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ABSTRACT

Users often need to optimize the selection of objects by ap-
propriately weighting the importance of multiple object at-
tributes. Such optimization problems appear often in opera-
tions’ research and applied mathematics as well as everyday
life; e.g., a buyer may select a home as a weighted function
of a number of attributes like its distance from office, its
price, its area, etc.

We capture such queries in our definition of preference
queries that use a weight function over a relation’s attributes
to derive a score for each tuple. Database systems cannot
efficiently produce the top results of a preference query be-
cause they need to evaluate the weight function over all tu-
ples of the relation. PREFER answers preference queries
efficiently by using materialized views that have been pre-
processed and stored.

We first show how the result of a preference query can be
produced in a pipelined fashion using a materialized view.
Then we show that excellent performance can be delivered
given a reasonable number of materialized views and we pro-
vide an algorithm that selects a number of views to precom-
pute and materialize given space constraints.

‘We have implemented the algorithms proposed in this pa-
per in a prototype system called PREFER, which operates
on top of a commercial database management system. We
present the results of a performance comparison, compar-
ing our algorithms with prior approaches using synthetic
datasets. Our results indicate that the proposed algorithms
are superior in performance compared to other approaches,
both in preprocessing (preparation of materialized views) as
well as execution time.

1. INTRODUCTION
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Users and applications often need to optimize the selec-
tion of entities by ranking them according to the importance
(weight) of multiple entity attributes (parameters). Such
optimization problems appear often in operations’ research
and applied mathematics as well as everyday life. How-
ever, only few current applications provide multiparametric
ranked queries (for example buying a used car in the au-
totrader section of www.personallogic.com Web site, where
one can express desired weights for multiple parameters of
a car) and for all such Web applications we are aware of,
multiparametric ranked queries are evaluated on small data
sets only. Unfortunately, database technology cannot pro-
vide acceptable response time and throughput when such
queries are evaluated on large data sets. The reason is that
the conventional evaluation techniques for such queries re-
quire the retrieval and ordering of the entire dataset, with
the obvious negative consequences on the time to deliver the
first result tuples, which, indeed, are typically the only ones
a user is interested in. PREFER is a layer on top of commer-
cial relational databases and allows the efficient evaluation
of multiparametric ranked queries.

For example consider a database containing houses avail-
able for sale. The properties have attributes such as price,
number of bedrooms, age, square feet, etc. For a user, the
price of a property and the square feet area may be the most
important issues, equally weighted in the final choice of a
property, and the property’s age may also be an important
issue, but of lesser weight. The vast majority of e-commerce
systems available for such applications do not help users in
answering such queries, as they commonly order according
to a single attribute. Manual examination of the query re-
sults has to take place subsequently. In our running exam-
ple, the user will have to order the properties according to,
say, price and then manually examine the square feet area
and the property’s age. One may have to inspect a lot of
houses until the best combination of important attributes is
found, since the cheap houses will most probably be old and
small.

As yet another example, consider a user querying the Za-
gat' online database containing restaurant information in
New York City. If one is interested in a pricey restaurant and
wishes to achieve a balance between Zagat’s rating and the
distance to the restaurant, one has to “explore” the database
issuing selection queries repeatedly. The Zagat database is
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Figure 1: Preference Queries

also available on hand held devices such as the PalmPilot.
Issuing multiple queries or browsing through a large result
collection on a hand held device is an even bigger incon-
venience especially if connectivity is supported through a
wireless link.

In the above examples each user has a preference about
the importance (or weight) of the attributes associated with
the entities (houses and restaurants) searched. In this paper,
without loss of generality, we focus on queries over a single
relation R(A1, Aa,...,As). The user provides a preference
ai,az,...,a, assigned to each attribute A1, As, ..., A, and
a query returns the tuples of R ordered according to the
weighted preference function a1 A1 +a2As+ ...+ anAn. We
refer to such queries as preference queries. The functionality
of preference queries is exposed to the user by interfaces such
as the one of Figure 1. For each attribute, the interface
provides a slider bar that the user adjusts along with the
attribute value specified in the selection. The position of the
slider bar expresses the attribute preference a; that the user
assigns to the specific attribute A;. One can also specify
the number of tuples desired in the query answer. Once
the first set of tuples is returned the user has the ability to
receive the next bunch of tuples, again ordered by weighted
preference.

