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Abstract

We study an important data analysis operator, which extracts the k most important groups
from data (i.e., the k groups with the highest aggregate values). In a data warehousing con-
text, an example of the above query is “find the 10 combinations of product-type and month
with the largest sum of sales”. The problem is challenging as the potential number of groups
can be much larger than the memory capacity. We propose on-demand methods for efficient
top-k groups processing, under limited memory size. In particular, we design top-k groups
retrieval techniques for three representative scenarios as follows. For the scenario with data
physically ordered by measure, we propose the write-optimized multi-pass sorted access algo-
rithm (WMSA), that exploits available memory for efficient top-k groups computation. Re-
garding the scenario with unordered data, we develop the recursive hash algorithm (RHA),
which applies hashing with early aggregation, coupled with branch-and-bound techniques and
derivation heuristics for tight score bounds of hash partitions. Next, we design the clustered
groups algorithm (CGA), which accelerates top-k groups processing for the case where data
is clustered by a subset of group-by attributes. Extensive experiments with real and synthetic
datasets demonstrate the applicability and efficiency of the proposed algorithms.
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1. Introduction

Aggregate queries summarize information in a database, by dividing tuples into groups, where
some target attributes agree on their values, and applying an aggregate function (e.g., COUNT,
SUM, MAX, etc.) to each group. As an example, consider a data warehouse [1] that stores de-
tailed information about the transactions of a company in a huge fact table [15] with schema
Sales(TID, ProdID, StoreID, Time, Quantity, Price). Assume the following online analytical
processing (OLAP) query:

SELECT ProdID, StoreID, SUM(Quantity)

FROM Sales

GROUP BY ProdID, StoreID

In practice, the number of product/store combinations can be large and the results could over-
whelm the user. Besides, the aim of the original analysis should be to identify the most im-
portant groups, rather than viewing the distribution of aggregates in all product/store com-
binations. We could express ‘importance’ by a HAVING clause that selects only those groups
whose aggregate value exceeds a threshold t. This class of aggregate queries were identified in
[7] and named iceberg queries.

Nevertheless, from the user’s perspective, it is hard to specify an appropriate value for t so the
iceberg query is far from being user-friendly. When t is too large, no results may be returned
at all. On the other hand, for small values of t, numerous groups are retrieved eventually. A
better way for capturing the group interestingness is to consider a ranking of the groups based
on their aggregate values and select the k groups in this order. This way, the user is able to
control the result size naturally. As an example, a top-k groups query can be expressed in SQL,
by adding to the statement above the following lines:

ORDER BY SUM(Quantity) DESC

STOP AFTER k

Apart from finding heavy groups in data warehouses, the top-k groups query also finds appli-
cation in other data mining tasks. For example, the problem of extracting top-k frequent pat-
terns [11] (which is a variant of frequent itemset mining [2]) can be viewed as a top-k groups
query. Here, all combinations of items are candidate groups and the objective is to find the ones
with the largest COUNT in a transactional database. Another application (from information re-
trieval) is to retrieve the Web documents with the largest number of incoming (or outgoing)
links. Finally, as demonstrated in our experiments, top-k queries can be used to identify pairs
of network ports with high volume of information flow, from traffic traces of TCP packets.

The evaluation of top-k groups queries could be facilitated by exploiting materialized views
[12] over the base data. However, the selection of attributes in such queries could be ad-hoc.
Pre-computation, materialization, and maintenance of group-bys for all possible combinations
of attributes incur prohibitively high cost, especially for cases where the data are updated
frequently. Therefore, in this paper, we study on-demand processing of top-k groups query on
a very large base table. Specifically, we focus on the class of distributive aggregate functions
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(say, COUNT, SUM, MAX, MIN), and ignore holistic aggregate functions (e.g., MEDIAN).

A straightforward solution is to keep a counter for each group in memory and update the
corresponding counts while scanning the base table. This method only requires one pass of the
data. However, it may be infeasible to keep a counter for each group in memory even though
today’s machines have large memory size. For example, it is not uncommon to have attributes
with domain size in the order of 1000. For a query with four group-by attributes on a peta-
byte warehouse, the number of required counters is (1000)4, which translates to 4 tera-bytes
(assuming 4 bytes per counter).

The traditional method (by an RDBMS) for evaluating iceberg and top-k groups queries (using
limited memory) is to compute the aggregate scores for all groups and select the qualifying
ones according to the threshold t, or the ranking parameter k. This method (implemented by
hashing or sorting with early aggregation) can be quite expensive, since the group-by operation
may apply multiple passes over the data to compute the aggregates for all groups, while most of
them are expected to be eventually pruned. Previous work on iceberg queries [7,17] employed
sampling- and/or hash-based techniques to eliminate groups having small aggregates early and
minimize the number of passes over the base data. The extension of these methods for top-k
groups queries is not straightforward, since they rely on a fixed threshold t, which cannot be
determined a priori.

Top-k groups retrieval has been studied in [20], albeit in a specialized context. First, the group-
by attributes are regarded as ad-hoc ranges in continuous or spatial domains. Second, aggregate
extensions of multidimensional indexes [16] were presumed on all relevant attributes of the
query. [18] studies top-k groups queries in RDBMS in the presence of a striding index [13]
for the group-by attributes. Existence of multidimensional indexes for all group-by attributes
is a rather strong assumption, since the number of attributes in a relation (or combination
of relations) could be arbitrary and the query may involve any subset of them. There is also
a number of theoretical studies on one-pass approximate top-k groups retrieval from data
streams, given limited memory (e.g., see [5,22]). Nevertheless, such techniques are not directly
applicable to situations where exact retrieval of groups and their aggregates is essential.

The goal of this paper is to provide solutions for on-demand and exact top-k groups extrac-
tion, under bounded memory size. The key contribution of this paper is a set of algorithms to
efficiently handle top-k groups queries in the realistic scenario where neither specialized multi-
dimensional indexes are available, nor approximation of results is acceptable. Specifically, we
investigate three representative scenarios and develop comprehensive techniques for them:

– For the case where tuples are physically ordered by measure, we propose the write-optimized
multi-pass sorted access algorithm (WMSA), that exploits available memory to compute
top-k groups efficiently.

– Under the scenario of unordered data, we study the Recursive Hashing Algorithm (RHA),
coupled with branch-and-bound techniques and derivation heuristics for tight aggregation
bounds of partitions.

– For the special case where the tuples to be aggregated are clustered according to a subset of
group-by attributes, we develop the Clustered Groups Algorithm (CGA), which accelerates
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top-k groups processing.

Our algorithms are cross-compared with traditional RDBMS approaches for on-demand top-k
groups retrieval, using real and synthetic data.

The remainder of the paper is organized as follows. Section 2 reviews related work. Section 3
discusses the different problem settings for a top-k groups query. Section 4 presents top-k
groups processing algorithms for the case where the input is physically ordered according to
the aggregated measure. In Section 5, we propose techniques for the case of unordered input.
Section 6 discusses the case, where the input is clustered according to the values of some group-
by attributes. Experimental evaluation of all above techniques are presented in the respective
sections. Finally, Section 7 concludes the paper.

2. Related Work

Our work is related to top-k aggregates retrieval, iceberg queries, and top-k algorithms for
middleware. In this section, we review past research on these problems and discuss their rela-
tionship to our work.

2.1. Top-k Aggregate Queries in OLAP

Mamoulis et al. [20] proposed an algorithm for computing top-k groups queries from a data
warehouse, assuming that the fact table is indexed by an aggregate R–tree [16]. This index
is an extension of the popular R–tree [10], where measures (e.g., sales quantity) are indexed
based on their dimensional values at the finest granularity (e.g., prodID, storeID, timestamp,
etc). Non-leaf entries of the tree are augmented with aggregates that summarize all measures
in the sub-tree pointed by it. Group targets are attributes at some hierarchical level of the
dimensions (e.g., product-type, store-city, month, etc.) and each target is presumed to be a
continuous range in the corresponding dimensional domain (e.g., product-type ‘toy’ consists of
product-ids 100 to 250). The main idea behind the top-k groups retrieval method is to traverse
the tree and maintain upper and lower bounds for the aggregate of each group, based on (i)
the visited nodes of the tree and (ii) the overlap (in the multidimensional space) of remaining
sub-trees to be visited with the cell formed by the Cartesian product of the sub-domains that
define the group. Traversal of the tree is based on a heuristic that chooses the next node to
visit, based on its contribution to the best groups found so far.

