Experienceson Processing Spatial Data with
MapReduce'

Ariel Cary, Zhengguo Sun, Vagelis Hristidis, NaphRishe

Florida International University
School of Computing and Information Sciences
11200 SW & St, Miami, FL 33199
{acary001, sunz, vagel i s, rishen} @i s.fiu.edu

Abstract. The amount of information in spatial databasesrésving as more
data is made available. Spatial databases maiotg stvo types of data: raster
data (satellite/aerial digital images), and veatata (points, lines, polygons).
The complexity and nature of spatial databases slem ideal for applying
parallel processing. MapReduce is an emerging welgsparallel computing
model, proposed by Google. In this work, we presamt experiences in
applying the MapReduce model to solve two importgtial problems: (a)
bulk-construction of R-Trees and (b) aerial imagelity computation, which
involve vector and raster data, respectively. Wesent our results on the
scalability of MapReduce, and the effect of pataife on the quality of the
results. Our algorithms were executed on a Good@d&lcluster, which
became available to us through an NSF-supportedramn The cluster
supports the Hadoop framework — an open source emmghtation of
MapReduce. Our results confirm the excellent séithatof the MapReduce
framework in processing parallelizable problems.

1 I ntroduction

Geographic Information Systems (GIS) deal with clEmpand large amounts of
spatial data of mainly two categories: raster dasaellite/aerial digital images), and
vector data (points, lines, polygons). This typedafa is periodically generated via
specialized sensors, satellites or aircraft-mourtdacheras (sampling geographical
regions into digital images), or GPS devices (gatieg geo-location information).
GIS systems have to efficiently manage repositonésspatial data for various
purposes, such as spatial searches, and imagerggsing. Due to the large size of
spatial repositories and the complexity of the mayilons to process them, traditional
sequential computing models may take excessive tineemplete. Emerging parallel
computing models, such as MapReduce, provide anpatefor scaling data
processing in spatial applications.

" This research was supported in part by NSF grégt837716, CNS-0821345, HRD-
0833093, EIA-0220562, 11S-0811922, 1IP-0829576 #860534530, and equipment support
by Google and IBM.

2 Ariel Cary, Zhengguo Sun, Vagelis Hristidis, Naphtali Rishe

The goal of this paper is to present to the re$eammmunity our experiences
from using the MapReduce model to tackle two tyipdcad representative spatial data
processing problems. The first problem involvesteespatial data and the second
involves raster data.

The first problem is the bulk-construction of R-&se[l], a popular indexing
mechanism for spatial search query processing. My& siow previous ideas, like the
ordering of multi-dimensional objects via spacéri curves, can be used to create a
MapReduce algorithm for this problem. We also déschiow our solution is different
from previous approaches on parallelizing the coction of an R-Tree.

The second problem processes aerial digital imagemg computes and stores
image quality characteristics as metadata. Origimages may contain inaccurate,
distorted, or incomplete data introduced at somasehof imagery generation; for
example, a portion of an image may be completedynkl Pre-computed metadata is
important in dynamic imagery consistency checkiagd allows the appropriate
mosaicing with better sources to improve the impgdisplay. This problem is
naturally parallelizable since each tile can beeptially processed independently. In
practice, the amount of data processed by eacleclpsocessor depends on the file
system characteristics like the minimum processimig

Both problems were solved and evaluated on a G&tigld cluster supplied by
the NSF Cluster Exploratory (CIUE) program [2][8Ye present our experiences on
using such a cluster in practice and deploying MahRe jobs.

The key contribution of this work is as follow:

« We present techniques for bulk building R-treesngisthe MapReduce
framework.

* We present how MapReduce can be applied to maggpeehllel processing
of raster data.

« We experimentally evaluated our algorithms in terofisexecution time,
scalability and quality of the output. We providariwous metrics to measure
the quality of the resulting R-Tree.

This paper is organized as follows. Section 2 dessrthe steps in deploying
MapReduce applications on the Google&IBM’s clustas, well as some physical
configurations. Sections 3 and 4 present the @etdlapReduce algorithms for our
two target problems. Section 5 presents experirhemsults of our algorithm
implementations for different settings. Section cdsses related works. Last,
Section 7 concludes our work.

2 Using M apReducein Practice

The cluster used in this paper is provided by tloegke and IBM Academic Cluster
Computing Initiative [2][3]. The cluster containgsoand 480 computers (nodes)
running open source software including the Linurraging system, XEN hypervisor
and Apache's Hadoop [4], which is an open sourg@eimentation of the MapReduce
programming model. Each node has half terabytesgtocapacity summing up to
about 240 Terabytes in total. Access to the clustprovided through the Internet by
a SOCKS proxy server. SOCKS is an Internet protdhat secures client-server
communications over a non-secure network.

Experiences on Processing Spatial Data with MapReduce* 3

There are three main steps in interacting withcthster, as shown in Figure 1. (1)
Input data is uploaded into the cluster. The usesdile system shell scripts provided
by the Hadoop Distributed File System (HDFS), whishan integral part of the
Apache Hadoop project; HDFS is a clone project ob@e’s files system GFS [5].
(2) A user develops a Hadoop application and subihito the cluster via Hadoop
command. Hadoop applications are usually develapddva, but other languages are
supported, like C++ and Python. (3) After applioatiexecution is completed, the
output is downloaded to the user’s local site witidoop file system shell scripts.

