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Abstract

XKeyword provides efficient keyword proximity queries on large XML graph databases. A query

is simply a list of keywords and does not require any schema or query language knowledge for its

formulation.

XKeyword is built on a relational database and, hence, can accommodate very large graphs.

Query evaluation is optimized by using the graph’s schema. In particular, XKeyword consists of

two stages. In the preprocessing stage a set of keyword indices are built along with indexed path

relations that describe particular patterns of paths in the graph. In the query processing stage

plans are developed that use a near optimal set of path relations to efficiently locate the keyword

query results. The results are presented graphically using the novel idea of interactive result graphs,

which are populated on-demand according to the user’s navigation and allow efficient information

discovery. We provide theoretical and experimental points for the selection of the appropriate set of

precomputed path relations. We also propose and experimentally evaluate algorithms to minimize

the number of queries sent to the database to output the top-K results.

1 Introduction

XML and its labeled graph abstraction emerge as the data model of choice for representing semistruc-

tured self-describing data. Semistructured query languages (see [2] for a survey and [26] for the

emerging XQuery standard) provide features, such as flexible path expressions, that allow one to

query semistructured data, i.e., graph data that are not characterized by rigid structure. However,

one still needs sufficient knowledge of the structure, role of the requested objects and XQuery in order

to formulate a meaningful query. Keyword search does not present such requirements; it enables infor-

mation discovery by providing a simple interface. It has been the most popular information discovery

method since the user does not need to know either a query language or the structure of the underlying

data.

The search engines available today provide keyword search on top of sets of documents. When a

set of keywords is provided by the user the search engine returns all documents that are associated

with these keywords. Typically, a set of keywords and a document are associated if the keywords are

contained in the document. Their degree of associativity is often their distance from each other.
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Figure 1: Sample XML document

p1: person
[name="John"
nation="US"]

l1: lineitem
[quantity=10

shipdate=Oct  14 2001]

l2: lineitem
[quantity=10

shipdate=Oct  15 2001]

pa3: part
[partkey=1005
name="TV"]

pa1: part
[partkey=1008
name="VCR"]

supplier

supplier

linepart

linepart
subpart

pa2: part
[partkey=1009
name="VCR"]

subpart

Figure 2: Multivalued dependencies in results

XKeyword follows a recent generation of information retrieval systems that provide keyword prox-

imity search [14, 16, 6, 3] to structured and semistructured databases. In particular, XKeyword

provides keyword proximity search on XML data that are modeled as labeled graphs, where the edges

correspond to the element-subelement relationship and to IDREF pointers. XKeyword differs from

prior systems for proximity search on labeled graphs in that it assumes the existence of a schema,

similar to the XML Schema standard [25], to which the graph conforms. The schema facilitates the

presentation of the results and is also used in optimizing the performance of the system. Note that

the end-user does not need to be aware of the schema.

A keyword proximity query is a set of keywords and the results are trees of XML fragments (called

target objects) that contain all the keywords and are ranked according to their size. Trees of smaller

sizes denote higher association between the keywords, which is generally true for reasonable schema

designs. For example, consider the keyword query “John, VCR” on the graph of Figure 1. The

first highlighted tree (thick edges) name[John] ← person ← supplier ← lineitem → linepart →
product→ descr[set of V CR and DV D] on the source XML graph of Figure 1 is a result of size 6. The

second highlighted tree (gray arrows) name[John] ← person ← supplier ← lineitem → linepart →
part → subpart → part → name[V CR] is a result of size 8. The first result is considered to be a

“better” one by XKeyword (as well as by all the other keyword proximity search systems) since the

shorter distance corresponds to the closer connection between “John” and “VCR” in the first solution,

where the “VCR” is the product that “John” supplied, as opposed to being a sub-part of another part

supplied by “John”. Notice that we allow edges to be followed in either direction.

The presentation of the results faces two key challenges that have not been addressed by prior
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systems. First, the results need to be semantically meaningful to the user. Towards this direction,

XKeyword associates a minimal piece of information, called target object, to each node and displays the

target objects instead of the nodes in the results. In the DBLP demo (Figure 4) XKeyword displays

target object fields such as the paper title and conference along with a paper. In the TPC-H example,

XKeyword adds some children nodes of the person, lineitem and part nodes (highlighted for the second

result in Figure 1). For example, we display the target object part[partkey[1005], name[TV ]] in the

place of the intermediate part node. Target objects are designated by the system administrator who

splits the schema graph in minimal self-contained information pieces (Figure 6), which we call Target

Schema Segments (TSS) and correspond to the target objects presented to the user. Furthermore,

the edges connecting the target objects in the presentation graph are annotated with their semantic

description, which is defined on the TSS graph (Figure 6). For example the part→ part edge is named

“subpart”.

The second challenge is to avoid overwhelming the user with a huge number of often trivial results,

as is the case with DISCOVER [16] and DBXplorer [3]1. Both of those systems present all trees that

connect the keywords. In doing so they produce a large number of trees that contain the same pieces

of information many times. For example, consider the keyword query “US, VCR” and the subgraph

of the XML graph of Figure 1 shown in Figure 2. This XML fragment contains four results:

N1 : p1 ← l1 → pa3 → pa1 N2 : p1 ← l2 → pa3 → pa2,

N3 : p1 ← l2 → pa3 → pa1, N4 : p1 ← l1 → pa3 → pa2

The above results contain a form of redundancy similar to multivalued dependencies [23]: we can infer

N3 and N4 from N1 and N2. In that sense, N3 and N4 are trivial, once N1 and N2 are given. Such

trivial results penalize performance and overwhelm the user. XKeyword avoids producing “duplicate”

results by employing a smart execution algorithm. On the presentation level it uses a presentation

graph that comprises the complete set of nodes participating in result trees. At any point only a subset

of the graph is shown (see Figure 3), as it is formulated by various navigation actions of the user.

Initially the user sees one result tree r0. By clicking on a node of interest the graph is expanded to

display more nodes of the same type that belong to result trees that contain as many as possible of

the other nodes of r0. Towards this purpose we define a minimal expansion concept. For example,

clicking on the lineitem node of Figure 3 (a) displays all lineitem nodes which are connected to the

person and part in the initial tree, as shown in Figure 3 (b).

Two key challenges arise on the way to providing fast response times. First, the XML data has to

be stored efficiently to allow the fast discovery of connections between the elements that contain the

keywords. We follow the architecture of multiple recent XML database systems and store the XML

data in a relational database [7, 21, 11, 18, 9, 20, 5], which we tune to provide the needed indexing

and clustering. Then XKeyword builds a set of connection relations, which precompute particular

path and tree connections on the TSS graph. Connection relations are similar to path indices [10]
1Both systems work on relational databases, but the presentation challenges are similar.
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(a)

(b)

(c)

Figure 3: Presentation graph (expanded nodes have single outliner)

since they facilitate fast traversal of the database, but also different because they can connect more

than two objects and they store the actual path between a set of target objects, which is needed in

the answer of the keyword query. A core problem is the choice of the set of connection relations that

are precomputed.

Second, the cost of computing the full presentation graph is very high. Hence XKeyword uses an

on-demand execution method, where the execution is guided according to the user’s navigation. We

present an algorithm that generates a minimal set of queries to the underlying database in response

to the user’s navigation.

XKeyword consists of two stages (Figure 8). In the preprocessing stage, the master index is created

along with a set of connection relations. The master index is an inverted index that stores for each

keyword k a list of elements that contain k. The most suitable decomposition, i.e., representation of

the target object graph with a set of connection relations, is selected, given the performance and space

requirements. We compared different decomposition strategies and found that in order to compute

the top-1 result for each result schema, which is needed to construct the presentation graph, the

most space effective decomposition is to create inlined fragments [5], i.e., fragments that do not

contain multivalued dependencies. On the other hand, a combination of the inlined and the minimal

decomposition, where a connection relation is generated for each edge of the schema graph, is more

efficient for the on-demand expansion of the presentation graph.

