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Abstract State-of-the-art publish/subscribe systems are efficient when the subscrip-
tions are relatively static – for instance, the set of followers in Twitter – or can fit in
memory. However, now-a-days, many Big Data and IoT based applications follow a
highly dynamic query paradigm, where both continuous queries and data entries are
in the millions and can arrive and expire rapidly. In this paper we propose and com-
pare several publish/subscribe storage architectures, based on the popular NoSQL
Log-Structured Merge Tree (LSM) storage paradigm, to support high-throughput
and highly dynamic publish/subscribe systems. Our framework naturally supports
subscriptions on both historic and future streaming data, and generates instant noti-
fications. We also extend our framework to efficiently support self-joining subscrip-
tions, where streaming pub/sub records join with past pub/sub entries. Further, we
show how hierarchical attributes, such as concept ontologies, can be efficiently sup-
ported; for example, a publication’s topic is “politics” whereas a subscription’s topic
is “US politics.” We implemented and experimentally evaluated our methods on the
popular LSM-based LevelDB system, using real datasets, for simple match and self-
joining subscriptions on both flat and hierarchical attributes. Our results show that
our approaches achieve significantly higher throughput compared to state-of-the-art
baselines.

Keywords Log-Structured Merge Tree · LevelDB · Publish/Subscribe · Self-join
subscription · Dewey · Big Data · Internet of Things · Continuous Lookup Queries

1 Introduction

In this age of big data and Internet of Things (IoT), large amounts of data are gen-
erated, stored, and used by a diverse set of entities – devices, vehicles, buildings,
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software, and sensors. It is challenging to efficiently ingest, manage, read and deliver
the generated data to millions of users or entities in real time. Publish/Subscribe sys-
tems are used in many applications, such as social networks, messaging systems, and
traffic alerting systems.

As a running example application, consider users who are driving and subscribe
to nearby traffic or other incidents (accident, crime, roadwork, fire, natural disaster,
protest etc). Every time a user moves to a new location (i.e., a geospatial cell) they
need to subscribe to events/publications in the new location for a time duration start-
ing from the near past to the near future – e.g., to know what happened in the last
one minute and what will happen in the next one minute until the user moves to an-
other cell. These subscriptions are highly dynamic as they come and go every few
seconds. At the same time, users are publishing incidents. As millions of users are
moving and subscribing to events, these large streams of subscriptions and publica-
tions must be stored and managed efficiently. Google’s spatial notifications closely
follow this moving subscriber example. Here, when subscribers go to a store, Google
pushes to them, as a mobile notification, the map of the store, specials deals, and so
on. As another application, an airplane continuously queries for data in its path such
as turbulence, wind, air pressure, etc.

Challenges and requirements Figure 1 shows different layers in a typical pub/sub

Fig. 1: Different layers in a typical Pub/Sub system. This paper focuses on the red-
highlighted storage layer

system. Here we can see that subscriptions and publications can be generated from
a variety of devices in application layer. The application communicates through net-
work/transport layer with a middleware broker which notifies subscribers for a match-
ing publication. A key component of a Publish/Subscribe system is its storage layer,
which stores both the subscriptions and the publications. The broker talks with the
storage layer to store/retrieve these publications/subscriptions. Our paper focuses on
the storage layer of a pub/sub system.
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As described in detail in Section 2, the storage modules of existing Publish/Subscribe
systems have several limitations, which make them inadequate for modern IoT ap-
plications. First, the number of subscriptions (continuous queries) is assumed to be
relatively small to fit in main memory, which may not always be true. Second, the
subscriptions are viewed as relatively static, for example, a user infrequently modi-
fies her following list in Twitter. This is not the case in applications such as traffic
alerting or aviation where vehicles or airplanes subscribe to different cells of interest
every few seconds. Third, most of the systems support only queries on future data.
In contrast, an airplane may need to know the conditions in an area in the last few
minutes and the next few seconds, so a combination of past and future data may
be desired. The publications may also have an expiration time; for example, a snow
storm warning might have a certain time limit.

A baseline solution to realize a Publish/Subscribe system, which we experimen-
tally evaluate, is to maintain a list of subscriptions (queries) and periodically submit
them as repetitive queries on the publications database. A similar approach is cur-
rently used in the AsterixDB BAD system [9], where such subscriptions are referred
as repetitive channels. A drawback with this approach is that one cannot get notifica-
tion at the exact time of an incident. Also, this solution wastes resources as the same
query will keep getting submitted even if no new matching publications exist. Finally,
some publications with short expiration time may be completely missed.

To summarize, our goal is to design and build a Publish/Subscribe storage system
with the following properties:

1. Scale to millions of dynamically changing subscriptions and publications per
minute, that is, both subscriptions and publications arrive and expire at a rapid
pace.

2. After a new publication, immediately identify and notify matching subscribers
(as in traditional database triggers, discussed in Section 2), that is, not follow a
periodic check paradigm.

3. Subscriptions or publications may have validity time periods. Subscriptions may
request past data in addition to future data.

4. The subscriber should assume that all the matching publications should reach her,
that is, there is no data loss, which may occur with periodic check systems.

Contribution To support these properties we present an efficient storage framework
on top of LSM-based NoSQL databases. We argue that NoSQL databases – such as
Cassandra [26], Voldemort [15], AsterixDB [6], MongoDB [3] and LevelDB [2] –
provide the right primitives –fast write throughput and fast lookups on the primary
key – on top of which we can design an efficient Publish/Subscribe storage system
that satisfies the above properties. In our paper, a database refers to a single LSM-
based key-value store, which can be viewed as the equivalent to a table in a relational
database. We built our prototypes on top of LevelDB, which is a popular and open-
source LSM-based key-value store from Google. These LSM-based key-value stores
as well as our databases contain both memory components(i.e. memtable) and disk
components (i.e. SSTable).

We first present an approach based on two separate databases (TwoDB), one for
subscriptions (queries) and one for publications (data records). The advantage of this
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approach is that it is simple to implement, as it only requires little or no change
to current LSM storage modules. We show that despite its simplicity, it is efficient
compared to a baseline based on repetitive queries (RepQueries) mentioned above.
However, this two-database approach suffers from a high rate of random disk ac-
cesses when the subscriptions not only match publications but also past subscriptions
– e.g., return publications that have not been already returned by a past subscription.
To efficiently answer such complex subscriptions, which we refer as self-joining sub-
scriptions, we propose a novel DualDB approach where both queries and data entries
are stored in the same keyspace of the same database, which leads to much fewer
random accesses.

We also propose techniques to extend these storage architectures to handle hierar-
chical attributes. For example, a publication may specify a large affected area (higher
level bounding rectangle in a spatial hierarchy), whereas a subscription may only be
interested in a smaller spatial cell. Similarly, a publication may specify a specific
topic like “soccer”, whereas a subscription may specify a more general topic like
“sports.”

In addition to the repetitive queries baseline, we compare our approaches to a
state-of-the-art pub/sub system, Padres [16]. We chose Padres because it is open
source and is easy to modify to fit our use-case. Padres supports querying on his-
toric/past data, and uses the PostgreSQL database system. We show that Padres does
not scale well with the number of subscriptions. Specifically, the system runs out of
memory and crashes very quickly, because it uses an in-memory module to manage
the subscriptions.

