
Beyond Lazy XML Parsing1

Fernando Farfán, Vagelis Hristidis, Raju Rangaswami

School of Computer and Information Sciences

Florida International University
{ffarfan,vagelis,raju}@cis.fiu.edu

Abstract. XML has become the standard format for data representation and

exchange in domains ranging from Web to desktop applications. However, wide

adoption of XML is hindered by inefficient document-parsing methods. Recent

work on lazy parsing is a major step towards alleviating this problem. However,

lazy parsers must still read the entire XML document in order to extract the overall

document structure, due to the lack of internal navigation pointers inside XML

documents. Further, these parsers must load and parse the entire virtual document

tree into memory during XML query processing. These overheads significantly

degrade the performance of navigation operations. We have developed a

framework for efficient XML parsing based on the idea of placing internal physical

pointers within the document, which allows skipping large portions of the

document during parsing. The internal pointers are generated in a way that

optimizes parsing for common navigation patterns. A double-Lazy Parser (2LP) is

then used to parse the document that exploits the internal pointers. To create the

internal pointers, we use constructs supported by the current W3C XML standard.

We study our pointer generation and parsing algorithms both theoretically and

experimentally, and show that they perform considerably better than existing

approaches.

Keywords: XML, Document Object Model, Double Lazy Parsing, Deferred

Expansion, XPath.

1 Introduction

XML has become the de facto standard format for data representation and exchange in

domains ranging from the Web to desktop applications. Examples of XML-based

document types include Geographic Information Systems Markup Language (GML) [8],

Medical Markup Language (MML) [17], HL7 [10], and Open Document Format (ODF)

[21]. This widespread use of XML requires efficient parsing techniques. The importance

of efficient XML parsing methods was underscored by Nicola and John [19], showing

that the parsing stage is processor and memory consuming, needing main memory as

much as ten times the size of the original document.

There are two de facto XML parsing APIs, DOM [2] and SAX [22]. SAX reads the

whole document and generates a sequence of events according to the nesting of the

elements, and hence it is not possible to skip reading parts of the document as this would

change the semantics of the API. On the other hand, DOM allows users to explicitly

navigate in the XML document using methods like getFirstChild() and

1 This project was supported in part by the National Science Foundation Grant IIS-0534530 and by

the Department of Energy Grant ER25739.

getNextSibling(). DOM is the most popular interface to traverse XML documents

because of its ease of use. Unfortunately, its implementation is inefficient since entire

subtrees cannot be skipped when a method like getNextSibling() is invoked. This

also leads to frequent “Out of Memory” exceptions. In contrast to SAX, parsing a

document using DOM could potentially avoid reading the whole document as the

sequence of navigation methods may only request to access a small subset of the

document. In this work we focus on parsing using a DOM-like interface.

Lazy XML parsing has been proposed (e.g., [25, 20]) to improve the performance of

the parsing process by avoiding the loading of unnecessary elements. This approach

substitutes the traditional eager evaluation with a lazy evaluation as used by functional

programming languages [1]. The architecture shown in Figure 1, based on the

terminology of [20], consists of two stages. First, a pre-parsing stage extracts a virtual

document tree, which stores only node types, hierarchical structure information, and

references to the textual representation of each node. After this structure is obtained, a

progressive parsing engine refines this virtual tree on demand, expanding the original

virtual nodes into complete nodes with values, attributes, etc. as they are needed.

Clearly, the lazy parsing technique

is a significant improvement.

However, it still suffers from the high

initial cost of pre-parsing (Figure 1)

where the whole document must be

read before the lazy/progressive

parsing starts. The pre-parsing stage is

inevitable due to the lack of internal

physical pointers (or something

equivalent) within the XML document. Further, the entire virtual document tree must be

loaded and processed in main memory during the progressive-parsing stage, i.e. during

query processing.

Overview of Approach: We call our XML parsing approach double-Lazy Parsing (2LP)

because both stages in Figure 1 are lazy, in contrast to previous works where only the

second stage is lazy. The first stage is performed offline, when the document is

partitioned into a set of smaller XML files, then interlinked using XInclude [26] pointers.