)

bin/hadoop dfs put

Internet

bin/hadoop jar

Q)

bin/hadoop dfs get
Fig. 1. Google, IBM Academic Cluster Overview

MapReduce programming model requires expressing gbkitions with two
functions: map and reduce. A map function takesw@Malue pair, executes some
computation, and emits a set of intermediate kéyévgairs as output. A reduce
function merges all intermediate values associatgd the same intermediate key,
executes some computation on them, and emits tie 6utput. More complex
interactions can be achieved by pipelining sevédapReduce compounds in a
workflow fashion. A data set is stored as a sefile§ in HDFS, which are in turn
stored as a sequence of blocks (typically of 64MBsize) that are replicated on
multiple nodes to provide fault-tolerance. An ietted reader may refer to
MapReduce Google’s work [6] and open source Haddogumentation [4] for a
detailed description of MapReduce and Hadoop cdscep

3 Building R-Tree with M apReduce

This section discusses a MapReduce-based algofithbuilding an R-Tree index
structure [1] on a spatial data set in parallehi@ms. Let us start our description by
defining the problem. LeD be a spatial data set composed of objegts=1, .., |D|.
Each objecto has two attributes e<id, 0.P>, whereo.id is the object’'s unique
identifier ando.P is the object’s location in some spatial domaifmeo attributes are
possible, but we concentrate on these only forRiree construction purpose. The

4 Ariel Cary, Zhengguo Sun, Vagelis Hristidis, Naphtali Rishe

R-Tree minimum bounding rectangleMERs) are created based on the objects’
spatial attributeo.P. Identifierso.id are used as references to objects stored in the R-
Tree leaves.

The proposed method consists of three phases exkitusequence, as can be seen
in Figure 2. First, the spatial objects are pantiéid into groups. Then, each group is
processed to create a small R-Tree. Finally, thallsRxTrees are merged into the
final R-Tree. The first two phases are executeapReduce, while the last phase
does not require high computational power, thus éxecuted sequentially outside of
the cluster.

Phase 1:Partitioning Function Computation

key=o.id i_key=C
%_)@ value=o0.P m' value=U(o.P) Q_) array of R-1
> 4 splitting points
L-sized v ’ &r
Spatial sample Map Reduce
Dataset D Computes single Builds R-Tree
dimensional values on input objects

Phase 2: R-Tree Construction

key=o0.id i_key=f(o.P)
value=o0.P i_value=o
<1<1 <=
< >
Spatial Map Reduce R- T’ee i
Dataset D Assigns objects Builds R-Tree
to partitions via f on input objects

Phase 3: R-Tree Consolidation

ReTree 1 % R Tree 2 R-Tree single-process
________ consolidator
"

L R-Tree of D

s~ -

R-Tree R

Fig. 2. Phases involved in building an R-Tree index foata seD in MapReduce.
The three main phases of the algorithm are:

1 Computation opartitioning functionf. The inputs for this phase are the dateDset
and a positive numbd&, which represents the number of partitions. The purpose of
f is to assign any object &f into one of theR possible partitions. The function is
computed in such a way that applyifigon D yields R (ideally) equally-sized
partitions. In practice, minimal variance in sizescceptable. At the same tinfe,
attempts to put objects that are close in the apdtmain in the same patrtition.
The output of this phase is a functibwhich takes as input an object locatmP
and outputs a partition number. Note that no acpaatitioning or data moving

Experiences on Processing Spatial Data with MapReduce* 5

happens at this point. The next phase utilizés such purpose. More details of
this step are presented in Section 3.1.

2 R-Tree construction. During this phase, the functidrcalculated in the first phase
is used byMappers to divide D into R partitions. ThenR Reducers build R
independent “small” R-Tree indices simultaneoushytbeir input partitions. The
output of this phase is a set Bfindependent R-Trees. Details of this step are
presented in Section 3.2.

3 R-Treeconsolidation. This phase combines tieindividual R-Trees, built in the
second phase, under a single root node to fornfirlaé R-Tree index oD. This
phase can be as simple as makingRike Trees children of a single root node, or it
may require adding a few extra levels (at most ionpractice) ifR exceeds the
capacity of a single node. Since this phase iscootputationally intensive fdR
under a few hundreds or thousands, it is execuyed &ingle process outside the
cluster. The logic to run this phase is fairly sieyso no further elaboration will be
done on this step.

