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Abstract. XML has become the standard format for data representation and 

exchange in domains ranging from Web to desktop applications. However, wide 

adoption of XML is hindered by inefficient document-parsing methods. Recent 

work on lazy parsing is a major step towards alleviating this problem. However, 

lazy parsers must still read the entire XML document in order to extract the overall 

document structure, due to the lack of internal navigation pointers inside XML 

documents. Further, these parsers must load and parse the entire virtual document 

tree into memory during XML query processing. These overheads significantly 

degrade the performance of navigation operations. We have developed a 

framework for efficient XML parsing based on the idea of placing internal physical 

pointers within the document, which allows skipping large portions of the 

document during parsing. The internal pointers are generated in a way that 

optimizes parsing for common navigation patterns. A double-Lazy Parser (2LP) is 

then used to parse the document that exploits the internal pointers. To create the 

internal pointers, we use constructs supported by the current W3C XML standard. 

We study our pointer generation and parsing algorithms both theoretically and 

experimentally, and show that they perform considerably better than existing 

approaches. 

Keywords: XML, Document Object Model, Double Lazy Parsing, Deferred 

Expansion, XPath. 

1 Introduction 

XML has become the de facto standard format for data representation and exchange in 

domains ranging from the Web to desktop applications. Examples of XML-based 

document types include Geographic Information Systems Markup Language (GML) [8], 

Medical Markup Language (MML) [17], HL7 [10], and Open Document Format (ODF) 

[21]. This widespread use of XML requires efficient parsing techniques. The importance 

of efficient XML parsing methods was underscored by Nicola and John [19], showing 

that the parsing stage is processor and memory consuming, needing main memory as 

much as ten times the size of the original document. 

There are two de facto XML parsing APIs, DOM [2] and SAX [22]. SAX reads the 

whole document and generates a sequence of events according to the nesting of the 

elements, and hence it is not possible to skip reading parts of the document as this would 

change the semantics of the API. On the other hand, DOM allows users to explicitly 

navigate in the XML document using methods like getFirstChild() and 
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getNextSibling(). DOM is the most popular interface to traverse XML documents 

because of its ease of use. Unfortunately, its implementation is inefficient since entire 

subtrees cannot be skipped when a method like getNextSibling() is invoked. This 

also leads to frequent “Out of Memory” exceptions. In contrast to SAX, parsing a 

document using DOM could potentially avoid reading the whole document as the 

sequence of navigation methods may only request to access a small subset of the 

document. In this work we focus on parsing using a DOM-like interface. 

Lazy XML parsing has been proposed (e.g., [25, 20]) to improve the performance of 

the parsing process by avoiding the loading of unnecessary elements. This approach 

substitutes the traditional eager evaluation with a lazy evaluation as used by functional 

programming languages [1]. The architecture shown in Figure 1, based on the 

terminology of [20], consists of two stages. First, a pre-parsing stage extracts a virtual 

document tree, which stores only node types, hierarchical structure information, and 

references to the textual representation of each node. After this structure is obtained, a 

progressive parsing engine refines this virtual tree on demand, expanding the original 

virtual nodes into complete nodes with values, attributes, etc. as they are needed. 

Clearly, the lazy parsing technique 

is a significant improvement. 

However, it still suffers from the high 

initial cost of pre-parsing (Figure 1) 

where the whole document must be 

read before the lazy/progressive 

parsing starts. The pre-parsing stage is 

inevitable due to the lack of internal 

physical pointers (or something 

equivalent) within the XML document. Further, the entire virtual document tree must be 

loaded and processed in main memory during the progressive-parsing stage, i.e. during 

query processing. 

Overview of Approach: We call our XML parsing approach double-Lazy Parsing (2LP) 

because both stages in Figure 1 are lazy, in contrast to previous works where only the 

second stage is lazy. The first stage is performed offline, when the document is 

partitioned into a set of smaller XML files, then interlinked using XInclude [26] pointers. 

The optimal partition size is computed by considering the random versus sequential 

access characteristics of a hard disk.  