Although this method is effective for a particular class of OLAP queries, its applicability is
restricted by two hypotheses: (i) the set of dimensions have to be indexed by an aggregate
multidimensional index, and (ii) the group targets must be formed by continuous sub-domains
of the dimensions. The first hypothesis requires numerous multidimensional indexes (one for
each combination of dimensions), which are inefficient or infeasible to maintain if the total
number of dimensions is large (especially true for non-OLAP queries that may involve arbitrary
attributes from input tables). An alternative choice is to employ a single multidimensional
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index consisting all the dimensions; however, such an index renders inefficient query processing
as the attributes irrelevant for the query are also stored in the index. The second hypothesis
restricts the targets to be related to some hierarchy of a base (detailed) attribute and, in
addition to that, each target should be a decomposition for a total value ordering of a base
attribute.

Recently, [18] proposed an RDBMS operator for top-k groups queries that schedules the ac-
cesses of groups and their tuples, in order to minimize the amount of accessed information
before the query result is guaranteed to be found. The proposed methodology has practical
limitations because it is based on the following strong assumptions. First, it assumes that the
algorithm has control on the order by which the groups will be examined and on the order by
which the tuples within a group will be visited. However, the preprocessing cost required to
achieve this control might as well exceed the cost of the query itself, especially for queries with
ad-hoc sets of grouped attributes. In addition, it is assumed that the size of each group and the
upper bound for the aggregate expression are known. If the set of groups is ad-hoc, computing
the size of each group has similar cost to computing the aggregate of the group itself.

[19] propose methods for processing top-k range queries in OLAP cubes. Given an arbitrary
query range, the problem is to find the top-k measures in this range. This query is a general-
ization of max range queries (i.e., for k = 1 it is a max query). The data cube is partitioned
into sufficiently small cells and the top-k aggregate values in each partition are pre-computed.
These values can then be used to compute the top-k results in query regions that cover multiple
cells. Top-k range queries are essentially different from top-k groups queries, since the latter
deal with the retrieval of top-k aggregated values of groups (as opposed to top-k measures) in
the whole space (as opposed to a particular range).

2.2. Iceberg Queries

Iceberg queries were first addressed in [7]. A typical query optimizer [9] would compute the
aggregates for all groups and then return the ones whose score exceeds the query threshold
t. [7] present several methods based on sampling and hashing with output-sensitive cost for
iceberg queries. They were later extended in [3] for selecting exceptional groups in a whole
hierarchy of OLAP cubes. These methods aim at avoiding useless aggregations for groups,
which disqualify the threshold condition. The main idea is to divide the data to be aggregated
into buckets based on a hash function that applies on the targets. Buckets with smaller count
than the threshold are immediately pruned. Sampling is used to identify early potential targets
that could end-up in the result, which are treated separately.

In [17], these methods are compared with sorting and hashing with early aggregation [9]. The
results show that the methods of [7] prevail for cases when both the skew in the scores of the
candidate groups and the number of candidate groups are high; in other cases, applying either
sorting or hashing to compute the scores of all groups and selecting the result in the final pass
of the algorithms is the most appropriate choice. This makes sense, since the methods of [7]
first identify heavy hitters and then disregard their tuples at later passes, thus shrinking the
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data to be processed. However, if the scores between groups do not vary much, the attempts
to shrink the data prove futile and a simple hash-based or sort-based method becomes better.

The extension of the techniques of [7] for rank-based retrieval of important groups is not
straightforward, since the k-th group (the pruning threshold in this case) is not easy to com-
pute. In this paper, we propose such an extension in addition to an optimized algorithm that
extends hash-based aggregation for top-k groups retrieval. In addition, we consider the spe-
cial case, where the query input is sorted or clustered based on some group-by attributes and
propose a carefully optimized technique for this case.

2.3. Top-k Algorithms for Middleware

Middleware top-k algorithms have been proposed for combining different rankings of the same
set of objects in order to return the k objects with the highest combined score according to
an aggregate function. Assume for example that we wish to retrieve the restaurants in a city
in decreasing order of their aggregate scores with respect to how cheap they are, their quality,
and their closeness to our hotel. If three separate services can incrementally provide ranked
lists of the restaurants based on their scores in each of the query components, the problem
is to identify the k restaurants with the best combined (e.g., average) score. Fagin et al. [6]
present a comprehensive analytical study of various methods for top-k aggregation of ranked
inputs by monotone aggregate functions. They identify two types of accesses to the ranked lists;
sorted accesses and random accesses. The sorted access operation iteratively reads objects and
their scores sequentially in each ranked list, whereas a random access is a direct request for
an object’s score with respect to some feature. [6] suggests methods that are asymptotically
optimal in the number of accesses they perform, for both cases depending on whether random
accesses are allowed or not.

The threshold algorithm (TA) accesses sequentially the ranked inputs and, for each object seen
there, it performs randomaccesses to the listswhere the object has not been seen yet to compute
its aggregate score. TA terminates when the k-th object found so far has higher aggregate score
than the aggregate score of the last values seen at each input. The no random accesses (NRA)
algorithm applies only sorted accesses to the inputs, until the best k objects seen so far have
higher aggregate score than the score that any other object can reach. In [4], extensions of these
methods for the case where only random accesses are possible for most inputs are presented.
[14] shows how to adapt NRA for joins followed by ranking in relational databases. Finally,
[21] optimized the NRA algorithm to a version that minimizes computational cost, accesses
and required memory and applied this optimization for several variants of top-k search. In
this paper, we study the adaptation of top-k algorithms to the retrieval of important groups,
exploiting a potential physical order of the tuples based on their measure values.
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3. Problem Settings

In this section, we define the problem of top-k groups queries for various cases and motivate the
design of the proposed algorithms. Then, we discuss the setting used for empirically evaluating
our algorithms.

3.1. Problem Definition

We consider a query with a set G of group-by attributes and an aggregate function agg(·) that
applies on a single measure attribute v. The tuples to be aggregated may physically be stored
in the disk or produced by underlying operators (e.g., selections). We assume that (i) the set
of group-by attributes is ad-hoc and no multi-dimensional indexes exist on the tuples to be
grouped, and (ii) the memory of the system is not large enough to hold a counter for each
distinct group in the input. We develop methods that minimize the number of passes over the
data, aiming at exact query evaluation. In particular, we explore various orderings of the query
input that may apply in practice, as follows.

– The data are physically ordered or clustered with respect to the measure attribute v, i.e.,
supporting the sorted access operation on v. This case may apply if a clustered B+–tree
exists on v. As another scenario, consider the data to be aggregated distributed in different
servers. Each server sorts its part (cheaply, if we assume that it is small) and then forwards
it to a central server, which merges them and performs the aggregation. For these cases, we
adapt the NRA algorithm [6] to minimize the number of accessed tuples before the top-k
result is finalized (see Section 4).

– The order of the aggregated tuples is random. This is the most generic case, which we study
in Section 5, by adapting algorithms for iceberg queries and generic hash-based aggregation.

– The data are clustered with respect to one or more group-by attributes. For stored data,
this case may apply if a clustered index or a hash-file organization exists. In a data stream
scenario, tuples could be produced ordered by a group-by attribute (e.g., time, location).
We examine such cases in Section 6, by reducing the top-k groups problem to finding the
top-k groups for each value (or for a set of values) of the clustered attribute, since the tuples
are well-separated according to that attribute. We show that this case can be reduced to
multiple, smaller problems. Roughly speaking, for each batch of tuples, having the same
value (or set of values) for the clustered attribute, we only have to solve an unordered data
subproblem.

For the ease of exposition, throughout the presentation, we consider data aggregated from a
single table T with three columns; the tuple-id tid, the group-id gid and the value v to be
aggregated. In practice, gid corresponds to a combination of group-by values and it is imple-
mented as such in our evaluation tests. The domain of v is assumed to be the interval [0, 1];
nevertheless, the extension for arbitrary domain interval [Vmin, Vmax] (derived from database
statistics) is straightforward. Unless otherwise stated, we consider the SUM function for aggre-
gation, which is the most common in OLAP queries; nonetheless our methods can be easily
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adapted for other monotone distributive functions, e.g., COUNT, MAX, MIN. The symbols listed
in Table 1 will be used in the discussions throughout the paper.

Table 1
List of symbols

Notation Meaning

T the input table

N the number of tuples (in T )

G the number of distinct groups (in T )

k the result size

ρ the lower bound score of the best k-th group found so far

M the number of memory pages

B the number of tuples that a page can fit

3.2. Experimental Setting

To enhance the readability, the experimental evaluation of our proposed algorithms have been
decomposed into their respective sections (Sections 4.4, 5.3, and 6.2). In the following, we
discuss their common experimental setting.