To summarize, we make the following contributions in this paper:

– We propose and implement two novel approaches built on top of on LSM-based
storage systems, TwoDB and DualDB, to efficiently support high rates of dy-
namic subscriptions and publications (Section 5).

– We implemented our methods on LevelDB and conducted extensive experiments
with various workloads with different subscription to publication ratios. For that,
we extended LevelDB to handle lists of values per key (Section 4). Our exper-
iments show that both approaches perform up to 1000% faster than baseline
RepQueries (repetitive queries) and up to 3000% faster than a state-of-the-art
pub/sub system Padres (Section 7).

– In addition to simple lookup subscriptions that return matching publications, we
implemented methods to support subscription queries that join streaming pub-
lications/subscriptions with existing data/queries, which we refer as self-joining
subscriptions (Section 6). We show that for such subscriptions DualDB performs
better (up to 20%) compared to the TwoDB approach. Interestingly, DualDB per-
forms 5% better than TwoDB even for simple match subscriptions (Section 7).

– To support hierarchical attributes, we propose a Dewey encoded representation of
topics/cells and an efficient querying algorithm (Section 6). We show that our ap-
proach performs significantly better than reasonable baselines that handle multi-
granular data (Section 7).

– We have published open-source version of our DualDB and TwoDB implementa-
tions on top of LevelDB [4].
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The rest of the paper is organized as follows. Section 2 reviews the related work
and background. Then, Section 3 presents the framework of the system, Finally, Sec-
tion 8 concludes and presents future directions.

2 Related Work and Background

2.1 Related Work

2.1.1 Publish/Subscribe Systems

Most of the academic work on pub/sub mainly has studied how to efficiently route
the message through the distributed pub/sub network. Instead, in this paper we pro-
pose an efficient data storage management system for pub/sub systems. There ex-
ist many variations of pub/sub systems supporting content or topic based subscrip-
tion [14] [25]. Very few works studied the storage architecture of pub/sub systems.
Padres [16] is a popular open-source pub/sub system, which allow continuous lookup
queries. It supports subscriptions on future and past data, using a PostgreSQL database
inside each broker [24]. Pub/Sub systems integrated in relational database systems
have also been studied [8]. However, they do not scale with the number of subscrip-
tions as we show in our experiments.

AsterixDB BAD [23] supports complex continuous queries, where queries are
executed repetitively on top of the LSM-based AsterixDB database. Due to its repet-
itive nature, it does not provide instant notification. On the other hand, BAD supports
a richer set of subscription query types than this work, where we require that sub-
scriptions and publications match based on a key attribute condition. XML Based
pub/sub systems also use a relational database for content based subscriptions [33].
Elaps [19] is a Location aware pub/sub system focusing on efficient processing of
continuous moving range queries against dynamic event streams. Their work focuses
on the query optimization rather than an efficient storage architecture. Our focus
is on millions of dynamically arriving and expiring subscriptions and publications,
which requires an efficient specialized storage framework. A preliminary version of
our work was recently published as a short paper [30], which does not include the
TwoDB approach, hierarchical attributes’ support or self-joining subscriptions.

2.1.2 Triggers and Continuous Queries

Continuous queries on databases may be implemented using triggers [34] [31]. The
TriggerMan project [20] proposes a method for implementing a scalable trigger sys-
tem based on the assumption that some triggers may share a common structure. It
uses a special selection predicate index and an in-memory trigger cache to achieve
scalability. However, they are only able to handle a very small number of triggers on
a table [12], whereas we want our continuous queries to scale to millions. Further,
triggers have a relatively high creation and deletion cost, which makes them inappro-
priate for dynamically changing subscriptions.
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NiagraCQ [12] proposed techniques to group continuous queries with similar
structure, to share common computation. TelegraphCQ [10] is another system that
handles streams of continuous queries over high-volume, highly-variable data streams.
Complex continuous queries on data streams have also been studied [7] [27]. Kafka [17]
is a popular stream processing platform. But our storage systems also support sub-
scriptions on historic data where both subscriptions and publications dynamically
expire, which data streams cannot support. Gemfire [1] is one of the few NoSQL
database systems where continuous queries are supported. They maintain a separate
in-memory processing framework, which maintains subscriber channels and commu-
nicates with the storage. InfluxDB [22] supports continuous queries on a time series
database and thus its application is limited. Microsoft supports efficient spatial con-
tinuous queries on SQL Server [21]. However, these works assume that the queries
fit in memory and are relatively static, that is, they do not scale to arbitrary numbers
of queries nor to rapidly added and expiring queries. Further, these models generally
only support “future-only” queries, that is, queries that only return future data items.

2.1.3 Join-Indices

Our work to combine two databases into one dual database is also related to join in-
dices, such as Oracle’s Bitmap join index [28], which creates a join index on attributes
from two tables to facilitate faster joins. However, these are separate and specialized
data structures that are generally expensive to maintain, in contrast to our proposed
solution that does not add any redundant indexes and is efficient to maintain.

2.2 Background

2.2.1 LSM tree

An LSM tree generally consists of an in-memory component (a.k.a. Memtable) and
several immutable on-disk components (a.k.a SSTables). Each component consists
of several data files and each data file consists of several data blocks. As depicted
in Figure 2, all writes go to in-memory component (C0) first and then flush into the
first disk component once the in-memory data is over the size limit of C0, and so on.
The on disk components normally increase in size as shown in Figure 2 from C1 to
CL. A background process (compaction) periodically merges the smaller components
to larger components as the data grows. Deletion on LSM is achieved by writing a
tombstone of the deleted entry to C0, which will later propagate to the component
that stores this entry.

LSM storage is highly optimized for writes as a write only needs to update the
in-memory component C0. This append-only style means that an LSM tree could
contain different versions of the same entry (different key-value pairs with the same
key) in different components. A read (GET) on an LSM tree starts from C0 and
then goes to C1, C2 and so on until the desired entry is found, which makes sure
the newest (valid) version of an entry will be returned. Hence, reads are slower than
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Fig. 2: LSM tree components.

writes. The older versions of an entry (either updated or deleted) are obsolete and will
be discarded during the merge (compaction) process.

Because of LSM trees’ good performance on handling high write throughput,
they are commonly used in NoSQL databases such as BigTable [11], HBase [18],
Cassandra [26], LevelDB [2], RocksDB [5] and AsterixDB [6].

2.2.2 LevelDB Storage Architecture

(a) LevelDB SSTable Format. (b) LevelDB’s leveled organization of SSTables.

Fig. 3: LevelDB Storage Architecture .

As we will implement our proposed approaches on top of LevelDB, we present
some storage details of LevelDB as background for ease of understanding. The SSTa-
bles of LevelDB are organized into a sequence of levels where Level-(i+ 1) is 10
times larger than level-i in LevelDB as shown in Figure 3b. Each level (component)
consists of a set of disk files (SSTables), each having a size around 2 MBs. Here we
can see that, the SSTables in the same level may not contain the same key (except
level-01). As described in the LSM storage, the lower level (smaller i) in LevelDB

1 which is C1 in Figure 2 as LevelDB does not number the memory component.
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will contain the more recent key-value pairs. Recent Cassandra versions support this
level merging (compaction) option used in LevelDB.