The second stage parses a partitioned document, reading a minimal set of partitions to 

perform the sequence of navigation commands. 2LP loads (pre-parses using the 

terminology of Figure 1) the partitions in a lazy manner (only when absolutely 

necessary). In the case of DOM, we maintain an overall DOM tree D(T) which is 

initially the DOM tree of the root partition P0 of the XML tree T. Then D(T) is 

augmented with the DOM trees D(Pi) of the loaded partitions Pi.  

Our approach dramatically reduces the cost of the pre-parsing stage by only pre-

parsing a typically small subset of the partitions. Furthermore, our approach leads to 

significantly faster progressive-parsing times than traditional lazy parsing, as we show 

experimentally, due to the fact that whole subtrees are skipped. 

 To complement lazy partition loading, our approach also performs lazy unloading of 

inactive partitions (described in Section 2) if the total amount of main memory used by 

the DOM tree exceeds a threshold. Hence, in addition to a fast pre-parsing stage, our 

method also allows DOM-based parsing with limited memory resources. Note that 

previous lazy parsing techniques can  also  in  principle achieve this to  a  smaller degree;  

Figure 1. Lazy XML Parser Architecture 



 

Figure 2. Sample XML Document and Corresponding Tree 

the virtual document tree must still be stored in memory at all time. However, this 

optimization is not used in the current implementation of the Xerces DOM parser.  

A drawback of the 2LP approach is that the XML document is split into a set of 

smaller XML documents/files. Unfortunately, the XML standard does not support an 

alternative physical pointer construct (XPointer [29] is logical and not physical) due to 

the complication this would incur during cross-platform document exchange. We argue 

and demonstrate in the rest of this paper that the performance gains in XML document 

navigation far outweigh the drawbacks of document splitting. Further, if physical 

pointers are introduced for XML in the future, our work can be immediately applied. 

This paper makes the following contributions: (1) We develop a framework to allow 

efficient XML parsing, which improves both the pre-parsing and progressive parsing 

time as well as the memory requirements of both parsing phases. (2) We present 

algorithms to perform partitioning and double-Lazy XML Parsing (2LP) for DOM-like 

navigation. Note that 2LP-enabled documents are backward compatible  i.e., they can be 

parsed by current XML parsers. (3) We show how the theoretically optimal partition size 

can be computed assuming knowledge of the navigation patterns on complete XML trees 

and the hard disk characteristics. (4) We study our partitioning and parsing algorithms 

both theoretically and experimentally. Experiments on various XML navigation patterns, 

including XPath, confirm our theoretical results and show consistent and often dramatic 

improvement in the parsing times. 

The rest of the paper is organized as follows: We describe our double-Lazy parsing 

techniques in Section 2. Section 3 presents techniques for partitioning the original 

document into smaller subtrees. Our experiments are discussed in Section 4. We present 

related work in Section 5. Finally, Section 6 discusses our conclusions and future work. 

2 2LP on Partitioned XML Documents 

Let T be the original XML document, and P0, … Pn be the partitions to which T was split 

during the partitioning stage (elaborated in Section 3). P0 is the root partition, since it 

contains the root element of T. Figure 3(a) shows an example of a partitioned XML tree. 

All the partitions are connected by XInclude elements, containing the URI to the 

partition file. The XInclude elements are represented in the figure by b′, f′, j′. Note that 

by creating a partition (e.g., P2), the key result is that we facilitate skipping the subtree 

rooted at this partition. That is, by creating partition P2 we can access directly node a 

from node f′ to node n. 

The XML representation of two of the partitions in Figure 3(a) is shown in Figure 

3(b). Partition P0 contains the document root and is then the root partition.  The subtree 

rooted at the first Book element was partitioned and the Book element has been replaced 

by the XInclude pointer to the XML document of Partition P1. This additional element  



Figure 4. Load Partition Algorithm 

(a) Tree Partitions (b) Sample Document Partitions 

Figure 3. Partitioned XML Tree and Document Partitions 

added to the tree upon partitioning will hold the reference to the root of the partition’s 

subtree. We explain this in detail in Section 3. 

Figure 4 describes the process of loading (pre-parsing) a partition. After loading a 

partition, progressive parsing occurs as needed. The loadPartition() method 

replaces, in the working DOM tree, the XInclude pointer element e with the DOM tree of 

the partition that e points to.  