We evaluate the efficiency of the proposed algorithms on a real dataset dec wrl 4 used in [23].
It is a traffic trace of TCP packets, containing 3.86M tuples with the following attributes:
timestamp, source host, destination host, source TCP port, destination TCP port, and packet
size. All host and port values are integers. Since the domain of timestamps is continuous, it
is discretized to the granularity of one second. We consider the packet size as the measure
attribute v for aggregation and run a top-k query (Q1) that computes the connections with
the largest traffic at 1-second intervals:

SELECT Tstp,Sip,Dip,Sport,Dport,SUM(PktSz)

FROM dec_wrl_4

GROUP BY Tstp,Sip,Dip,Sport,Dport

ORDER BY SUM(PacketSize) DESC

STOP AFTER k

Our second query Q10 is the same as Q1, except that the timestamp is discretized at every 10
seconds. The number of distinct groups for Q1 and Q10 are 765K and 232K respectively. ?

We generated a set of synthetic datasets in order to test the performance of the algorithms for
different data distributions and to verify their scalability. To obtain meaningful top-k results,
the data generation is such that only few of the groups have high aggregate values compared to
the rest. We experimented with different data sizesN (default:N=4 million tuples). The sizes
of groups follow a Zipfian distribution (at a fixed skewness θs=0.5), such that the total number

? Although this number of counters can easily fit in memories of modern computers, we simulate the case that they don’t by
assuming a smaller system buffer. Our results can easily be generalized for realistic cases where the distinct number of groups

and the memory size are multiples of the sizes we used in our evaluation.
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of groups isN/4. The measure values v in individual tuples also follow Zipfian distribution (at
skewness θv = 1).

We considered four distributive aggregate functions (i.e., COUNT, SUM, MAX, MIN). COUNT is a
special case of SUM where all tuples have the same value, thus the results can be evaluated by
all our algorithms. On the other hand, the query for MIN can be reduced into that of MAX as
follows: (i) in the beginning, each tuple value v is mapped to the value 1 − v (assuming that
their value domain is [0, 1]), (ii) the MAX function is applied to compute the results, and (iii)
each result value t is mapped to 1− t for obtaining the final results.

We implemented all tested algorithms in C++ and the experiments were executed on a PC
with a Pentium 4 CPU of 2.3GHz. We used a default memory buffer whose size is 2% of the
dataset. The page size is 4K bytes so that each page can accommodate B = 200 tuples. The
default value of the result size k in the query is set to 16. In the experiments, we measure the
ratio of page accesses of an algorithm, which is defined as the ratio of total disk page accesses
(for both read/write operations) to the number of pages in the dataset.

4. Algorithms for Inputs Ordered by Measure

In this section, we propose techniques for top-k groups queries, applicable when the tuples are
physically ordered based on the aggregated value v. In Section 4.1 we propose an algorithm that
applies on a descending order of the tuples by v, assuming that the memory can fit a counter
per group. The algorithm is extended in Sections 4.2 and 4.3 for cases of limited memory.

These algorithms enable early termination as long as the lower bound scores of the top-k groups
found so far are guaranteed to be higher than the upper bound score of any other group. As
a consequence, they retrieve only the top-k groups, without necessarily obtaining their exact
scores.

4.1. Preliminaries

Our first algorithm, termed “sorted accesses” (SA) is an adaptation of the “no random ac-
cesses” (NRA) top-k technique, discussed in Section 2.3. It scans the input T , while updating
lower and upper aggregate scores for the groups seen so far. If, at some point, there exist k
groups for which the lower bound of their aggregate is at least the upper bound of the remain-
ing ones, the algorithm terminates. Figure 1 shows an exemplary query and the table T , which
we will use to describe SA.

Before presenting SA, we discuss the computation of the lower/upper bounds it utilizes while
scanning the input, considering a SUM aggregate function. Initially, we assume that the maxi-
mum cardinality Cmax of a group is known in advance (i.e., Cmax = 3 in our example). Later,
we relax this assumption. Let gx be the group of tuples having x as gid and ψ(gx) be the set of
accessed tuples in the group. A lower bound lb(gx) and an upper bound ub(gx) for the aggregate
score of group gx are given by:
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SELECT gid, SUM(v)

FROM Tbl

GROUP BY gid

ORDER BY SUM(v) DESC

STOP AFTER k

tid gid v

8 2 0.70

9 2 0.69

5 4 0.50

3 5 0.41

11 1 0.40

4 4 0.39

2 5 0.33

1 5 0.13

6 3 0.12

7 3 0.11

10 2 0.10

12 1 0.05

(a) Query (b) Table

Fig. 1. Running example

lb(gx) =
∑

t∈ψ(gx)

t.v (1)

ub(gx) = lb(gx) + vmax · (Cmax − |ψ(gx)|) (2)

where vmax represents the maximum value v of unseen tuples, e.g., the value of the latest seen
tuple. These equations are applicable to the COUNT function as well, by fixing each value t.v to
1. Regarding the MAX function, the lower and upper score bounds are defined as follows.

lbmax(gx)=
0 if ψ(gx) = ∅

max
t∈ψ(gx)

t.v if ψ(gx) 6= ∅
(3)

ubmax(gx)=
vmax if ψ(gx) = ∅

max
t∈ψ(gx)

t.v if ψ(gx) 6= ∅
(4)

Since the tuple values are accessed in their descending order, the first tuple value seen in a
group must be the maximum value in the group. For the MIN function, the problem could be
reduced into that of the MAX function, as discussed in Section 3.2.

Figure 2 illustrates a pseudo-code of SA. The algorithm organizes groups that have been seen
so far and can end-up in the top-k result in a hash-table H (with group-id as search key). It
also maintains an initially empty min-heap Wk with the k groups of the highest lb(gx) so far.
When a tuple in group gx is retrieved, we update its information in H and check whether it
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can enter Wk. If an existing group gy (in H) satisfies both conditions (i) gy /∈ Wk, and (ii)
gy’s upper bound is at most ρ (the lowest lb(gx) in Wk), then gy can be pruned as it cannot
become the top-k result. We perform this pruning test for all seen groups after each tuple access
only if τ := vmax · Cmax ≤ ρ. The reason is that while τ > ρ any group can enter the top-k
result (see [21] for a theoretical proof in the NRA context), thus it is meaningless to attempt
pruning. We say that the algorithm enters the shrinking phase once τ ≤ ρ is satisfied, because
the set of candidates can only shrink after that point. Finally, the algorithm checks whether
the remaining (non-pruned) groups are k, in order to terminate. The pruning at lines 12–15
is performed efficiently with the help of a priority queue that organizes groups seen so far by
their upper bound scores.

Theoretically, the worst case tuple access cost of SA is:

costSA(N) = N (5)

whereN is the number of tuples in the input table T . It happens when all the groups have the
same score so that no pruning occurs. In practice, the access cost of SA is expected to be much
smaller, thanks to the help of the above pruning technique.

Algorithm SA(Table T ,Value k)
1. H:=new hash-table (managing seen groups);

2. Wk:=∅; /* empty min k-heap */
3. insert k pairs of (null, 0) into Wk;

4. ρ:=minimum value in Wk;

5. while (nonempty(T ))
6. (tid, x, v):=GetNext(T );

7. vmax:=v;

8. update the lb(gx) score of gx in H by v;
9. if (lb(gx) > ρ) then

10. update Wk and ρ;

11. τ :=vmax · Cmax;
12. if (τ ≤ ρ) then /* prune groups */

13. for each gy ∈ H such that gy /∈ Wk

14. if (ub(gy) ≤ ρ) then
15. remove gy from H;

16. if (|H| = k) then

17. return Wk;

Fig. 2. Sorted access algorithm (SA)

Example We illustrate the functionality of SA on the table of Figure 1, assuming k = 1. Note
thatCmax = 3 in this example. First, we access a tuple of g2 and set vmax to its value 0.7. Then,
we update |ψ(g2)| = 1 and lb(g2) = 0.7. Also, the best lower bound score ρ is updated to 0.7
(Wk = {g2}). The procedure continues since τ = vmax ·Cmax = 0.7 · 3 > ρ. Next, we retrieve a
g2 tuple of value 0.69, update |ψ(g2)| = 2, lb(g2) = 1.39, and set ρ = 1.39. As τ = 0.69 · 3 > ρ,
we continue and access a g4 tuple of value 0.5, update |ψ(g4)| = 1 and lb(g4) = 0.5. Since
τ = 0.5 · 3 > ρ, we continue. Then, we retrieve a g5 tuple of value 0.41 and update |ψ(g5)| = 1,
lb(g5) = 0.41. Now, we have τ = 0.41 · 3 ≤ ρ, meaning that any group which has not been
seen cannot end-up in the result. Hence, the result must be one of the groups that have been
accessed (i.e., groups g2, g4, g5). For this, we must access the remaining tuples until ρ is no
smaller than the upper bound scores of all accessed groups not inWk. Since ub(g4) = 1.32 ≤ ρ
andub(g5) = 1.23 ≤ ρ, the algorithm terminates and reports g2 as the resultwith lb(g2) = 1.39.
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In practice, the value of Cmax may not be known in advance. For this case, we can apply SA′,
an adapted version of SA that replaces Equation 2 by

ub(gx) = lb(gx) + vmax · Cremain (6)

and defines τ = vmax · Cremain, where Cremain denotes the number of tuples in T that have
not been accessed yet. As we will see in the experimental evaluation, when Cmax is replaced by
Cremain, the upper bound scores of the groups become much looser, forcing the algorithm to
access more tuples before its termination.