In the query processing stage, XKeyword retrieves from the master index the schema nodes, whose

elements contain the keywords, and exploits the schema graph’s information (in contrast to [14, 6])

to generate a complete and non-redundant set of connection trees (candidate networks (CN)) between

them. Each CN may produce a number of answers to the keyword query, when evaluated on the XML

graph. A presentation graph is generated for each CN, since they correspond to the different schemata

of results. The CN Generator of XKeyword is an extension to XML databases of the CN Generator
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(a) Query page (b) Presentation as a list of results

(c) Presentation using Presentation graphs

Figure 4: XKeyword demo

of DISCOVER [16]. We also present ways to improve the performance of the algorithm described in

[16].

The CN’s are passed to the query optimizer, which generates an execution plan. The key chal-

lenges of the optimizer are (a) to decide which connection relations to use to efficiently evaluate

each CN and (b) to exploit the reusability opportunities of common subexpressions among the CN’s.

Both decisions, which are shown to be NP-complete, dramatically affect the performance as we show

experimentally.

Finally, the results are presented to the user. XKeyword offers two presentation methods: dis-

playing a presentation graph for each CN (Figure 4 (c)), or displaying a full list of results (Figure 4

(b)), where each result is a tree that contains every keyword exactly once. The former method offers

a more compact and non-redundant representation, while the latter favors faster response times.

In summary, this paper makes a number of contributions in the area of keyword proximity search:

• We present keyword proximity search semantics, extended to capture our novel result presenta-

tion method, which prevents information overflow and allows the user to navigate in the result.
• We present an architecture and framework that allows for choosing which connections between

objects will be precomputed. We present rules to avoid generating any useless connection rela-

tion, i.e., connection relations that are not efficient to evaluate any CN. We show how to bound

the number of joins needed to output a solution.
• We address the on-demand performance requirement of the presentation approach and we com-
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pare and analyze different decomposition schemes with respect to it. We also present an algo-

rithm that efficiently generates the full list of results by caching partial results and avoiding to

recompute the common result portions and show experimentally that it is up to 80% faster than

the naive approach used in [16] and [3].

XKeyword has been implemented (Figure 4) and a demo is available at

http://www.db.ucsd.edu/XKeyword, which operates on the XML data of the DBLP database.

2 Related Work

There is a number of proposals for less structured ways to query XML database by incorporating

keyword search [12, 1] or by relaxing the semantics of the query language [17, 4]. However none of

these works incorporates proximity search. Florescu et al. [12] propose an extension to XML query

languages that enables keyword search at the granularity of XML elements, which helps novice users

formulate queries. Another difference of this work from XKeyword is that it requires the user to

specify the elements where the keywords are.

In [14] and [6], a database is viewed as a graph with objects/tuples as nodes and relationships as

edges. Relationships are defined based on the properties of each application. For example an edge

may denote a primary to foreign key relationship. In [14], the user query specifies two sets of objects,

the Find and the Near objects. These objects may be generated from two corresponding sets of

keywords. The system ranks the objects in Find according to their distance from the objects in Near.

An algorithm is presented that efficiently calculates these distances by building hub indices. In [6],

answers to keyword queries are provided by searching for Steiner trees [19] that contain all keywords.

Heuristics are used to approximate the Steiner tree problem. Two drawbacks of these approaches are

that (a) they work on the graph of the data, which is huge and (b) the information provided by the

database schema is ignored. In contrast, XKeyword (a) works on the relatively compact set of target

objects connections (see Section 3) and (b) exploits the properties of the schema of the database.

XKeyword also provides relatively scalable performance as the available space to store fragments (see

Section 5) increases.

DISCOVER [16] and DBXplorer [3] work on top of a DBMS to facilitate keyword search in rela-

tional databases. They are middleware in the sense that they can operate as an additional layer on

top of existing DBMS’s. In contrast, XKeyword is a system dedicated to providing efficient keyword

querying of XML databases, by using elaborate duplication and indexing techniques. XKeyword pro-

vides guarantees on the performance of the keyword queries, which is not possible for a middleware

system. DISCOVER and DBXplorer do not consider building materialized views, which is the equiva-

lent of redundant fragments in XKeyword. Furthermore, XKeyword adopts an elaborate presentation

method using interactive graphs of results. In contrast, DISCOVER and DBXplorer output a list of

results, including trivial ones. The inherent differences of XML from relational data are handled in

XKeyword by introducing the notion of target object.

Both DISCOVER and XKeyword exploit reusability opportunities among the candidate networks,

in contrast to DBXplorer. The candidate network generator of XKeyword is an extension of the
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candidate network generator of DISCOVER to exploit the information provided by the XML schema

like the disjunction nodes and the maxoccurence of an edge.

XKeyword stores the XML data in a relational database [7, 21, 11, 18, 9, 20, 5], to allow the addition

of structured querying capabilities in the future and leverage the indexing capabilities of the DBMS’s.

Some of these works [11, 18, 9] did not assume knowledge of an XML schema. In particular, the Agora

project employed a fixed relational schema, which stores a tuple per XML element. This approach is

flexible but it is much less competitive than the other approaches, because of the performance problems

caused by the large number of joins in SQL queries. XKeyword is different because it exploits the

schema information to store the relationships between the target object id’s of the XML data. The

actual data are stored in XML BLOB’s which are introduced in [5].

3 Framework and Proximity Keyword Query Semantics

We use the conventional labeled graph notation to represent XML data. The nodes of the graph

correspond to XML elements and are labeled with the tags of the corresponding elements and an

optional string value. Figure 1 shows an example of an XML graph. An edge of the graph denotes

either containment (e.g., any “person → name” edge) or an IDREF-to-ID relationship (e.g., any

“supplier → person” edge) or a cross-document XML Link [24]. We will collectively refer to IDREF-

to-ID and XML Link edges as reference edges and to the rest as containment edges.

We allow the graph to have multiple roots, i.e., multiple nodes with no incoming containment edge,

for two reasons: First, the administrator may choose to omit the root of an XML document from the

graph, since the root often provides an artificial connection between semantically unrelated first level

elements. For example, had we included a root in Figure 1 it would appear as persons and parts are

closely connected (two edges way) via the root; such a connection would be artificial. A second reason

for multiple roots is that we may want the graph to capture multiple XML documents, potentially

linked via cross-document XML Links. We also assume that every node has a unique id, invented by

the system if the corresponding element has no ID attribute. Note that the graph does not consider

any notion of order among the nodes v, . . . , vn pointed by a parent node v. In summary:

Definition 3.1 (XML graph) An XML graph G is a labeled directed graph where every node v has

a unique id id(v), a label λ(v) coming from the set of element tags T and optionally a value val(v)

coming from the set of values V . Edges are classified into containment and reference edges. ♦
Figure 1 illustrates an XML graph. By convention, we indicate containment edges with solid lines

and reference edges with dotted lines. We omit id’s from the figures and we include the values in

brackets.

Schema Graphs We use schema graphs to describe the structure of the XML graphs. Schema

graphs are similar to XML Schema definitions [25] but have typed references. We have simplified

the content types captured by an XML Schema and kept only the constructs that are useful for

performance optimization.

Definition 3.2 (Schema Graph) A schema graph is a directed graph Gs where every node vs is

annotated with a label λ(vs) coming from the set of element tags T and a content type type(vs) taking
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Figure 5: TPC-H based schema graph

the value all or the value choice. Every edge es is classified as being a containment edge or a

reference edge and is annotated with a maximum occurrence occ(es), which can be a positive number

or * . ♦
A XML graph is said to conform to a schema graph if there is a mapping µ that maps every node

v of the XML graph into a node µ(v) of the schema graph and the following conditions apply:

• v is a root node of the XML graph if and only if µ(v) is a root node of the schema graph.