Further, LevelDB partitions its SSTables into data blocks (normally tens of KB
in size). The key-value pairs are stored in the data blocks sorted by their key. Meta
blocks contain meta information of data blocks. Index blocks store the addresses of
meta blocks and data blocks.

Compaction Policy: Similar to any LSM architecture, if any level L exceeds its
limit, they compact it in a background thread. Level-0 files are just flushed memtables
and that’s why they have overlapping key-ranges. But for all other level, each file
contains non-overlapping key-ranges. Their policy picks a file from level L and all
overlapping files from the next level L+1 to merge. This selection for a particular level
rotates through the key space of the files (i.e. Round-Robin). For example, in Figure
1, if C01 with key range [1,50] from level 1 is picked to merge with level 2, then
it will merge with C02 and C12 as they contain overlapping key ranges ([1,25] and
[26,50]) with C01. Compaction also drops overwritten/deleted values which ensures
one unique key per level.

Need to extend LevelDB to support pub/sub: We summarize the reasons why
we modified LevelDB vs. build an extra layer on top of it, to efficiently support
pub/sub. First, we need to map one key (subscription topic) to many values (pub-
lications), and search based on the key. This is not possible in current LevelDB’s
implementation. We show that our modified storage (Section 4) can support efficient
value lists with an intelligent lazy update strategy. Second, LevelDB does not sup-
port dynamic removal of expired pub/sub records. Specifically, we need to modify
LevelDB to remove expired publications and subscriptions during background com-
paction. Third, LevelDB does not allow to store heterogeneous data (subscriptions
and publications) in the same key space. Building a service layered on top of Lev-
elDB would lead to much slower performance, especially due to the second reason
above.

3 Framework

Table 1: Set of Operations for Pub/Sub Storage Framework

Operation Description
SUBSCRIBE (ID,
Subscription-JSON,
Sel f JoinFlag)

Store the subscription with ID as primary key; if Tmin is in past
(TS > Tmin), immediately return matching publications (publications
with same ID), which are published in [Tmin,Tmax] time interval ; if
Sel f JoinFlag is true, return matching list of subscriptions (see Sec-
tion 6.1).

PUBLISH (ID,
Publication-JSON,
Sel f JoinFlag)

store publication with ID as primary key; return subscribers who
subscribed to this ID (i.e. topic/region); if Sel f JoinFlag is true, also
return matching publications .

To support pub/sub operations on top of a NoSQL data store, we define a ba-
sic API as shown in Table 1. To illustrate the functionality of this API, consider
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the motivating application described in Section 1, where Subscriptions S (API call
SUBSCRIBE (ID, Subscription-JSON)) are generated by mobile users driving in
their vehicles, who are interested to know about recent events, such as accidents or
weather changes, close to their current location LS. “Recent” may refer to events that
happened in the time interval [Tmin = TS−10 sec, Tmax = TS+10 sec], where TS is the
query (subscription) time. Note that the time interval associated with each subscrip-
tion S can include both past and future time ranges. If the intervals only contained fu-
ture times, no storage would be needed for the publications. Whenever there is a new
publication (API call PUBLISH (ID, Publication-JSON)), i.e. an event occurred, we
look for all the stored subscriptions to notify them if the ID (cell-id for moving ob-
jects or topic-id for topic-based pub/sub systems) of the publication matches that of
the subscription. Whenever there is a new subscription (API call SUBSCRIBE (ID,
Subscription-JSON)), we store the subscription in the database so that for future
publications it can find matching subscriptions. Here, if the SUBSCRIBE operation
queries for “past” ( TS > Tmin) publications, it should immediately return all matching
and valid publications published during time interval in the past [Tmin , TS] (or [Tmin ,
Tmax] , if Tmin < TS). Note that, for both operations, it should only return “valid” publi-
cations/subscriptions. Valid means it should return only those matching results which
have not expired at current operation execution time (T < T max). We emphasize
that subscription time intervals span both the past and the future, we need a storage
framework to store the subscriptions as well as the publications.

ID is the key that joins subscriptions and publications. Subscription-JSON and
Publication-JSON are the JSON-formatted values in our Key-Value store. They hold
the attributes shown in Table 2. In this paper, we only consider topic-based pub/sub
queries which match based on one attribute only (e.g. location, topic etc). Note that
subscriptions may also specify additional conditions, such as keyword matching, for
instance, return data close to me that contain the term “accident.” Such conditions can
be supported by a postprocessing (filtering) layer on top of the location-constrained
or topic-constrained results. Another solution is to implement any of the existing sec-
ondary indexing techniques [29] on top of our proposed frameworks. These additional
features are out of scope of this paper and we consider them as future works.

Table 2: Set of Attributes and Terminologies

ID cell-id/topic-id/product-id
TP, TS Execution time of a publication and subscription
TR Duration between two repetitive queries.
Tmin,Tmax The time interval in a subscription query. Tmax is expiry time for

subscription and publication.
Sid,Pid Subscription and publication Identifier
Uid User Identifier (One user can submit multiple subscriptions)
Desc Text Description field in publication
Subscription-JSON Body of a subscription in JSON {Tmin, Tmax, TS, Sid, Uid}.
Publication-JSON Body of a publication in JSON {TP, Tmax, Pid, Desc}
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Fig. 4: Example of handling multiple writes (PUTs) with the same key, and a subse-
quent compaction.

4 Enable Value Lists in LevelDB

In this section we discuss how we modify LevelDB to handle lists of values instead
of a single value for every key. For example, the list of events for a single cell id is
stored as a value list with the cell id as key. LevelDB holds the LSM property shown
in Figure 2 where data is first inserted in memtable which is flushed to disk compo-
nents called SSTables later. SSTables like in Figure 3a hold records with unique key.
We described how SSTables are organized into levels in LevelDB in Section 2.2.2.
STables organized into levels in LevelDB and because of the way the compaction
takes place, there can be one unique key in each level.

For our problem, we do not want uniqueness in primary key as we assume that
for both SUBSCRIBE and PUBLISH operation, the location or cell-id is the primary
key and we will match queries with events using this key. So, instead of one record
associated with a key we will have a posting list of queries or events. So for each
insertion with non-unique primary key/cell-id, we add the new record with the current
list of records instead of dropping the old record. The naive way to do it will be an in-
place update of the list by issuing a read on the current list, appending the new data to
the list and writing back to the storage. Background compaction later will discard the
old list. But here the main drawback is that each write becomes very expensive, as we
need to read a large list. High write throughput is one of the fundamental features of
NoSQL databases which we can not compromise. Also we may have a lot of invalid
large lists throughout all the levels in SSTables, which will waste a lot space.

