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Abstract—Customer reviews have become an essential resource
when people search for goods or services on the Internet.
Previous work has shown that reducing a product’s uncertainty is
critical to its purchase decision. Thus, reviews are more effective
when they reduce a product’s uncertainty. Existing e-commerce
platforms typically ask users to write free-form text reviews,
which are sometimes augmented by a small set of predefined
questions, e.g., “rate the product description’s accuracy from 1
to 5.”

In this paper, we argue that this “passive” style of review
solicitation is suboptimal in achieving low-uncertainty “review
profiles” for products. Its key drawback is that some product
aspects receive a very large number of reviews while other
aspects do not have enough reviews to draw confident conclusions.
Therefore, we hypothesize that we can achieve lower-uncertainty
review profiles by carefully selecting which aspects users are
asked to rate.

To test this hypothesis, we propose various techniques to
dynamically select which aspects to ask users to rate given the
current review profile of a product. We use Bayesian principles
to define reasonable review profile uncertainty measures; specifi-
cally, we apply Bayesian inference to measure an aspect’s rating
variance. We compare our proposed aspect selection techniques to
several baselines on several review profile uncertainty measures.
Experimental results on two real-world datasets show that our
methods lead to better review profile uncertainty compared to
aspect selection baselines and traditional passive review solicita-
tions.

Index Terms—review solicitation; customer reviews; review
analysis; sentiment analysis;

I. INTRODUCTION

It is well-known in marketing and management sciences that
product uncertainty, the buyer’s difficulty in evaluating product
characteristics, plays a crucial role in customer shopping deci-
sions [1]. Dimoka et al. [1] found that high product uncertainty
has stronger negative effects than high seller uncertainty. Kim
and Krishnan [2] noted that consumers are unlikely to buy
expensive products (defined as higher than $50) online if there
is a high degree of product uncertainty, even if they have
a lot of online shopping experience. Therefore, e-commerce
companies have sought to mitigate product uncertainty in
several ways, such as providing detailed descriptions, includ-
ing multimedia and virtual reality tools, and most notably
soliciting customer reviews.

In this paper we focus on how to maximize the effect
of reviews to the decrease in product uncertainty. Khare et
al. [3] found that reviews’ volume and the level of consensus
have a fundamental impact on consumer judgment. Hence,
an effective review solicitation strategy must account for both
these factors.

TABLE I
A REVIEW PROFILE; NUMBERS ARE RATING COUNTS.

? ?? ? ? ? ? ? ?? ? ? ? ? ?
Screen 0 0 0 5 31
Battery 26 10 3 0 0
Speed 0 1 2 0 3

Please rate following aspects:

Screen (a1)

Battery (a2)

Speed (a3)

Bad Neural Great

s1 s2 s3sentiment level:

Fig. 1. Ask a customer about a smartphone

Existing e-commerce platforms typically ask users to write a
free-text review. These reviews can then be analyzed by feature
and sentiment extraction methods (Section II) to estimate the
overall opinion of reviewers for each aspect (feature) of a
product. Other websites provide a static (predefined) set of
aspects for the user to rate, typically with a score from 1 to 5.
For example, “How clean was your room?” or “How would
you rate the reliability of the car?”

A key drawback of existing review solicitation methods
is that some aspects receive too many ratings, which is
especially wasteful if reviewers generally agree with each
other. For example, consider product “smartphone” with as-
pects “screen,” “battery,” “design” and so on. Hundreds of
reviewers may rate the “screen” as 5-stars. Conversely, a more
controversial aspect, e.g. the “speed,” may only receive a few
ratings. This leads to a review profile with high uncertainty, as
users typically try to compare various products across several
aspects (features) by using past users’ reviews.

An example of a smartphone’s review profile is presented
in Table I, which intuitively shows that screen has high
rating with high confidence, battery has low rating with high
confidence, and speed has high rating with low confidence.
A key question that this paper studies is: given the current
reviews profile of a product, is it better to let users write a
free-text review (and then extract the aspects and opinion using
existing methods [4], [5], [6], [7], [8], [9]), or to ask the
user to rate a small number of carefully selected aspects as
in Figure 1? A second question is: how should this small set
of aspects be selected, given the current review profile?

In this paper, we study these two questions in a principled
manner by first considering a Bayesian statistical model to
estimate the probability distribution of each aspect’s rating and



then dynamically selecting aspects whose estimated ratings
have the highest posterior variance. Intuitively, this method
solicits reviews for the aspects that have few reviews or have
diverse opinions. This means subsequent users may be asked
to rate different aspects of the product.