Observe that SA (and its extensions presented in subsequent sections) compute the top-k
groups and a lower bound of their scores. Upper bounds of these scores can be determined by
Equations 2 or 6. In other words, SA does not necessarily return the exact scores of the query
results.

We now discuss the computational requirement of SA. After τ drops below ρ, the pruning
step (Lines 13-15) is computationally demanding as the whole hash tableH in memory has to
be traversed in each iteration. In order to speed up the process, we suggest that, the pruning
step is executed each time a block of tuples is read, instead of every time a tuple is read. This
heuristic would greatly reduce the CPU cost of SA, and the only overhead is that at most one
extra disk page needs to be accessed.

4.2. Multi-pass Sorted Access Algorithm

SA becomes inapplicable in practical applications as the memory cannot accommodate all
candidate groups for the top-k result. In this section, we extend this method to multi-pass
sorted access algorithm (MSA), which can be applied for memory-bounded settings.

The basic idea of MSA is to use up all available memory while scanning T and compute the
top-k groups among those maintained in the buffer. Tuples that belong to other groups are
written to a temporary table T ′. After the top-k set among the groups that fit in memory
has been finalized, the algorithm frees the memory, keeping only information about the top-k
set, and continues scanning T , after having appended T ′ in its beginning. If necessary, T ′ is
reconstructed and the appending process is repeated, until the top-k groups are guaranteed to
be found.

Figure 3 shows a pseudo-code of MSA. Let M be the number of memory pages and B be the
number of tuples that can fit in a page. MSA uses a hash tableH of size bounded byM ·B for
tracking candidate groups in memory, and a creates a temporary table T ′ for storing tuples in
groups that cannot fit in memory. Initially, variable fullH is set to false, indicating that the
hash table is not full. The algorithm operates similarly to SA. However, after H becomes full,
tuples of groups not in memory are appended to T ′ for later processing. If only k groups remain
after pruning of groups from H (shrinking phase), MSA terminates if T ′ is empty. If T ′ is not
empty, the algorithm “appends” T ′ to T , by “moving” the current cursor to the beginning of
T ′ and directing the cursor to the current position of T , after T ′ has been read. This guarantees
that all unprocessed tuples will be seen in sorted order (since they are written in sorted order
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Algorithm MSA(Tables T ,T ′,Value k)
1. H:=new hash table (managing seen groups);

2. Wk:=∅;

3. insert k pairs of (null, 0) into Wk;
4. ρ:=minimum value in Wk;

5. fullH:=false;
6. while (nonempty(T ))

7. (tid, x, v):=GetNext(T );

8. vmax:=v;
9. if (fullH ∧ gx /∈ H) then

10. append the tuple (tid, x, v) to T ′;
11. else
12. update (gx, lb(gx)) in H;

13. if (lb(gx) > ρ) then

14. update Wk and ρ;
15. fullH:=fullH ∨ (|H| = M ·B);

16. τ :=vmax · Cmax;

17. if (τ ≤ ρ) then /* prune groups */
18. for each gy ∈ H such that gy /∈ Wk

19. if (ub(gy) ≤ ρ) then
20. remove gy from H;

21. if (T ′ = ∅ ∧ |H| = k) then

22. return Wk;
23. if (T ′ 6= ∅ ∧ |H| = k) then

24. append T ′ before T ;

25. clear T ′; goto Line 5;

Fig. 3. Multi-pass sorted access algorithm (MSA)

in T ′ and all tuples in T ′ have greater values than the remainder of T ). In addition, tuples
from T before the current cursor which have already been considered by the groups of H will
not be processed again. Note that at each loop, the algorithm initializes a new T ′ to be used
if necessary during the next pass. Figure 4 illustrates this virtual appendix of T ′ to T at each
loop of MSA.

Note that it is possible that some tuples appended to T ′ may belong to groups that have already
been pruned (i.e., in a previous pass). However, this does not affect the correctness of MSA.
When those tuples are processed from T ′ in the next pass, their corresponding groups will only
have smaller upper score bounds and eventually get pruned. MSA can also be adapted to a
variant MSA′ that does not use Cmax (in the same way as SA is adapted to SA′).

We proceed to analyze the worst case tuple access cost of MSA, by using the notations in Table
1. In the worst case, the minimum number of groups that have been completely aggregated in
each pass isMB (assumingMB � k), leading to a reduction ofMB(N/G) tuples in the data
cardinality. There are at mostG/(MB) passes. In the i-th pass, at mostN(1− (i− 1)MB/G)
tuples are read from T and N(1− iMB/G) tuples are written into T ′. As a result, the worst
case tuple access cost of MSA is:

costMSA(N,M,B,G) =

G
MB∑
i=i

N ·
(

2− (2i− 1)MB

G

)
(7)

Example We demonstrate the execution steps of MSA on the example in Figure 1, assuming
that k = 2 and the memory can fit at most 3 tuples. After reading the first four tuples, we
have lb(g2) = 1.39, lb(g4) = 0.5, lb(g5) = 0.41, and the best lower bound score ρ = 0.5. Since
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Fig. 4. Temporary output table T ′

τ = 0.41 · 3 > ρ, we need to continue. The memory is now full and the next retrieved tuple (of
g1) is inserted into the temporary table T ′. Then, we read a tuple of g4, updating lb(g4) = 0.89
and ρ = 0.89. After that, we access the next two tuples (of g5), updating lb(g5) = 0.87. Since
τ = 0.13 · 3 ≤ ρ, no unseen group will enter the top-k. In addition, we prune the group g5

as ub(g5) = 0.87. Now, there are exactly k = 2 groups in the memory (and free space). We
continue with the process after the table T ′ is appended to the beginning of T . The group g1

gets pruned after the next tuple (of value 0.12) is read. Eventually, MSA returns the groups g2

and g4 as the top-2 results.

4.3. Write-optimized MSA

Recall that when SA and MSA are in the shrinking phase (i.e., τ ≤ ρ) the number of candidate
groups in H can only be reduced. On the other hand, while the top-k results for the currently
processed groups are finalized in MSA, if the group of the current tuple is not inH, it will im-
mediately be flushed to T ′. However, due to the pruning ofH, there might be enough memory
to accommodate these temporary tuples, thus there is no need to flush them to disk immedi-
ately. More significantly, if we use the memory space freed fromH to temporarily store tuples,
we could apply early aggregation for some groups; two or more tuples of the same group tem-
porarily held in memory can be aggregated and shrunk to a single tuple for the current group.

We propose WMSA, a write-optimized version of MSA, which utilizes the memory freed from
H in the shrinking phase. In that phase, we introduce an extra hash table H′ for aggregating
tuples of groups which do not appear inH. The initial capacity ofH′ is set to 1 memory page,
and later extended by the freed memory pages, as H shrinks. When H′ becomes full, we flush
its content to the temporary table T ′. Tuples of the same group are written to T ′ as a single
tuple, containing the group-id (i.e., values of group-by attributes), the number of tuples seen in
the group% ?? and the partial aggregate for the group (e.g., sum). Note that T ′ may contain
multiple records of the same group, which are not flushed at the same time.

In the next pass, the groups in T ′ are read and processed according to their flushed order.
Nevertheless the aggregated values of the groups in T ′ may now not appear in sorted order,
while we need this order to derive an appropriate value for vmax (e.g., in Line 8 of MSA) to set
a pruning and terminating condition. To solve this problem we apply the following heuristic.

??This quantity is required to compute |ψ(gx)|, used by Equation 2.
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Every time H′ is flushed to T ′, together with the flushed partition, we attach the value of the
last tuple read from T . Thus, if T ′ is created by flushing H′ R times, it can be thought of as a
sequence ofR partitions T ′

1 , . . . T ′
R, such that for each T ′

i we knowmi; the minimum value of all
(early-aggregated) tuples in it. When T ′ is processed after being appended to the beginning
of T ’s remainder, we update vmax to mi after each partition T ′

i has been processed.

For example, assume that H′ has become full and it was flushed three times to the T ′ shown
in Figure 5. For the three partitions we keep the minimum value of the original tuples from T
there. When we process T ′, for each tuple we read, we do not update vmax as in Line 8, but
only after the whole partition T ′

1 is read, we update vmax:=m1, before we proceed to the next
partition T ′

2 . Similarly, when T ′
2 is complete, we set vmax:=m2, etc. Thus, although we cannot

construct a total ordering for the aggregated tuples in T ′, we can determine bounds between
the different partitions of it, using the known information from the original tuples between
flushes.
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Fig. 5. Flushed partitions in T ′

If, while T ′ is read, H (and H′) becomes full and tuples must be written to a T ′′, mi of the
current T ′

i being read is used asmj for the current partition T ′′
j flushed to disk. The correctness

of the algorithm is not affected, since mi will be a conservative upper bound for the values in
T ′′
j .