• λ(v) = λ(µ(v))

• if there is a containment (resp. reference) edge e from v to u in the XML graph then there is a

containment (resp. reference) edge es from µ(v) to µ(u) in the schema graph.

• given a XML graph node v, if µ(v) has an outgoing containment (resp. reference) edge es that

points to a schema graph node us and occ(es) = n, n �= ∗ then there are at most n containment

(resp. reference) edges e from v to a node u where µ(u) = us.

• given a XML graph node v, if type(µ(v)) = choice then for all edges e1, . . . , en from v to

corresponding target nodes u1, . . . , un it is µ(u1) = . . . µ(un).

The data of Figure 1 conform to the TPC-H-like schema of Figure 5, where dotted lines denote

reference edges and solid lines stand for containment edges. We denote choice nodes with an arc

over their outgoing edges; all other nodes are of type all. In Figure 5, only “linepart” is a choice

node. Finally, we define an uncycled directed graph G(V,E) to be a directed graph, whose equivalent

undirected graph Gu(V,E′) has no cycles. An edge (v1, v2) is created in Gu if G has edges (v1, v2) or

(v2, v1).

3.1 Semantics of Keyword Queries and Presentation of Results

A keyword query is a set of keywords k1, . . . , km. The result of a keyword query is the set of all

possible Minimal Total Target Object Networks (MTTON’s). We define MTTON’s after we have first

defined minimal total node networks (MTNN’s). A node network j of an XML graph G is an uncycled

subgraph of G, such that for each edge (n1, n2) ∈ j it is is (n1, n2) ∈ G. A total node network j of

the keywords {k1, . . . , km} is a node network, where every keyword k is contained in at least one node

n of j, i.e., ∀k ∈ {k1, . . . , km}, ∃n ∈ j : k ∈ keywords(n), where keywords(n) is the set of keywords

contained in the tag or the value of n. A Minimal Total Node Network (MTNN) j of the keywords

{k1, . . . , km} is a total node network where no node can be removed and j still be a total node network.
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The score of a MTNN j is its size in number of edges. For example the following MTNN N0 of the

keyword query “John, VCR” has size 8.

N0 : name[John]← person← supplier← lineitem→ linepart → part→ subpart→ part→ name[VCR]
Notice that in the general case, the size of the MTNN’s of a keyword query is only data bound. Hence

the user specifies the maximum size Z of an MTNN that is of interest to him/her.

To ensure that the result of a keyword query is semantically meaningful for the user we introduce

the notion of target objects. For every node n in the XML graph we define (using the schema, as we

will see later) a segment of the XML graph, called target object of the node n (or simply called target

object when the node n is obvious from the context.) Intuitively, a target object of a node n is a

piece of XML data that is large enough to be meaningful and able to semantically identify the node

n while, at the same time, is as small as possible. For example, consider the MTNN N0 above. The

user would like to know which is the part number of the VCR, which is the part p of which the VCR

is a subpart, which line item includes p, and what is the last name of John.2

The target objects provide us such information. It makes sense to output the “partkey” of the

VCR part as well as the name and “partkey” of the TV. On the other hand it would not make sense

to output all the subparts of the TV or the orders of the person. They could be too many and of no

interest in semantically identifying the node. Hence, we define the person element with the name and

nation subelements to be a target object, and the part with the “partkey” and name to be another

target object.

Given a MTNN j with nodes v1, . . . , vn there is a corresponding MTTON t,3 which is a tree whose

nodes is a minimal set of target objects {t1, . . . , tm} such that for every node nk ∈ j there is a tl ∈ t

such that target(nk) = tl. There is an edge from a target object ti to a target object tj if there is

an edge (or as path of dummy nodes as defined below) from a node that belongs to ti to a node that

belongs to tj. The score of a MTTON j is the score (size) of its corresponding MTNN. The answer

to a keyword query is unique.

Specification of Target Objects The target objects are defined from an administrator using the

Target Schema Segment (TSS) graph described next. A TSS graph is an uncycled graph whose nodes

are called target schema segments. The TSS graph is derived from a partial mapping of the nodes

of the schema graph G. A node tS is created in GTSS for each set S = {s1, . . . , sw} of nodes of G

that are mapped to tS. Some nodes in G, which are called dummy schema nodes, are not mapped to

any node in GTSS , because they do not carry any information. For example supplier, subpart and

linepart are dummy schema nodes. An edge (tS , tS′) is created in GTSS if the schema graph has nodes

s ∈ S and s′ ∈ S′, that are connected directly through an edge (s, s′) or indirectly through a path of

dummy schema nodes. Typically we assign to a node tS of the TSS graph a name that is the label

of the “most representative” schema graph node s ∈ S. For example, the TSS node corresponding to

{person,name,nation} is named person (see Figure 6).
2Due to space limitations we do not include a last name field in the figures.
3The definition does not guarantee the uniqueness of the MTTON t. The nodes of j may be split in minimal sets

of target objects in multiple ways. However, this is of limited practical importance since in practice it is unlikely that
target objects overlap with each other in ways that enable a network to be split in multiple ways in target objects.
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Figure 7: Two MTNN’s with different scores

Figure 15 illustrates the TSS graph behind our DBLP demo. Notice the semantic explanations,

with the obvious meanings, that annotate the edges. Each edge is annotated with two semantic

explanations: the first explains the connection in the direction of the edge and the second in the reverse

direction. Similarly, the semantic explanations of the TPC-H TSS graph are shown in Figure 6.

Given the TSS graph, it is straightforward to define a target decomposition of the XML graph into

target objects, connected to each other. For example a target object decomposition of the schema of

Figure 5 and the corresponding TSS graph are shown in Figure 6. The MTTON of the MTNN N0

presented above is highlighted in Figure 1.

Notice that two MTTON’s with the same size, may have different scores for a keyword query, since

the score is determined by the MTNN’s. Such a case is shown in Figure 7 for the keyword query

“John, Zealand”, where the first MTTON has score 0 and the second 2, because there are 0 and 2

edges between the keywords respectively.

3.2 Presentation Graph

In its simplest result presentation method (Figure 4 (b)) XKeyword spawns multiple threads, eval-

uating various plans for producing MTTON’s, and outputs MTTONs as they come. The smaller

MTTON’s, which are intuitively more important to the user, are usually output first, since they re-

quire smaller execution times. The threads fill a queue with MTTONs, which are output to the user

page by page as in web search engine interfaces.

The naive presentation method described above (and currently used by the DBLP demo) provides

fast response times, but may flood the user with results, many of which are trivial. In particular, as we

explained in the introduction, a redundancy similar to the one observed in multivalued dependencies

emerges often. Displaying to the user results involving multivalued dependencies is overwhelming and

counter-intuitive. XKeyword faces the problem by providing an interactive interface (and correspond-

ing API) that allows navigation and hides the trivial results, since it does not display any duplicate

information as we show below.

XKeyword’s interactive interface presents the results grouped by the candidate networks (see Sec-
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tion 4) they conform to. Intuitively, MTTON’s that belong to the same candidate network have the

same types of target objects and the same type of connections between them. XKeyword groups the

results for each candidate network to summarize the different connection types (schemata) between

the keywords and to simplify the visualization of the result.

XKeyword compacts the results’ representation and offers a drill-down navigational interface to

the user. In particular, a presentation graph PG(C) (Figure 3) is created for each candidate network

C. The presentation graph contains all nodes that participate in some MTTON of C. A sequence of

subgraphs PG0(C), . . . , PGn(C) are active and are displayed at each point, as a result of the user’s

actions. The initial subgraph, PG0(C), is a single, arbitrarily chosen MTTON m of C, as shown in

Figure 3 (a).