To solve this problem we implemented a lazy update strategy on the postings list.
When a new Write/Put is issued on a record, we do not look for existing value lists as-
sociated with the same key/cell-id in the disk. We simply write them to the memtable.
If there is a existing list in the memtable, we perform in-place update on the list in
constant time. Memtable is flushed to SSTables when it is full and these SSTables are
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compacted later to move to lower levels. We modify this compaction strategy appro-
priately, where instead of discarding old records, we merge lists associated with same
key and hence eventually large lists are created in lower levels. Original compaction
ensures that there can be at most one value list associated with a key in each level
except level-0 files as SSTables in non-zero levels contain non-overlapping keys in
LevelDB. Now we have fragmented list associated with a key throughout different
levels. When we issue a read on key, instead of returning the record on upper level,
it continues to search level by level to collect the fragmented lists. Example 1 illus-
trates how we maintain value lists in a lazy manner for each key in our key-valuelist
storage.

Example 1 Assume the current state of a Publication database right after the follow-
ing sequence of publish operations PUT(C1,P1), ..., PUT(C1,P2), ..., PUT(C2,P3),
PUT(C2,P4),..., PUT(C1,P5). Here Ci is the key and Pi is the value. Figure 4 depicts
the state of the storage components (i.e. SSTables and Memtable) after these opera-
tions. Note that, the figure only highlights the records affected by these operations,
but other records also exist in different components other than C1 and C2. We can
see instead of key-value pairs we have value lists for keys C1 and C2, fragmented in
components of different levels. Now, two new operations PUT(C1,P6), PUT(C2,P7)
are issued. Figure 4 shows how it affects the current lists and how these lists are lazily
updated during compaction. We first see the P6 is added to the list of C1 with an in-
place update and a new record C2->P7 was created inside Memtable. Now after some
compaction, these lists are moved to lower levels and we can see they are compacted
and merged into larger lists (C1->P6,P5,P2,P1 and C2->P7,P4,P3). Here a read on C1
before the compaction would require to access the Memtable and SSTables in level
i through level j. After compaction, a read requires to access an SSTable on level j
only.

4.1 Cleaning up Invalid Records in Compaction

Our problem space explores to the big active data area where millions of subscrip-
tions and publications can arrive and expire at a rapid pace. As they may have an
attribute in their value (Tmax), which denotes their expiration time. The storage man-
agement system should efficiently remove the expired items from its storage. Existing
LevelDB storage does not support dynamic removal of expiry pub/sub records. Our
proposed storage is built on top of LSM-tree which performs compaction in back-
ground. During compaction, we pick couple of SSTable files and compact them into
a new set of files. During this time we sort and merge the list of publications or sub-
scriptions associated with their ID, and check their expiration time against the current
time to discard them if found invalid. This dynamic removal of expiry records during
compaction does not allow LSM tree to grow indefinitely which makes our operations
lot faster.
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5 Proposed Approaches

We propose and implement several approaches to efficiently realize the API defined
in Section 3, while providing instant response times to publications. We first present
a reasonable baseline approach, RepQueries, which performs queries in a repetitive
way and cannot provide instant responses. Next, we present our first novel instant-
response approach (TwoDB), which maintains two databases for holding subscrip-
tions and data records/publications. Our second approach (DualDB) maintains a sin-
gle database holding both datasets. For all of the approaches we need to modify the
standard key-value storage model to support lists of values per key (for details see
Section 4).

5.1 Repetitive Queries Baseline (RepQueries)

RepQueries relies on a repetitive query approach and hence cannot guarantee in-
stance delivery of a new publication. This approach is used in many pub-sub systems
that use a broker management as a middle-ware between the database and the users.
Here the user/broker is responsible for submitting the query repetitively to the pub-
lication database to find out the matching events/topics. Note that the user/broker
is responsible to detect duplicate data if consecutive time ranges overlap. Also as
the events are highly dynamic, some of them might expire in-between the repetitive
queries and user can potentially face missing data.

Fig. 5: RepQueries Approach: Processing of SUBSCRIBE and PUBLISH Operation
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This approach only requires a database of publications. As periodic queries are is-
sued from client application, and there is no need for instant response, we do not need
to store the queries for future publications. A subscription is converted to a sequence
of queries, one every TR time units as shown in Figure 5. Specifically, it first issues a
historic query on past data with time interval [Tmin,TS], and then it repetitively issues
GetData operation after every TR time units. Here the PUBLISH operation does not
issue any read, it only writes the new publication to the database. So PUBLISH will
be very fast and SUBSCRIBE will be slow.

5.2 Two-Database Approach (TwoDB)

(a) Processing of new SUBSCRIBE Operation.

(b) Processing of new PUBLISH Operation.

Fig. 6: TwoDB Approach

As discussed in Section 2, previous works assume that the subscriptions are stored
in memory, which is not realistic in our scenario. Figures 6a and 6b show the data
flow for a new subscription (SUBSCRIBE) and a new publication of events/topics
(PUBLISH), respectively, for a two-database algorithm, where separate databases
(column families in Cassandra’s terminology) are maintained for, respectively, the
queries and the published events/topics.
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For every new continuous query, we must, in parallel, insert to the subscription
database SubscriptionDB and query the data storage PublicationDB for matching
events/topics. The former is needed when the Tmax of the subscription is greater than
current query time TS while the latter is only needed if the Tmin of the query is less than
TS. The query to the publication database GetData(cell− id,TS,Tmin) returns the list
of events which is published within time interval [Tmin,TS] and are valid (i.e.did not
expire) on that time. The procedure of GetData operation is presented in Algorithm 1.
Since the postings list could be scattered in different levels, GetData needs to merge
them to get a complete list. For this, it checks the Memtable and then the SSTables,
and moves down in the storage hierarchy one level at a time.

Algorithm 1 GetData(ID,TS,Tmin) operation
1: ListPB← /0

// Starts from Memtable (C0) and then moves to SSTable, C1 is LevelDB’s level-0 SSTable.
2: for j from 0 to L do
3: if ID is not in C j then
4: NEXT
5: List of Publications P← the value of key ID in C j
6: for Publication in P do
7: T ← Publication(TP)
8: Texp← Publication(Tmax)
9: if T < TS and T > Tmin and T < Texp then

10: ListPB.add(Publication)
11: if T < Tmin then
12: return ListPB
13: return ListPB

For each new publication of events/topics, we must, in parallel, check if an ac-
tive subscription query matches it, and also insert it into the publication database.
The matching function GetSubscribers(ID,TP) returns a list of subscribers who sub-
scribed to some events/topics on same ID and the query is still valid and if the pub-
lication time TP is within time interval [Tmin,Tmax] of the query. The procedure of
GetSubscribers operation presented in Algorithm 2 is similar to GetData operation
moving down level by level in storage to look for matching subscriptions.

Algorithm 2 GetSubscribers(ID,TP) operation
1: ListSB← /0

// Starts from Memtable (C0) and then moves to SSTable, C1 is LevelDB’s level-0 SSTable.
2: for j from 0 to L do
3: if ID is not in C j then
4: NEXT
5: List of Subscriptions S← the value of key ID in C j
6: for Subscription in S do
7: Texp← Subscription(Tmax)
8: Tmin← Subscription(Tmin)
9: if TP < Texp and TP > Tmin then

10: ListSB.add(Subscription)
11: return ListSB
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5.2.1 Pruning search in SSTables

To answer a subscription that has a Tmin in the past, we take advantage of an important
characteristic of level-based LSM systems. In LevelDB, each level is ordered by time
and older records go into lower levels. In our storage, each level can contain at most
one list associated with a key. That means the fragmented lists associated with a key
in different levels from top to bottom are ordered by time. Here, the publications in
each lists are also ordered by execution time TP. So for each SUBSCRIBE operation,
when we perform GetData operation to look for all matching publications from past
(Tmin), we check for associated lists going level by level. For each matching list, we
parse the list to check each publication record one by one. If we find one of them is
older than Tmin, we can safely assume that we neither need to go any further down the
level nor further right to this current list, and hence we stop the search. Lines 11-12
in algorithm 1 show this optimization.