The optimal partition size is computed by considering the random versus sequential

access characteristics of a hard disk.

The second stage parses a partitioned document, reading a minimal set of partitions to

perform the sequence of navigation commands. 2LP loads (pre-parses using the

terminology of Figure 1) the partitions in a lazy manner (only when absolutely

necessary). In the case of DOM, we maintain an overall DOM tree D(T) which is

initially the DOM tree of the root partition P0 of the XML tree T. Then D(T) is

augmented with the DOM trees D(Pi) of the loaded partitions Pi.

Our approach dramatically reduces the cost of the pre-parsing stage by only pre-

parsing a typically small subset of the partitions. Furthermore, our approach leads to

significantly faster progressive-parsing times than traditional lazy parsing, as we show

experimentally, due to the fact that whole subtrees are skipped.

 To complement lazy partition loading, our approach also performs lazy unloading of

inactive partitions (described in Section 2) if the total amount of main memory used by

the DOM tree exceeds a threshold. Hence, in addition to a fast pre-parsing stage, our

method also allows DOM-based parsing with limited memory resources. Note that

previous lazy parsing techniques can also in principle achieve this to a smaller degree;

Figure 1. Lazy XML Parser Architecture

Figure 2. Sample XML Document and Corresponding Tree

the virtual document tree must still be stored in memory at all time. However, this

optimization is not used in the current implementation of the Xerces DOM parser.

A drawback of the 2LP approach is that the XML document is split into a set of

smaller XML documents/files. Unfortunately, the XML standard does not support an

alternative physical pointer construct (XPointer [29] is logical and not physical) due to

the complication this would incur during cross-platform document exchange. We argue

and demonstrate in the rest of this paper that the performance gains in XML document

navigation far outweigh the drawbacks of document splitting. Further, if physical

pointers are introduced for XML in the future, our work can be immediately applied.

This paper makes the following contributions: (1) We develop a framework to allow

efficient XML parsing, which improves both the pre-parsing and progressive parsing

time as well as the memory requirements of both parsing phases. (2) We present

algorithms to perform partitioning and double-Lazy XML Parsing (2LP) for DOM-like

navigation. Note that 2LP-enabled documents are backward compatible  i.e., they can be

parsed by current XML parsers. (3) We show how the theoretically optimal partition size

can be computed assuming knowledge of the navigation patterns on complete XML trees

and the hard disk characteristics. (4) We study our partitioning and parsing algorithms

both theoretically and experimentally. Experiments on various XML navigation patterns,

including XPath, confirm our theoretical results and show consistent and often dramatic

improvement in the parsing times.

The rest of the paper is organized as follows: We describe our double-Lazy parsing

techniques in Section 2. Section 3 presents techniques for partitioning the original

document into smaller subtrees. Our experiments are discussed in Section 4. We present

related work in Section 5. Finally, Section 6 discusses our conclusions and future work.

2 2LP on Partitioned XML Documents

Let T be the original XML document, and P0, … Pn be the partitions to which T was split

during the partitioning stage (elaborated in Section 3). P0 is the root partition, since it

contains the root element of T. Figure 3(a) shows an example of a partitioned XML tree.

All the partitions are connected by XInclude elements, containing the URI to the

partition file. The XInclude elements are represented in the figure by b′, f′, j′. Note that

by creating a partition (e.g., P2), the key result is that we facilitate skipping the subtree

rooted at this partition. That is, by creating partition P2 we can access directly node a

from node f′ to node n.

The XML representation of two of the partitions in Figure 3(a) is shown in Figure

3(b). Partition P0 contains the document root and is then the root partition. The subtree

rooted at the first Book element was partitioned and the Book element has been replaced

by the XInclude pointer to the XML document of Partition P1. This additional element

Figure 4. Load Partition Algorithm

(a) Tree Partitions (b) Sample Document Partitions

Figure 3. Partitioned XML Tree and Document Partitions

added to the tree upon partitioning will hold the reference to the root of the partition’s

subtree. We explain this in detail in Section 3.