To ensure the double-lazy processing of the partitions, we need to decide when it is 

absolutely necessary for a partition to be loaded. Intuitively, a partition must be loaded 

when a navigation method (e.g., getFirstChild()) cannot be executed without doing 

so, that is, the return value of the method cannot be computed otherwise. 

Note that if limited memory is available, 

we unload inactive partitions as needed. A 

partition is inactive if none of its nodes 

appear on the path from the root of the XML 

document to the currently accessed XML 

node. Traditional replacement techniques can 

be used to decide which inactive partition to 

unload like LRU. 

We now discuss the 2LP versions of the key DOM methods that may trigger the 

loading of a partition: getFirstChild(), getNodeName() and getTextContent(). 

Note that the getNextSibling() method cannot trigger a partition loading, because 

even if the sibling node is an XInclude 

pointer, we do not have to load the partition 

before the user asks for the details of the 

returned node. 

Figure 5 presents the logic to decide the 

loading of a partition for the 

getFirstChild() method. The original 

method only returns the firstChild 

member of the current object (“this”). In our modification, the loading is performed if 

the current node is an XInclude  element, and it will replace the current object with the 

root element of the loaded partition. Thus, instead of returning directly the first child of 

the XInclude node, we return the first child of the root element of the partition. 

partition0.xml 

<Catalog> 

 <xi:include href="partition1.xml" 

  xmlns:xi="http://www.w3.org/2001/XInclude"/> 

 <xi:include href="partition2.xml" 

  xmlns:xi="http://www.w3.org/2001/XInclude"/> 

 <Book title="XML Queries" year="2002"> 

  <xi:include href="partition4.xml" 

   xmlns:xi="http://www.w3.org/2001/XInclude"/> 

 </Book> 

</Catalog> 
 

partition1.xml 

<Book title="XML Databases" year="2002"> 

 <Chapter title="XML Introduction"> 

  <Section title="SGML" /> 

 </Chapter> 

 <Chapter title="XML Introduction" /> 

</Book> 

 

Figure 5. 2LP version of getFirstChild() 



Example 2.1 Consider the partitioned XML document depicted in Figure 3 (a). Let’s 

consider the root-to-leaf navigation pattern a→f→j→k. We start by parsing and 

traversing the root partition P0. The first node-step, a, is satisfied in P0, but to satisfy the 

second node-step, f, we need to follow the XInclude pointer to partition P2. After pre-

parsing P2, we progressively parse it to reach f. We need to satisfy the last two node-

steps by following the pointer to partition P3, pre-parsing it to then progressively parse 

the desired nodes. In this example, we omitted the traversal of partitions P1 and P4. � 

Example 2.2 Consider again the XML document in Figure 3 (a). Now consider the 

XPath query /Catalog/Book[@title=”Storage Principles”]/Chapter. The acute reader 

can verify that this query requires loading all the partitions, even when we lazily process 

the document. � 

Note that in Example 2.2 we had to load partition P1 just to read an attribute of its 

root element. To save such unnecessary partition loadings we extend the attributes of the 

XInclude element to contain additional information about the root element of the 

partition. This may save the loading of a partition when only information about its root 

node is required. Thus, the partition will be loaded only if the information needed by the 

navigation is not included in the pointer element. The data duplication to implement this 

idea is minimal, as shown in Section 4, since internal XML nodes are typically small. 

Table 1 summarizes the 

different inclusion levels 

regarding the data from the 

partition’s root element to 

duplicate in the corresponding 

XInclude element. The names of 

the attributes used to store this 

data in the XInclude element are also displayed. For the TAG_ATR level, we use a 

single attribute whose value has the form field1=value1&field2=value2& ...  

Example 2.2 (continued) If we extend the XInclude elements depicted in Figure 3(b) 

according to Inclusion level TAG_ATR and execute the same XPath query, we will find 

the necessary information about the tag names and attribute values in the XInclude 

pointer elements. Thus, partitions P1 and P4 will not be loaded, since the attribute values 

added to the XInclude pointer can help us discriminate which “Chapter” elements 

satisfy the attribute condition without loading the partition. � 

The detailed code for the getNodeName() and getTextContent() methods, 

which varies according to the inclusion level, is available in [5] due to lack of space. 