3.1 Partitioning Function

The purpose of the partitioning functiiis to provide a means for assigning objects
of D to a pre-defined number & partitions. We use the idea of mapping multi-
dimensional spaces into an ordered sequence dediilgensional values via space-
filling curves for this purpose. This idea has beamdied in the literature as a way to
numbering objects in multi-dimensional spaces [7IrBour present problem, we map
objects’ location attribute.P into such curves. We use the Z-order curve [9un
experiments in Section 5.1. The partition numberaofobjecto is determined by
f(o.P), which evaluates to a value from the s&tZ, .., R}. By using a space-filling
curve, the partitioning functiohachieves two goals:
¢ GenerateR (almost) uniformly-sized partitions, and
» Preserve spatial locality. If two distinct objecisando2 are close to each other
in the spatial domain, then they are likely to lssigned to the same partition,
i.e.f(ol.P) =f(02.P).
Next, we propose a MapReduce algorithm to deffine

MapReduce Algorithm

The general idea is inspired by the TeraSort Hadgagpication [10], which partitions
an input déa set via data sampling. Given a data sBtand target number of partitions
R, the MapReduce algorithm ruivé Mappers that collectively take sample objects

from D (that is, each Mapper samp%sobjects) and emit their single-dimensional

valuesS={U(0,.P), i=1, .., L} given a space filling curvé). Then, a single Reducer
sortsS and determines a li§ of R-1 splitting points that split the ordered sequence
of samples intdR equal-sized partitions. Then, in general, an dbjebelongs to
partitionj if STj-1] < U(0.P) < STj]. Thus,f utilizes the splitting points i§ to assign
objects to partitions.

6 Ariel Cary, Zhengguo Sun, Vagelis Hristidis, Naphtali Rishe

The specific MapReduce key/value input pairs ad agloutputs are presented in
Table 1. Mappers read in total samples at random offsets of their infiut and
compute their single dimensional value with the cgpfilling curve U. The
intermmediate key equals © which is a constant, whose value is irrelevarat th
helps in sending Mappers’ outputs to a single Reduthe Reducer receives the
single-dimensional values generated by Mapperssand them into an auxiliary list

U, ..U, from which R-1 elements are taken starting at thze-th element and

subsequently at fixed-length offsé{m form a listS of splitting points.

Table 1. Map and Reduce inputs/outputs in computing partitig functionf.

Function | Input: (Key, Value) | Output: (Key, Value)
Map (o.id, 0.P) (C, U(0.P))
Reduce | (C,list(u, i=1, .., L)) S

An important observation in the sampling procesth& Mappers read input data
from the distributed storage at block-sized amguwtsich is a Hadoop distributed
file system parameter specifically tuned for loadabcing large files across storage
nodes. Thus, all Mappers, except perhaps for tteolae, will read the same amount
of data, equal to the file system’s block size.

The rationale of the splitting points i§ is that they provide good enough
boundaries to sub-divideD into R partitions since they come from randomly sampled
objects. Experiments in section 5.1 show very Itandard deviation (under 1%) on
the number of objects per partition. Formally, tinectionf is defined as follows:

1, U(o.P) <S[1] @
flo.P)=3j Sl-1<U(.P)<S[lj=2..,R-1
R, U(o.P) > S'[R—1]

This computation is characterized by running midtiappers (samplig data) and
oneReducer (sorting samples), which may become a limitingdaén scalability. If
the size ofS becomes sufficiently large, then the TeraSort dproach can be used
to sort its items in parallel, which makes the &alton more scalable.

3.2 R-TreeConstruction

In this phaseR individual R-Tree indices are built concurrentappers partition
the input data sebD into R groups using the partitioning functidn Then, every
partition is passed to a different Reducer, whitdependently builds an R-Tree on its
input. Next, every Reducer outputs a root nodéeif tconstructed R-Trees, Rsub-
trees are written to the file system at the enthisfphase.

Input and output key/value pairs are shown in Tabléappers read their input
data in its entirety and compute objects assigratitipns viaf(o.P). Then, every
Reducer receives a number of inpbiectsA for which an R-Tree is built and its root
emitted as output. Sindebalances patrtitions, it is expected that all Redsiawill

receive a similar number of object$ (~|IT|), thus executing similar amount of work

Experiences on Processing Spatial Data with MapReduce* 7

in constructing their R-Trees. However, good balapaepends on the underlying
space-filling curveJ used byf, and the number of sampled objectdMore samples
help in tuning the splitting points, but incur arder sorting time of elements.

Table 2. MapReduce functions in constructing R-Trees.

Function | Input: (Key, Value) Output: (Key, Value)
Map (o.id, 0.P) (f(o.P), 0)
Reduce (f(o.P), list(0; =1, .. A) tree.root

Another concern is the quality of the produced ReFrin relation to the parameter
R. In Section 5.1, we provide some initial insighto this direction by measuring R-
Tree parameters such as area and overlap in afsgdpbay, and plotting theiMBRs
for visual analysis.

4 TileQuality Computation Using M apReduce

This section discusses a MapReduce algorithm tgaoterthe quality information of
aerial/satellite imagery. Such information is usééu fast identification of defective
image portions, e.g. blank regions inside a tileaogroup of tiles, and subsequent
dynamic image patching using better imagery avhdlabrendering time. For a given
tile, we define a pixel as “bad” if all the values its samples are below or above
some predefined value.

key="d.name+t.id" i_key=d.name

Header value=t @ i_value=(t.id, 1.q) .
—————————— - < > >
Tie 1 - Y >
[Tl 0] L _/

t,,,,i' ,,,,, L7 Map Reduce
Tiler o _ _ -
Tt T T E‘ Computes and compresses Merges computed quality Quality-bitmap
7777777777 quality bitmap for t bitmaps of all tiles in d file for d

DOQQ input file d

Fig. 3. Tile quality computation algorithm overview.