As a remark, the worst case access cost of WMSA is the same as that of MSA. This occurs
when the number G of groups in the data is much larger than the memory size and; and thus
no aggregation occurs in the extra hash table H′.

A final thing to note is that SA-based algorithms (MSA and WMSA) can also be used for
cases where the input is partially ordered. Consider a case, where T is divided into multiple
partitions T1, T2, . . . , such that each partition has a different range of v values and these ranges
are disjoint, covering the whole domain of v. For such cases, we can apply a process similar to
SA (and its extensions), except that it operates on a partition-by-partition basis instead of a
tuple-by-tuple basis.

4.4. Experimental Results

Following the experimental setting of Section 3.2,wenowevaluate the performance of bounded-
memory algorithms on input physically ordered by the measure attribute: MSA, MSA′, WMSA
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and WMSA′.

Figure 6 shows their access costs with respect to k. MSA′ and WMSA′ do not use Cmax so
they are more expensive than MSA and WMSA respectively. The cost of MSA′ (WMSA′) is
insensitive to k and converges to the cost of MSA (WMSA) for large k values. WMSA (WMSA′)
outperforms MSA (MSA′) because it performs early aggregation of groups and reduces the
sizes of temporary tables T ′. The algorithms have lower costs for query Q10 than Q1 because
Q1 considers a larger number of distinct groups, having higher memory requirements. Note
also that MSA (MSA′) has similar cost to WMSA (WMSA′) in Q10, as the temporary tables
T ′ are of negligible size (note the sub-linear costs of the methods).

Indeed, we have also implemented versions of the threshold algorithm [6], trying to take ad-
vantage of potential (different) orders of both the measure values and other attributes (e.g.,
if multiple B+–trees exist) on different attributes. However, such methods were almost always
found to be more expensive than SA and its extensions, mainly due to the overhead of required
random accesses.
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Fig. 6. Ratio of page accesses vs result size k

We now study how the performance of algorithms is affected by the available memory (see
Figure 7). As expected, their costs decrease as the memory size increases. With a larger memory
buffer, more candidates can be stored in memory and fewer passes are performed over the data.
Again, WMSA outperforms the other methods. Observe that with as little memory as 2% of
the data size, the cost of this method becomes sublinear.

In the next two experiments, we study the behavior of the algorithms on synthetic datasets.
Figure 8a shows the access costs of the algorithms with respect to the database size. Note that
they are insensitive to this parameter, given a proportional memory buffer (2%). Figure 8b
shows their access costs for different group size skew θs. To help understanding the results,
we show the group score dispersion of each tested dataset in a bracket, which is defined as the
ratio of the standard deviation of the groups’ scores to their mean score. In general, the cost of
the algorithms decreases at high group size skew. However, at low group size skew, most of the
groups have similar sizes and Cmax has a low value. Thus, upper bound scores (see Equation
2) of the groups become very tight and MSA/WMSA can terminate early.
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5. Algorithms for Inputs with Random Order

In this section, we study the evaluation of top-k queries for generic inputs T , where the tuples
appear in random order. We assume that memory is bounded such that we cannot accommo-
date a counter for each group. Thus, multiple passes over the data might be required to derive
the exact set of top-k groups. We present (i) an adaptation of an effective iceberg query al-
gorithm [7] for our problem and (ii) an extension of the hash-based aggregation algorithm [9]
that minimizes the number of accesses for top-k groups computation, using branch-and-bound
techniques in combination with appropriate heuristics for deriving tight upper bounds for the
candidate groups.
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5.1. The Bucket Algorithm

Our bucket algorithm (BA) is an adaptation of the Defer-Count method of [7], which was
proposed for the evaluation of iceberg queries; i.e., the identification of groups with COUNT

(or SUM) value above a given threshold ρ. In our problem, the threshold ρ is not given, but
corresponds to the score of the k-th group, which is unknown a priori. Thus, the main difference
between Defer-Count and BA is the online tuning of a lower bound for ρ, during the execution
of the algorithm.

Figure 9 shows a detailed pseudo-code for BA. BA follows a two-step filter/refinement para-
digm. The filter step (Lines 3–15) consists of a number F of passes over the dataset, during
which, groups that may not end up in the result are identified and eliminated. During the refine-
ment step (Lines 16–21), the remaining candidates are aggregated and compared. Parameter
F denotes the number of passes over the data, during the filter step. This parameter balances
the cost of the filter and refinement steps. A high F value results in high filter effort, but leads
to few candidates. On the other hand, a low F implies low filter cost but high refinement cost.
We will discuss how to eliminate this parameter in Section 5.1.2.

First, the algorithm draws a random sample T ′ of T .The κ ≥ k groups with the highest
aggregate scores in the sample (i.e., groups expected to be heavy targets) are written to a set C
of candidates. ? ? ? The algorithm then executes the filter step F times. In the j-th filter step,
an array A of counters and a bitmap Ej are employed. Each position of A and Ej corresponds
to a value of a hash function hj(x), which takes the group-id x as input. Moreover, different
hash functions are applied for different filter passes.

In the first filter pass, BA scans T and for each tuple t belonging to group x, (i) if x ∈ C, x’s
aggregate score agg(x) is updated (ii) otherwise, bucket A[hj(x)] is updated by v. Thus, after
the pass, the exact aggregate scores for all groups in C are known. The k groups in C with the
highest scores are inserted into the candidate top-k result Sk. ρ is the lowest score in Sk and is
used as a pruning bound. Finally, for each bucket A[z], bitmap position Ej[z] is set to 1 if the
bucket exceeds ρ.

In the subsequent filter passes, tuples that do not belong to groups in C (these groups have al-
ready been counted) are hashed to buckets, only if their bucket counters in all previous passes
exceed ρ. This is verified by the use of the previous bitmaps. Such a bitmap manipulation tech-
nique has been introduced in [7], and was shown to effectively reduce the number of candidate
groups that cannot lead to the result.

During the refinement step, only groups having 1 in all bitmap positions of the filter passes
are counted exactly and the top-k result is derived by considering also the counted groups of
C. Note that if the set of all candidates in the refinement step cannot fit in the memory, then
they must be partitioned and counted over multiple passes of data.

? ? ?In general, we count a larger number κ than k of heavy hitters exactly, in order to decrease the value of the hash buckets

for the remaining attributes and reduce the number of candidates that will eventually be counted.
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Algorithm BA(Table T ,Values k,F ,κ)
1. draw a sample T ′ of T ;
2. C:= the top-κ groups in the sample T ′;

/* filter step */
3. for each j ∈ [1, F ]
4. initialize hash buckets A;
5. for each tuple (tid, x, v) ∈ T /* scan T */
6. if (x ∈ C) then
7. if (j = 1) then /* first filter pass */
8. update agg(x); /* score of group x */
9. else if (Ei[hi(x)],∀ i ∈ [1, j − 1]) then
10. update the bucket A[hj(x)] by v; /* by using the function agg */
11. if (j = 1) then /* first filter pass */
12. Sk:=top-k groups in C;
13. ρ:=k-th score in C;
14. for each bucket A[z]
15. Ej [z]:=(A[z] > ρ);

/* refinement step */
16. C′:=∅;
17. for each tuple (tid, x, v) ∈ T /* scan T */
18. if (x /∈ C) then
19. if (∀ i ∈ [1, F ] Bi[hi(x)]) then
20. update agg(x) in C′;
21. update Sk and ρ using C′;
22. return Sk;

Fig. 9. Bucket algorithm (BA)

We continue to analyze the worst case tuple access cost of BA, based on the symbols in Table
1. Clearly, the filter step leads to F ·N tuple accesses. In the worst case, no pruning occurs and
all the groups belong to the candidate set. Since the memory can fit MB groups in the same
refinement pass, there are G/(MB) refinement passes. Each refinement pass incurs N tuple
accesses. Therefore, the worst case tuple access cost of BA is:

costBA(N,M,B,G, F ) = N ·
(
F +

G

MB

)
(8)