Figure 4 describes the process of loading (pre-parsing) a partition. After loading a

partition, progressive parsing occurs as needed. The loadPartition() method

replaces, in the working DOM tree, the XInclude pointer element e with the DOM tree of

the partition that e points to.

To ensure the double-lazy processing of the partitions, we need to decide when it is

absolutely necessary for a partition to be loaded. Intuitively, a partition must be loaded

when a navigation method (e.g., getFirstChild()) cannot be executed without doing

so, that is, the return value of the method cannot be computed otherwise.

Note that if limited memory is available,

we unload inactive partitions as needed. A

partition is inactive if none of its nodes

appear on the path from the root of the XML

document to the currently accessed XML

node. Traditional replacement techniques can

be used to decide which inactive partition to

unload like LRU.

We now discuss the 2LP versions of the key DOM methods that may trigger the

loading of a partition: getFirstChild(), getNodeName() and getTextContent().

Note that the getNextSibling() method cannot trigger a partition loading, because

even if the sibling node is an XInclude

pointer, we do not have to load the partition

before the user asks for the details of the

returned node.

Figure 5 presents the logic to decide the

loading of a partition for the

getFirstChild() method. The original

method only returns the firstChild

member of the current object (“this”). In our modification, the loading is performed if

the current node is an XInclude element, and it will replace the current object with the

root element of the loaded partition. Thus, instead of returning directly the first child of

the XInclude node, we return the first child of the root element of the partition.

partition0.xml

<Catalog>

 <xi:include href="partition1.xml"

 xmlns:xi="http://www.w3.org/2001/XInclude"/>

 <xi:include href="partition2.xml"

 xmlns:xi="http://www.w3.org/2001/XInclude"/>

 <Book title="XML Queries" year="2002">

 <xi:include href="partition4.xml"

 xmlns:xi="http://www.w3.org/2001/XInclude"/>

 </Book>

</Catalog>

partition1.xml

<Book title="XML Databases" year="2002">

 <Chapter title="XML Introduction">

 <Section title="SGML" />

 </Chapter>

 <Chapter title="XML Introduction" />

</Book>

Figure 5. 2LP version of getFirstChild()

Example 2.1 Consider the partitioned XML document depicted in Figure 3 (a). Let’s

consider the root-to-leaf navigation pattern a→f→j→k. We start by parsing and

traversing the root partition P0. The first node-step, a, is satisfied in P0, but to satisfy the

second node-step, f, we need to follow the XInclude pointer to partition P2. After pre-

parsing P2, we progressively parse it to reach f. We need to satisfy the last two node-

steps by following the pointer to partition P3, pre-parsing it to then progressively parse

the desired nodes. In this example, we omitted the traversal of partitions P1 and P4. �

Example 2.2 Consider again the XML document in Figure 3 (a). Now consider the

XPath query /Catalog/Book[@title=”Storage Principles”]/Chapter. The acute reader

can verify that this query requires loading all the partitions, even when we lazily process

the document. �

Note that in Example 2.2 we had to load partition P1 just to read an attribute of its

root element. To save such unnecessary partition loadings we extend the attributes of the

XInclude element to contain additional information about the root element of the

partition. This may save the loading of a partition when only information about its root

node is required. Thus, the partition will be loaded only if the information needed by the

navigation is not included in the pointer element. The data duplication to implement this

idea is minimal, as shown in Section 4, since internal XML nodes are typically small.

Table 1 summarizes the

different inclusion levels

regarding the data from the

partition’s root element to

duplicate in the corresponding

XInclude element. The names of

the attributes used to store this

data in the XInclude element are also displayed. For the TAG_ATR level, we use a

single attribute whose value has the form field1=value1&field2=value2& ...

Example 2.2 (continued) If we extend the XInclude elements depicted in Figure 3(b)

according to Inclusion level TAG_ATR and execute the same XPath query, we will find

the necessary information about the tag names and attribute values in the XInclude

pointer elements. Thus, partitions P1 and P4 will not be loaded, since the attribute values

added to the XInclude pointer can help us discriminate which “Chapter” elements

satisfy the attribute condition without loading the partition. �

The detailed code for the getNodeName() and getTextContent() methods,

which varies according to the inclusion level, is available in [5] due to lack of space.