Image tiles are stored in customized DOQQ files],[ldugmented with a
descriptive header. Let be a DOQQ file and be a tile insided, d.name is d's file
name and.q is the quality information of tilé. More details of our data set are
presented in Section 5.2. Figure 3 depicts the gi@t overview of our MapReduce
algorithm. The algorithm runs on a tile by tile isawithin the boundaries of a given
DOQQ file, computing a bitmap per tile where a pigel is associated to a bit that is
set to 1 if the pixel is deemed “bad”, and O otlisew

MapReduce Algorithm

Each DOQQ file is first partitioned into severalitsp each of which is then processed
by a separate Mapper. Splits are carefully geneérayeparsing tiles out of the input
file until the size of all the tiles is close (litsmaller) to the block size of the

8 Ariel Cary, Zhengguo Sun, Vagelis Hristidis, Naphtali Rishe

underlying distributed file system or end of fils reached. In doing so, tile
boundaries are preserved between different sfilien, each Mapper will have to
read at most two blocks of a file. This helps reddata transfer time between nodes
because different blocks of a file are usuallyesioon separate nodes. Tiles (values)
inside one split are identified yname andt.id (keys) and combined as key/value
input for Mappers.

Table 3. Input and output of map and reduce functions

Function Input: (Key, Value) Output: (Key, Value)
Map (d.name+tt.id, t) (d.name, (t.id, t.q))
Reduce | (d.name, list((¢t;.id, t;.q)) Quality-bitmap of d

The input and output key/value pairs for Mapperd Beducers are described in
Table 3. The Mapper decompresses the JPEG ftilerates through each pixel ofo
obtain quality informatiort.q (a bitmap, one bit per pixel) and compresses igisi
Run-length encoding (RLE) algorithm. After thateinits the intermediate key/value
pair with d.name as the key and.q as the value. The Reducer merges alltthe
bitmaps that belongs to a fitkand writes them to an output file, containing imag
quality ford, as shown in Figure 3.

5 Experiments

This section presents and discusses the experimestdts we obtained by running
the algorithms described in Sections 3 and 4 asobjadapplications on the
Google&IBM cluster presented in Section 2. All tti@a sets used in this section are
real spatial data sets supplied by High Performance Database Research Center at
Florida International University [12]. At the tin@# experimentation, there were jobs
running in the cluster from other researchers 8tfare this resource, thus some
fluctuation in the results is expected.

51 R-TreeConstruction

Data sets and Setup

Experiments are executed on two real spatial dats. Data set descriptions are
shown in Table 4. The points in the data sets agular coordinates inldtitude,
longitude) format. In the following experiments, we use th®rder space-filling
curve [9] asU function to map the two-dimensional points intgiagle dimension.
We used 3% of each data set as samplinglsi@e first phase of the algorithm in
Section 3). Data sets are in tabular structureanddr (CSV), where each line
represents an object. We used Hadoop suppliedifunscto read objects (text lines)
from the data sets. During the second phase, Reslbedd their individual R-Trees
in-memory (to avoid high disk latencies in maintagn the tree along object
insertions), then the trees are peristed on Hadtpbuted file system.

Experiences on Processing Spatial Data with MapReduce* 9

Time Performance

This experiment consists of building R-Tree india@s the Google&IBM cluster
changing the parameté&t in phase-2, that is, the number of concurrentlytd®-
Trees, from 2 up to 64. AR varies, job completion times are measured for Mapp
and Reducers as well as quality statistics onélalting R-Trees. As a reference, we
also ran a single-process R-Tree construction dedicated local machine with Intel
Xeon E7340 2.4GHz processor and 8GB of RAM runnMigdows OS; we could
not run the single process in the cluster since deenot have login access to
individual nodes. Thus, cluster and single prodesss are not comparable due to
dissimilar hardware.

Table 4. Spatial data sets used in experiments.

Data Objects | Datasize
set (millions) (GB)
FLD 114 5 Points of properties in the state of Florida.

Yellow pages directory of points of businesses tyost
in the United States but also in other countries.

Description

YPD 37 5.3

Table 5. MapReduce job completion times (in minutes) fae ffhase 1MR1), and various
Reducers (R) in Phase ®IR2) of building an R-Tree. Also, completion times feingle-
process (SP) constructions ran on a local machimeteown.

MRZ1: Partitioning MR2: R-Tree
Function Construction
Data Total
set R Map Reduce | Map | Reduce | MR1+MR2
FLD 2 0.35 0.28 0.40 24.12 25.15
4 0.28 0.23 0.44 11.0y 11.98
8 0.47 0.22 1.73 5.62 8.03
16 0.30 0.22 0.44 3.05 3.97
32 0.48 0.23 0.44 1.95 3.07
64 0.28 0.33 0.45 1.60 2.7
SP - - - - 27.34
YPD 4 0.47 0.38 0.47 52.57 53.88
8 0.22 0.45 0.77 25.4p 26.90
16 0.40 0.43 0.39 8.98 10.15
32 0.40 0.43 0.42 4.65 5.90
64 0.40 0.42 0.89 2.55 4.25
SP - - - - 63.98

Table 5 shows MapReduce job completion times fdrr& construction phases 1
and 2 on both spatial data setswell as for a single-process build (SP);¥BD we
start atR=4 due to memory limitations in cluster nodes failding in-memory trees
with less number of Reducers. We do not includespfgaprocessing times since it is
of little significance compared to the other phadekase-1 (partitioning function
computation) takes very little time, which is exjgetsince sortinde=3% of objects
from a data set can be quickly done in memory Bysihgle reducer in this phase; for
our largest data s&fPD, about 1 million elements are sampled. @torder values

10 Ariel Cary, Zhengguo Sun, VagelisHristidis, Naphtali Rishe

are 8-byte sized elements, so around 8MB of RAMdeded to execute the sort,
which is much less than the memory of each clustete. Likewise, Mappers in
phase-2 read data sequentially and execute inexpeAsorder value computations
on their inputs.