We understand that reviews’ uncertainty may also be af-
fected by other factors like spam reviews [10], [11], or the
helpfulness of the text of the reviews [12], [13], [14]. These
are important factors, orthogonal to our focus, and outside the
scope of this paper.

To design and compare various aspect selection methods,
we must first come up with a reasonable definition for review
profile uncertainty, as no such standard measure exists in
the literature. In our method, we estimate a review profile
uncertainty by the expected rating variance of each aspect,
which we model based on a well-accepted Bayesian inference
model. This model is consistent with the aforementioned
points that reviews’ volume and consensus are the key factors
in consumer’s evaluation of a product, as a high number of
reviews or high review agreement reduce a rating’s poste-
rior variance. To avoid comparing various review solicitation
methods based solely on the variance of the aspects, which
may favor our proposed methods, we also consider other
uncertainty measures based on the confidence interval (from
a frequentist statistician’s point of view, in contrast to our
Bayesian measure), and the number of aspects whose confi-
dence is above a threshold.

We next extend our methods to account for dependencies
among a product’s aspects. For example, if “screen” and
“contrast” are two correlated aspects and there are many and
in-agreement reviews for “screen,” it may be wasteful to solicit
reviews for “contrast.” For this, we consider a dependency-
aware Bayesian inference model to estimate the correlation
of two aspects. Then, we generalize the previous definition
of expected rating variance to infer an aspect’s variance from
others if they are highly correlated.

We compared our methods on two real datasets: Amazon
reviews with annotated aspect ratings introduced by Bing
Liu, et al. [4], [15] and crawled automobile reviews from
edmunds.com. We first compare our method to the passive
text-based solicitation method, which is simulated by picking
top aspects based on the order in which they appear in reviews.
Users’ answers are reproduced using the actual aspects’ senti-
ments extracted from their free-text reviews. In another group
of experiments, we compare our method to various baselines
that also select set of aspects to solicit users. In these cases,
we utilize random generators to generate sentiments as the
answers. Specifically, we consider three uncertainty measures:
rating variance (as introduced in our model), rating confidence
interval length, and ratio of highly confident aspects (inde-
pendent of our model). Our contributions are summarized as
follows:
• We define the problem of dynamically selecting aspects

to solicit targeted reviews to reduce uncertainty (Sec-
tion III-A).

• We propose a principled method to select the best as-

pects to query based on canonical Bayesian inference
(Sections III-B and III-C).

• We propose a preliminary extension of our aspect se-
lection method that considers aspects’ correlation (Sec-
tion IV).

• We conducted detailed experiments (Section V) on two
real-world datasets, which show that our methods lead
to superior review profiles compared to passive text-
based solicitation and other aspect selection methods. We
published our code and used datasets on our supporting
web page [16].

The remainder of the paper is organized as follows: we
discuss the related work in Section II, and the conclusions
and future work in Section VI.

II. RELATED WORK

Commercial Reviewing Web Sites: Most sites solicit free-
text reviews, along with an “overall rating” typically expressed
with 1 to 5 stars. Other web sites have a small, predefined set
of questions that they ask reviewers; for instance, vitals.com,
which is a doctor reviewing site, asks users to assign a score to
“bedside manner” and “courteous staff.” The only web site that
we found that has a dynamic set of questions is tripadvisor.
com, which asks users to rate different hotel aspects (e.g.,
“service,” “location” and “sleep quality”) for different hotels.
However, we have no knowledge of how these aspects are
selected as this is a proprietary system.
Dynamic Questionnaires: USHER [17] is a system for form-
based survey design that aims to improve the quality of
collected data. USHER uses a probabilistic model on the form
questions, learned from previous form submissions, to adapt
the form layout (question ordering) dynamically to emphasize
the most important questions, or re-ask questions that may
have been answered incorrectly. A key difference is that
in USHER the goal is to collect information about all the
questions from each user, whereas our goal is to collect enough
(and reliable) information for each product aspect. For this, we
analyze our aspect ratings’ certainty, which is not the case in
USHER.
Multi-armed Bandit Problem [18] is one of the fundamental
problems in Artificial Intelligence. In its simple form, a
gambler presented with a row of slot machine must decide
her playing strategy, i.e. which machine to play next given
the sequence of past plays, to maximize her reward. The
key property of this problem is that rewards of successive
plays on a machine i are independent and identically follow a
distribution of an unknown expected value Ri. In our problem,
the reward is the decrease in the uncertainty of each aspect,
where these uncertainties may be dependent to each other
(Section IV). Another difference is that in the multi-armed
Bandit problem, the gambler is guaranteed the highest reward
in the long run if she found the machine with the highest
expected reward value, then played on that machine only. In
our case, there is no aspect that will forever produce highest
expected uncertainty drop when we keep getting more rating
of this aspect.