An expansion PGi+1(C) of PGi(C) on a node n of type N is defined as follows. All distinct nodes

n′, of type N , of every MTTON m′ of C are displayed and marked as expanded (Figure 3 (b)). Note

that we have to consider the statement “of type N” in a restricted sense: A candidate network may

involve the same schema type in more than one roles (as is the case with tuple variable aliases in

SQL.) For example, in Figure 3 “part” objects on the right side are VCRs while the “part” objects to

their left are the “part” that contain the VCR parts. We consider those two classes of “part” objects

to be two different types as far as presentation graphs are concerned. In addition a minimal number

of nodes of other types are displayed, so that the expanded nodes appear as part of MTTON’s. More

formally, given a presentation graph instance PGi(C), its expansion PGi+1(C) on a node n of type N

has the following properties: (a) PGi(C) is a subgraph of PGi+1(C), (b) for each MTTON m′ ∈ C,

where the node n′ ∈ m′ is of type N , n′ is included in PGi+1(C), (c) for each node v ∈ PGi+1(C)

there is a MTTON z contained in PGi+1(C), such that v ∈ z, and (d) there is no instance PG′
i+1(C)

satisfying the above properties and the set of nodes of PG′
i+1(C) is subset of the nodes of PGi+1(C).

In the implementation of XKeyword, an expansion on a node n occurs when the user clicks on n.

Notice also that if the expanded nodes are too many to fit in the screen then only the first 10 are

displayed.

On the other hand, a contraction PGi+1(C) of PGi(C) on an expanded node n of type N is

defined as follows. All nodes of type N , except for n, are hidden (Figure 3 (c)). In addition a

minimum number of nodes of types other than N are hidden, while satisfying the restriction that for

each node in PGi+1(C) there is a containing MTTON in PGi+1(C) (see condition (c) below). More

formally, given a presentation graph instance PGi(C), its contraction PGi+1(C) on an expanded node

n of type N has the following properties: (a) PGi+1(C) is a subgraph of PGi(C), (b) n is the only

node in PGi+1(C) of type N , (c) for each node v ∈ PGi+1(C) there is a MTTON z contained in

PGi+1(C), such that v ∈ z, and (d) there is no instance PG′
i+1(C) satisfying the above properties

while PG′
i+1(C) has more nodes than PGi+1(C). In the implementation of XKeyword, similar to the

expansion, a contraction on an expanded node n occurs when the user clicks on n.

The presentation graphs model allows the user to navigate into the results without being over-

whelmed by a huge number of similar MTTON’s. Furthermore, if he/she is looking for a particular

result it is easy to discover it by focusing on one node at a time.
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The presentation of the results of a keyword query by the interactive presentation graphs evokes

the following requirements for the execution unit: First the top MTTON of each candidate network,

which is the initial presentation graph, must be computed very quickly to provide a quick initial

response time to the user. Second the expansion of the presentation graph must be performed on

demand. This cannot be done simply by moving the cursor of some query we submit to the underlying

database. Instead, when a user clicks on a node, a new minimal set of focused queries is sent to the

database. These requirements and corresponding solutions are addressed in Section 7.

4 Architecture

The architecture of XKeyword (Figure 8) consists of a load stage, where the data are loaded to the

system and all precomputations are performed, and a query processing stage that answers keyword

queries.

In the load stage, the decomposer inputs the schema graph, the TSS graph and the XML graph

and creates the following structures:

1. A master index, which stores for each keyword k a list of triplets of the form

〈TO id, node id, schema node〉 where TO id is the id of the target object that contains the node

of type schema node with id node id, which contains k. The node id 4 and schema node are

needed when calculating the score of a candidate network (Definition 4.1), since as we describe

below, the generated relations only store target object id’s.
4node id is needed to distinguish two nodes of the same type and of the same target object.
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2. A set of statistics specifying: (a) the number s(S) of nodes of type S in the XML graph and (b)

the average number c(S → S′) of children of type S′ for a random node of type S.

3. BLOBs of target objects, which given an object id instantly return the whole target object.

4. A decomposition of the TSS graph into fragments, which correspond to connection relations that

allow efficient retrieval of MTTON’s.

Figure 9 shows a valid decomposition of the TSS graph of Figure 6, where the thick arrows and

the closed dotted curves denote single edge and multiple edge fragments respectively. We map each

fragment into a connection relation. For example, P → O → L (in short POL, since the arrows are

unambiguously implied by the TSS graph) is the connection relation that corresponds to the fragment

in the dotted line. It stores the connections among the Person, Order and Lineitem TSS’s. LPref is the

connection relation that corresponds to the fragment (indicated by the thick dotted line) containing

the reference edge between Lineitem and Person.

Query processing consists of five stages. The keyword discoverer inputs the set of keywords and

outputs for each keyword k the containing list L(k) of 〈TO id, node id, schema node〉 where the node

identified by node id contains k.

The CN Generator takes from the containing lists the information about which schema nodes

contain the keyword and works on the schema graph to calculate all possible candidate networks

(CN’s)) (Definition 4.1). The CN Generator works on the schema graph and not on the TSS graph

because (a) important schema information like the choice nodes may be lost when we create the TSS

graph and (b) the score of the MTTON’s is measured in terms of schema graph edges.

A schema node network is an uncycled directed graph of schema nodes, where for each edge (S1, S2)

of adjacent schema nodes S1, S2 there is an edge (S1, S2) in the schema graph. The same edge of the

schema graph may appear more than once in a schema node network. Intuitively, this corresponds

to the fact that target objects of the same type may be playing different roles in the MTTON’s. A

schema node S is free (S) if its corresponding extension has nodes that contain keywords. Otherwise

it is non-free. The non-free schema node SK is the set of nodes of type S that contain all keywords in

K.

A node network j belongs to a schema node network N (j ∈ N) if there is a tree isomorphism

mapping h from the nodes of j to the schema nodes of N , such that for each node n ∈ j, n ∈ h(n).

Definition 4.1 (Candidate Network) Given a keyword query k1, . . . , km and a schema graph, a

schema node network C is a candidate network (CN), if there is an instance of the XML graph that

conforms to the schema graph and has a MTNN m ∈ C. ♦
The CN’s of size up to Z = 8 generated for the keyword query “TV, VCR” are the following:

CN1:nameTV ← part→ subpart→ part→ nameV CR

CN2:nameTV ← part→ subpart→ part→ subpart→ part→ nameV CR

CN3:nameTV ← part→ subpart→ part→ subpart→ part→ subpart→ part→ nameV CR

CN4:nameTV ← part← linepart← lineitem← order → lineitem→ linepart→ part→ nameV CR

CN5:nameTV ← part← linepart← lineitem← order → lineitem→ linepart→ product→ descrV CR
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There are four more CN’s which are the dual of CN1, CN2, CN3 and CN5 (CN4 is symmetric, so it

is equivalent to its dual) when “TV” and “VCR” are swapped. We ignore these CN’s in the analysis

that follows for compactness.

The CN generator algorithm is based on the algorithm described in DISCOVER [16]. It has

been extended to address the unique features of XML (choice nodes, distinction of containment and

reference edges) and also incorporates performance improvements over [16]. The algorithm is presented

in the Appendix. The CN Generator algorithm is complete (the proof is an extension of the proof

of [16]), that is, all MTNN’s of size up to Z belong to an output CN. Furthermore, the algorithm is

non-redundant, that is, for each output candidate network C there is an instance of the database that

contains a MTNN j ∈ C and there is no other candidate network C ′ such that j ∈ C ′.