5.1.1. An Example

As an example, assume that we run BA on the table of Figure 10, with parameters k = 1,
F = 2 and κ = 1. Assume that in the random sample, the top κ = 1 group is g5, thus C =
{g5}. Assume that we run BA with F = 2 filter passes. Figure 11 illustrates the buckets for
the groups (e.g., function h1 places groups g2 and g4 in the first bucket). In the first pass, we
compute the counters A for the two buckets and the exact aggregate scores (i.e., 0.91) of the
groups in C (i.e., g5), and thus we have ρ = 0.91. After the pass, the first bit of the bitmap E1

is set, as the aggregate value of the first bucket A[1] is greater than ρ. In the second pass, we
scan the table again and compute new bucketsA, using another hash function. SinceE1[1] = 0
(from the previous pass), tuples of g1 and g3 are ignored in the current pass. This reduces the
counters of the current buckets and only E2[2] is set. Note that the only non-pruned group at
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this point (by either hash function) is g2. Thus, in the refinement step, only g2 will be counted,
agg(g2) will be compared to C = {g5}, and eventually g2 will be output as the top-1 group.

tid gid v

1 5 0.20

8 2 0.70

4 4 0.40

9 2 0.69

2 5 0.33

5 4 0.50

10 2 0.10

11 1 0.15

3 5 0.38

7 3 0.11

6 3 0.12

12 1 0.05

Fig. 10. Example of query input

bucket slot 1 2

groups g2, g4 g1, g3

A 2.39 0.43

E1 1 0

First pass, ρ = 0.91

bucket slot 1 2

groups g4 g2

A 0.90 1.49

E2 0 1

Second pass, ρ = 0.91

Fig. 11. Filter step of the bucket algorithm

5.1.2. Optimizations

We developed two optimization techniques for terminating the filter step in BA early. The first
one is to terminate when the number of bits set in the current filter pass is not smaller than
that in the previous filter pass. This indicates that additional filter passes may not filter any
groups. The second optimization is to terminate the filter step when the expected number of
candidates is small enough to fit in memory. For this, we compute an FM sketch [8] in the first
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filter pass to estimate the number of distinct groups in the dataset. An upper bound of the
candidate set size can be estimated by multiplying the percentage of bits set in the current
pass with the estimated distinct number of groups. In addition to the cost savings, the above
optimizations lead to automatic termination of the filter step so that users need not specify
the number F of filter passes.

5.2. The Recursive Hash Algorithm

One potential problem with BA is that it is not easy to determine an appropriate value for
the number of buckets (i.e., bitmap length). In case there are too few buckets, many groups
are hashed to the same bucket and the filter becomes ineffective. The effectiveness of the filter
step can be improved by employing more buckets, however, the main memory may not be large
enough to accommodate a huge number of buckets.

To avoid this problem, we extend the recursive hash algorithm (RHA) [9] with early aggrega-
tion to retrieve the top-k groups. Graefe et. al. [9] compute the aggregate scores of all groups
unconditionally, even though most of them cannot be the top-k groups. Motivated by this, we
present two carefully designed optimizations for enhancing the performance of RHA on top-k
groups extraction. First, during hashing and early aggregation, our RHA algorithm derives up-
per bound aggregate values for groups in hash partitions and uses them to eliminate partitions
that cannot lead to any result. Second, we propose an appropriate ordering of processing the
partitions, which leads to early discovery of groups with high aggregate values and significant
access cost reduction of the algorithm.

Figure 12 illustrates the pseudo code of RHA. LetB be the number of group counters that can
fit in a page and M be the number of memory pages. RHA first initializes an initially empty
set Sk of current top-k groups and then invokes the recursive routine on the table T . The
recursive routine consists of three phases: the hashing phase (Lines 1–11), the clearing phase
(Lines 12–17), and the branching phase (Lines 18–26). At each recursion level i, RHA uses a
hash function hi() that partitions the tuples to R < M buckets.

In the hashing phase, for each bucket r, a variable ubr tracks the maximum possible aggregate
value of a group hashed there. For each tuple read from T , we apply hi() on its group-id x, to
determine its partition r. We then check whether there is already a partial result for x in the
part Mr of r in memory. In this case, we simply update this partial aggregate agg(x) (early
aggregation), otherwise we create a new memory slot for x. IfMr overflows, we first (i) compute
the maximum upper bound for a group in Tr, by adding to ubr the maximum agg(x) ∈ Mr,
and then (ii) flush the content of Mr to the corresponding disk partition Tr.

After scanning all tuples from T , the recursive routine enters the clearing phase. We update
the set Sk of the best k groups so far (and the k-th score ρ, used as a pruning bound), from the
partitions for which no groups have been flushed to disk. For these groups, agg(x) is guaranteed
to be their complete scores. The remaining memory partitions are flushed to the corresponding
disk partitions for further processing and their ubr values are updated.
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Algorithm Recur RHA(Table T , Set Sk, Level i)
/* hashing phase */

1. for each r ∈ [1,R]

2. ubr:=0;
3. for each tuple (tid, x, v) ∈ T
4. r:=hi(x); /* recursion level i: apply hi() */

5. if (x ∈ Mr) then /* in memory */
6. update agg(x) in Mr; /* partial aggregate */

7. else
8. if (Mr is full) then /* bucket overflow */

9. ubr:=ubr+max{agg(x) ∈Mr};
10. append Mr to its disk partition Tr;
11. add the group x in Mr and set agg(x) to v;

/* clearing phase */

12. for each r ∈ [1,R]
13. if (Tr = ∅) then

14. retrieve groups in Mr, update Sk and ρ;

15. else
16. ubr:=ubr+max{agg(x) ∈Mr};
17. append Mr to its disk partition Tr;

/* branching phase */
18. for each Tr 6= ∅ in descending order of ubr
19. if (ubr > ρ) then
20. if (|Tr| ≤ B ·M) then

21. load Tr into memory;

22. aggregate groups in Tr, update Sk and ρ;
23. else

24. Recur RHA(Tr,Sk,i+ 1);

25. else break for-loop; /* no need to check more Tr */
26. return Sk;

Algorithm RHA(Table T ,Values k)

1. Sk:=∅;

2. insert k pairs of (null, 0) into Sk;
3. ρ:=minimum value in Sk;

4. Recur RHA(T ,Sk,0);

5. return Sk;

Fig. 12. Recursive hash algorithm (RHA)

Next, in the branching phase, RHA is recursively applied to each partition in descending order
of their ubr. The rationale is to discover groups with high aggregate values as early as possible.
We prune partitions for which ubr ≤ ρ, since they cannot contain groups with higher aggregate
values than those currently in Sk. If the next processed partition Tr fits in memory, it is loaded
and its groups are aggregated while Sk and ρ are updated. Otherwise, the algorithm invokes
the recursive routine for the disk partition Tr.

5.2.1. Deriving Tighter Upper Bounds

We can derive a tighter upper bound than ubr for the groups in a partition Tr, if ubr is extended
to a set of multiple counters. Specifically, for each partition r, we use an array of L counters
and a secondary hash function h′ for them. Initially, all L counters for partition r are set to 0.
For each memory partMr of r, beforeMr is flushed to disk, we repartition it in memory into
L segments, by applying h′(x) to each group x ∈ Mr. In each segment j, 1 ≤ j ≤ L, we find
the group with the maximum agg(x) and add this value to the j-th counter. Thus, after Tr has
been finalized, the maximum counter will give an upper bound ubr for the maximum group
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aggregate in Tr.

The use of multiple counters presents us with a trade-off between memory allocation and
tightness of the computed bound. The more counters allocated for a partition, the less memory
can be used for holding and early-aggregating groups. Note that for a partition r, allocating
space for counters is not necessary until the first time Mr is flushed to disk. After that point,
L counters are preserved for them in the memory. Thus, the average memory allocated per
partition in the worst-case is M

R
− L. The impact of L to the overall performance of RHA is

studied in the experimental section.

As a final note, the upper bound of RHA’s cost is the cost of hash-based aggregation [9] without
any pruning:

costRHA(N,M,B,G,R) = 2 ·N · dlogR
G

M ·B
e (9)

where R is the number of memory partitions, and the descriptions of other symbols can be
found inTable 1.This is indeed theworst case ofRHA,where all groups have the sameaggregate
score. However, in practice, skew in the distribution of scores brings significant cost savings to
the algorithm, as we demonstrate in the next section.

Example We proceed to apply RHA for computing the top-1 group over the example of Figure
10. Assume that we haveR = 2 memory partitions, and each one is able to hold 2 groups at the
same time. Suppose that the groups g2, g3 are hashed to the partitionM1 whereas the groups
g1, g4, g5 are hashed to the partitionM2. After reading the first 7 tuples from the input table T ,
we have: (i) the group g2 inM1, and (ii) the groups g4 and g5 inM2. The next retrieved tuple
(with the value 0.15) comes from the group g1, belonging to the memory partition M2. Since
M2 is already full, the disk partition T2 is flushed the following (partial) group scores: lb(g4) =
0.9 and lb(g5) = 0.53. Its score bound ub2 is set to max{0.9, 0.53} = 0.9. Now, the group g1 can
be hashed into M2. The remaining tuples are read iteratively and their corresponding main
memory partitions are updated. Subsequently, M1 contains lb(g2) = 1.49 and lb(g3) = 0.23;
whereas M2 contains lb(g1) = 0.2 and lb(g5) = 0.38. As the disk partition T1 is empty, we
obtain ρ = max{1.49, 0.23} = 1.49. Then, we compute the upper score bound(s) for the non-
empty disk partition(s): ub2 = 0.9 + max{0.2, 0.38} = 1.28. Since ub2 ≤ ρ, there is no need
to process the disk partition T2. Eventually, the algorithm reports g2 to be the top-1 group,
having the score 1.49.