edmunds.com
vitals.com
tripadvisor.com
tripadvisor.com


Reviews Analysis There has been much work on analyzing
text reviews. These works generally have two phases. First,
they extract aspects (features) like “zoom,” and second, they
estimate the sentiment associated with each aspect using its
surrounding context. These works are complementary to our
work, as they facilitate converting text reviews to structured
review profiles, which can then be processed by our algorithm
to select which aspects to elicit in future reviews.

Aspect Extraction: The most common approaches to extract
aspects from product reviews are based on keyword statistics
and syntactic rules. Existing works [4], [5] use association rule
mining to find frequent aspects, and then filter out meaningless
or redundant ones using predefined syntactic dependency-
based rules. After that, these frequent aspects and opinion
words are utilized to discover more infrequent aspects using
another set of rules. Another technique [6] decides if an aspect
candidate is actually an aspect by checking the Point-wise
Mutual Information (PMI) score between it and its product
class using their Web search engine hit counts. Another
approach, adopted by Jakob and Gurevych [7], models this task
as an information extraction problem and applies Conditional
Random Field techniques to extract aspects. Topic modelling
has also been used for this problem, as in Titov and McDonald
[8], who discover global and local aspects; and Mukherjee and
Liu [9], who extract and categorize aspects given some seeds.

Sentiment Analysis: This problem has been investigated
extensively, and has been comprehensively surveyed by Liu
and Zhang [19]. Traditional methods [20] focus on creating
a comprehensive, good dictionary of opinion words that are
looked up when analyzing text reviews. Other authors such
as Turney [21] exploit syntactic patterns to detect opinion
phrases containing adjectives or adverbs. A supervised learn-
ing algorithm was first introduced to classify movie reviews
as positive or negative based on vectors of reviews using the
Bag-of-Words model [22]. In this model, authors experimented
with Naive Bayesian and SVM classifiers that offer accurate
results. Recently, the use of deep neural networks and rep-
resentation learning have improved the performance of this
task significantly [23], [24], [25], [26], [27]. For instance, Le,
et al. [27] use an unsupervised neural network model to learn
reviews’ representational vectors that are later fed to a standard
supervised classifier for sentiment analysis.

III. MODELING A PRODUCT’S REVIEW PROFILE AND
ASPECT SELECTION ALGORITHM

A. Problem Definitions

An online product (or service) has a set of aspects (also
referred as attributes or features in other papers) denoted as
a1, a2, . . . , am. Each aspect receives ratings from l sentiment
(star) levels s1, s2, . . . , sl.

The review profile of a product is a summary of the aspect
ratings, as exemplified in Table I. To model the quality of
the review profile, we define the review profile’s statistical
summary (RPSS) as a set of tuples:

< ah, r
ah , certah > with h = 1, . . . ,m (1)

where rah is the expected rating of ah and certah is the
certainty level of rah estimation, which are discussed in
Section III-B. We also call uncertah as the uncertainty level
inversely proportional to certah (i.e. uncertah = 1/certah ).
A particular aspect ah gets nahi votes for sentiment si (i =
1, 2, . . . , l), and in total nah ratings (nah =

∑
i ni).

This paper studies the problem of selecting the top-k Un-
certain Aspects (k-UA): Given current users rating history:
< ah, n

ah
i > (h = 1, . . . ,m; i = 1, . . . , l), which are the k

aspects to ask the next reviewer to rate in order to optimize the
review profile? In Section IV we extend this problem definition
to consider aspect rating correlations, by accounting for the
co-occurrences of aspect ratings within reviews.

Note that the top-k aspects are recomputed for each new
reviewer. The computational cost is negligible, so even for
high throughput of reviews, the algorithm can dynamically
update the top-k aspects. The product’s aspects can either be
explicitly listed at the reviewing web site, or may be extracted
automatically from a text review. In the former case, the
reviewer selects a number of stars for each aspect, and in
the latter case the sentiment is estimated automatically. These
methods are discussed in detail in Section II.