30.00 60.00
25.00 50.00
OMR2 OMR2
= 20.00 ’E\ 40.00
g mMR1 = BMR1
o 15.00 o 30.00
£ — E
~ 10.00 ~ 20.00 =
5.00 10.00 —
0.00 . : DDD 0.00 : : DD
2 4 8 16 32 64 4 8 16 32 64
Reducers Reducers
(a) FLD data set (b) YPD data set

Fig. 4. MapReduce job completion times for various nundfeeducers in phase-2 (MR2).

The most computationally intensive part is perfaini®y Reducers in phase-2
where the actual R-Tree constrution occurs. Thesfewe number of Reducers, the
longer the R-Tree construction takes, since eashk taceives larger number of
objects. Figure 4 shows job completion times asksi bars of the map and reduce
execution times. In this figure, almost linear atéity is observed as more
parallelism is induced by increasiRjn phase-2. As expected, the improvement rate
is high for few Reducers but drops as the numbeReflucers increases since
partitioning overheads in phased¥R1) start becoming significant compared to R-
Tree build time in phase-24R2). In fact, for larger values d®, the dominating time
component is given bWIR1 which, as can be seen in Table 5, is almost coh&taa
given data set. Thus, much less improvements grectad aR is increased beyond
64.

Although we cannot compare our MapReduce and simigleess (SP) times due to
mismatch in hardware, the MapReduce parallelizatieriainly yields performance
benefits for large-scale data sets. For exampldakes more than an hour to
sequentially build th&PD R-Tree, while in parallel the task can be achiewvelbss
than 5 minutes with 64 Reducers. However, the tieguR-Trees are different due to
differences in object insertion sequences. Laté¢higisection we measure and discuss
R-Tree quality parameters for both cases.

Figure 5 presents percentages of performance gaijsb completion times in
relation to subsequent increases in the numbeediBers in the second phase of the
algorithm. For example, in théPD dataset, going from 4 to 8 Reducers we observe
50% decrease in job completion time, which reprissimear scalability. On the other
hand, going from 8 to 16 Reducers shows super+ligains (62%). We pressume this
may be due to heterogeneous nodes in the clustent{eally the job with R=16 was

Experiences on Processing Spatial Data with M apReduce* 11

executed on faster nodes), or it may be the clustswurces were idler during that
period. As discussed, as we increase the numbRedficers, performance gains are
less significant because the execution time forfitlsé phase, which has a sequential
componentReduce), stays almost constant.

0.60 0.70
0.60

0.50 -

0.40 - 0.50 1

0.40 -
0.30 -

0.30 -
0.20 - 0.20 |
0.10 A 0.10 -
0.00 - 0.00 - : : :

8 16 32 64

4 8 16 32 64
Reducers Reducers

% Performance gain
% Perfor mance gain

(a) FLD data set (b) YPD data set

Fig. 5. MapReduce job percentage of performance gainseasumber of reducers is increased.

Quality of Generated R-Trees

We use equations (2) and (3) below to compute ttea and overlap metrics
respectively for a given consolidated R-Tree wdbtiT:

L 2
Area(T) = ZArea(Ti.MBR)

i=1

n n (3)
Overlap(T) = Z Z Area(T;. MBR ﬂTj.MBR)

i=1 j=i+1

wheren is the number of children (small R-Trees generate&educers) of, andT;

is the i-th child node ofT. Note that other metrics of R-Tree quality could b
considered as well, e.g., consider all the nodeth@fR-Tree instead of just the top
level. Minimal area and overlap are known to inyergearch performance [13] since
they increase path pruning abilities of R-Tree gatibn algorithms.

Table 6 shows quality metrics on the consolidatedrées built for various
number of Reducers and single process (SP); fereste, the U.S. Census Bureau
reports Florida state land area roughly as 54,@@re miles as of 2000 [14]. As
expected, we see the total MBR area and the ovértapase as the parallelisiR) (
increases because the construction of each smale®is unaware of the rest of the
data set, lowering the chance of co-locating neighibjects within the same R-tree.
This means that we degrade the R-Tree quality witaining in execution time. The

12

Ariel Cary, Zhengguo Sun, VagelisHristidis, Naphtali Rishe

latter can adversely effect performance of sealgbrishms, such as nearest neighbor
type of queries, due to extra I/Os incurred in éraing multiple sub-trees.

Table 6. Statistics on consolidated R-Trees built by vasiaumber oReducers (R), and single
process $) construction.