5.3 Single Database Approach (DualDB)

A key observation is that if continuous subscription queries and data publications
could be stored in the same key space, then a single database (in LevelDB terminol-
ogy) could store both of them. Then query and data insertions would only need to
access a single database, which could reduce the number of disk accesses and more
importantly improve the caching efficiency. Further, the compaction cost might be
decreased, as we only have to compact a single database.

(a) Processing of a SUBSCRIBE Operation. (b) Processing of a PUBLISH Operation.

Fig. 7: DualDB Approach

We propose to study the properties and performance of using a single database,
which we call a dual database (DualDB). The key idea is that the key-value data
organization must be modified to accommodate a list of subscription and publication
items in the value. That is, for a given ID (cell-id or topic-id) in our example, both
the list of subscriptions and publications will be stored in the posting list of this
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ID. As LevelDB does not allow same key inside a component, we need to change
the storage architecture to allow the disk and memory components holding at most
two lists associated with the same key/cell-id. We assign a bit with the primary
key (IDS, IDP), which will state whether it’s a list of publications or subscriptions.
Figures 7a and 7b show, respectively, how new query and new publication of events
are processed in the proposed DualDB.

(a) Two-Database Approach

(b) Single Database Approach

Fig. 8: Snapshot of storage components for our LevelDB-style LSM database for
pub/sub System.

We can see that the key difference with the TwoDB approach is using single
database against two and all the operations Put, GetData and GetSubscribers are
performed with same ID with a assigned flag stating whether its a query or data. Here
both GetData and GetSubscribers procedure follows the same algorithms 1 and 2 of
TwoDB approach respectively. The optimization techniques for lookups described in
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Section 5.2.1 can also be applied for DualDB in similar fashion. DualDB, similarly to
TwoDB, cleans up the invalid records during compaction as described in Section 4.1.

As we are combining two databases into one database containing two lists, the
storage components are changed accordingly to hold any such two heterogeneous
data. Figures 8a and 8b show, respectively, snapshots of the entries in the correspond-
ing databases for the Two-Database approach and the DualDB approach. In Figure 8a,
we can see that the TwoDB approach holds posting lists of subscriptions (S1,S2,...)
and publications (P2,P1,...) in two different databases and each list associated with a
ID (C1,C2 etc.) is fragmented throughout different levels. Figure 8b shows the Du-
alDB is holding lists of subscriptions and publications in same components with same
key ID which holds a flag (C1S,C1P) that distinguishes between them. As in each
component the records are sorted by key, these two lists will always be co-located
with each other. This should allow improvements in both LevelDB memory cache
and the operating system page cache. These figures assume a leveled storage archi-
tecture (as in LevelDB and Cassandra); a stack-based architecture can be handled
similarly.

A broker in a pub/sub system can utilize these SUBSCRUBE and PUBLISH APIs
as continuous queries if the storage layer is built on top of TwoDB or DualDB. Here
compared to the repetitive approach, both of our approaches work on continuous
queries and can guarantee that there is no data loss.

6 Extend to Complex Subscriptions

6.1 Self-Joining Subscriptions

As discussed in Section 5, our TwoDB and DualDB approaches can efficiently pro-
cess simple publications and subscriptions. However, some scenarios require publica-
tions to also access other publications, in addition to querying the subscriptions (the
same holds for subscriptions). We call these self-joining publications (subscriptions).
Motivating Examples. Consider mobile users moving and subscribing to events on
a region or cell. Imagine the scenario where a mobile user enters cell c1, then c2
and then c1 again, all within 10 seconds, and all subscriptions have a time interval
of ±10 sec. A desirable property for many applications is that data already returned
when the user was in c1 the first time should not be returned again during the sec-
ond entry. For that, the system must efficiently identify what data has already been
returned to a user. This is a classic use-case for using self-join subscriptions where
for a new subscription, we need to access not only the list of past matching publica-
tions, but also access the list of matching past subscriptions from the user in order
to filter these results. As another application, consider a user who subscribes to a
sensor temperature (or to a stock price) and wants to be notified if there has been
a sudden change/drop in temperature/price. In this case, for a new publication, we
need to traverse both the publications list to check past temperatures/prices in this
location/stock, and the subscriptions lists to know who subscribes here.

That is, for these operations, a subscription (publication) must join with past sub-
scriptions (publications), hence the name self-joining subscriptions. Our existing stor-
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age framework gives us flexibility to support such subscriptions efficiently. For both
our approaches, if Sel f JoinFlag is set we assume that it is a self-joining operation.

For a self-join subscription, we write our subscription and/or publication to the
storage and retrieve a list of events and a list of queries from storage by issuing a
GetDataANDSubscribers(ID,TP/S,Tmin) operation. Here TP/S means execution time
of either publication or subscription.

Algorithm 3 GetDataANDSubscribers (ID,TP/S,Tmin) operation on TwoDB

1: ListPB← this.PublicationDB.GetData(ID,TP/S) // [Algorithm 1]
2: ListSB← this.SubscriptionDB.GetSubscribers(ID,TP/S,Tmin) // [Algorithm 2]
3: return ListPB, ListSB

Algorithm 4 GetDataANDSubscribers(ID,TP/S,Tmin) operation on DualDB

1: ListPB← /0
2: IDP← Set f lag(ID,E)
3: ListSB← /0)
4: IDS← Set f lag(ID,Q)

// Starts from Memtable (C0) and then moves to SSTable, C1 is LevelDB’s level-0 SSTable.
5: for j from 0 to L do
6: if IDP is not in C j and IDS not in C j then
7: NEXT
8: ListSB← // Apply Line 5-10 in Algorithm 2 for key IDS .
9: ListPB← // Apply Line 5-12 in Algorithm 1 for key IDP .

10: return ListPB, ListSB

In the TwoDB approach, the implementation for self-join subscription is straight-
forward: we simply perform an extra GetSubscribers (ID,TP/S) operation (Algo-
rithm 2) on PublicationDB (along with GetData operation) to return the list of ac-
tive matching subscribers for SUBSCRIBE operation and perform an extra GetData
(ID,TP/S,Tmin) operation ((Algorithm 1)) on PublicationDB (along with GetSubscribers
operation) to return the list of valid publications for PUBLISH operation.