In the following sections, we will present our Bayesian
approach to model an aspect’s certainty level in a RPSS, and
then propose our algorithm for the k-UA problem.

B. Bayesian Inference Model
Our model focuses on measuring aspect ah’s uncertainty

level uncertah of its expected rating rah . In this section,
to simplify the notation we ignore the superscript ah in
rah , uncertah and nahi . Let p = (p1, p2, . . . , pl) be a random
vector representing the probabilities (degree of belief) that
users rate the aspect with s1, s2, . . . , sl stars, respectively.
We follow a typical Bayesian inference for categorical data
[28] to account for this probability vector. In particular, each
sentiment level si is a category that users’ ratings fall in.

Suppose that the prior distribution of p = (p1, p2, . . . , pl)
is a Dirichlet distribution of order l ≥ 2 with parameters
α = (α1, α2, . . . , αl), αi > 0,∀i: g(p) = 1

B(α)

∏l
i=1 p

αi−1
i

, where B(α) is the Beta function. It is common to consider
the uniform case as the prior: αi = 1 (∀i) since the likelihood
will dominate the prior over time.

Also assume that the likelihood f(n|p) of observed data
n = (n1, . . . , nl) (sentiment counts) is a multinomial distribu-
tion: f(n|p) = N !

n1!...nl!

∏l
i=1 p

ni
i , where N =

∑l
i=1 ni is the

total number of sentiment counts. Hence we have the posterior
h(p|n):

h(p|n) ∝ f(n|p)g(p) =
N !

n1! . . . nl!
× 1

B(α)
×

l∏
i=1

pni+αi−1
i

Let βi = ni + αi, β0 =
∑
i βi = N +

∑
i αi. Then the

posterior h(p|n) is also a Dirichlet distribution with parameter
(n1 + α1, . . . , nl + αl), or (β1, . . . , βl) with mean, variance,
and covariance, respectively:

E[pi|n] =
ni + αi

Σli=1(ni + αi)
=
βi
β0



V ar[pi|n] =
βi(β0 − βi)
β2
0(β0 + 1)

(2)

Cov[pi, pj |n] =
−βiβj

β2
0(β0 + 1)

for i 6= j (3)

The aspect’s expected rating is r =
∑
i sipi, and hence

E[r|n] = E[
∑
i

sipi|n] =
∑
i

siE[pi|n] =
∑
i

si
βi
β0

V ar[r|n] = V ar[
∑
i

sipi|n]

=
∑
i

s2iV ar(pi|n) +
∑
i 6=j

sisjCov(pi, pj |n)

=
1

β2
0(β0 + 1)

[
∑
i

s2iβiβ0 −
∑
i

∑
j

sisjβiβj ] (4)

Since V ar[r|n] reflects the fluctuation of an aspect’s rating
around its expected value, V ar[r|n] can be interpreted as
the uncertainty measurement of our estimation of the aspect’s
rating, i.e. uncert = V ar[r|n]. V ar[r|n] also has an intuitive
property that it is roughly inversely proportional to the number
of votes N (via β0 in the denominator of Equation (4)). If
an aspect has a very high uncertainty value, i.e. V ar[r|n], it
means that we are not ready to make a conclusive estimation
of its rating. Also note that, asking a controversial aspect still
alleviates its variance slowly even if its new ratings are truly
polarized. In the common practice, a uniform prior is used in
this Bayesian inference, thus αi = 1. As a result, βi = ni + 1
and β0 = N + l. Note that in our experiments we also
consider alternative measures of uncertainty when comparing
the proposed algorithms.

C. Aspect Selection Algorithm

Algorithm 1 Highest variance pick
Input: previous vote counts n1, . . . , nl of aspects, number k
Output: k aspects

1: procedure PICK HIGHEST VARIANCE
2: for all i in 1 . . . l do
3: αi = 1 . uniform prior for every aspect
4: for all aspect a do
5: for all i in 1 . . . l do
6: βai = nai + αi . posterior parameters
7: βa0 =

∑l
i=1 β

a
i

8: Calculate V ar[ra|na] using Equation (4)
return top k aspects with highest V ar[ra|na]

We present our solution to the k-UA problem in Algorithm
1. In particular, Lines 2-3 set up common uniform prior
parameters, while lines 5-7 compute posterior parameters for
every aspect. We finally calculate rating variance of all aspects
in line 8, then output the top k aspects with highest variances
(i.e., degree of uncertainty).