Unfortunately database systems do not support the ef-
ficient evaluation of preference queries, where “efficiency”
primarily refers to response time and throughput. The ap-
plication has to retrieve the whole database, apply the pref-
erence function to each tuple, and sort accordingly. Hence,
in the common case that the user wants to retrieve just a
few tuples, the application will have to retrieve the poten-
tially thousands or millions tuples of the database; such an
approach imposes a prohibitive penalty on the response time
and throughput of the overall system as an entire relation
has to be ordered to return just a few tuples.

The PREFER system provides excellent response time for
such queries, by using pre-materialized preference queries,
which we will refer to as views. A preference view is a rela-

tional view that is ordered according to a preference func-
tion. PREFER works as follows: Given a query and a view
it computes the smallest prefix of the view that one has to
read in order to find the top tuple according to the query.
The intuition is that when the query’s preference function
is “similar” to the view’s preference function the required
prefix is small. PREFER’s performance scales gracefully
as more views are materialized and the chances that every
query will find a “similar” view increase. Indeed, PREFER
can provide guarantees on the maximum score of the tuples
of the view prefix and consequently soft guarantees on the
size of the view prefix that has to be accessed, by materializ-
ing a sufficient number of views. In this paper, we formalize
preference queries and make the following contributions:

e We present an algorithm that computes the Top-N re-
sults of a query by using the minimal (given that we
only retrieve the first tuple of the view) prefix of a
view.

e We specify the set of queries for which a view can
provide a soft guarantee about the number of tuples
examined in order to provide the top-N tuples of the
query.

e The performance of PREFER scales with the num-
ber of views that PREFER materializes. We experi-
mentally show that we can provide guaranteed perfor-
mance to all queries by using a reasonable number of
views (between 10-100 in our experiments).

e We present an approximation algorithm that selects
the “best views” when there is a limitation on the
number of views (and disk space) we can use. We
show experimentally that 10-20 views can provide ex-
cellent performance guarantees for most of the possible
queries.

e We present a detailed experimental evaluation compar-
ing our proposed algorithms with current state of the
art and show that our approach provides good scal-
ability both in terms of data set size as well as the
number of attributes.

e We have developed our algorithms in a prototype sys-
tem called PREFER ? on top of a commercial database
management system, demonstrating the practical util-
ity of our overall approach.

This paper is organized as follows: Section 2 reviews re-
lated work. Section 3 presents definitions. In Section 4 we
present algorithms that derive the answer of a preference
query given the result of another preference query that has
been already computed and materialized. Section 5 presents
algorithms to optimize watermark values (watermark will be
defined below) and subsequently provide guarantees on the
amount of work needed to answer preference queries. In
section 6 we present results from a prototype implementa-
tion of the proposed techniques comparing them with state
of the art analyzing the performance and the implication of
various parameters. Finally section 7 concludes the paper
and discusses related problems for further study.

PREFER is available on the web, at
www.db.ucsd.edu/PREFER.




2. RELATED WORK

Personalization and customization of software components
(e.g., myexcite.com) can be thought of as simple expressions
of preferences. Agrawal and Wimmers in their pioneering
work [2] put the notion on preferences into perspective and
introduce a framework for their expression and combina-
tion. Their work is fairly conceptually layering the theo-
retical foundations to a preference framework. Our work,
essentially deals with the algorithmic issues associated with
the implementation of specific features of this framework.
We adopt terminology in alignment with the framework of
Agrawal and Wimmers [2]

Combining and ranking different models was used in the
context of multi-media systems by Fagin [7, 9, 8]. Our work
is related to that of Fagin since we are also concerned with
the efficient computation of the extreme values of functions.
Our optimization objectives and techniques are fundamen-
tally different from that of Fagin however.

A significant number of works has been published the last
five years on answering queries using views. The earlier
works focused on conjunctive queries and views (e.g., [1])
and subsequent works extended into more powerful queries,
views, and view set descriptions [6, 15, 13]. Rewriting ag-
gregate queries using views has also been addressed [5, 4].
The nature of those algorithms is logic-based rather than
quantitative, as is the case with our algorithms for using a
view to answer a query, since the nature of the queries is
very different.