3 Partitioning the XML File 

Our main goal when partitioning XML documents is to minimize the 2LP parsing time 

needed for navigating on the document. Other works (i. e. Natix [13, 14, 18]) have 

addressed the problem of partitioning the XML documents for storage purposes. Our 

goal here is to minimize the partitions accessed for a given request. 

The key criterion to partition the original document is the number of blocks that each 

partition will span across the hard disk drive (i.e., the partition size). This size criterion is 

independent of the particular tree-structure (or schema if one exists) and the query 

patterns, and is shown to lead to efficient partitioning schemes (Section 4). The rationale 

behind this is that disk I/O performance is dictated by the average size of I/O requests 

when accesses are random [3]. The size criterion also allows performing a theoretical 

study of the optimal partition size. In the future, we plan to experiment with more 

Table 1. Inclusion Levels 

Inclusion Level Data to Include Attribute Name 

NONE None N/A 

TAG Tag (Default) xiPartitionTag 

TAG_ATR Tag + Attributes xiPartitionAtr 

TAG_ATR_TXT Tag + Attributes + Text xiPartitionTxt 

 



complex partitioning criteria, like using different sizes for deep and shallow partitions to 

adapt the partition techniques to the underlying XML schema or to other physical 

characteristics of the document. 

It must be noted that if information about the semantics and usage of the XML 

document is available, it can be used to further optimize the partitioning of the 

document. For instance, to partition a Mars document [16] we may consider the page 

boundaries as candidate partitioning points. 

Partitioning Algorithm: The key idea of the algorithm is a bottom-up traversal of the 

XML tree, where nodes are added to a partition until the size threshold (in number of 

blocks) is reached. We show how the partition size is calculated in Section 4. Since we 

are using XInclude to simulate the physical pointers, we need to comply with the 

XInclude definition and hence provide partitions that are themselves well-formed XML 

documents. Thus, our partitions need to have exactly one root element and include a 

single subtree. This constraint leads to having a few very large partitions since every 

XML document typically has very few nodes with very high fan-out (e.g., open_auctions 

node in XMark [4]). Still, as shown in Section 4, this does not degrade the parsing 

performance as these partitions usually need to be fully navigated by XPath queries. 

The partitioning algorithm, which is detailed in [5], recursively traverses T in a 

bottom-up fashion, calculates each subtree’s size, and if this size exceeds the partitioning 

threshold, moves the entire subtree to a new XML document and a new XInclude pointer  

replaces its root node in the original XML file. Also, depending on the inclusion level 

flag, specific information of the partition’s root node will be added to the newly created 

XInclude element. Figure 3 shows the resulting partitioned XML tree for the XML tree 

of Figure 2(b) with a threshold of ten blocks per partition. Node b′ is the XInclude 

element which points to the partition rooted at node b. The same holds for nodes f′, j′, o′. 

Partition Size: To obtain an appropriate value for the partition size, we conduct the 

following analysis for the root-to-leaf navigation pattern. The details of the cost model 

and the derivations are available in [5]. Note that performing a similar analysis for 

general XPath patterns is infeasible due to the complexity and variety of the navigation 

patterns and axes. In particular, we calculate the average access time to navigate from the 

root to each of the leaves of the XML document. In Section 4 we show that using the 

theoretically obtained partition sizes leads to good results for general XPath queries as 

well. When the XML document is not partitioned (and hence 2LP is not applicable), the 

average cost of a root-to-leaf traversal is given by the following equation: 

transfrand
noPart

leafroot tNtCost ⋅=
+−  

(1) 

where N is the number of blocks in T, trand is the random access time needed to reach the 

root of the tree and ttransf is the time required to transfer one block of data for the specific 

disk drive. Note that the whole tree must be read (pre-parsed in Figure 1) to create the 

intermediate structure used to later progressively parse the document. No cost is assigned 

to the progressively parsing since the document has been already loaded in memory 

during pre-parsing. An equivalent cost model has been derived for the case where the 

tree has been segmented into equally sized partitions: 
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where x is the number of nodes in a partition. 



Taking the first derivative with respect to x of the right hand side and equating it to 

zero provides the optimal partition size. 