Objects per Reducer Consolidated R-Tree
Data
set R Average Stdev Nodes | Height Area(sg.mi) | Overlap (sg.mi)
FLD 2 5,690,419| 12,183 172,776 4 132,338.9 304.4
4 2,845,210 6,347 172,624 4 106,230.4 4,307.9
8 1,422,605 2,23% 173,141 4 103,885.8 17,261.9
16 711,379 2,533 162,518 4 96,443.1 21,586.3
32 355,651 2,379 173,273 3 140,028.7 80,389.1
64 177,826 1,816 173,445 3 152,664.2 96,857.7
SP | 11,382,185 Q0 172,681 4 746,14%.0 1,344,836.8
YPD 4 9,257,188| 22,137 568,854 4 26,510,946.3 21,57488p
8 4,628,594 9,413 568,716 4 23,160,08D.0 20,28057|
16 2,314,297 7,634 568,232 4 67,260,270.0 54259828
32 1,157,149 6,043 | 567,550 4 68,626,854.9 54,008,538.5
64 578,574 2,982 566,199 4 69,791,368.8 55,004418
SP | 37,034,126 Q 587,353 5 164,966,68B.5 658,588,322
32 ‘ ‘
Single Process ———
- T 1
30|]
O ini]
29 1 g
28 |
27 1
26
25 g
2 ‘ ‘ ‘ ‘ ‘ ‘ ‘
-88 87 -88 85 -84 83 -82 81 -80

Fig. 6. MBR plotting forFLD data set on an R-Tree built by a single process.

For a sequential constructiol®sR), we observe these metrics are much worse,
especially the overlap factor, since objects aré smatially shuffled but rather
inserted in the data set original sequence. Thigheh performance penalties are
expected inSP constructed R-Trees. On the other hand, the tegght slightly
decreases fdfFLD for R beyond 32 because more small trees means thatoeactf
them may be shorter, while f§PD the height increases by one level for Stecase.

Experiences on Processing Spatial Data with M apReduce* 13

In general, small variations in tree height is leggnificant from a performance
standpoint.

32

31

30

29 -

26 -

25 - il H

24 ! ! ! ! ! !
-88 -87 -86 -85 -84 -83 -82 -81 -80

Fig. 7.
32

3

30

29

28

27

26

25

24 ! ! ! ! ! ! !
-88 -87 -86 -85 -84 -83 -82 -81 -80

Fig. 8. MBR plotting forFLD data set for R-Tree built by MapReduce w8,

To visually study the effect of increasifijover the MBR distribution, we have
plotted the MBRs of the resulting R-Trees for thse of 4 and 8 Reducers in Figures
7 and 8 respectively for the Florida state datgFeD). Also the same type of graph
is shown in Figure 6 for th8P R-Tree. In neither case is the root MBR plottattsi
it is common for all trees.

A few observations can be made from the MBR plg#inFirst, the partitioning
mechanism employed in our algorithms seems to fextéfe in preserving spatial

14 Ariel Cary, Zhengguo Sun, VagelisHristidis, Naphtali Rishe

locality. This results in individual Reducers indax highly localized objects; their
boundaries, however, result in multiple overlappinghich are inevitable. Second, as
the number oReducers is increased from 4 to 8, the plotting shape rédesnmore
the actual shape of the Florida state; thalRs8 reduces wasted areas (where no
actual objects are located) as the Area statistidiens in Table 6. In fact, Table 6
shows steady decrease in area from 2 tdrddiicers, after that the area keeps on
increasing. Third, when the R-Tree is built on tr@inal sequence of objects (no
object shuffling) inSP mode, large wasted areas are generated as carséeved in
Figure 6. From a performance optimization perspectMapReduce generated R-
Trees seem to be better tuned than their singleepsocounterpart. Therefore, we see
promising performance improvements in MapReduceeggad R-Trees, which
deserve closer verification.

52 TileQuality

Data set and Setup

The data set used in the experiments is a 3-inebluton aerial imagery of Miami
Dade County of Florida. The size of the data sethisut 52GB after compression.
Imagery data is stored as compressed DOQQ filedbrithere are 482 compressed
DOQQ files, each of which contains 4096 tiles. Etllehis 400 by 400 pixels and has
3 bytes for each pixel as the Red, Green and Bhaarel. The size for each tile is
480,000 bytes uncompressed and compressed tiig &0 KB each.

Experiments

Two experiments are carried out for this dataBe¢ first experiment uses a subset of
the data set that is a re-sampled version of tiggnait one. It is about 20GB and has
482 files with 1024 tiles each. The size of theditanges from several megabytes to
around 80 megabytes, and the number of Reducevarisd from 4 to 512. The
second experiment uses different sized subsetsedfriginal data set. The size of the
files ranges from 2GB to 16GB, and the number aflRers is fixed at 256.

In the first experiment, the number of Mappers I dixed, determined by the
data set size. Thus, the execution time of the ptegse is similar through different
runs, as can be seen in Figure 9 (a). The exectition slightly fluctuates because
there were other concurrent jobs running in thesteluat the same time. As the
number of Reducers increases, the execution timehefreduce phase largely
decreases for smaller number of reducers, anditegvements are obtained for
larger number of reducers. This is because the semoeint of work is now shared by
more Reducers. When the number of Reducers isrltige 64, the execution time of
the reduce phase stabilizes to around 2.5 mindteis. could be explained by the
launching time of Reducers dominating the wholeetimt this point. With 64
Reducers, each of them will be writing around 482#68 files. The time taken to
write 8, 4 (128 Reducers) or even less files idigéade compared with the launching
time of that many Reducers.