The work closest to the one presented herein, is the work
by Chang et. al., [3]. In this work an indexing technique,
called the Onion Technique was introduced to facilitate the
answer of linear optimization queries. Such queries are sim-
ilar to preference selection queries since they retrieve tuples
maximizing a linear function defined over the attributes of
the tuples of a relation R. The basic observation of this tech-
nique is that the points of interest lie in the convex hull of
the tuple space. Thus, the Onion technique in a preprocess-
ing step computes the convex hull of the tuple space, storing
all points of the first hull in a file and proceeds iteratively
computing the convex hulls of the remaining points; it stops
when all points in the tuple space have been placed to one
of the convex hull files. Query processing is performed by
evaluating the query and scanning each of these files, start-
ing from the one storing the exterior convex full (since it
is guaranteed to contain the first result), stopping when all
desired results have been produced.

The onion technique suffers from two major drawbacks.
Computing convex hulls is a computationally intensive task

with complexity O(n% ), where n is the number of tuples in
R and d is the number of attributes, making the technique
impractical for large relations with more than two attributes.
Moreover the technique is very sensitive in performance to
the granularity of the attribute domains. If an attribute
has very small domain, it is likely that all tuples lie in the
same convex hull, thus a linear scan of the entire data set
is required to produce the results. The performance of the
technique is highly dependable on the characteristics of the
dataset and no guarantees in performance can be provided.
We evaluate the performance of this technique in Section 6

3. NOTATION AND DEFINITIONS

This section defines queries, views, and other relevant no-

tation in the context of PREFER. Let R be a relation with
k attributes (A1,..., Ax) and let [m;, M;] be the domain of
attribute A;, 1 < i < k,m;, M; € R". The notation A (t)
refers to the value of attribute A; in the tuple ¢.

Every query g consists of a preference function fq(.) and a
single relation R. The preference function f,(t), [T_, [m:, M;]
— RT defines a numeric score for each tuple t € R. The
output of the query ¢ is the query result sequence Ry =
[ta,t2,...,t0] of the tuples of R such that fo(ty) > fq(t2) >
... > fq(t). Note that we use the notation ¢, to denote the
tuple in the i-th position in the result sequence of q. Views
are identical to queries; we use the term view when we refer
to a query whose result has been materialized in advance
in the system and we use the term ranked query (or query)
when we refer to a query that the user submitted and the
system has to reply to.

In this paper we focus on queries (and views) that use lin-
ear preference functions of the form f(¢) = Zle v A;(t),
because they provide an excellent tradeoff between ability to
specify the order using multiple parameters and, at the same
time, can be very efficiently pipelined using the techniques
we present in this paper. The vector ¥ = (vi,...,vx) is
called the preference vector of the query (view) and each co-
ordinate of the vector is called attribute preference. We use
f»(.) to indicate that f, is a preference function with pref-
erence vector U. Moreover we denote as R, a ranked view
which is ranked according to f,. Without loss of general-
ity, we assume that attribute preferences are normalized in
[0,1] and that Z?zl v; = 1. This assumption is not restric-
tive, as whatever the range of attribute preferences would
be, they can always be normalized instantly by the system.
Moreover, we choose to adopt such a normalization since we
believe it is in agreement with the notion of preference. The
total preference of a user is 1 and the preference on individ-
ual attributes is expressed as an additive term towards the
total preference.

4. HOW TO PIPELINE A RANKED QUERY
USING A RANKED VIEW

The algorithm presented next uses a view sequence R,
which ranks the tuples of a relation R according to a pref-
erence vector ¥, in order to efficiently pipeline the output
sequence Ry of a user query ¢, which ranks the tuples of the
relation R according to the user’s preference vector ¢. The
key to the algorithm is the computation of a prefix Ry of
R, that is sufficient to assure that the first tuple té of the
sequence R, is in R}. Once the first tuple of R, has been
retrieved the algorithm proceeds to compute the prefix R2,
to deliver the second tuple of R4, and so on, leading to an
efficient pipelined production of the query result.

The algorithm is presented in three steps. First we de-
fine the first watermark point, whose definition involves only
f4(), fu(.) and ¢} and provides a bound on the view prefer-
ence score fy(t4) of the top result ¢, of the query.®> Then Sec-
tion 4.1 provides the algorithm that pipelines the query out-
put, given an “oracle” that provides watermark points. The
algorithm is applicable to any function for which one can

3The first watermark provides the tightest prefix of R, given
knowledge of ¢! only. One can produce tighter prefixes by
using more tuples from R, but this comes at the cost of in-
creased watermark point computation and retrieval of more
tuples of R,.



construct such an “oracle”. Section 4.2 provides the com-
putation of the watermark in the case of queries and views
specified by linear functions. Finally Section 4.3 presents an
example of using this algorithm.