Note that V ar[r|n] can be computed faster using vectorized
version of Equation (4). Specifically, V ar[r|n] is the variance
of a linear combination of column vector s and random vector

TABLE II
TOY EXAMPLE OF 4 ASPECTS WITH COUNTS OF 1, 2 OR 3 STARS

RESPECTIVELY.

Weight Cost Battery Design
Star count 0, 5, 28 4, 9, 20 11, 11, 11 1, 3, 7

TABLE III
RPSS OF TABLE II, WHERE uncert=VARIANCE.

Weight Cost Battery Design
Expected Rating 2.78 2.44 2 2.43

Variance 0.006 0.014 0.018 0.035

p, so V ar[r|n] = sTΣs, where Σ is the covariance matrix built
up using Equations (2) and (3) that can be vectorized as well.

D. Toy Example

To explain the intuition of our model, consider a toy
example where we are looking at a smartphone with four
aspects: weight, cost, battery and design. Each aspect can be
rated with 1, 2 or 3 stars (i.e., bad, neutral or good). The
previous ratings of these aspects are presented in Table II.
The question is which aspects we should ask users about
to improve this smartphone’s RPSS? Following the previous
model, we can model aspects’ expected rating as Dirichlet
posteriors that are demonstrated in Figure 2 and the RPSS in
Table III. We then use Algorithm 1 to calculate each aspect’s
rating variance and order them to select the k most uncertain
aspects. In this case, the algorithm will pick aspect “Design”
first, then “Battery,” “Cost” and finally “Weight.” Design is a
clear choice since it has far fewer ratings to estimate its rating
with high confidence. The other three aspects have the same
number of ratings but Battery has more diverse opinions, so
it is selected next. Weight is picked last because of its high
rating count and very skewed rating distribution.

IV. EXTEND TO ACCOUNT FOR CORRELATION BETWEEN
ASPECTS

Section III provides a framework to model the uncertainty
level of aspect ratings, where aspect ratings are assumed to
be independent of each other. However, in practice aspects are
often correlated. For example, screen and brightness, or design
and easy-to-use are similar to each other, and often receive
similar rating. Intuitively, if one of two highly correlated
aspects (e.g., “screen”) has high rating certainty, then it is
less important to solicit more ratings for the other aspect
(e.g., “brightness”). Next, we first show how to estimate the
correlation between the ratings of two aspects, and then show
how this can be used to define a correlation-aware version of
the uncertainty score of each aspect (recall that the aspect
selection algorithm selects the k aspects with the highest
uncertainty).

TABLE IV
COUNTING WHEN TWO ASPECTS WERE RATED TOGETHER BY AN USER.

Design–1 Design–2 Design–3
Cost–1 3 (n11, p11) 2 (n12, p12) 0 (n13, p13) 5 (nc

1)
Cost–2 1 (n21, p21) 5 (n22, p22) 2 (n23, p23) 8 (nc

2)
Cost–3 1 (n31, p31) 4 (n32, p32) 7 (n33, p33) 12 (nc

3)

5 (nd
1) 11 (nd

2) 9 (nd
3)
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Fig. 2. Toy example: posteriors of aspects’ rating

To estimate the correlation of two aspects, we propose to
look at their ratings at the same time. In particular, we count
the number of times that two aspects were rated together in
the same review. For instance, in Table IV we consider two
aspects (cost and design) in a three-star system. Using similar
notation as before, nij and pij are, respectively, the number
of reviews and the probability users rate aspect “cost” i stars
and “design” j stars at the same time. Also, nci =

∑
j nij

and ndi =
∑
j nji (cost and design are shortened as “c” and

“d” in this clear context). We focus our interest on these two
aspects’ rating correlation Cor(rc, rd|n) before generalizing
to any aspect pairs. First note

pci =
∑
j

pij , pst =
∑
q

pqt (5)

There are l sentiment levels s1, . . . , sl, so

rc =
∑
j

sip
c
i =

∑
i

∑
j

sipij =
∑
i

∑
j

sipij (6)

rd =
∑
t

stp
d
t =

∑
t

∑
q

stpqt =
∑
t

∑
q

stpqt (7)

Following our Bayesian approach as in Section III, we
model probabilities p11, . . . , pll by a Dirichlet posterior of
parameters (n11 + α11, . . . , nll + αll). Denote γij = nij +
αij(i, j = 1, . . . , l) and γ0 =

∑
i,j γij . We get variance

V ar[pij ] and co-variance Cov(pij , pqt) in similar forms as
Equation (2), (3).