Recall that the connection relations store only target object id’s. Hence we reduce the candidate

networks to TSS networks, which are uncycled directed graphs of TSS’s, where for each edge (T1, T2)

between TSS’s T1, T2 there is an edge (T1, T2) in the TSS graph. The unique TSS network that

corresponds to a candidate network is called candidate TSS network (CTSSN).

The candidate TSS networks of the above candidate networks are the following, where T k,S denotes

a TSS T that contains keyword k in its schema node S:

CTSSN1: PartTV,name → PartV CR,name

CTSSN2: PartTV,name → Part→ PartV CR,name

CTSSN3: PartTV,name → Part→ Part→ PartV CR,name

CTSSN4: PartTV,name ← Lineitem← Order → Lineitem→ PartV CR,name

CTSSN5: PartTV,name ← Lineitem← Order → Lineitem→ ProductV CR,descr

The candidate TSS networks are output by the CN Generator. The Optimizer is an adaptation

of the optimizer of [16]. It uses the schema information on the connection relations and the available

statistics to generate the best Execution Plan that evaluates the set of candidate TSS networks. An

important feature of the optimizer is that it exploits the common subexpression reusability oppor-

tunities among the candidate TSS networks as in CTSSN4 and CTSSN5 below. For example, an

execution plan for the above set of candidate TSS networks is:

CTSSN1← PaPa(TV,part1.name),(V CR,part2.name)

CTSSN2← PaPa(TV,part1.name) �Pa2 id=Pa1 id PaPa(V CR,part2.name)

CTSSN3← PaPa(TV,part1.name) �Pa2 id=Pa1 id PaPa �Pa2 id=Pa1 id PaPa(V CR,part2.name)

temp1← LPa refTV,part.name �L id=L id POL �O id=O id POL

CTSSN4← temp1 �L id=L id LPa refV CR,part.name

CTSSN5← temp1 �L id=L id LPr refV CR,product.descr

The Execution Module inputs the execution plan from the Optimizer. If the presentation graph

method is used to present the results, the Execution Module interacts with the Presentation Module

to direct the execution according to the user’s navigation on the presentation graphs. In the case of

the full list of results presentation method, a stream of results is output. The details of the Execution

Module are described in Section 7.

Finally the Presentation module displays the results as described in Section 3.2.
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Figure 11: Unfolded TSS Graph Decompositions

5 XML Decompositions

The decomposition of the TSS graph into fragments determines how the connections of the XML

graph are stored in the database, and consequently the generated execution plan for the candidate TSS

networks. We have found that the selected decomposition can dramatically change the performance

of XKeyword, especially for top-K queries.

EXAMPLE 5.1 Consider the keyword query “TV, VCR” and CTSSN4:

PartTV,name ← Lineitem ← Order → Lineitem → PartV CR,name from Section 4. CTSSN4 re-

quires three joins given the decomposition of Figure 9. Consider the TSS graph decomposition of

Figure 10, which includes an OLPa fragment. With this decomposition, CTSSN4 can be evaluated

with a single join OLP TV,part.name � OLP V CR,part.name. �

Often we need to build unfolded fragments that contain the same TSS more than once, to store

the same edge of the TSS graph more than once, as shown in the example below.

EXAMPLE 5.2 Consider the network CTSSN2: PartTV,name → Part → PartV CR,name of Sec-

tion 4. This network connects three Part nodes by following the Part → Part edge twice. Under

any non-unfolded decomposition this network cannot be executed without a join. However, the first

unfolded TSS graph of Figure 11, which “unrolls” the PartPart cycle, allows the creation of the

Part→ Part→ Part fragment, which can evaluate CTSSN2 without a join.

Similarly, CTSSN4 can be evaluated without a join, if we create the Part ← Lineitem ←
Order → Lineitem → Part fragment on the second unfolded TSS graph of Figure 11, where the

Order → Lineitem edge has been “split”, i.e., the Order TSS has two children Lineitem TSS’s. No-

tice that not all edges of the unfolded TSS graphs have to be in the decomposition. For example in the

second unfolded TSS graph of Figure 11, the second Lineitem → Person edge is not in a fragment,

since there is a fragment for the first Lineitem→ Person edge. �
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Definition 5.1 (Walk Set, Unfolded TSS Graph) A walk set of a TSS graph G, denoted WS(G),

is the set of all possible walks in G. A graph Gu is an unfolded TSS graph of the TSS graph G if

WS(Gu) = WS(G). ♦

Definition 5.2 (TSS Graph Decomposition) A decomposition of a TSS graph G = 〈N,E〉 is

a set of fragments F1, . . . , Fn, where for each fragment F 〈N,E〉 there is an unfolded TSS graph

Gu = 〈Nu, Eu〉 of G, such that F is a subgraph of Gu. Every edge of G has to be present in at least

one fragment. ♦

Lemma 5.1 Any candidate TSS network can be evaluated given a TSS graph decomposition with the

properties of Definition 5.2.

The size of a fragment is the number of edges of the TSS graph that it includes. Note that a

TSS graph decomposition is not necessarily a partition of the TSS graph – a TSS may be included in

multiple fragments (Figure 10).

Each fragment F = 〈N,E〉 corresponds to a connection relation R, where each attribute corre-

sponds to a TSS and is of type ID5. A tuple is added to R for each subgraph of type F in the target

object graph, which is the representation of the XML graph in terms of target objects, that is, each

node of the target object graph is a target object. Connection relations are a generalization of path

indexes [10].

5.1 Decomposition Tradeoffs

There is a tradeoff between the number of fragments that we build and the performance of the keyword

queries, as we shown in Section 8. Assume that we consider solutions to the keyword queries which

contain up to M +1 target objects. That is, the maximum size of a candidate TSS network is M . The

one extreme is to create the minimal decomposition, where a fragment is built for each edge of the TSS

graph. Then, each candidate TSS network C requires S−1 joins to be evaluated, where S is the size of

C. We have found that the minimal is the most efficient decomposition for the on-demand expansion

of a presentation graph, because the execution algorithm first tries to connect the new target objects

to the adjacent nodes in the presentation graph, and gradually tries further nodes (Figure 14).

The other extreme is the maximal decomposition, where a fragment F is built for every possible

candidate TSS network C. F is created by replacing the non-free TSS’s of C with free TSS’s. Then

C is evaluated with zero joins. Clearly, the maximal decomposition is not feasible in practice due to

the huge amount of space required.

Notice that M can be calculated by the maximum size Z of the MTNN’s of the keyword query.

In particular, the size S of a candidate TSS network C is bound by the size S′ of the corresponding

candidate network C ′ with the size association function f , which depends on the schema graph, the

number of keywords and the TSS graph. It is S ≤ f(S′). Hence

M = f(Z) (1)

5In RDBMS’s we use the “integer” type to represent the “ID” datatype.
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For the schema graph of Figure 5, two keywords and the TSS graph of Figure 6, it is f(S′) = 2 ·S′+2.

The clustering and indexing of the connection relations are critical because they determine the per-

formance of the joins. In the maximal decomposition, a multi-attribute index is created for every valid

(i.e., the keywords can be on these attributes) combination of attributes of every connection relation.

In all non-maximal decompositions, we found (Section 8) that the performance is dramatically im-

proved when a connection relation R is clustered on the direction that R is used. For example, consider

the execution plan of Section 4. If the evaluation of CTSSN3 ← PaPa(TV,part1.name) �Pa2 id=Pa1 id

PaPa �Pa2 id=Pa1 id PaPa(V CR,part2.name) starts from the left end, then all three PaPa connection

relations should be clustered from left to right. If creating all clusterings for each fragment is too

expensive with respect to space, then single attribute indices are created on every attribute of the

connection relations, since we found that multi-attribute indices are not used by the DBMS optimizer

to evaluate join sequences.

The number of joins to evaluate the query q corresponding to a candidate TSS network is critical,

because of the nature of q, which always starts from “small” connection relations. Also, the connection

relations only store ID’s and have every single attribute index, which makes the joins index lookups.