4 Experiments 

In this section, we evaluate our XML Partitioning and 2LP schemas. First, we evaluate 

the theoretical model on the partition size proposed in Section 3. Second, we measure the 

performance of our techniques with two navigation patterns, root-to-leaf patterns and 

XPath queries. The experiments were run on a 2.0GHz Pentium IV workstation with 

512MB of memory running Linux. The workstation has a 20GB Maxtor D740X disk. 

Evaluation of the Theoretical Model: We generated XML files of various sizes using 

the XMark generator [24]. We applied the partitioning algorithm to these documents, 

with several partition sizes (in blocks) to compare our theoretical model described in 

Section 3 against experimental results performing the same type of root-to-leaf 

navigation patterns  detailed in [5]. Note that throughout the experiments the 2LP parser 

is used for partitioned documents and the Xerces for un-partitioned. 

Figure 6 shows the average time to 

traverse all the root-to-leaf paths for an 

XML document with XMark factor 0.5 

(50MB), running on a Maxtor D740X 

hard drive as detailed in [5]. The 

theoretical curves are based on the 

model presented in Section 3. Notice 

that the scale is logarithmic and the 

patterns of the graphs are similar, with a 

slight deviation in the experimental 

graph. The gap between the theoretical 

and experimental graphs is caused 

because the theoretical model does not 

take into account the processing overhead and memory requests needed for navigating 

these paths, but only the I/O time involved. From the graph, we can infer the optimal size 

of the partition to be 2680 disk blocks, which is approximately one Megabyte. In [5] we 

show that the theoretical partition size is very close to the experimental one for various 

document sizes. 

Performance Evaluation: We now present the evaluation of our approach using two 

types of navigation patterns, root-to-leaf traversals (also used in [6]) and XPath queries. 

The results for XPath carry to XQuery as well, since XQuery queries are typically 

evaluated by combining the results of the involved XPath queries. We adopt the 

“standard” XPath evaluation strategy described in [7]. As explained in Section 2, the 

comparisons assume that the XML document has not been already parsed before a query 

or navigation pattern, that is, we measure both the pre-parsing and progressive parsing 

times of Figure 1. We measure three time components in the total execution time: 

Pre-Parsing: The Xerces parser uses its deferred expansion node feature by initially 

creating only a simple data structure that represents the document’s branching and 

layout. This phase requires scanning the whole document to retrieve this structure. For 

un-partitioned documents, it means that the first time we load the file, the whole 

document has to be traversed and processed; for partitioned documents, every time we 

process a new partition, it is pre-parsed to create the logical structure in memory. 

Figure 6. Average Traversal Time for Partition 

Sizes 



Progressive Parsing: As the navigation advances, this initial layout built in the pre-

parsing phase is refined, and all the information about the nodes is added to the skeleton. 

This phase is performed only on the visited nodes and will have the same behavior in 

both un-partitioned and partitioned documents. 

Inclusion: This phase is introduced by the 2LP components, and captures the time 

required to include and import the new partition into the working document. This 

component does not apply to un-partitioned documents. 

Root-to-leaf traversal cost: Figure 7 

shows the average access cost in 

milliseconds for the root-to-leaf access 

patterns, comparing the performance 

for different XMark factors. To 

compute the average time, we sampled 

10% of the leaves of each document, 

adding each tenth leaf into the sample, 

and performed root-to-leaf traversals 

for each sampled leaf. A traversal in 

this case results in a sequence of parent-

to-first-child and sibling-to-next-sibling 

operations in order to reach the desired leaf. These experiments were performed with the 

theoretical optimal partition size and the NONE inclusion level (the inclusion level does 

not impact the simple root-to-leaf traversals). 

Note that in addition to the pre-parsing time, 2LP offers a significant improvement of 

the progressive parsing time as well. This is due to the fact the partitions are equivalent 

to physical pointers like node to sibling, which are not available in a traditional virtual 

document tree. These pointers avoid the loading and progressive parsing of unnecessary 

subtrees. 