V ar[pij |n] =
γij(γ0 − γij)
γ20(γ0 + 1)

(8)

Cov[pij , pqt|n] =
−γijγqt
γ20(γ0 + 1)

(ij 6= qt) (9)

These are the building blocks to model Cor(rc, rd|n).

V ar(pci |n) = V ar(
∑
j

pij |n)

=
∑
j

V ar(pij) +
∑
j 6=t

Cov(pij , pit)

V ar(pdt |n) =
∑
q

V ar(pqt) + 2
∑
j 6=q

Cov(pjt, pqt)

Cov(pci , p
c
q|n) = Cov(

∑
j

pij ,
∑
t

pqt|n) =
∑
j,t

Cov(pij , pqt)

Cov(pdj , p
d
t |n) = Cov(

∑
i

pij ,
∑
q

pqt|n) =
∑
i,q

Cov(pij , pqt)

Cov(pci , p
d
t |n) = Cov(

∑
j

pij ,
∑
q

pqt|n) =
∑
j,q

Cov(pij , pqt)

Now we compute

V ar(rc|n) = V ar(
∑
i

sip
c
i |n)

=
∑
i

s2iV ar(p
c
i ) +

∑
i 6=j

sisjCov(pci , p
c
j)

V ar(rd|n) =
∑
t

s2tV ar(p
d
t ) +

∑
q 6=t

sqstCov(pdq , p
d
t )

Cov(rc, rd|n) = Cov(
∑
j

sip
c
i ,
∑
t

stp
d
t |n)

=
∑
i,t

sistCov(pci , p
d
t |n) =

∑
i,t

∑
j,t

sistCov(pcij , p
d
tk)

Finally, Cor(rc, rd|n) can be estimated by Pearson correlation

Cor(pc, pd|n) =
Cov(rc, rd|n)√

V ar(rc|n)× V ar(rd|n)
(10)

This formula provides the correlation of any two aspects. We
can then generalize an aspect’s uncertainty level provided in
Equation (4) as

uncertai = min
j=1,...,m

V ar(raj |n)

|Cor(rai , raj |n)|
(11)

where ai is an aspect. Note that, on the right hand side of
above equation (11), when j = i, we have Cor(rai , raj |n) =
1. Hence, we get V ar(rai |n) as a factor constituting uncertai .
The intuition behind Equation (11) is that we can take
advantage of one aspect’s rating to infer about the other’s
rating. Specifically, when two aspects are highly correlated,
|Cor(rai , raj |n)| is close to 1, thus the two aspects share the
variance of the one with smaller variance.

We do not present the experimental results of this extended
model as it does not show substantial improvement on key
measurements so far. We doubt that it is due to the lack of a
large dataset, though the model is in need of further study.

V. EXPERIMENTAL EVALUATION

Our experiments were carried out on two real-world
datasets: Amazon reviews provided by Bing Liu, et al. [4],
[15], and Edmunds’ car reviews that we crawled. We published
our code, additional experiments and all used datasets on our
supporting web page [16], for reproducibility purposes. The
datasets were used to generate realistic sequences of reviews
as described below.



TABLE V
DATASET STATISTICS.

Amazon reviews [4], [15] Car reviews
#Products 8 501
#Sentiments (l) 6 5
#Reviews/product 51 106.67
#Aspects/product 4–21 7
#Ratings avg/aspect 27.31 77.76

The Amazon review dataset has been widely studied in the
sentiment analysis community since it provides the ground-
truth aspects and sentiments annotated manually by the au-
thors. Moreover, different product types have different num-
bers of aspect. We omit products that have less than 4 aspects
with at least 10 ratings, so we have enough aspects for the
algorithms to pick from and enough data to build a realistic
rating distribution.

We crawled the second dataset using Edmunds’ free open
API on two car makes (Toyota and Honda) from 1990 to 2017,
which resulted in 501 vehicles with 53,440 reviews in total.
Our experiments were conducted on products that have at least
100 reviews (149 products). Furthermore, all vehicles share
a fixed set of seven aspects: comfort, reliability, technology,
value, performance, interior and safety. The datasets’ charac-
teristics are presented in Table V.

In our evaluation, we start each experiment with no previous
ratings information, and for each new simulated reviewer,
we ask them to rate k aspects of a product. We conducted
experiments with various k but only present the case of k = 3
due to space limitation; the results for other values of k
followed similar trends.