The significance of the number of joins was verified experimentally (Section 8). Hence, we specify for

each decomposition an upper bound B to the number of joins to evaluate any candidate TSS network

of size up to M . For example B = 0 and B = M − 1 for the maximal and minimal decompositions

respectively.

Given B, we generally prefer to build fragments of small sizes to limit the space of storing them.

Theorem 5.1 proves that we can bound the size of the fragments of the decomposition.

Theorem 5.1 There is always a decomposition D, whose fragments’ maximum size is L = � M
B+1


and any candidate TSS network of size up to M is evaluated with at most B joins.

Proof: See the Appendix. ♦
Depending on the TSS graph, we may need to build all possible fragments of size L to satisfy the

constraint B on the number of joins. Theorem 5.2 shows such a class of TSS graphs.

Theorem 5.2 If all edges of the TSS graph are star (“*”) edges and ∃L ∈N, such that M = L·(B+1),

then the decomposition D must contain all fragments of size L to satisfy the constraint B on the number

of joins.

Proof: See the Appendix. ♦
Often it is not efficient to build all fragments of size L, because a fragment may take up too much

space despite its small size (in number of edges). This happens when the corresponding connection

relation of a fragment has a non-trivial multivalued dependency (MVD), as the PaLOLPa fragment

in Figure 11, which has the MVD O id→→ L1 id, Pa1 id. We say that a fragment has an MVD when

its corresponding connection relation has an MVD.

Theorem 5.3 A fragment F has a non-trivial MVD iff F contains a path p = (e1, . . . , en) and

∃ei ∈ {e1, . . . , en},∃ej ∈ {e1, . . . , en}, i < j, and

• ei ∈ { ∗←−,
ref−−→,

∗→
ref

,
∗←

ref
} and
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• ej ∈ { ∗−→,
ref←−−,

∗→
ref

,
∗←

ref
} and

• � ∃l, i < l < j − 1, el ∈ {→} ∧ el+1 ∈ {←}

Proof: See the Appendix. ♦
We classify TSS graph fragments and decompositions based on the storage redundancy in the

corresponding connection relations. Connection relations that correspond to a single edge in the TSS

graph, by definition are always in 4NF. Some wider connection relations, for example the OLPa

relation of Figure 10 can be in 4NF, however most of them will not be in 4NF. Non-MVD, no-4NF

connection relations, are called inlined connection relations. A fragment is 4NF, inlined, or MVD, if

the resulting connection relation is 4NF, inlined, or MVD respectively.

There are two classes of fragments that should never be built because no candidate TSS network

can efficiently use them. We call such fragments useless:

1. If a fragment F contains a choice TSS T and more than one children of T , then F is useless,

since the children of T can never be connected through T . For example, the fragment PaLPr is

useless since Lineitem is a choice TSS.

2. A fragment that contains the construct T1
l1−→ T

l2←− T2 is useless, if l1 �= ref and l2 �= ref ,

because T1 and T2 are never connected through T . For example, the fragment L1PrL2 is useless

since two Lineitem target objects cannot connect through a Part target object.

We ignore useless fragments in the decomposition algorithm presented below.

Decomposition Algorithm. XKeyword uses two different decompositions. First, an inlined, non-

MVD decomposition generated by the algorithm of Figure 13 is built, where B is the maximum

number of joins and M is the maximum candidate TSS network size. This decomposition is used

to efficiently generate the top-K results (MTTON’s) in the web search engine-like presentation, and

the top-1 MTTON of each CN C which corresponds to the initial instance of the presentation graph

of C. Second, the minimal decomposition is built, which is used along with the inlined, non-MVD

decomposition in the on-demand expansion of the presentation graphs.

The algorithm in Figure 13:

• satisfies the B constraint on the number of joins

• avoids building MVD fragments if possible

• builds non-MVD fragments of size larger than L = � M
B+1
 if they can eliminate MVD fragments

of size L

We say that a candidate TSS network C is covered by a decomposition D when C can be evaluated

with at most B joins.

Given M = 4 and B = 1, Figure 12 shows how the candidate TSS network S ← P → O → L→ Pr

is covered if we build the non-MVD fragment POLPr of size L+1 instead of the MVD fragment SPO

of size L.

6 Optimizer

The optimizer inputs a set of candidate TSS networks and the containing lists of the keywords. Its

goal is to minimize the cost of evaluating the candidate TSS networks by:
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Figure 12: Replacing an MVD with a non-MVD fragment

Decomposition Algorithm(B,M){
Add to the decomposition D all the non-MVD fragments of size up to L;
Create a list Q of all candidate TSS networks of size up to M not
covered by D;

Add all possible non-MVD fragments of size greater than L, that help in
covering at least one candidate TSS network C ∈ Q and remove C from Q;

Add the minimum number of MVD fragments of size up to L to cover all
candidate TSS networks in Q;
}

Figure 13: Decomposition Algorithm

• making the best use of the available fragments and

• exploiting reusability opportunities of common subexpression among the candidate TSS net-

works.

The optimization consists of two stages: (a) rewrite the candidate TSS networks using the available

fragments and (b) discover and exploit reusability opportunities among the rewritten candidate TSS

networks. The second stage is covered in DISCOVER [16], where heuristics are proposed that use the

statistics calculated in the load stage. This stage is not applicable in the case of on demand execution

based on the user’s navigation described in Section 3.1, because in that case each candidate network

is evaluated separately.

Both stages refer to NP-complete problems (Theorems 6.1, 6.2). To make things worse, the two

stages interact because depending on the rewriting, the reusability opportunities change. Fortunately,

it turns out that we can execute the two stages sequentially and still produce a near optimal execution

plan, because the cost saving of the first stage is considerably bigger than that of the second stage.

The reason is that in a reasonable XML database, like the DBLP which we use in our experiments,

where each keyword is usually found in one schema node, the reusability opportunities are limited

for a reasonably small maximum candidate TSS network size M , since each candidate TSS network

follows a different “path” to connect the same non-free TSS’s. Furthermore, it is rare that an optimal

rewriting will reduce the reusability opportunities, because candidate TSS networks which are close

enough to share common subexpessions are usually rewritten using the same set of fragments.

Theorem 6.1 The following problem is NP-complete: Given the simple cost model where each join

has cost one, and a set of relational views (fragments), rewrite a query (candidate network) using these
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views to minimize the evaluation cost.

Proof: See [15]. ♦.

Theorem 6.2 The following problem is NP-complete: Given a set of candidate networks, find the

intermediate results that should be built, so that the overall cost of building these results and evaluating

the candidate networks is minimum.

Proof: See [16]. ♦
Definition 6.1 (Rewriting) A rewriting R of a candidate TSS network N is a graph of fragments,

such that:

• N is a subgraph of R (containment) and

• if any fragment is removed from N, it is no longer a rewriting of R (minimality)

♦
In a non-redundant decomposition there is exactly one rewriting for each candidate TSS network.

The key concerns when rewriting a candidate TSS network N are (a) to exploit the clustering of the

selected fragments and (b) to minimize the sizes of the intermediate results. The optimizer calculates

the cost of evaluating a rewriting R applying the Wong-Yusefi algorithm and the cost estimations

presented in [22]. The evaluation starts from the leaves which are the “small” relations and the join

paths meet on one or more “meeting” fragments. The most efficient join method on the meeting

fragments is the index join. Notice that the sizes of the non-free TSS’s, which are needed in the cost

calculation, are calculated from the containing list of the keyword

The number of rewritings is theoretically exponential on the number of fragments, but in practice

it is fairly small, given that the size of the candidate TSS networks is bound and the number of

fragments that contain each edge of the schema graph is limited. Hence the optimizer can efficiently

select an optimal rewriting with respect to the cost model of [22].