DEFINITION 1 (FIRST WATERMARK). Consider

e the view v consisting of the function f, applied on the
relation R, and

e the query q consisting of the function f, applied also
on the relation R

The first watermark of the user query q in the view R, is
the mazximum value Tvl,q € R with the property:

Vt € R, fuo(t) < Tyy = fo(t) < folty) (1)

The definition leads to an efficient computation of the wa-
termark (see Section 4.2) since it involves only tuple t5. Ac-
cording to the definition, if a tuple ¢ in the view R, is below
the first watermark T, , (that is, f,(t) < T, ,) then ¢ cannot
be the top result té of the query, since at least ¢} is higher in
the query result (according to the property f,(t) < f4(t5)).
This implies that f,(t}) > T,,. Hence, in order to find
t}l one has to scan R, from the start and retrieve the pre-

fix [t5,t2,...,t¥"1 t¥), where t¥ is the first tuple in R,
with f,(ty) < Tqiq, ie., tY"! is the last tuple of R, that is

above the watermark. The top query tuple t}z is the tuple
tJ,1 < j < w — 1 that maximizes f,(¢}). Furthermore, the
prefix [t5,t2,...,t¥"'] allows us to potentially locate a few
more (besides té) of the top tuples of the query result, as
the following theorem shows:

THEOREM 1. Let [té7 ti, .o, t27 1] be the ranked order, ac-
cording to q, of the tuples [t5, 12, ..., t% "] that are above the
first watermark. Let s be the index of tL in this order, i.e.,
th = ty. Then t}], ..., ty are the tuples with the highest rank
in the answer of q.

Proof: Clearly fo(t;) > ... > f,(t¥~'). Moreover due
to the watermark property (Equation 1) V¢, f,(t) < Tvl’q =
fa(t) < fa(t5). The theorem follows, since fq(t5) < fo(ts™') <
< fety). O

The theorem guarantees that the top-s tuples, according
to fg(.), in the prefix [ti,t2,...,t¥ '] are also the top-s
tuples in the answer of q. That is, it is impossible for a
tuple below the watermark to be one of the top-s tuples.

4.1 TheCoreof the Pipelining Algorithm

The algorithm PipelineResults in Figure 2 inputs R, and
computes in a pipelined fashion the N tuples with the high-
est score according to q. The algorithm assumes the exis-
tence of a function Determine Watermark() (see Section 4.2)
to efficiently compute the watermark value in R,. Let s be
the number of tuples output after computing the first wa-
termark. If s > N then our objective has been achieved.
Otherwise we output the sequence of the top-s tuples and
we mark those tuples as processed in R,. Then we repeat
the process and determine a new watermark value, to derive
a new sequence of tuples with the highest scores according
to ¢ from the unprocessed tuples in R,. In each iteration
we locate the first tuple in R, which is not marked as pro-
cessed. Let this tuple be tI°?. This is the tuple with the
top score according to v among the unprocessed tuples of
R,. We repeat the watermarking process using t{°?. A new

sequence of tuples having the highest score according to ¢
among the remaining tuples will be determined and output.

Algorithm PipelineResults(R,,q,v, N){

Let top=1

while (less than N tuples in the output) {

Let T.% = DetermineWatermark (t;°")

Scan R, and determine the first tuple t
with fo(tw) < Ti%P

For all tuples t € [t,,t¥ '] compute and sort by fy(t)

Let s be the index of t!’? in the sorted order

Output the tuples t}z...tz and mark them in R,
as processed

Find the top unprocessed tuple tf, in R,

Let top =1

}

}

Figure 2: Algorithm to output the first N tuples
according to ¢

4.2 Determining the Watermark

We will now use Equation 1 to determine the watermark
value Tvl,q in the case of linear functions f; and f,. We
assume that view R, is ordered by decreasing values of
the score of f,. Thus we will determine the tuple ¢’ that
maximizes f,(t') while satisfying f,(t') < f,(t.). Since we
know the values of t;, §= (q1,...,qx) and ¥ = (v1,...,vx),
we need to come up with bounds for the values of t =
(A1(t),... Ak(t)) using the known parameters to maximize
fo(t") while satisfying the inequality of Equation 1 for all
t € R. We will subsequently use these bounds to derive

the watermark. Let us express fy(t) = Y&, ¢;Ai(t) as a

function of f,(t) = >.F_ | v;A;(t). Thus,

k

fa@®) = Z GAi(t) = fol®) + D (@ —v)Ait)  (2)

i=1
By substituting Equation 2 into Equation 1 we get

k
VEE R, fo(t) S Tog = fult) + Y (g —vi)Ai(t) < folts)