5.3. Experimental Results

In this section, we adopt the experimental setting of Section 3.2 and compare the relative
performance of algorithms that operate on unordered data; BA and RHA. The algorithm BA is
configured to use 10000 bucket counters and κ = 2000 heavy targets in memory, after drawing
a 1%-sample from the data. The remaining memory is used for computing the FM sketch in
the first filter pass.

In addition these methods, we implemented two baseline algorithms SORT and HASH. These
correspond to the sorting and (recursive) hashing algorithms with early aggregation [9], which
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compute the scores of all groups. In its final pass, SORT computes top-k groups while merging
the runs of the previous pass. Similarly, HASH maintains a heap of the top-k groups, while
computing the scores of the groups at its final pass. Thus, HASH corresponds to the worst-case
of RHA, where no bucket can be pruned until the last pass.

We first assess the impact of the number of counters L and R
M

(the number of partitions over
the total number of pages used for hashing) to the performance of RHA. Figure 13 shows the
access cost of RHA for both queries Q1 and Q10, as a function of these parameters. As a basis
for comparison, we also included HASH. We also included the essential cost of the algorithm;
performing the first pass and writing to disk the overflown memory partitions. The results show
that HASH has cost insensitive to the number of partitions, which is expected, since, for a given
memory, the same number of tuples will be hashed and early aggregated, no matter how many
partitions we have. On the other hand, our RHA algorithm that employs pruning becomes
very efficient as R

M
increases. Note that for a large number of partitions RHA is only slightly

more expensive than the essential cost of hashing in the first pass. First, the upper bounds
ubr of the partitions become smaller as partitions become smaller. Second, after the algorithm
is recursively applied to a large number of small disk partitions Tr, many small re-partitions
are early and cheaply identified that help further tightening the bound ρ and terminating the
algorithm. Note also that the more counters we use, the better ubr values we derive, especially
if the number of partitions is small. In limited-memory cases, where we are forced to use a
small number of buckets, using counters pays off, however, if R is large, there is little or no
improvement over using a single ubr bound, as in Figure 12. In the rest of the experiments, we
use a default number of L = 10 counters for RHA and as many partitions as permitted by the
available memory.
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Fig. 13. Ratio of page accesses of RHA, result size k = 16

Table 2
Ratio of page accesses of RHA vs ordering of partitions, result size k = 16

Ordering / Query Q1 Q10

Ascending 2.690 1.895

Descending 1.885 1.467

Random 2.040 1.516
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We now investigate the effect of ordering the partitions (Line 18 in Figure 12) for processing
in RHA. The default ordering is to process the partitions Tr in descending order of their upper
bound values ubr. We also test the effect of ascending ordering and random ordering on the
access cost of RHA. Table 2 shows the access cost of RHA with different orderings, for queries
Q1 and Q10, at k = 16. The descending ordering leads to the lowest cost as groups with high
aggregate values are discovered as early as possible. Observe that the descending ordering
achieves 30% and 23% cost reduction over the ascending ordering, for queries Q1 and Q10
respectively.

 0.0001

 0.001

 0.01

 0.1

 1

 1  2  3  4  5  6  7  8  9  10

F
ra

c
ti
o
n
 o

f 
b
it
s
 s

e
t

Filter pass

k=16
k=64

k=256

Fig. 14. Fraction of bits set in each filter pass, Query Q1

We proceed to study the effectiveness of our optimization techniques for terminating BA early.
For this, we run BA for the query Q1 at F = 10, but without early termination. In this case,
the filter step terminates after all F filter passes or the bitmap in the current filter pass has
no bits set. Figure 14 shows the number of bits set in each filter pass, for different values of
k. Although the number of bits set decreases rapidly after the first few filter passes, it never
reaches zero. As a result, the algorithm has to execute F = 10 filter passes. Then, we run BA
with early termination techniques for the same experiment. Now, BA performs only 1-3 filter
passes (depending on the value of k) as it estimates that the remaining groups (with possible
aggregate value greater than ρ) fit in memory. Eventually, those groups are aggregated in a
single refinement pass. In the subsequent experiments, we apply early termination techniques
for BA and set the maximum number of filter passes to F = 10.

In the remainder of the experiments, we compare all algorithms together. Figure 15 shows the
access costs of BA, RHA, SORT, and HASH as a function of k. The costs of BA and RHA
increase only for large value of k and the effect is more significant on BA. As k increases, (i) the
pruning bound ρ becomes smaller and (ii) the top-k results are scattered in more partitions that
are essentially examined. Both SORT and HASH are insensitive to k as they do not utilize the
pruning bound. RHA outperforms the other methods as it can prune early the partitions that
cannot lead to better results; its performance in the worst case becomes slightly better than
HASH (for large values of k). BA performs well only for small k, where the sample contains
the top-k groups with high probability. Observe that, for queryQ10, BA is worse than HASH,
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a fact indicating that defer-counting methods could be worse than simple early aggregation
techniques (as also shown in [17]).
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Figure 16 plots the access costs of the algorithms as a function the memory size. For BA, the
number of hash buckets, heavy targets, and samples are scaled in proportion to the memory
size. RHA has the best performance and it degrades gracefully for limited memory. The perfor-
mance gap between RHA and HASH shrinks as memory size increases because at high mem-
ory size many groups can be aggregated in memory and the effect of pruning diminishes. For
Q1, BA has very high cost at the lowestM , as it does not have adequate hash buckets to filter
out disqualified groups, which then must be verified in multiple refinement passes. The large
set to be refined cannot be reduced by additional filter passes, because the buckets A are large
(independently of the hash-function used) and groups are rarely pruned.
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So far, we only considered the SUM aggregate function. Our algorithms can also be applied for
other distributive functions: COUNT, MAX, and MIN (see Section 3.2). For instance, both BA and
RHA are applicable to both MAX directly, after modifying the statements for updating group
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scores and upper bound values of buckets/partitions (e.g., Lines 8, 10, 20 of BA; Lines 6, 9,
16 of RHA). Table 3 shows the access cost of the algorithms with respect to the aggregate
function. We applied variants of Q1 and Q10 that replace the SUM function with some other
aggregate. For the queryQ1, BA is more expensive for COUNT than for SUM, due to the fact that
COUNT considers only group sizes (but not the values of tuples in the groups). The cost of BA
is even higher for MAX. The reason is that a group has high score when it has one (as opposed
to many) tuple with high value. BA has the worst performance for MIN because most of the
tuples have low values, leading to a high number of groups with low scores. RHA outperforms
its competitors and its pruning effectiveness is stable for different aggregate functions. Since
SORT and HASH do not apply any pruning technique, they have the same access cost for all
aggregate functions. For Q10, the algorithms have similar relative performances.

Table 3

Ratio of page accesses vs aggregate function type

Query Q1 Query Q10

Algorithm SUM COUNT MAX MIN SUM COUNT MAX MIN

BA 2.000 3.000 5.000 12.00 2.000 2.000 2.000 5.000

RHA 1.885 1.880 1.851 1.847 1.467 1.467 1.457 1.449

SORT 2.703 2.703 2.703 2.703 2.172 2.172 2.172 2.172

HASH 2.680 2.680 2.680 2.680 1.870 1.870 1.870 1.870

Figure 17 shows the performance of the algorithms on synthetic datasets as a function of the
data size and group size skew. Observe that their access costs are not sensitive to data size.
In Figure 17b, each value shown in a bracket indicates the group score dispersion of the tested
dataset, as the ratio of the groups’ scores standard deviation to their mean score. The algo-
rithms behave differently for different group size skew. At low group size skew, many groups
have similar scores as the top-k groups. RHA could hardly prune any partition and thus degen-
erates into HASH. Similarly, BA requires many data passes as its buckets cannot help pruning
unqualified groups effectively. Since RHA, SORT, and HASH apply early aggregation to reduce
the data size during each pass, they perform much better than BA for the worst distribution
of group sizes.
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6. Data Clustered by a Subset of Group-by Attributes

In this section, we show how the case of data ordered or clustered based on some group-by
attributes can be reduced to the random-order case, where the same algorithms discussed in
the previous section can be used as modules for query evaluation. At the end, we present an
experimental study for the proposed method.