7 Execution

The execution module of XKeyword aims at providing fast response time to keyword queries. Depend-

ing on the presentation method selected (see Section 3.1), we follow a different execution approach.

Web search engine-like presentation. In the case of the web search engine-like presentation of

the MTTON’s (Figure 4 (b)), we use the inlined, non-mvd decomposition (Figure 13) to speedup the

execution of the top-K keyword query. If the CN’s6 were evaluated sequentially, and the first one did

not produce any results, then the time to get the first result would be too long. We solve this problem

be using a thread pool. A thread is assigned to each CN starting from the smaller ones, which need

less execution time and also produce higher ranked results. A thread is returned to the pool when

either the corresponding CN’s evaluation completed, or a total of K results have been generated by

all threads, in which case the execution ends.

The evaluation of a single CN C of the keyword query k1, . . . , km is challenging for two reasons.

First, since we look for K results, sending a SQL statement for C is inefficient, because the DBMS’s do

not currently efficiently support top-K queries. XKeyword uses nested loops join, where the nesting
6For simplicity, in this section we use the term CN for both a CN and its corresponding candidate TSS network.
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of the loops is determinded by a depth first traversal of C that first finds a connection between k1 and

k2, then to k3, etc. The execution is terminated after K results are produced. For example, consider

CTSSN2 : partTV,name → part → partV CR,name of Section 4. The outermost loop will iterate over

the TSS partV CR,name7, the second loop over part and the innermost over partTV,name.

The second challenge is that the naive nested loops join algorithm has a serious inefficiency,

because it may send the same queries multiple times. In the above example, consider the case where

two target objects t1, t2 in partV CR,name connect to the same target object in the part TSS. Then,

when evaluating CTSSN2 for t2, the innermost loop (over partTV,name) should not be executed since

it will produce the same results as before. Notice that this optimization would not be possible if we

had put partTV,name as the outermost loop, because part→ part is a containment and not a reference

edge, so no two target objects in partTV,name could connect to the same target objects in the part TSS.

The speedup of the optimized execution algorithm over the naive one is experimentally evaluated in

Section 8.

In the optimized execution algorithm, there is a tradeoff between storing the past results to avoid

repeating a query and keeping no past results but sending more queries. XKeyword uses a fixed size

cache for each keyword query to store past results and if the cache gets full, the queries are re-send to

the DBMS.

Presentation Graphs. In the case of the on-demand execution based on the presentation graphs’

navigation we need to modify the optimized algorithm, because we do not need the complete MTTONs,

but only to find the set of expanded nodes that the user requested and their minimal connections to

the presentation graph. In the above example, if the user clicks on the partTV,name TSS, then for each

expanded node n in partTV,name, we need to find a single connection to the part TSS and we ignore

additional connections. In particular, we first check if n is connected to a node of part already in the

presentation graph PG(CTSSN2), because we need to expand the PG(CTSSN2) in a minimal way.

If such a connection is not possible, we search for a connection to a fresh node of the part TSS. The

on-demand expansion algorithm is shown in Figure 14.

Initially, the XKeyword decomposition (Figure 13) is used to efficiently retrieve the top result of

each CN. Then we use a combination of the minimal and the inlined, non-MVD decomposition to find

the minimal connection of the expanded nodes to the presentation graph, as we explain in Section 8.

8 Experiments

To evaluate the performance of XKeyword we performed a set of experiments. First, we measure the

performance of the keyword queries for various decompositions of the XML schema, for top-K and

full results. Then we evaluate the performance of the optimized execution algorithm for the search

engine-like presentation method described in Section 7. Finally the performance of the on-demand

expansion algorithm is evaluated.

We use the DBLP XML database with the schema shown in Figure 15. The citations of many

papers are not contained in the DBLP database, so we randomly added a set of citations to each such
7In the next paragraph we explain why VCR was selected as k1.
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Expansion Algorithm(PG(C),n){
PG(C): current instance of presentation graph
n: node to be expanded. n is of type N
Let S be the set of all target objects of type N;
for each node u in S do
l := 1;
while u not connected to all keywords and l ≤ size(C)
Check if u is connected to all keywords through PG(C) with l extra edges;
l++;

If no connection was found ignore u
else add u with its connection edges to PG(C)
}

Figure 14: On-demand expansion algorithm
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Figure 15: Target decomposition of DBLP

paper, such that the average number of citations of each paper is 20. We use Oracle 9i, running on

a Xeon 2.2GHz PC with 1GB of RAM. XKeyword has been implemented in Java and connects to

the underlying DBMS through JDBC. The master index is implemented using the full-text Oracle 9i

interMedia Text extension. Clustering is performed using index-organized tables.

Decompositions. We assume that the maximum candidate networks’ size is Z = 8 and focus on

the case of two keywords. Notice that we select a big Z value to show the importance of the selected

decomposition. The absolute times are an order of magnitude smaller when we reduce Z by one. For

the TSS graph of Figure 15, the maximum size of the CTSSN’s is M = f(8) = 8− 2 = 6. We require

that the maximum number of joins is B = 2, hence from Theorem 5.1 it is L = 2. We compare five

different decompositions:

1. The XKeyword decomposition created by the algorithm of Figure 13.

2. The Complete decomposition, which consists of all fragments of size L.

3. The MinClust decomposition, which is the minimal decomposition with all possible clusterings

for each fragment.

4. The MinNClustIndx decomposition, which is the minimal decomposition with single attribute

indices on every attribute of the ID relations.

5. The MinNClustNIndx decomposition, which is the minimal decomposition with no indices or

clustering.
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Figure 17: Execution times

We compare the average performance of these decompositions to output the top-K results for each

candidate network. The results are shown in Figure 16 (a). Notice that the Complete decomposition

is slower than MinClust although it requires a smaller number of joins, because of the huge size

of the fragments that correspond to relations with multi-valued dependencies and the more efficient

caching performed in the MinClust decomposition. Also notice that the non-clustered decompositions

(the results for MinNClustNIndx are not shown, because they are worse by an order of magnitude)

perform poorly for the top-K results.

Figure 16 (b) shows the average execution times to output all the results for each candidate network.

Notice that the MinNClustNIndx is the fastest, since the full table scan and the hash join is the

fastest way to perform a join when the size of the relations is small relatively to the main memory

and the disk transfer rate of the system, which is the case here, since all relations of the minimal

decomposition have just two id (integer) attributes.

Execution Algorithm. We evaluate the optimized execution algorithm, where partial results are

cached and reused (and hence production of “trivial” results, due to multivalued dependencies, is

reduced) for the search engine-like (non-interactive) presentation method. We measure the speedup

of the optimized algorithm compared to the naive, non-caching algorithm for various candidate TSS

network sizes M . The results are shown in Figure 17 (a), where the number of keywords is fixed to 2.
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We see that the speedup increases with M because the number of trivial results increases with M . Also

notice that the speedup is smaller than 1 for M = 2, because of the negligible caching opportunities

and the overhead imposed by the caching algorithm.

Finally, we measure the performance of the on-demand expansion algorithm of Figure 14. We

use keyword queries that involve the names of two authors and we focus on the presentation of

results coming from the candidate network Authork1 ← Paper → Authork2.Figure 17 (b) shows the

average time to expand a Paper node using three different decompositions: (i) the inlined, non-mvd

decomposition produced by the algorithm of Figure 13, (ii) the minimal decomposition, and (iii) the

combination of the two decompositions, i.e., the union of their fragments. More internal Paper nodes

are added for bigger sizes. The combining decomposition is faster when the size of the candidate TSS

networks is greater than 2. It is slightly slower than the minimal for size 2, due to the caching of

the minimal connection relations by the DBMS. The inlined is slower, because the algorithm initially

looks for a connection to the adjacent nodes of the to be expanded node, where the minimal fragments

are more suitable.

