On the other hand, Nambiar and Kambhampati [18] tackle the few
answers problem, and relax attributes of the query that havethe
least amount of correlation to other attributes. Their techniques
can be used to perform automatic query extension when needed.

Chakrabarti et al. [5] consider the problem of browsing large sets
of query answers, and suggests ways in which to choose attributes
as candidates for creating branches in a browsing tree. Theyuse
a workload of past queries to pick an ordering of attributes.At-
tributes that occur in fewer than some fraction of queries are not
considered further. An exploration cost model is used to pick the
best attribute to use as the branching attribute at the next level of the
tree. Intuitively, attributes that appear often in queries, with selec-
tions that significantly reduce the number of candidate results are
preferred. Their exploration cost model is not relevant in our sce-
nario. The idea of preferring attributes that are most oftenqueried
upon is relevant in our context, but is a coarse approximation since
they may not be highly correlated with the score or rank of tuples
in a particular answer.

6. EXPERIMENTS
In this section we report on the results of an experimental evalu-

ation of our attribute selection algorithms. We implemented the at-
tribute selection variants (including the hybridSplit-Paneapproach)
proposed in this paper (see Section 4), as well as several baseline
attribute selection methods (such as selecting by weight and se-
lecting based on how correlated the attributes were with thequery
rankings). We evaluated both the quality of the selections obtained,
as well as the performance of the various approaches.

6.1 Experimental Setup and Tuple Ranking
Functions

We used Microsoft SQL Server 2000 RDBMS on a P4 2.8-GHz
PC with 1 GB of RAM and 120 GB HDD for our experiments. We
implemented all algorithms in C#, and connected to the RDBMS
through DAO. We used two datasets. First, we use portions of an
online used-car automotive dealer’s nationwide database.In this
database, each tuple represents a car for sale, and each column
represented an attribute of the car. For our studies we considered



Query Score-Based Rank-Based Relative-Rank-Based Split-Pane By-Weight By-Correlation

Cars-1 3.00 2.60 2.50 4.60 2.40 1.40
Cars-2 3.17 2.33 1.83 4.50 3.00 2.00
Cars-3 3.33 2.50 2.50 4.50 3.17 1.50
Cars-4 3.50 2.83 2.17 4.17 2.83 2.17
Cars-5 3.25 2.38 1.88 4.00 2.63 2.00

Cars-AVG 3.25 2.53 2.18 4.35 2.81 1.81
Homes-1 2.50 1.67 1.50 3.83 2.33 2.00
Homes-2 2.00 2.33 1.67 3.67 3.00 2.67
Homes-3 2.67 1.67 3.33 3.33 3.33 2.00
Homes-4 3.00 2.33 1.67 3.00 3.00 2.00
Homes-5 3.00 1.50 1.50 2.00 3.50 2.50

Homes-AVG 2.63 1.90 1.93 3.16 3.03 2.23

Figure 5: User Study: Compare various attribute selection methods

37 attributes, including numeric attributes such as Price,Engine
Size, Year; categorical attributes such as Make, Model, Color; and
Boolean attributes such as AC, Power Brakes, etc. To make our
quality experiments more manageable, we restricted our database
to about15, 191 cars sold in the Dallas-Ft Worth Metroplex. The
second dataset is a US home properties dataset extracted from a
nationwide realtor’s website. This dataset has20, 943 properties
listed with25 attributes like square footage, price, number of bed-
rooms, and so on.

Since attribute selection depends on the specific tuple scoring
function used, we considered two tuple scoring functions: Weight-
edL2 and Conditional, which have described in Section 2. In our
experiments, users were initially allowed to specify weights as well
as the values of query attributes. The average of these weights was
recorded, and used as default value for unspecified attributes for all
experiments including our user study. We emphasize that thegoal
of this paper isnot to investigate the quality of this (or any other) tu-
ple scoring function. Tuple scoring functions of various kinds have
already appeared in prior published work (e.g. the Conditional al-
gorithm, [6]), while the others (such as WeightedL2) are largely
specified by domain experts or by the users themselves. Our goal
in this paper is to demonstrate that,given a tuple scoring function
such as the above, our attribute selection algorithms indeed pick the
top attributes that best “explain” these rankings.

6.2 User Studies
We first investigated whether our basic premise is reasonable,

i.e., that users are indeed interested in viewing the attributes that
influence the ranking of tuples the most. We informally tested our
system with lots of queries ourselves. Most of the time both score-
based as well as rank-based approaches produced intuitively mean-
ingful attributes that would be useful to a user looking for cars or
homes in such databases. We also attempted a methodical user
study of our system. Preparing an extensive experimental setup for
such subjective testing was extremely challenging - unlikeother es-
tablished disciplines such as Information Retrieval wherestandard
benchmarks are available, in our case we had to conduct user stud-
ies using limited resources in a nascent area where no benchmarks
exist.