XPath query cost: Our second 

experiment executes a set of 

XPath queries over the XML 

data. We selected the 

performance queries from queries 

exploit several execution 

constructs of the XPath syntax 

and several navigation axes to 

illustrate the behavior of our 

algorithms under a large range of 

circumstances. The complete list 

of queries can be found in [5]. 

We have included the 

performance queries from 

XPathMark [4], that is, the ones that test the execution time and not specific XPath 

functional aspects. We added more queries to have a larger input set in order to obtain 

more reliable results. 

For this set of experiments, we used several XML document sizes corresponding to 

various XMark factors. Once again, we use the theoretical partition size for partitioning 

the XML documents.  We used the default inclusion level (TAG) for these experiments. 

Figure 8 shows the average performance of such queries for three datasets with 

XMark factors 0.500, 0.750 and 1.000. We see how for un-partitioned files, the pre-

Figure 7. Root-To-Leaf Access Cost 

Figure 8. Average XPath Query Performance 



parsing time is always similar, since the whole document has to be processed to load the 

initial layout. For partitioned files, only the required partitions are processed, leading to 

significant reduction in the pre-parsing phase in most of the cases. We can observe that 

the partitioned documents perform consistently better than the un-partitioned ones. We 

have some cases in which the performance of the partitioned documents is almost equal 

to the performance of the original files. These cases, such as Q3, Q9, Q14 and Q15, need to 

traverse most sections of the tree, requiring the inclusion of most partitions. 

In the cases of Q9, Q14 and Q17, we load the partition rooted at open_auctions, which 

has a size of 15MB (due to the fact that each partition must be a well-formed XML 

document, as explained in Section 3). Pre-parsing and progressively parsing this large 

partition penalizes these queries and they almost match the execution time of the un-

partitioned version. However, in a typical scenario, such large partitions must be 

completely accessed, except for the rare case when a navigation pattern specifies a child 

at a particular position (e.g., 1000-th child).  

The inclusion time component varies correspondingly to the size of the partitions that 

have to be included into the working document. We see then that the inclusion 

component for Q3, Q9, Q14 and Q15 is large, but again this is caused by the large size of 

the open_auctions partition required to satisfy all these four queries. For these same 

queries we found large segments of time consumed by the Inclusion operation. The 

reason is that we rely on the Document.importNode() 

method provided by DOM which traverses the whole imported XML tree and updates 

the owner document for every single node. Even when the tree is already in memory, this 

operation is CPU intensive, delaying the process of including the new partition. 

Inclusion levels: We experimented with different inclusion levels, obtaining practically 

no space overhead, and observing that the TAG_ATR level is generally the best choice. 

We show these results in detail in [5]. 

5 Related Work 

Noga et al. [20] introduce the idea of Lazy Parsing as presented in Section 1. The virtual 

document tree can potentially be stored on disk to avoid the pre-parsing stage; however, 

the entire virtual document tree has to still be read from disk. If a similar technique 

would be used with 2LP, only the needed portion of the virtual document tree will have 

to be read to answer the request. Schott and Noga apply these Lazy Parsing ideas to the 

XSL transformations [23]. Kenji and Hiroyuki [12] have also proposed a lazy XML 

parsing technique applied to XSLT stylesheets, constructing a pruned XML tree by 

statically identifying the nodes that will be referred during the transformation process. 

There has been progress in developing XML pull parsers [27] for both SAX and 

DOM interfaces. Also, [28] presents a new API built just one level on top of the XML 

tokenizer, claiming to be the simplest and the most efficient engine for processing XML. 

Van Lunteren et al. [15] propose a programmable state machine technique that 

provides high performance in combination with low storage requirements and fast 

incremental updates. A related technique has been proposed by Green et al. [9] to lazily 

convert an XPath query into a Deterministic Finite Automata (DFA), after which they 

submit the XML document to the DFA in order to solve the query. They propose a lazy 

construction opposed to an eager creation, since constructing the DFA with the latter 

technique can lead to an exponential growth in the size of the DFA. Kiselyov [11] 

presents techniques to use functional programming to construct better XML Parsers. 