Measures: Throughout all experiments, our first two mea-
sures are based on individual aspect rating’s uncertainty level
uncertaj . The first measure utilize the uncertainty value
V ar[raj |n] in Equation (4), which we explained why it is
a reasonable measure in Section III-B. To avoid biasing the
results towards our selection algorithm that uses the aspects’
variance, we introduced a second measure, which is the length
of Confidence Interval (CI) of an aspect’s ratings. The idea is
that a smaller CI length means a higher degree of confidence
we know about an aspect’s rating. In our experiment the CI
is X ± t(S/

√
N), where X and S are the sample mean

and variance of an aspect’s ratings, respectively, N is the
total number of ratings, t is the critical value specified by
Student’s t-distribution with N − 1 degrees of freedom and
confidence level 1 − α. We choose confidence level 95% for
all experiments.

Based on above measures, the key overall uncertainty mea-
sure we consider for a product is the maximum uncertainty
among its aspects. Maximum is more appropriate than average,
given our problem’s motivation where we want to make sure
that no aspect is left behind, that is, no aspect has too uncertain
rating. Specifically, a product has multiple aspects a1, . . . , am,
with uncertainty values uncerta1 , . . . , uncertam , will have
uncertainty level maxmj=1 uncert

aj .
As a third measure, we report the ratio of the number of

aspects that we are confident about its rating statistics, thus we
name this measure “High Confidence Ratio”. The idea is that

when the confidence interval length of an aspect’s ratings is
smaller than our desired threshold δ, then we can be confident
about the aspect rating. We choose confidence level 95% and
CI length threshold δ = 1 for all experiments. High confidence
ratio of 1 means that we are certain about all aspects’ average
rating. This measure reflects the degree of rating certainty
instead of uncertainty as in the first two measures.

Since a dataset has multiple products, we report in the plots
the uncertainty amount calculated by averaging uncertainty
values over all products. In summary, we have three measures:
“max variance”, “max confidence interval length” and “high
confidence ratio”.

Baseline Aspect Selection Methods: Besides our proposed
algorithm from Section III-C, we consider two intuitive base-
line methods used to pick k aspects to consult a new user:
“pick random,” which picks k random aspects from the set of
an interested product’s aspects, and “pick least count,” which
selects the k aspects with the least number of ratings so far.
Given our toy example in Section III-D, Table II, pick random
randomly selects four aspects with equal probability, whereas
pick least count chooses aspect “design” first, then gives the
three remaining aspects equal chances (because they have the
same number of ratings: 33).

A. “Active” Versus “Passive” Solicitation

In the first experiment, we compare two approaches: letting
the reviewer pick aspects to rate (passive, as in most existing
Web sites) and actively asking them to rate specific aspects. In
our datasets, the reviews of each product are fed to the various
algorithm ordered by their generation timestamp. The result
is presented in Figure 3, where a method asks a simulated
user to rate k aspects. We refer to the user behavior in the
traditional, passive solicitation as “pick by user” in the graphs.
This method picks the first k aspects that appear in the review
under consideration. If a review has less than k aspects, we
decrease the same number of solicited aspects for this position
in all active methods for fairness.

We use the real reviews to realistically simulate the answers
of the simulated user to the k selected aspects, as follows:
we look up the sentiment of the asked aspect in the review
currently under consideration if available. If the aspect is
missing in the review, a simulated sentiment is computed from
the rating distribution (which considers all reviews, not only
the ones processed so far) of this aspect of this product. We
refer to this rating scheme as “answer almost real” since it
utilizes real user reviews in most cases.

We ran this experiment 200 times on all products indepen-
dently, then take the average over all products. In each run,
we solicit 300 reviews, up to k = 3 questions per review.
If a product has less than 300 real reviews, we re-use its all
available reviews to simulate answers. Since this experiment
requires free-text review that is unavailable on our automobile
dataset, we conducted it on Amazon review dataset only.

For all measures, we notice substantial improvements of the
active methods over the passive solicitation method (“pick by
user”). Illustrated by Figures 3(a), 3(b), and 3(c) respectively,
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Fig. 3. Comparing “passive” and “active” review solicitation (on Amazon reviews). Smaller is better, except for High Confidence Ratio measure.

the improvement is up to 52.6% for the “max variance”, 34.7%
for “max confidence interval length” and 14.4% for “high
confidence ratio” measure with our “pick highest variance”
method in the end of experiment. It is also worth noting that
our method reaches the desired confidence on all aspects after
about 270 reviews (when “high confidence ratio” is 1), while
the passive method does not even reach this level by the end
of the experiment (300 reviews).