In DualDB, both the lists of publications and subscriptions associated with the
same ID are stored in the same disk block next to each other. We convert the
GetSubscribers and GetData operations performing on same Dual database into a
single operation, which means we can get the both the lists of publications and sub-
scriptions on single operation. We first convert the key ID to IDP and IDS by setting
appropriate bits. Then we search in our DualDB starting from Memtable and moving
to SSTables level by level. If we find a match for either IDP or IDS , we fetch the
resulting block form the storage components which might contain both the lists. We
extract both the lists if they are available in that particular fetched block. Here we
can see that one disk I/O might sufficient against two if the list of publications and
subscriptions are co-located inside same storage file block.
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6.1.1 Cost Analysis (TwoDB V s DualDB V s RepQueries)

Table 3 summarizes the number of disk accesses for each PUBLISH/SUBSCRIBE
operation for simple and self-joining subscriptions.

For simple subscriptions, only one I/O is needed to write the subscription and
the publication in SUBSCRIBE and PUBLISH operation respectively. For both the
operation, we issue a read (GetData/GetSubscribers operation) on the database which
may involve up to L (number of levels) disk accesses (because in worst case the
postings list is scattered across all levels). Here, at most one disk access is required
for level except level-0. As level-0 contains files with overlapping key ranges, we
need to traverse all files inside level-0. Let us assume l0 is the number of level-0
files. As both TwoDB and DualDB approach issue one write and one read for their
each operation, the total cost becomes (L+ l0)+ 1 disk accesses for both of them.
RepQueries performs Tmax−TS

TR
repetitive queries on publication database instead of

a single subscription. But RepQueries publish operation only writes the publication
record to the database.

For Self Joining subscriptions, similarly one write is needed for each operation.
But for TwoDB approach, we need to submit two reads in two databases of publi-
cation and subscriptions (one in PublicationDB and one in SubscriptionsDB). This
makes the total cost as 2 ∗ (L+ l0) + 1 disk accesses for each PUBLISH or SUB-
SCRIBE operation. But DualDB approach (Algorithm 4) only issues one read in dual
database and the total cost becomes (L+ l0)+1 disk accesses in the worst case. Note

Table 3: Number of disk accesses for PUBLISH/SUBSCRIBE operation for simple
vs self-joining subscriptions.

Approach:Operation Simple Subscription Self-Join Subscription
TwoDB : SUB (L+ l0) + 1 2 · (L+ l0) + 1
DualDB : SUB (L+ l0) + 1 (L+ l0) + 1

RepQueries : SUB Tmax−TS
TR

· (L+ l0), Not Supported
TwoDB : PUB (L+ l0) + 1 2 · (L+ l0) + 1
DualDB : PUB (L+ l0) + 1 (L+ l0) + 1

RepQueries : PUB 1 Not Supported

that we assume there is only one disk access per write operation. But in practice, Lev-
elDB suffers from high write amplification factor where same data is written multiple
times when moved from one level to another. This factor is excluded from our calcu-
lation.

6.2 Support for Hierarchical Attributes

In this section, we introduce an optimization in our storage system to efficiently sup-
port multi-granular data, which can be defined by a hierarchical model. For exam-
ple, we may have a spatial hierarchy (e.g. Country->State->County->City->Block),
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where each publication or subscription may select spatial cells of different granular-
ity. Similarly, topics from a topic hierarchy can be selected. We propose and compare
two approaches to support such hierarchical attributes in a pub/sub storage system.
Note that the choice of an approach is orthogonal to the choice of a storage architec-
ture from the ones described in Section 5.

6.2.1 Fixed Granularity Approach

In this approach, both subscriptions and publications use the lowest level keys in
the hierarchy. For example, if a subscription specifies a city which has 100 blocks,
then we insert 100 copies of the subscription. Similarly we handle publications. A
disadvantage is that multiple entries are needed for each subscription or publication.
The key advantage is the simplicity, as this can be implemented as a preprocessing
step on top of any storage framework.

6.2.2 Variable Granularity Approach

In this approach, we only have one entry per subscription or publication, and the
storage framework manages the matchings. We propose to use Dewey encoding [32]
(incremented integer numbers separated by dots) to represent each entity in the on-
tology, and this Dewey id becomes the key (ID) of the publication or subscription.
Let us assume a hierarchy is defined by a quad tree. Figure 9a illustrates how each
node in different depth of the quad tree can be represented by a Dewey encod-
ing. Figure 9b illustrates how we partition the space using that quad tree. During
a SUBSCRIBE/PUBLSIH operation, we write the entry (publication/subscription) to
the database and issue a range query from its Dewey to the Dewey of its next sibling.

For example given the quad tree partition in Figure 9, let a publication/subscription
cover area (1.4) (or represent topic (1.4) if we use topics instead of locations as ID).
The fixed granularity approach will issue PUBLISH/SUBSCRIBE operation for each
areas/topics in the leaf level of the subtree of (1.4) [(1.4.1), (1.4.1.1), (1.4.1.2),(1.4.1.3),
(1.4.1.4), (1.4.2), (1.4.3), (1.4.4)]. But in our optimized variable granularity approach,
we will issue one write for this topic/area (1.4) and issue a range query from (1.4) to
(1.5).

Next, we discuss how a range query based on Dewey IDs is efficiently supported,
by modifying the approaches in Algorithm 1 and 2. We iterate from upper level
to lower level, and for each level when we find the file that contains the start key,
retrieve the value list associated with that key, and then instead of returning from
there we continue iterating through that file (or next file if necessary) until the end
key. As we know that the data in our storage files (i.e.SSTables) are lexicographically
sorted by their keys (i.e. Dewey numbers) and partitioned into fixed size blocks. So
given a Dewey Number representing an internal node, all the nodes descended from
that node by pre-order traversal should be stored. That makes this range query very
efficient.

Figure 9c represents a snapshot of an SSTable in our DualDB, where the spatial
hierarchy is represented by a quad tree in Figure 9a and 9b. Here we can see that how
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(a) A Quad Tree and Dewey Encoding for each Node

(b) Partitioning Space using Quad Tree and Dewey Rep-
resentation in Leaf Nodes

(c) Snapshot of an SSTable in DualDB con-
taining lists in order of Dewey ID of the Key

Fig. 9: Variable Granularity Approach by Using Dewey Encoding

the list of publications or subscriptions in SSTable are sorted by its key lexicographi-
cally. If we issue a range query from (1,4) to (1,5), our algorithm will look for the file
which contains (1,4) in each level, retrieve the disk block K of that SSTable and re-
trieve the list of subscriptions/publications associated with (1,4). Then it will retrieve
the next records of that disk block subsequently [(1,4,1),(1,4,1,1),...] until it reaches
the node (2). It might retrieve subsequent disk blocks in order to reach (1,5)/(2). In
this figure, the last record of the block K is (1.4.1.2) and we need to retrieve block
(k+1). Note that similarly to our simple point lookup algorithm in Section 5.2.1, we
check the time predicates of all the publications/subscriptions in each list for validity,
and return early if pruning can be utilized.
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Algorithm 5 GetDataInRange (StartIDP,EndIDP,TP,Tmin)
1: ListPB← /0

// Starts from Memtable (C0) and then moves to SSTable organized into L Levels. C1 is LevelDB’s level-0 SSTable.
2: for j from 0 to L do
3: ListSST s← getOverlappingSSTablesInsideLevel( j,StartIDP)
4: for f in ListSST s do
5: Iterator← getIterator(C f )
6: Iterator← Iterator.Seek(StartIDP)
7: while Iterator is Valid do
8: if Iterator.Key.getFlag() is Publication then
9: List of Publications P← Iterator.Value

10: ListPB← // Apply Line 6-9 with value of TP and Tmin in Algorithm 1 to Populate ListPB from P
11: Iterator← Iterator.Next()
12: if Iterator.Key >= EndIDP then
13: return ListPB
14: return ListPB

Algorithm 5 summarizes how a single lookup GetData operation (Algorithm 1)
for simple subscription queries can be extended to support a range operation
GetDataInRange based on Dewey representation. Algorithm 2, 3 and 4 are extended
similarly to support range operation on hierarchical attributes for simple and self-
joining subscriptions.