6.1. The Clustered Groups Algorithm

Consider a query with a set of group-by attributes G and assume that the data are clustered
based on a set of attributes G ′, such that G ′ ⊂ G. ? ? ?? That is, for each combination of values
for the attributes in G ′, all tuples that have this combination are stored (or arrive, in case of a
streaming input) continuously without any other tuples being interleaved.

For example, consider the query with G = {a, b, c, d}, shown in Figure 18 together with an
exemplary table T where it is applied. Note that, in the table, for each combination of values
for attributes a and b, the tuples that contain this value are stored continuously (e.g., for a=a1

and b=b2 the only tuples that contain these values are the second and the third one, which are
continuous in the table). In other words, G ′ = {a, b}.

SELECT a,b,c,d,SUM(v)

FROM T

GROUP BY a,b,c,d

ORDER BY SUM(v) DESC

STOP AFTER k

a b c d v

a1 b1 c1 d1 0.70

a1 b2 c2 d2 0.62

a1 b2 c1 d3 0.23

a1 b4 c2 d3 0.14

a3 b2 c1 d2 0.51

a3 b2 c1 d3 0.62

a3 b4 c2 d4 0.73

a4 b1 c1 d1 0.80

(a) Query (b) Table T

Fig. 18. Table clustered by group-by attributes

To solve this top-k query we can apply the clustered groups (CGA) algorithm shown in Figure
19. The algorithm reads all tuples from T that contain the same values for the group-by at-
tributes in G ′ and for each batch it applies an unordered top-k groups algorithm, like RHA. In
practice, only attributes in G − G ′ are considered for each batch (since all G ′ attributes have
exactly the same value). The results of these batches are merged to derive the global top-k

? ? ??The case where G′ = G can be trivially solved by one pass over the data; for each target group the tuples are clustered
together, thus we only need a counter for the current group and a priority queue for the top-k groups so far.
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groups. In our implementation, the algorithm does not wait until the whole batch is read before
it begins the unordered algorithm, but the first phase of the algorithm used for the batch (e.g.,
hashing in the case of RHA) is executed while tuples of the batch are read. As soon as the batch
is known to have been read completely, the next phases of the algorithm begin to compute the
top-k groups for the batch. Observe that the best top-k groups from the previous batches are
effectively used as bounds to prune the search space of the currently processed batch.

Algorithm CGA(Table T , Sets G, G′)
1. while there are more tuples in T
2. τ :=next tuple of T ;
3. add τ to T ′;
4. while next tuple τ ′ of T equals τ on all G′ attributes
5. add τ ′ to T ′;
6. apply an unordered top-k groups algorithm on T ′;
7. update the global top-k groups;

Fig. 19. Clustered groups algorithm

We proceed to study the worst case tuple access cost of CGA, by using the symbols in Table 1.
Let G′ be the number of distinct groups per batch; there are G/G′ batches in total. Thus, the
cost of CGA is:

costCGA(N,M,B,G) =
G

G′ · costRHA(
NG′

G
,M,B,G′) (10)

assuming that CGA applies RHA to compute the top-k groups within a batch of tuples. In
order to simplify the equation, the hidden parameter R (specific to RHA) is not shown here.

6.2. Experimental Results

We followed the experimental setting of Section 3.2 and performed two experiments to validate
the performance of the clustered groups (CGA) algorithm. For this purpose, we used the real
dataset (i.e., TCP packets trace). We assume that the dataset is ordered by the time attribute.
We then experimented with queries in the form of Q1, but with different time granularities
for the Tstp attribute. In specific, in Q1, values are grouped in 1-second time intervals. We
experimented with different time interval granularities, defining queries from Q1 to Q1000.
Note that the timespan of the whole dataset is 1h = 3600 sec, thus the number of batches in
the finest (coarsest) granularity is 3600 (4). The smaller the time interval, the larger the total
number of groups, but the smaller the number of distinct sub-groups per interval (which affect
the cost of the algorithm used at each batch). In addition, we used a relatively small memory
buffer of 0.25% of the total dataset size; otherwise the batches would easily fit in memory and
queries would be processed by a single database scan.

For each batch we used the RHA algorithm to find the top-k groups. Figure 20a plots the total
cost of CGA as a function of the query granularity. At finest granularities, the distinct number
of groups per batch fits in memory for a large percentage of batches. As the time-grouping
becomes coarser, more groups are formed (the distinct combinations of the remaining group-
by attributes increase), thus it becomes more likely that the number of groups exceed the
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available memory, increasing the total cost of the algorithm. Note that the cost of CGA is much
lower than that of plain RHA, due to the effective division of the problem to smaller ones that
are solved separately with full utilization of the system resources. Figure 20b shows the cost
breakdown per batch for each of the 18 batches in the Q200 query. Note that the average cost
per batch drops as we proceed from the first to last one. The reason is due to the optimization
of CGA we mentioned in Section 6; the score of the k-th group in the previous batches is used
as initial value for ρ in RHA. As we proceed to latter batches, the score of the k-th group so
far becomes larger, thus ρ becomes more effective in pruning early hash buckets at the current
batch. The reason for the fluctuation among the costs at different batches is that the number
of distinct groups between batches may vary significantly, affecting the corresponding bucket
sizes and causing variable memory overflows among RHA executions.
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Fig. 20. Experiments with data clustered by group-by attributes

7. Conclusions

We studied an important data analysis operator that retrieves the k groups with the highest
aggregate values. In data warehousing, this operator can be used directly by data analysts to
identify important groups. It can also be used in frequent itemsets mining applications, as well
as data mining tasks in information retrieval. The main challenge of this problem is to find the
top-k groups in the case where the distinct number of groups exceeds the number of counters
that can fit in memory. In this paper, we addressed this problem by proposing algorithms that
do not rely on pre-computation or materialization, but apply on-demand retrieval of groups
for ad-hoc sets of group-by attributes.

For the generic case of unordered tuples, we developed the Bucket Algorithm (BA) and the
Recursive Hash Algorithm (RHA). BA adapts from an iceberg query algorithm [7] and utilizes
counts of buckets to reduce the candidate size. In addition, we proposed optimizations for
early terminating BA. On the other hand, RHA applies the branch-and-bound paradigm to
minimize the number of buckets to be examined, until the top-k result is finalized. To improve
the efficiency of RHA, we suggested two optimizations: (i) ordering the processing partitions
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in an appropriate way, leading to early discovery of groups with high aggregate values, and
(ii) introducing few counters for each hash partition, for refining tighter upper score bounds
for partitions. Our experimental results on both synthetic and real datasets show that RHA
outperforms BA and traditional RDBMS methods by wide margin in terms of data access cost.

Assuming that the tuples to be aggregated are ordered by their measure values, we proposed
the multi-pass sorted access algorithm (MSA) and its write-optimized version (WMSA). MSA
extends the NRA solution [6] for the memory-bounded setting by writing a temporary output
table to the disk when memory becomes full. WMSA is an optimized version of MSA that
exploits the available memory more effectively and reduces unnecessary disk accesses. Our
experimental results show that WMSA is the most efficient method, if tuples are ordered by
the measure to be aggregated and the distribution of top-k groups is skewed. However, RHA
outperforms WMSA at small memory sizes or data of low skew, even though it does not take
advantage of the ordering.

Next, for the case where the data are clustered or sorted based on some group-by attributes, we
proposed CGA; a high-level algorithm that performs a scan and for each batch of tuples having
the same values at the clustered attributes it uses an unordered method, like RHA. The top-
k results of each sub-problem are progressively merged until the whole dataset is completely
scanned.

We proceed to summarize our experimental findings, providing a qualitative comparison of the
proposed top-k groups algorithms, depending on the data characteristics. Our results show
that RHA outperforms all other alternatives for unordered data. The algorithm is very robust
and adaptive to the available memory.

If the input is ordered by the measure attribute, WMSA is the best algorithm for cases with
skewed data and moderate memory size. However, even for ordered input, RHA has lower
access cost than WMSA at small memory sizes or data of low skew, even though it does not take
advantage of the ordering. An additional advantage of RHA over WMSA is that it computes
the top-k groups as well as their exact scores, as opposed to WMSA which determines only
lower bounds for them.

For the case of clustered or ordered data with respect to one or more group-by attributes, CGA
utilizing RHA for each batch (the most efficient algorithm) should be used. CGA performs
better than plain RHA, since it takes advantage of the limited number of groups to be con-
sidered per batch, for better memory utilization and early pruning of light groups. Note that
CGA can also be used in combination with WMSA, if the input is ordered primarily by some
group-by attributes and secondarily by the measure attribute.

In the future, we will investigate top-k groups retrieval subject to user-defined constraints. For
instance, a user may be interested in finding top-k products (with the highest sum of sales)
that exist (do not exist) in another table holding valid (invalid) targets. Although such queries
can be handled by a join, followed by aggregation, we believe that interesting optimizations
can be developed to accelerate the retrieval process.
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