In the second experiment, Figure 9 (b), as the sizde data set increases with
constant number of reducers (256), the executiore tof the map phase hardly
changes, which is consistent with the data paizdiébn provided by the MapReduce

Experiences on Processing Spatial Data with M apReduce* 15

model, that is, more Mappers are engaged in privge#ise data. The execution time
of the reduce phase increases because there armomfiles to be written with the
same number of Reducers.

25 4
20 Lo OReduce 35 | OReduce
EMap ; | ®Map _
£ 15 ’g 25
by s ., __
E 10 g .
[&
5 o B = 1
0 - o
4 8 16 32 64 128 256 512 2 4 8 16
Reducers Size of data (GB)
(a) Fixed data size, variable Reducers @mable data size, fixed Reducers

Fig. 9. MapReduce job completion time for tile quality quuiation

6 Related Work

Space-filling Curves

The idea of using space-filling curves to map mdilthensional spaces into a single
dimension has been studied for the case of spddiabases [15, 8]; popular space-
filling curves, such as Peano and Hilbert, havenbstadied in great level of detail.
We used the Z-order curve in our experiments. Thisve showed high spatial
locality preservation for our experimented reabdsgts. Other curves can certainly be
evaluated, which goes beyond our focus on the lptiraltion of two concrete spatial
problems with MapReduce.

Parallel R-Tree Constructions

Previous works on R-Tree parallel construction hdaeed several intrinsic
distributed computing problems such as data lodahbang, process scheduling, fault
tolerance, etc., for which they elaborated spemispose algorithms. Schnitzer and
Leutenegger [16] propose a Master-Client R-Treeenehthe data set is first
partitioned using Hilbert packing sort algorithrheh the partitions are declustered
into a number of processors (via an specializedudesring algorithm), where
individual trees are built. At the end, a mastercpss combines the individual trees
into the final R-Tree. Another work by Papadopoulmsd Manolopoulos [17]
proposed a methodology for sampling-based spaci@aining, load balancing, and
partition assignment into a set of processors malfgy building R-Trees. They also
discuss some alternatives when the global (coreelty index has imperfections
such as different heights across individual R-Trees

16 Ariel Cary, Zhengguo Sun, VagelisHristidis, Naphtali Rishe

In MapReduce, these parallel computing concernsaéstracted out from the
application logic, and managed transparently as gfathe MapReduce framework.
Further, all nodes in the cluster access a commistriblited file system, with
automatic fault-tolerance and load balancing suppdrere data locality is employed
as base criterion to assign Mappers and Reduceede(ably) to nodes already
containing the input data. In contrast, traditiopatallel processing works assume
every node has its own storage, in a shared-notlyjmg of architecture, where data
transfer among nodes becomes an important optiioizgbal.

MapReduce on Spatial Data

MapReduce framework was used to solve anotheradpddia problem by Google
[18], where they study the problem of road aligntmby combining satellite and
vector data. This work concentrates on the comipexiof the problem, which are
more challenging than the MapReduce algorithms.

Schlosser et al. [19] worked on building octreesladoop for later use in earth-
qguake simulations at large-scale. Their approadli$a tree in a bottom up fashion.
The map function in the first iteration generatesf Inodes, then the reduce function
coalesces homogeneous leaf nodes into a subtrbse®@uent iterations have identity
functions in mappers, and successively use reduadibns to construct the final tree.

Relationship to MPI

Message Passing Interface (MPI) [20] is a spedifioaof a language-independent
communication model targeted at writing parall@grams, and it is widely used in a
variety of computer cluster platforms. MPI librarieprovide primitives and
functionality for communication control among a seft processes. Typically,
developers need to add explicit calls to synchepizocesses and move data around.
The key differences between MPI and MapReduce as thapReduce exploits its
simplified model to automatically parallelize tagiidappers and Reducers), hiding
from programmers the need to worry about processnuanication, fault-tolerance,
and scalability, which are transparently manage#dyy components, such as cluster
management system and distributed file system, thi@tMapReduce framework is
built-upon [6]. For example, for the R-Tree caselgt the Java implementation of the
Map and Reduce functions of the first phase, ang bfahe second phase have each
less than 40 lines of code. The Reduce functiadgheérnsecond phase has about 70 lines
of code since it includes extra code for persistihg tree on the distributed file
system and collecting build statistics. These nusilid not include application-
specific routines, which are needed regardleskenparallel model.

In MapReduce, the underlying assumption is thatstilation can be expressed in
terms of the Map and Reduce functions working op/\edue pairs. In some cases
this may not be natural, such as relational joinsolti-stage processes, and can lead
to inefficiencies. Then, MPI-like parallel implentations have more opportunities to
address application-specific optimizations, duésdiner process control. However,
high-level languages have been proposed to addhéssproblem in MapReduce
architectures by providing efficient primitives fanassive data analysis combining
SQL-like declarative style and MapReduce procedomagramming [21][22].