6.2.3 Cost Analysis (Fixed Vs Variable Granularity Approaches)

We derive in Section 6.1.1 that a single PUBLISH or SUBSCRIBE operation can cost
O(L) = L+ l0+1 number of disk accesses for both simple and self join subscriptions
in DualDB. If we define the hierarchy as quad tree and the maximum depth as d,
the number of leaf nodes in the worse case will be 4d . So the cost for one operation
will be 4d ∗O(L) as we issue one operation for all leaf nodes separately. But for the
variable granularity approach, we issue one write and a range query. Each range query
similarly can hit L+ l0 number of files in each level and for each file, we may retrieve
C consecutive disk blocks. C can be computed by dividing the size of the result set
by the block size. The cost for each operation will be C ∗ (L+ l0)+1 number of disk
accesses.

Table 4: Number of Disk Accesses for Hierarchical Attributes

Approach Approximate I/O Cost
Fixed Granularity 4d ∗O(L)

Variable Granularity C ∗ (L+ l0)+1
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7 Experiments

7.1 Experimental Setup

We ran our experiments on a machine with the following configuration: Processor of
AMD Phenom(tm) II X6 1055T and 8GB RAM, with Ubuntu version 15.04.

7.1.1 Data and Query Workload

We used the Twitter streaming API to collect 15 million geotagged tweets, taking
12 GB in JSON format, located within New York State. We use this dataset to gen-
erate our desired workloads for the experiment. We ran experiments using different
Subscription-to-Publication ratios. As there are too many parameters, we set the time
intervals for each query and expiration time of each event to a constant value: all
subscriptions have Tmin as 10 seconds behind current time TS and Tmax as 10 seconds
ahead of TS, and all the publications have expiration time (Tmax) of 20s ahead of cur-
rent time TP. For baseline RepQueries, we convert each SUBSCRIBE operation into
10 repetitive queries, each is executed after every TR = 1 second interval.

There are several public workloads for key-value store databases available online
such as YCSB [13]. However, to simulate a highly dynamic publish/subscribe model,
we need to generate a mix of dynamically expiring subscriptions and publications.
We decided to write our own script to generate different workloads from the real
twitter dataset. Our workload generator considers each tweet as either a subscription
or a publication depending on the Subscription-to-Publication ratio.

As all our tweets were collected within New York State, we use the bounding box
rectangle around New York State and partition it to generate 500∗500 uniform sized
cells each having a unique identifier cell-id. We map the Geo-location of the tweet
to appropriate cell-id and use this cell-id as a primary key for input. If the tweet is
an event (publication), the text is considered as event description. Tweet ID is used
as either subscriber ID or publication ID. The time intervals are set according to
the execution time of that particular operation as discussed above. In our dataset, as
we have about 0.25 million cells and 15.3 million tweets, average number of tweets
per cell is about 60 and as described, these tweets are converted into events and
subscriptions.

7.1.2 Padres Baseline

In addition to the repetitive queries baseline (RepQueries) described in Section 5.1,
we also compare to a popular Pub/Sub system, Padres. We understand that Padres is
a content-based pub/sub and it also has a client-server architecture, which may incur
additional overhead in delivering a subscription result, but we show that the per-
formance difference is quite dramatic, which would dominate such overhead. First,
we have to express our problem setting using Padres’ model. For that, we convert
our workload into Padres subscription and publication operations. Padres supports
historic subscriptions on past queries. So, each subscriptions in our dataset is equiv-
alent to one historic subscription and one regular subscription in Padres. Each event
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publication is also converted to a publish operation in Padres. We installed Padres
locally containing one broker and two clients connecting to the broker. One client is
subscribing queries and the other client is publishing events. For clarification, let’s
illustrate the dataset conversion with an example. Suppose at TS, a subscription query
with cid as cell-id and interval [Tmin,Tmax] is issued. We then convert it to a composite
subscription (Expression 1) and a regular subscription (Expression 2).

CS[class,eq,historic], [subclass,eq,events],

[T,<,TS], ..., [cellid,eq,cid]&[T,>,Tmin], ..., [cellid,eq,cid] (1)

S[class,eq,events], [T,<,Tmax], ..., [cellid,eq,cid] (2)

A new generated event publication at TP with cid as cell-id and Tmax as expiration
time will be converted to the following publication operation (Expression 3).

P[class,events], [T,TP], [description,any], [cellid,cid] (3)

7.2 Experimental Results

We conduct our experiments on workloads for both simple matching subscription and
more advanced self-joining and multi granular subscriptions for different subscription-
to-publication ratios, which represent different use cases.

7.2.1 Simple Subscriptions

Figures 10 and 11 show the overall, SUBSCRIBE and PUBLISH performance of all
systems subscription heavy ( Subscription

Publication = 3) and publication heavy ( Subscription
Publication = 1

3 )
workloads, respectively. For example, our moving subscriber application is a use-case
for subscription-heavy workloads whereas following Twitter accounts is a use-case
of publication-heavy workloads. In all figures, we record the performance once per
million operations. We display the cumulative total time taken for both PUBLISH
and SUBSCRIBE operation separately and also collectively and calculate average
time per operation in every million operations.

Figures 10 and 11 show that if the system relies on repetitive queries instead of
instant response queries, it can not scale to millions of operations. As RepQueries
does not issue any read after each publication, and only issues a write to a single
database, PUBLISH has very good performance as expected. But SUBSCRIBE has
bad performance as RepQueries. The overall performance is far worse than our pro-
posed instant-response variants. Both TwoDB and DualDB approaches have about
1000% better performance than RepQueries for subscription heavy workload, and
300% better for publication heavy workload.

According to the theoretical analysis in Section 6.1.1, both TwoDB and DualDB
approaches cost the same number of disk accesses for each PUBLISH and SUB-
SCRIBE in the worst case. This is confirmed experimentally in Figure 11, where we
find that they have identical performance for publication heavy workload.