The poor performance of “pick by user” is expected because
users are normally biased toward common aspects with many
ratings, while some aspects never get enough ratings to gain
a reliable rating estimation. For example, for product “Nokia
6610,” aspect “size” has around 210 ratings whereas “battery
life” has only about 50 ratings, even though they have similar
rating distribution shapes. Other methods distribute questions
over aspects in a more balanced manner, thus get better
performance. This result confirms our hypothesis that carefully
selecting which aspects to ask users to rate can lead to higher
review profile quality.

B. Comparison of Various “Active” Solicitation Methods
In this section, we compare our method “pick highest

variance” to the two baselines, “pick random” and “pick least
count,” on both datasets. To scale to larger number of reviews
and avoid the problem of the limited number of ratings for
some aspects (e.g., “technology” and “safety” in the Edmunds
dataset usually have less than 10 ratings per car), we consider
a different answer generation scheme, where instead of using
the real reviews one by one, we compute a ratings distribution
for each aspect, and sample answers (ratings) from these
distributions for each review. The experimental results are
presented in Figure 4 and 5.

In both experiments, we solicit 300 reviews per product, 3
questions per review. We perform this simulation 200 times,
then take the average for stable results. Our proposed method
outperforms the two baselines consistently on both datasets
and all measures. All methods start at the same point, then
gradually diverge until the end of the experiments. By the end
of the automobile reviews experiment, our method yields an
uncertainty value that is 36.6% and 35.6% smaller than the
value of “pick random” and “pick least count” accordingly
in “max variance” measure (Figure 4(a) and 5(a)). The cor-
responding improvements in “max confidence interval length”
measure are 21.5% and 20.9% (Figure 4(b) and 5(b)). In terms

of confidence ratio, when our method reaches the full “high
confidence ratio” (1) after about 60 reviews, the two baselines
have the confidence ratio of 0.82 roughly and only reach full
ratio after 90 reviews (Figure 4(c) and 5(c)).

The corresponding results in Amazon reviews present simi-
lar trends. Comparing to the automobile review dataset under
high confidence ratio measure, Amazon review dataset only
has two differences. First, all methods reach the full ratio
more slowly since Amazon products have larger aspect set,
thus require more reviews. Second, our method’s curve is
smoother because Amazon products have a varying number
of aspects instead of a fixed size (7 for Automobile products).
Specifically, different number of product aspects result in
different curves that are averaged to yield a pretty smooth
curve as we observe.

It is worth mentioning that the two baseline methods behave
slightly differently when the number of reviews performed
is small; however, in the long run the number of times that
aspects get selected evens out for both methods.

This is also a key difference between our method and
baselines. Our method does not just ask about aspects equally
as the baselines do. Instead, our method distributes more
questions to aspects with contrasting ratings because these
aspects need more information to solidify our belief of its
rating. For instance, in toy example II, the two baselines treat
“weight,” “cost” and “battery” equally (same rating counts),
while our method “pick highest variance” would ask about
“battery” first due to its polarized ratings.

VI. CONCLUSIONS AND FUTURE WORK

We have studied the problem of targeted review solicitation,
which aims to achieve high-quality product review profiles, by
actively soliciting aspects to rate. We adopted Bayesian infer-
ence statistics to model a review profile’s key factors: product
aspect rating estimation and its (un)certainty degree. We then
introduced our algorithm to select k aspects to ask a new
reviewer to optimize the review profile certainty. Using three
different review profile quality measures, (variance, confidence
interval length and high confidence ratio), we showed that
our proposed “active” solicitation style clearly outperforms
traditional “passive” solicitation methods on two real-world
datasets. Moreover, in another set of experiments our method
beats two “active” solicitation baselines under all measures.
To assist others reproducing our results, all our code and
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Fig. 4. Automobile reviews. Smaller is better, except for High Confidence Ratio measure.
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Fig. 5. Amazon reviews. Smaller is better, except for High Confidence Ratio measure.

datasets are available online [16]. We also extended our model
to account for correlated aspects.

In our future work, we plan to account for the uncertainty
of a user answering a rating question, since our current
model assumes that users always answer the questions we
ask. Another research direction is to combine both “active”
and “passive” solicitations simultaneously, that is, allow user
to write free text in addition to rating a small set of aspects.
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