Experiences on Processing Spatial Data with M apReduce* 17

7 Conclusions

In this paper, we used the MapReduce programmindeinim solve two important

spatial problems on a Google&IBM cluster: (a) batkastruction of R-Trees and (b)
aerial image quality computation, which involve t@cand raster data, respectively.
The experimental results we obtained indicate that appropriate application of
MapReduce could dramatically improve task compiettomes. Our experiments

show close to linear scalability. However, perfonoais not the only concern for R-
Tree construction, which is sensitive to the omigief objects in its input, but also the
quality of the result. MapReduce generated R-Thee® improved quality in terms of
MBR area and overlap measurements compared toirigée-grocess construction

counterpart. No such quality problem arises inabgal image quality computation.
Our experience in this work shows MapReduce hagtiential to be applicable to
more complex spatial problems.

References

[1] Antonin Guttman: R-Trees: A Dynamic Index Structfwe Spatial Searching. SIGMOD
1984:47-57.

[2] NSF Cluster Exploratory Progratmttp://www.nsf.gov/pubs/2008/nsf08560/nsf08560.htm

[3] Google&IBM Academic Cluster Computing Initiative:
http://www.google.com/intl/en/press/pressrel/200&.dbm_univ.html

[4] Apache Hadoop projedtttp://hadoop.apache.org

[5] Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leunge TGoogle file system, SIGOPS
Operating Systems Review, Volume 37, Issue 5, §112 2003.

[6] Dean, J. and Ghemawat, S.: MapReduce: Simplifiéd peocessing on large clusters. In
Proceedings of the 6th Conference on Symposium peafling Systems Design &
Implementation, USENIX Association, Volume 6, pp-10, December 2004.

[7] Tetsuo Asanoa, Desh Ranjanb, Thomas Roosc, Emod\&eid Peter Widmayer: Space-
filling curves and their use in the design of getinedata structures, Theoretical
Computer Science, Volume 181, Issue 1, pp. 3-1§%,1897.

[8] J. K. Lawder and P. J. H. King: Using Space-Filli@grves for Multi-dimensional
Indexing, Book Advances in Databases, SpringeriBeviolume 1832, pp. 20-35, 2000.

[9] Morton, G. M.: A computer Oriented Geodetic DatssBaand a New Technique in File
Sequencing, Technical Report, Ottawa, Canada: IBdi/, [1966.

[10] Owen O'Malley: TeraByte Sort on Apache Hadoop, Yéhblay 2008.

[11] Doqq file format: http://fegsc.usgs.gov/isb/pubssaeets/fs05701.html

[12] High Performance Database Research Center (HPOR&garch Division of the Florida
International University, School of Computing amfiormation Sciences, University Park,
Telephone: (305) 348-1706, FIU ECS-243, Miami, B129.

[13] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneilernhard Seeger: The R*-tree: an
efficient and robust access method for points @stangles, Volume 19, Issue 2, pp. 322-
331, 1990.

[14] U.S. Census Bureau, Florida State and County Qaicts-
http://quickfacts.census.gov/gfd/states/12000. st revised: 25-Jul-2008.

[15]David J. Abel, David M. Mark: A comparative analysof some two-dimensional
orderings, International Journal of Geographicébimation Science, Volume 4, Issue 1,
pp. 21 - 31, January 1990.

18 Ariel Cary, Zhengguo Sun, VagelisHristidis, Naphtali Rishe

[16] Schnitzer B., Leutenegger S.T.: Master-client Rgrea new parallel R-tree architecture,
In Proceedings of the 11th International Conferemt&cientific and Statistical Database
Management, pp. 68-77, August 1999.

[17] Apostolos Papadopoulos, Yannis Manolopoulos: Rdrdiulk-loading of spatial data,
Parallel Computing, Volume 29, Issue 10, pp. 141944, October 2003.

[18] Xiaqging Wu, Rodrigo Carceroni, Hui Fang, Steve &edi, Andrew Kirmse: Automatic
alignment of large-scale aerial rasters to roadan&eographic Information Systems,
Proceedings of the 15th annual ACM internationahsgsium on Advances in geographic
information systems, Article No. 17, 2007.

[19] Schlosser S. W., Ryan M. P., Taborda R., LopeOHallaron D. R., and Bielak J.:
Materialized community ground models for large-ecaarthquake simulation, In
Proceedings of the 2008 ACM/IEEE Conference on Bugmeputing, Conference on High
Performance Networking and Computing, pp. 1-12,800

[20] William Gropp, Ewing Lusk, and Anthony Skjellum. idg MPI: Portable Parallel
Programming with the Message-Passing Interface. Rt&ss, Cambridge, MA, 1999.

[21] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, D. tStearker. Map-reduce-merge:
simplified relational data processing on large s Proceedings of the 2007 ACM
SIGMOD international conference on Management ¢d,dap 1029-1040, 2007.

[22] Christopher Olston, Benjamin Reed, Utkarsh Sriwast&avi Kumar, Andrew Tomkins.
Pig latin: a not-so-foreign language for data pssésy. Proceedings of the 2008 ACM
SIGMOD international conference on Management ¢d,dap 1099-1110, 2008.