3 Partitioning the XML File

Our main goal when partitioning XML documents is to minimize the 2LP parsing time

needed for navigating on the document. Other works (i. e. Natix [13, 14, 18]) have

addressed the problem of partitioning the XML documents for storage purposes. Our

goal here is to minimize the partitions accessed for a given request.

The key criterion to partition the original document is the number of blocks that each

partition will span across the hard disk drive (i.e., the partition size). This size criterion is

independent of the particular tree-structure (or schema if one exists) and the query

patterns, and is shown to lead to efficient partitioning schemes (Section 4). The rationale

behind this is that disk I/O performance is dictated by the average size of I/O requests

when accesses are random [3]. The size criterion also allows performing a theoretical

study of the optimal partition size. In the future, we plan to experiment with more

Table 1. Inclusion Levels

Inclusion Level Data to Include Attribute Name

NONE None N/A

TAG Tag (Default) xiPartitionTag

TAG_ATR Tag + Attributes xiPartitionAtr

TAG_ATR_TXT Tag + Attributes + Text xiPartitionTxt

complex partitioning criteria, like using different sizes for deep and shallow partitions to

adapt the partition techniques to the underlying XML schema or to other physical

characteristics of the document.

It must be noted that if information about the semantics and usage of the XML

document is available, it can be used to further optimize the partitioning of the

document. For instance, to partition a Mars document [16] we may consider the page

boundaries as candidate partitioning points.

Partitioning Algorithm: The key idea of the algorithm is a bottom-up traversal of the

XML tree, where nodes are added to a partition until the size threshold (in number of

blocks) is reached. We show how the partition size is calculated in Section 4. Since we

are using XInclude to simulate the physical pointers, we need to comply with the

XInclude definition and hence provide partitions that are themselves well-formed XML

documents. Thus, our partitions need to have exactly one root element and include a

single subtree. This constraint leads to having a few very large partitions since every

XML document typically has very few nodes with very high fan-out (e.g., open_auctions

node in XMark [4]). Still, as shown in Section 4, this does not degrade the parsing

performance as these partitions usually need to be fully navigated by XPath queries.

The partitioning algorithm, which is detailed in [5], recursively traverses T in a

bottom-up fashion, calculates each subtree’s size, and if this size exceeds the partitioning

threshold, moves the entire subtree to a new XML document and a new XInclude pointer

replaces its root node in the original XML file. Also, depending on the inclusion level

flag, specific information of the partition’s root node will be added to the newly created

XInclude element. Figure 3 shows the resulting partitioned XML tree for the XML tree

of Figure 2(b) with a threshold of ten blocks per partition. Node b′ is the XInclude

element which points to the partition rooted at node b. The same holds for nodes f′, j′, o′.

Partition Size: To obtain an appropriate value for the partition size, we conduct the

following analysis for the root-to-leaf navigation pattern. The details of the cost model

and the derivations are available in [5]. Note that performing a similar analysis for

general XPath patterns is infeasible due to the complexity and variety of the navigation

patterns and axes. In particular, we calculate the average access time to navigate from the

root to each of the leaves of the XML document. In Section 4 we show that using the

theoretically obtained partition sizes leads to good results for general XPath queries as

well. When the XML document is not partitioned (and hence 2LP is not applicable), the

average cost of a root-to-leaf traversal is given by the following equation:

transfrand
noPart

leafroot tNtCost ⋅=
+−

(1)

where N is the number of blocks in T, trand is the random access time needed to reach the

root of the tree and ttransf is the time required to transfer one block of data for the specific

disk drive. Note that the whole tree must be read (pre-parsed in Figure 1) to create the

intermediate structure used to later progressively parse the document. No cost is assigned

to the progressively parsing since the document has been already loaded in memory

during pre-parsing. An equivalent cost model has been derived for the case where the

tree has been segmented into equally sized partitions:

)txt(
xln

Nln
Cost transfrand

Part
leafroot ⋅+=

−

(2)

where x is the number of nodes in a partition.