High-throughput Publish/Subscribe on top of LSM-based Storage 25

 100

 1000

 10000

 2  4  6  8  10  12  14

T
im

e
 p

e
r 

O
p
 (

µ
s)

Number of Op (million)

TwoDB
DualDB

RepQueries
Padres

(a) Overall performance

 100

 1000

 10000

 2  4  6  8  10  12  14

T
im

e
 p

e
r 

O
p

 (
µ

s)

Number of Op (million)

TwoDB
DualDB

RepQueries
Padres

(b) SUBSCRIBE performance

 0

 100

 200

 300

 400

 500

 600

 700

 2  4  6  8  10  12  14

T
im

e
 p

e
r 

O
p

 (
µ

s)

Number of Op (million)

TwoDB
DualDB

RepQueries
Padres

(c) PUBLISH performance

Fig. 10: Performance of different storage variants for simple subscription queries on
subscription heavy workload

Figure 10 shows the results for subscription heavy workload, where DualDB is
better than TwoDB by about 5%. This behavior is expected in DualDB, although it
does not perform any extra disk access than TwoDB theoretically. The reason is that
DualDB holds both query and data associated with a key inside the same disk block
or in a neighbor disk block, which leads to better cache performance for both OS
page cache and LevelDB block cache.

We see in Figures 10 and 11 that Padres performs poorly not only compared
to our two approaches, but also to the repetitive baseline. Also, in our experiments
Padres is not able to cope with the increasing number of subscriptions, and runs out
of memory very quickly (even before 2 million operations) and the system crashes.
This is because it relies on an in-memory data structure to manage subscriptions and
fails to cope with a very large number of queries. Note that we allocated maximum
memory for Padres (i.e. 8GB) and it still runs out of memory. Here we can see that
even if we have sufficient memory to support small number of subscriptions, the use
of traditional SQL-like database perform much worse (up to 300%) than even our
baseline RepQueries approach.



26 Mohiuddin Abdul Qader, Vagelis Hristidis

 0

 200

 400

 600

 800

 1000

 1200

 2  4  6  8  10  12  14

T
im

e
 p

e
r 

O
p
 (

µ
s)

Number of Op (million)

TwoDB
DualDB

RepQueries
Padres

(a) Overall performance

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2  4  6  8  10  12  14

T
im

e
 p

e
r 

O
p

 (
µ

s)

Number of Op (million)

TwoDB
DualDB

RepQueries
Padres

(b) SUBSCRIBE performance

 50

 100

 150

 200

 250

 300

 350

 400

 450

 2  4  6  8  10  12  14

T
im

e
 p

e
r 

O
p

 (
µ

s)

Number of Op (million)

TwoDB
DualDB

RepQueries
Padres

(c) PUBLISH performance

Fig. 11: Performance of different storage variants for simple subscription queries on
publication heavy workload

7.2.2 Self-Joining Subscriptions

Similar to the simple matching subscription, we observe the performance for com-
plex self-joining subscriptions. Figures 12 and 13 show the overall, SUBSCRIBE
and PUBLISH performance of DualDB and TwoDB approaches on both subscrip-
tion and publication heavy workloads, respectively. Here we do not consider baseline
RepQueries approach, which relies on repetitive queries on Events database, because
it does not store the subscriptions in a database and hence it cannot perform self-
joining queries.

Figure 12 shows that DualDB is overall 20% (About 6% on PUBLISH and About
25% on SUBSCRIBE) faster than TwoDB for subscription heavy workload. We see
similar performance gain of 12% overall improvement for DualDB over TwoDB in
publication heavy workload. Note that here PUBLISH performs much better than
subscription heavy workload which is desired in a publication heavy workload.

7.2.3 Subscriptions for Multi Granular Data

To simulate the environment for multi granular attributes, we partitioned the space by
a balanced quad tree of depth 5 instead of a uniform grid. Here each cell represents
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Fig. 12: Performance of different storage variants for Self-joining subscriptions on
subscription heavy workload

a node in the tree and each cell-id is encoded by Dewey Numbering (described in
Section 6.2 and Figure 9). We set subscription-to-publication ratio as 1. This work-
load generates a mix of subscriptions and publications from different levels. We argue
that the smaller cells will likely be accessed more than larger cells up in the hierar-
chy. For that, we design the workload generator in such way that a cell in level i has
probability proportional to P

2d−i to be selected, where d is the maximum depth of the
tree. In parallel, we also generated the workload for the fixed granularity approach
by translating each operation into a multi operation (one operation for all the lowest
level cells).

Figure 14 shows the overall, SUBSCRIBE and PUBLISH performance of DualDB
for this workload of variable granularity against the fixed granularity approach. We
see that our intelligent range query based variable granularity approach performs
about 300% better for both PUBLISH and SUBSCRIBE operation. Figure 16 shows
the performance for both approaches in different levels. It shows the average time per
operation after performing 15 million operation. We see that our variable granularity
approach performs even better for upper levels in the hierarchy. These results justify
the cost analysis in Section 6.2.3.

In the above experiment, we assume that a subscription or publication must pick
one of the existing geospatial regions of the quad tree. Next, we show how arbitrary
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Fig. 13: Performance of different storage variants for Self-joining subscriptions on
publication heavy workload

spatial regions, specifically circles can be supported, represented by a geo-location
point and a radius. We generated a workload from our Twitter dataset for this ap-
plication, where we select a radius for each operation from a set of five radii (4 ∗R,
2∗R, R, R/2, R/4). Here, R is the length of the smallest cell in the quad tree. For the
variable granularity approach, each operation’s geo-location and a randomly selected
radius (from the pre-defined set) is mapped to the cell in our quad tree whose area
fully contains the circle region. For fixed granularity approach, this circle is mapped
to all the cells in the lowest level whose rectangular region intersect with this circle.
We perform one operation for all of these cells separately. Figure 15 shows that our
variable granularity approach performs about 200% better for both PUBLISH and
SUBSCRIBE operations. Figure 17 shows the performance for both approaches for
different radii. We see that the performance gain of our variable granularity approach
becomes greater for larger radii.

8 Conclusions and Future Work

In this paper we present efficient storage and indexing approaches to achieve high
throughput publish/subscribe on LSM-based databases where both the number of
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Fig. 14: Performance of Pub/Sub in DualDB for high granular data in Different levels
of hierarchy for whole workload

subscriptions and publications are massive in scale and one or both of them can arrive
and expire with time. Our approaches support instant notifications. We also consider
a baseline approach that relies on repetitive queries. We also show how hierarchical
attributes in multi granular data can be supported efficiently by a Dewey encoded
representation.

We implement these storage frameworks on top of the popular LSM-based Lev-
elDB system and conduct extensive experiments using real datasets. In contrast to
our TwoDB approach, DualDB approach is harder (in terms of lines of code) to im-
plement on an existing NoSQL storage, but it offers better performance and more
flexibility. The experimental results show that our proposed approaches outperform
the state-of-the-art Padres pub-sub system (by up to 3000%) and also outperform the
repetitive baseline RepQueries (by up to 1000%). We also show that our DualDB ap-
proach outperforms the TwoDB approach for simple subscriptions by a small margin
(up to 5%) and for self-joining complex subscriptions by larger margin (up to 20%).
For hierarchical attributes, we show that our variable granularity approach based on
Dewey encoded IDs performs much better (up to 300%) than the fixed granularity
approach.

In the future, we plan to extend this work to a distributed environment. We also
plan to allow more complex subscription queries that do not match based on a primary
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Fig. 15: Performance of Pub/Sub in DualDB for high granular spatial data covering
area of different radii

key conditions, where any of the existing secondary indexing techniques [29] can be
used on top of our proposed frameworks.
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