6 Conclusions 

Lazy XML parsing is a significant improvement to the performance of XML parsing but 

to achieve higher levels of performance there is a need to further optimize the pre-

parsing phase during which the whole document is read, as well as the progressive 

parsing phase during which a query is processed. In this paper, we address this problem 

by enabling laziness in the pre-parsing phase and allowing skipping the processing of 

entire (unwanted) subtrees of the document during the progressive parsing phase. To do 

so, we have proposed a mechanism to add physical pointers in an XML document by 

partitioning the original document and linking the partitions with XInclude pointers. We 

have also proposed 2LP, an efficient parsing algorithm for such documents, that 

implements pre-parsing laziness. These techniques significantly improve the 

performance of the XML parsing process and can play a significant role in accelerating 

the wide adoption of XML. 

References 

1. S. Abramsky. The Lazy Lambda Calculus. In D. Turner (ed.), Research Topics in Functional 

Programming. AddisonWesley, 1990. 

2. Document Object Model (DOM), http://www.w3.org/DOM/, 2006. 

3. Z. Dimitrijevic and R. Rangaswami. Quality of Service Support for Real-time Storage Systems, In IPSI, 2003. 

4. M. Franceschet. XPathMark: An XPath Benchmark for the XMark Generated Data. In XSym, 2005. 

5. F. Farfán, V. Hristidis and R. Rangaswami. Beyond Lazy XML Parsing Extended Version. 

http://www.cs.fiu.edu/SSS/beyondLazyExt.pdf. 2007. 

6. Joseph Gil and Alon Itai. How to pack trees. Journal of Algorithms, 32(2):108–132, 1999. 

7. G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Processing XPath Queries. In VLDB, 2002. 

8. Geography Markup Language - http://opengis.net/gml/, 2006. 

9. T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with deterministic automata. 

In ICDT, 2003. 

10. Health Level Seven XML - http://www.hl7.org/special/Committees/xml/xml.htm. 2006. 

11. O. Kiselyov. A Better XML Parser Through Functional Programming. In Lecture Notes in Computer 

Science, Vol. 2257. Springer-Verlag, Berlin Heidelberg New York. Pages 209-224. 2002. 

12. M. Kenji and S. Hiroyuki. Static Optimization of XSLT Stylesheets: Template Instantiation Optimization 

and Lazy XML Parsing. In DocEng, 2005. 

13. C. C. Kanne and G. Moerkoette. 1999. Efficient storage of XML data. In ICDE, 1998. 

14. C. C. Kanne and G. Moerkoette. A Linear-Time Algorithm for Optimal Tree Sibling Partitioning and its 

Application to XML Data Stores. In VLDB, 2006. 

15. J. van Lunteren, T. Engbersen, J. Bostian, B. Carey and C. Larsson. XML Accelerator Engine. First 

International Workshop on High Performance XML Processing, 2004. 

16. Mars Reference. Version 0.7. Adobe Systems Inc., 

http://download.macromedoa.com/pub/labs/mars/mars_reference.pdf 

17. Medical Markup Language, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve& 

db=PubMed&list_uids=10984873&dopt=Abstract. 2006. 

18. Natix. http://www.dataexmachina.de/. 2006. 

19. M. Nicola and J. John. XML Parsing: a Threat to Database Performance. In CIKM, 2003. 

20. M. Noga, S. Schott and W. Löwe. Lazy XML Processing. In ACM DocEng, 2002. 

21. OpenDocument Specification v1.0 – http://www.oasis-open.org/committees/ 

download.php/12572/OpenDocument-v1.0-os.pdf. 2006. 

22. Simple API for XML (SAX), http://www.saxproject.org/, 2006. 

23. S. Schott and M. Noga. Lazy XSL Transformations. In ACM DocEng, 2003. 

24. A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse. XMark: A Benchmark for 

XML Data Management. In VLDB, 2002. 

25. Apache Xerces2 Java Parser. Apache XML Project, http://xml.apache.org/xerces-j/. 2006. 

26. XML Inclusion - http://www.w3.org/TR/xinclude/. 2006. 

27. XML Pull Parsing. http://www.xmlpull.org/index.shtml. 2006. 

28. XML Pull Parser. http://www.extreme.indiana.edu/xgws/xsoap/xpp/. 2006. 

29. XML Pointer Language Version 1.0 - http://www.w3.org/TR/WD-xptr. 2006. 