Taking the first derivative with respect to x of the right hand side and equating it to

zero provides the optimal partition size.

4 Experiments

In this section, we evaluate our XML Partitioning and 2LP schemas. First, we evaluate

the theoretical model on the partition size proposed in Section 3. Second, we measure the

performance of our techniques with two navigation patterns, root-to-leaf patterns and

XPath queries. The experiments were run on a 2.0GHz Pentium IV workstation with

512MB of memory running Linux. The workstation has a 20GB Maxtor D740X disk.

Evaluation of the Theoretical Model: We generated XML files of various sizes using

the XMark generator [24]. We applied the partitioning algorithm to these documents,

with several partition sizes (in blocks) to compare our theoretical model described in

Section 3 against experimental results performing the same type of root-to-leaf

navigation patterns detailed in [5]. Note that throughout the experiments the 2LP parser

is used for partitioned documents and the Xerces for un-partitioned.

Figure 6 shows the average time to

traverse all the root-to-leaf paths for an

XML document with XMark factor 0.5

(50MB), running on a Maxtor D740X

hard drive as detailed in [5]. The

theoretical curves are based on the

model presented in Section 3. Notice

that the scale is logarithmic and the

patterns of the graphs are similar, with a

slight deviation in the experimental

graph. The gap between the theoretical

and experimental graphs is caused

because the theoretical model does not

take into account the processing overhead and memory requests needed for navigating

these paths, but only the I/O time involved. From the graph, we can infer the optimal size

of the partition to be 2680 disk blocks, which is approximately one Megabyte. In [5] we

show that the theoretical partition size is very close to the experimental one for various

document sizes.

Performance Evaluation: We now present the evaluation of our approach using two

types of navigation patterns, root-to-leaf traversals (also used in [6]) and XPath queries.

The results for XPath carry to XQuery as well, since XQuery queries are typically

evaluated by combining the results of the involved XPath queries. We adopt the

“standard” XPath evaluation strategy described in [7]. As explained in Section 2, the

comparisons assume that the XML document has not been already parsed before a query

or navigation pattern, that is, we measure both the pre-parsing and progressive parsing

times of Figure 1. We measure three time components in the total execution time:

Pre-Parsing: The Xerces parser uses its deferred expansion node feature by initially

creating only a simple data structure that represents the document’s branching and

layout. This phase requires scanning the whole document to retrieve this structure. For

un-partitioned documents, it means that the first time we load the file, the whole

document has to be traversed and processed; for partitioned documents, every time we

process a new partition, it is pre-parsed to create the logical structure in memory.

Figure 6. Average Traversal Time for Partition

Sizes

Progressive Parsing: As the navigation advances, this initial layout built in the pre-

parsing phase is refined, and all the information about the nodes is added to the skeleton.

This phase is performed only on the visited nodes and will have the same behavior in

both un-partitioned and partitioned documents.

Inclusion: This phase is introduced by the 2LP components, and captures the time

required to include and import the new partition into the working document. This

component does not apply to un-partitioned documents.

Root-to-leaf traversal cost: Figure 7

shows the average access cost in

milliseconds for the root-to-leaf access

patterns, comparing the performance

for different XMark factors. To

compute the average time, we sampled

10% of the leaves of each document,

adding each tenth leaf into the sample,

and performed root-to-leaf traversals

for each sampled leaf. A traversal in

this case results in a sequence of parent-

to-first-child and sibling-to-next-sibling

operations in order to reach the desired leaf. These experiments were performed with the

theoretical optimal partition size and the NONE inclusion level (the inclusion level does

not impact the simple root-to-leaf traversals).

Note that in addition to the pre-parsing time, 2LP offers a significant improvement of

the progressive parsing time as well. This is due to the fact the partitions are equivalent

to physical pointers like node to sibling, which are not available in a traditional virtual

document tree. These pointers avoid the loading and progressive parsing of unnecessary

subtrees.