For our user studies we requested participation from69 people
from our respective universities and institutions. We usedboth the
cars and the homes datasets and considered two tuple scoringfunc-
tions: WeightedL2 and Conditional [6]. We only present the results
for cars-WeightedL2 and homes-Conditional in this paper.

We solicited five typical queries for each dataset that represent a

heterogeneous mix of different profiles of potential car/home buy-
ers - young teenagers, rich couples, suburban families, etc. The
queries are the following:

Cars dataset queries

1. make = “Infinity” and mileage< 20000

2. make = “Lexus” and price = 40k-60k

3. make = “Honda” and price = 0-20k

4. make = “Mercedes” and price = 40-60k

5. make = “Audi” and price= 20-40k

Homes dataset queries

1. price = 400k-500k, Tarrant County, TX

2. multiple family homes, price>500k, bedrooms>5, Tarrant
County, TX

3. condos with pool and clubhouse, Tarrant County, TX

4. price = 400k-500k, Tarrant County, TX

5. multi family homes, 2 stories, Tarrant County, TX

The weights used by the WeightedL2 tuple ranking, as well for
the By-Weightattribute selection (explained below) were created
after a mini-survey on the global importance of the attributes in the
datasets.

For each of these queries, we selected the top attributes of the
result by the following methods:

1. Score-Based: Attributes are selected by score (Equation 3).

2. Rank-Based: Attributes are selected by rank (Equation 4).

3. Relative-Rank-Based: Attributes are selected by relative rank
(Equation 5).

4. Split-Pane: The displayed attributes are grouped into three
vertical panes, each having the top-4 attributes selected by
Score, Rankand Relative-Rankrespectively. Duplicate at-
tributes across panes are not displayed.

5. By-Weight: Attributes are selected by their weights, which
are hardcoded as explained above, and do not depend on the
query.

6. By-Correlation: Attributes are selected according to the chi-
square value between them (i.e., ignoring the other attributes)
and the top-n tuples (see Section 5).



Note thatBy-WeightandBy-Correlationare used as baselines to
compare against our proposed orderings. We set the numberm of
displayed attributes to 12 and the numbern of output tuples to 10.
The results were presented to users in tabular form - six10 × 12
tables side by side, with attributes ordered from left to right in each
table according to the order in which they were picked by the re-
spective algorithms Users were not told how the tables were gener-
ated, in order to avoid any bias. Users were requested to examine
the attributes in each table and indicate whether they agreed that the
attributes were helpful in explaining the high ranks of these tuples
(on a scale of [1..5] with 5 indicating that they strongly agreed with
the attributes shown).

Figure 5 show a table where the responses of all users to this
survey has been averaged. Notice that the rows ”Cars-AVG” and
”Homes-AVG” do not correspond to averaging the 5 query rows
because we average per user and not per query and different num-
bers of users answered each query of the survey. As can be seen,
most users preferred theSplit-Paneselections, since it combines the
characteristics of the other selections. Users seemed to really like
the fact that different attribute sets serve to explain different facets
of the ranking process. Furthermore, as we argued in Section2.2,
Score-Basedis most closely related toBy-Weightsince the former
may be considered a query-specific version of the latter. Ourresults
were as expected - users preferredScore-basedover By-Weightin
one dataset, whereas the preferences were split in the otherdataset.
Likewise, as discussed in Section 5,Rank-Basedis most closely
related toBy-Correlation, and in our survey users preferred the for-
mer over the latter in one dataset, but reversed their opinions in
the other dataset. TheRelative Rank-Basedattribute selection was
not as preferred compared to eitherScore-Basedor Rank-Based,
perhaps indicating that its top attributes should be listedonly af-
ter attributes of the first two types have been displayed by a hybrid
approach such asSplit-Pane.

While the results of this user survey appear promising, we cau-
tion that it would be premature to interpret the results as conclusive
evidence that one specific attribute selection approach is better that
another. Rather, the clear preference ofSplit-Paneby users indi-
cates that each variant provides very different types of information,
each of which has a role to play in helping users compare the ranked
tuples of a query.

6.3 Greedy versus Optimal - Approximation
Quality

In this subsection we investigate the different variants ofthe
greedy algorithm and measure how closely they approximate the
selections produced by the Optimal algorithm (see Section 4). We
only present the results on the cars dataset for Rank-Based which
is the most complex to compute due to space considerations. We
generated a set of 50 random queries as follows. For each query,
we picked between one to three attributes at random, and for each
attribute, we picked a value from its domain at random. For each
query we ran all variants of our attribute selection algorithms for
various parameter settings (m is varied between 1 and 5, whilen is
varied from 10, 100 to 1000).

Since Optimal is a very slow running algorithm, we could only
experiment with it for 20 queries and for values ofm ≤ 4. Even so,
several interesting conclusions could be derived from thisrelatively
small experimental framework.