9 Conclusions and Future Work

XKeyword is a system that offers keyword proximity search on XML databases that conform to an

XML schema. The XML elements are grouped into target objects, whose connections are stored in

connection relations. Redundant connection relations are used to improve the performance of top-K

keyword queries. XKeyword presents the results as interactive presentation graphs, which summarize

the results per candidate network. The execution of the queries is optimized to offer fast response

times.

In the future, we plan to look into different semantics for keyword queries on structured and semi-

structured databases, going beyond the distance between keywords. We also work on integrating the

master index tighter into the execution engine of XKeyword and on improving the response time of

the system.

10 Acknowledgements

We thank Patrick Lightbody for implementing the front end of the XKeyword demo. We also thank

Tianqiu Tempo Wang for implementing the module that displays the presentation graphs and helping

with the experiments.

References

[1] http://www.xyzfind.com.

[2] S. Abiteboul, D. Suciu, and P. Buneman. Data on the Web : From Relations to Semistructured Data and
Xml. Morgan Kaufmann Series in Data Management Systems, 2000.

[3] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A System For Keyword-Based Search Over Relational
Databases. ICDE, 2002.

[4] S. Amer-Yahia, S. Cho, and D. Srivastava. Tree pattern relaxation. International Conference on Extending
Database Technology (EDBT), 2002.

24



[5] A. Balmin and Y. Papakonstantinou. Storing and Querying XML Data Using Denormalized Relational
Databases. UCSD Technical Report, 2001.

[6] G. Bhalotia, C. Nakhey, A. Hulgeri, S. Chakrabarti, and S. Sudarshanz. Keyword Searching and Browsing
in Databases using BANKS. ICDE, 2002.
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Appendix

Proof of Theorem 5.1: Assume that D is the decomposition that contains exactly all possible fragments of
size L. We show how to evaluate a candidate TSS network C of size M (if the size is smaller than M it is an
easier case) using D. First we partition the edges of C into connected sets of size L. Notice that the last set s
may have size smaller than L. The number of sets is �M/L
 = B + 1. Each such set corresponds to a fragment
in D. For the last set s we pick a fragment that contains s. Hence we have to join B +1 fragments, which needs
B joins. ♦
Proof sketch of Theorem 5.2: Assume that a fragment F of size L is not in D. We show that there is a
candidate TSS network C that cannot be evaluated with B joins. C is constructed as follows: If r is the root
of F then, we replicate F B + 1 times and make their root common. Then C needs more than B joins if F is
not available. ♦
Proof sketch of Theorem 5.3: Assume that R is the corresponding connection relation of F . First we prove
that if F contains p, then F has an MVD. We assume that V is the set of nodes of F . We can assume that there
is no star edge e ∈ {ei+1, . . . , ej−1}. If there were, we would consider the path p′ = {ei, . . . , e} or p′ = {e, . . . , ej}
if e is ∗−→ or ∗←− respectively. For the same reason we assume that there are no ref edges in {ei+1, . . . , ej−1}.
Assume that ei = (vi, v

′
i) and ej = (vj , v

′
j). By the hypothesis no l exists, so there is a one-to-one relationship

between v′i and vj . Also, by the hypothesis it is obvious that one-to-many relatioships exist between v′i and vi,
and vj and v′j . Hence, R has the MVD v′i →→ vi ∪ VL, where VL is the set of nodes of p on the left of vi.

The inverse specifies that if R has an MVD then the conditions of the theorem hold. Assume that the MVD
is vm →→ Vm, where vm ∈ V and Vm ⊆ V . If the MVD is non-trivial there must be a one-to-many relationship
from vm to an attribute vi ∈ Vm and from vm to an attribute v′l ∈ (V − Vm − vm). If the hypothesis about l
did not hold, then F would be empty since R=πVm∪vmR �vm=vm πV −VmR, by the definition of an MVD. ♦
Candidate Network Generator The CN Generator inputs the containing lists of the keywords and
generates a complete and non-redundant set of candidate networks. Each output candidate network C must
have the following acceptance properties:

1. C contains each keyword exactly once. That is,

∀k ∈ {k1, . . . , km} :
(a)∃SK ∈ C : k ∈ K

(b) � ∃SK ∈ C, RW ∈ C : RW �≡ SK ∧ k ∈W ∧ k ∈ K

For example nameTV,V CR ← part→ subpart→ part→ nameV CR is not output.

2. All leaves of C are non-free schema nodes. Otherwise C is not minimal since we can remove the free leaf
and still have a candidate network. For example nameTV ← part→ subpart→ part[partkey, nameV CR]
is not output since it has the free leaf schema node partkey.

3. s ≤ Z, where s is the size of C.

4. C does not contain a subgraph of the form S1 → R← S2, where both edges correspond to non-ref edges
in the schema graph, because it is not possible that S1 and S2 are connected through R. For example
nameJohn ← person→ order ← person→ nameMike is not output.

5. C does not contain a subtree of the form S1 ← R → S2, where R is a choice schema node, because it is
not possible that S1 and S2 are connected through R. For example descrV CR ← product ← linepart→
part→ nameTV is not output.

6. C does not contain a subtree of the form RK [SW1 , . . . , SWt ] where t > l and the edge R → S has
maxoccurence l in the schema graph. For example if order → lineitem has maxoccurence 2, then
order[lineitem→ quantity100, lineitem→ quantity200, lineitem→ quantity300] is not output.

7. C does not contain a node with degree more than m, because C is a tree with at most m leaves. This
observation, which was not used in [16], dramatically improves the performance of the algorithm.

Properties 5,6,7 are not part of the algorithm in [16], because they either refer to properties of the XML
schema (5, 6) or are performance improvements (7).
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Figure 18: Keyword Schema Graph

CN Generator Algorithm (Z){
Q: queue of schema node networks
Pick a keyword k ∈ {k1, . . . , km};
for each non-free schema node SK, where k ∈ K
Add schema node network SK to Q;

while Q not empty do{
Get head C of Q;
if C satisfies all acceptance properties then output C
else if C satisfies the acceptance properties 1(b), 3, 4, 5, 6, 7 then
for each schema node RW adjacent in Gk to a node of C
Add RW to C and put C to Q

else ignore C;
}
}

Figure 19: CN Generator Algorithm

The algorithm of Figure 19 generates a set of candidate networks by traversing the keyword schema graph
Gk, which is created from the schema graph G as follows: A node SK is created for each non-free schema node
SK and a an edge SK

1 → SW
2 is added if G contains edge S1 → S2. Figure 18 shows the keyword schema graph

for the keyword query “TV, VCR”. The algorithm outputs all candidate networks of size up to Z that satisfy
the above properties.
EXAMPLE 10.1 Figure 20 shows the candidate TSS networks output by the CN generator algorithm for
the keyword query “VLDB, Ullman” on the DBLP schema of Figure 15, which we use in the experiments, for
maximum candidate network’s size Z = 7, given that the master index determined that the keywords are found
in the conference name and the author name schema nodes respectively. Given this placement of the keywords,
it is f(Z) = Z − 2, hence M = 5. �
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# candidate TSS networks output
1 CV LDB,c.name → Y → P → AU,a.name

2 CV LDB,c.name → Y → P → P → AU,a.name

3 CV LDB,c.name → Y → P ← P → AU,a.name

4 CV LDB,c.name → Y → P → P → P → AU,a.name

5 CV LDB,c.name → Y → P ← P → P → AU,a.name

6 CV LDB,c.name → Y → P → P ← P → AU,a.name

7 CV LDB,c.name → Y → P ← P ← P → AU,a.name

8 CV LDB,c.name → Y → P → A← P → AU,a.name

Figure 20: CN Generator example
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