XPath query cost: Our second

experiment executes a set of

XPath queries over the XML

data. We selected the

performance queries from queries

exploit several execution

constructs of the XPath syntax

and several navigation axes to

illustrate the behavior of our

algorithms under a large range of

circumstances. The complete list

of queries can be found in [5].

We have included the

performance queries from

XPathMark [4], that is, the ones that test the execution time and not specific XPath

functional aspects. We added more queries to have a larger input set in order to obtain

more reliable results.

For this set of experiments, we used several XML document sizes corresponding to

various XMark factors. Once again, we use the theoretical partition size for partitioning

the XML documents. We used the default inclusion level (TAG) for these experiments.

Figure 8 shows the average performance of such queries for three datasets with

XMark factors 0.500, 0.750 and 1.000. We see how for un-partitioned files, the pre-

Figure 7. Root-To-Leaf Access Cost

Figure 8. Average XPath Query Performance

parsing time is always similar, since the whole document has to be processed to load the

initial layout. For partitioned files, only the required partitions are processed, leading to

significant reduction in the pre-parsing phase in most of the cases. We can observe that

the partitioned documents perform consistently better than the un-partitioned ones. We

have some cases in which the performance of the partitioned documents is almost equal

to the performance of the original files. These cases, such as Q3, Q9, Q14 and Q15, need to

traverse most sections of the tree, requiring the inclusion of most partitions.

In the cases of Q9, Q14 and Q17, we load the partition rooted at open_auctions, which

has a size of 15MB (due to the fact that each partition must be a well-formed XML

document, as explained in Section 3). Pre-parsing and progressively parsing this large

partition penalizes these queries and they almost match the execution time of the un-

partitioned version. However, in a typical scenario, such large partitions must be

completely accessed, except for the rare case when a navigation pattern specifies a child

at a particular position (e.g., 1000-th child).

The inclusion time component varies correspondingly to the size of the partitions that

have to be included into the working document. We see then that the inclusion

component for Q3, Q9, Q14 and Q15 is large, but again this is caused by the large size of

the open_auctions partition required to satisfy all these four queries. For these same

queries we found large segments of time consumed by the Inclusion operation. The

reason is that we rely on the Document.importNode()

method provided by DOM which traverses the whole imported XML tree and updates

the owner document for every single node. Even when the tree is already in memory, this

operation is CPU intensive, delaying the process of including the new partition.

Inclusion levels: We experimented with different inclusion levels, obtaining practically

no space overhead, and observing that the TAG_ATR level is generally the best choice.

We show these results in detail in [5].

5 Related Work

Noga et al. [20] introduce the idea of Lazy Parsing as presented in Section 1. The virtual

document tree can potentially be stored on disk to avoid the pre-parsing stage; however,

the entire virtual document tree has to still be read from disk. If a similar technique

would be used with 2LP, only the needed portion of the virtual document tree will have

to be read to answer the request. Schott and Noga apply these Lazy Parsing ideas to the

XSL transformations [23]. Kenji and Hiroyuki [12] have also proposed a lazy XML

parsing technique applied to XSLT stylesheets, constructing a pruned XML tree by

statically identifying the nodes that will be referred during the transformation process.

There has been progress in developing XML pull parsers [27] for both SAX and

DOM interfaces. Also, [28] presents a new API built just one level on top of the XML

tokenizer, claiming to be the simplest and the most efficient engine for processing XML.

Van Lunteren et al. [15] propose a programmable state machine technique that

provides high performance in combination with low storage requirements and fast

incremental updates. A related technique has been proposed by Green et al. [9] to lazily

convert an XPath query into a Deterministic Finite Automata (DFA), after which they

submit the XML document to the DFA in order to solve the query. They propose a lazy

construction opposed to an eager creation, since constructing the DFA with the latter

technique can lead to an exponential growth in the size of the DFA. Kiselyov [11]

presents techniques to use functional programming to construct better XML Parsers.