Figure 6 shows the averagelist distance(Spearman’s footrule)
between Rank-GreedyCum and Rank-GreedyNonCum varying as
a function ofm for the top-10 results. That is, they-axis repre-
sents the average number of positions that an element in the orig-
inal rankings is shifted by. Thus we can see that when we use
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Figure 6: Rank-Greedy, Optimal vsm
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Figure 7: Rank-Greedy, Optimal vsn

4 attributes, Optimal does quite well in the sense that a top-10
tuple is only 3 positions away from its true rank on the average.
The greedy variants are not that far behind, with Rank-GreedyCum
(resp. Rank-GreedyNonCum) shifting top-10 tuples by 6 (resp. 7)
positions on the average. This experiment thus shows that both
rank-based greedy variants are good approximations of Optimal,
although asm gets larger, the approximation factor does increase,
with Rank-GreedyNonCum being consistently worse than Rank-
GreedyCum.

Although the results for the case whenn = 10 seem accept-
able, we ran experiments to see if a similar behavior is observed
for larger values ofn. Figure 7 shows that withm = 4, asn in-
creases, the distance between the result lists steadily worsens, with
Optimal being consistently better than Rank-GreedyCum, which in
turn is consistently better than Rank-GreedyNonCum. The reason
for this worsening in rank quality is attributable to the fact that once
the target set of tuples increases substantially, it becomes extremely
difficult to have the same few (4) attributes explain their rankings.
One option is to adopt the stance that tuples lower down the ranks
are not very important for the query anyway, and hence it is ac-
ceptable to have large error in explaining their rankings. Another
option is to try to determine the best attributes on a tuple bytuple
basis.

Next, we compare rank-based versus score-based algorithms. Fig-
ure 8 shows the performances of various greedy variants versusm
for n = 10. It was interesting to see that although rank-based
variants usually produced better approximations than score-based
variants, the difference was less pronounced compared to the dif-
ference between cumulative and noncumulative variants. This be-
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havior was consistently observed at other values ofn. However,
rank-based algorithms produced much better approximations in the
case where only the top result-tuples of the candidate attribute se-
lection were considered instead of all the results, as is thecase for
the relative rank-based selection.

6.4 Execution Cost
Lastly, we performed experiments to compare the running time

of different variants of our attribute selection algorithms. We only
present results for the cars dataset. Since our algorithms were
tightly coupled with the vertical scoring function WeightedL2, sep-
arating out the performances of the former from the latter was a
challenging task. We implemented the WeightedL2 scoring func-
tion with masking using the pipelined execution model. Since our
implementation was done through the SQL query interface using a
RDBMS, the pipelining model had to be simulated with appropri-
ate ORDER BY clauses. Naturally this is less efficient compared
to a true pipelining model implemented inside the database server
- this is still an active area of research. However, it was still in-
structive tocountthe number of tuples that were processed by our
algorithms through these pipelines. We illustrate with an example.
We executed the Rank-GreedyNonCum algorithm and retrievedthe
top-n tuples forn in [1..10], and then for each attributeai, we de-
termined the length of the shortest prefix of the corresponding list
Li that contains these top-n tuples. The sum of the lengths of the
m shortest prefixes was an estimate of the total number of tuples
that were processed through these interfaces before the algorithm
terminated.

Figure 9 illustrated how the total number of tuples processed
in pipelines increases as a function ofm (averaged over several
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queries withn set to5). Likewise, the total number of processed
tuples also increased withn; we omit the details of these exper-
iments. Note that for some cases the total number of processed
tuples is smaller than that database size - thus a true pipelining im-
plementation inside the RDBMS has the potential of being faster
than a database scan, especially for larger databases.

Next, we compared the average running times of the different
variants of our actual implementations (i.e., SQL-based with OR-
DER BY clauses) after running them on several queries. Whilewe
caution that our database was too small (15, 191 tuples) to allow
highly reliable timing experiments, we did observe expected trends.
Figure 10 shows that the running times increase with increasing m
(for a fixedn = 1000), with the rank-based (resp. cumulative) vari-
ants generally slower than the score-based (resp. non-cumulative)
counterparts. The running times also increased with increasing n
and database size; we omit details of these experiments due to lack
of space.

7. CONCLUSIONS AND FUTURE WORK
We addressed the problem of selecting the topm attributes from

the view point of helping a user understand what factors mostin-
fluenced a ranking system in its ranking decisions. We presented
several variants of the problem, showed that several of these vari-
ants are NP-hard, and presented efficient greedy heuristics. We
performed a user study demonstrating the benefits of a hybridap-
proach that returns the top attributes from each of these variants.
We also presented a performance study comparing two versions of
the greedy heuristic, showing that the cumulative version of greedy
performs better.

In the future we plan to investigate alternative attribute selection
and ordering criteria and techniques. For example, how can we
efficiently and effectively compute good and bad attributes, as well
as perform attribute selection based on multiple queries (mentioned
in Section 2.2)? Also, how can we automatically discover useful
attributes that have little to do with ranking of tuples? We also
plan to study attribute ordering (as opposed to attribute selection)
in more detail. Finally, we plan to investigate the integration of
attribute selection with specific tuple ranking functions for better
performance.
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