6 Conclusions

Lazy XML parsing is a significant improvement to the performance of XML parsing but

to achieve higher levels of performance there is a need to further optimize the pre-

parsing phase during which the whole document is read, as well as the progressive

parsing phase during which a query is processed. In this paper, we address this problem

by enabling laziness in the pre-parsing phase and allowing skipping the processing of

entire (unwanted) subtrees of the document during the progressive parsing phase. To do

so, we have proposed a mechanism to add physical pointers in an XML document by

partitioning the original document and linking the partitions with XInclude pointers. We

have also proposed 2LP, an efficient parsing algorithm for such documents, that

implements pre-parsing laziness. These techniques significantly improve the

performance of the XML parsing process and can play a significant role in accelerating

the wide adoption of XML.

References

1. S. Abramsky. The Lazy Lambda Calculus. In D. Turner (ed.), Research Topics in Functional

Programming. AddisonWesley, 1990.

2. Document Object Model (DOM), http://www.w3.org/DOM/, 2006.

3. Z. Dimitrijevic and R. Rangaswami. Quality of Service Support for Real-time Storage Systems, In IPSI, 2003.

4. M. Franceschet. XPathMark: An XPath Benchmark for the XMark Generated Data. In XSym, 2005.

5. F. Farfán, V. Hristidis and R. Rangaswami. Beyond Lazy XML Parsing Extended Version.

http://www.cs.fiu.edu/SSS/beyondLazyExt.pdf. 2007.

6. Joseph Gil and Alon Itai. How to pack trees. Journal of Algorithms, 32(2):108–132, 1999.

7. G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Processing XPath Queries. In VLDB, 2002.

8. Geography Markup Language - http://opengis.net/gml/, 2006.

9. T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with deterministic automata.

In ICDT, 2003.

10. Health Level Seven XML - http://www.hl7.org/special/Committees/xml/xml.htm. 2006.

11. O. Kiselyov. A Better XML Parser Through Functional Programming. In Lecture Notes in Computer

Science, Vol. 2257. Springer-Verlag, Berlin Heidelberg New York. Pages 209-224. 2002.

12. M. Kenji and S. Hiroyuki. Static Optimization of XSLT Stylesheets: Template Instantiation Optimization

and Lazy XML Parsing. In DocEng, 2005.

13. C. C. Kanne and G. Moerkoette. 1999. Efficient storage of XML data. In ICDE, 1998.

14. C. C. Kanne and G. Moerkoette. A Linear-Time Algorithm for Optimal Tree Sibling Partitioning and its

Application to XML Data Stores. In VLDB, 2006.

15. J. van Lunteren, T. Engbersen, J. Bostian, B. Carey and C. Larsson. XML Accelerator Engine. First

International Workshop on High Performance XML Processing, 2004.

16. Mars Reference. Version 0.7. Adobe Systems Inc.,

http://download.macromedoa.com/pub/labs/mars/mars_reference.pdf

17. Medical Markup Language, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&

db=PubMed&list_uids=10984873&dopt=Abstract. 2006.

18. Natix. http://www.dataexmachina.de/. 2006.

19. M. Nicola and J. John. XML Parsing: a Threat to Database Performance. In CIKM, 2003.

20. M. Noga, S. Schott and W. Löwe. Lazy XML Processing. In ACM DocEng, 2002.

21. OpenDocument Specification v1.0 – http://www.oasis-open.org/committees/

download.php/12572/OpenDocument-v1.0-os.pdf. 2006.

22. Simple API for XML (SAX), http://www.saxproject.org/, 2006.

23. S. Schott and M. Noga. Lazy XSL Transformations. In ACM DocEng, 2003.

24. A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse. XMark: A Benchmark for

XML Data Management. In VLDB, 2002.

25. Apache Xerces2 Java Parser. Apache XML Project, http://xml.apache.org/xerces-j/. 2006.

26. XML Inclusion - http://www.w3.org/TR/xinclude/. 2006.

27. XML Pull Parsing. http://www.xmlpull.org/index.shtml. 2006.

28. XML Pull Parser. http://www.extreme.indiana.edu/xgws/xsoap/xpp/. 2006.

29. XML Pointer Language Version 1.0 - http://www.w3.org/TR/WD-xptr. 2006.