=1
(3)
Consider that the highest possible f,(¢) is achieved for ¢'. It
is:
k
£+ 3 (@ = 0) Ault) < £(D) (4)
=1
We will treat Equation 4 as equality; since the left side of
Equation 4 is linear on f,(t'), the corresponding inequality
is trivially satisfied. Since out objective is to determine the
maximum f,(#') value that satisfies Equation 4, which is
linear in f,(t'), we will determine bounds for each attribute
A;(t") in a way that the left part of Equation 4 is maximized.
We determine the bounds for each attribute A;(t'), by the
following case analysis. Recall also that each attribute A;
has domain [m;, M;].
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Figure 3: Bounds for 4,

e (¢; —v;) >0 and v; <> 0: In this case we have
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have that A;(t') = min(Us, M;).
e (gi —v;) >0and v; = 0: then A;(t') = M;
e (¢i —v;) = 0: we can ignore this term

e (¢ —v;) < 0and v; <> 0: In this case we have that:
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We set L; = M Since A;(t') > m;, we

have that A;(t') = majx(Li, ms).

Figure 3 summarizes the results of our analysis for each at-
tribute value A;(t'). Notice that we use the notation A;(¢)
to denote the bound for the value of attribute A;. Also no-
tice that when (¢; — v;) > 0 we determine an upper bound
for the value of A;(t") whereas when (g; — v;) < 0 we deter-
mine a lower bound. The main difficulty in solving Equation
4 directly, lies on the existence of min and max terms, with
two operands each, in the expressions derived for the at-
tribute bounds (Figure 3). Each min (equivalently max)
term however, is linear on f,(¢') thus it is easy to deter-
mine for which range of f,(t') values, each operand of min
(equivalently maz) applies, by determining the f,(¢') value
that makes both operands equal. Assume the expression for
attribute bound A;(t') contains a min or a max term. Let
e; be the value for f,(¢') that makes both operands of min
or max equal. As f,(t') varies, we now know exactly which
operand in each min or maz term we should use to deter-
mine a bound on the attribute value. Since both U; and L;
terms are linear on f,(t'), we observe weather f,(t') lies on
the left or right or e;. There are at most k attribute bound
expressions and thus 1 < i < k. Possible values of f,(¢)
range between Zle vim; and Zle viM;. If we order the
ei’s, we essentially derive a partitioning of the range of pos-
sible values of f, (') in k+ 1 intervals, I;,,1 <4 < k+ 1. For
each value of f,(t') in these intervals the expressions used to
compute each attribute bound are fixed and do not involve
min or mazx.

We construct a table E having k+1 columns, denoting the
value intervals for f,(t') and k rows, denoting the expres-
sions for each attribute bound. For each entry E(i,7),1 <
i < k,1 <j < k+1in this table we record the exact expres-
sion that we will use to determine the bound for attribute
A;. If an attribute bound expression is not a function of

fu(t") we can just record the value in the suitable entry as
a constant. Once the table is populated, for each value of
fu(t") we know the attribute bound formulas that comprise
the left hand side of Equation 4. Thus we have k41 possible
expressions for the left side of Equation 4. Each expression,
E;,1 <3 <k+1is produced by:

k

Ej = fo(t') + ) (4 — vi)E(i, ) (8)

=1

THEOREM 2. Setting E; = fo(th),1 < j < k+ 1 and
solving for f,(t') determines the watermark value.

Proof: For each j two possibilities exist: (a) the f,(t') value
computed does not fall in the j-th interval. In this case, the
expression for E; cannot yield f,(t5) since E; produces an
upper bound for f,(t) by construction, (b) f,(¢') falls in the
j-th range. Since E; = f,(t}) is a linear function and has
a unique solution in range j, fu(t') is the watermark T} .
Note that the range of possible values for f,(t') is the same
with the range of possible values for E;, thus j will always
be identified. O

Algorithm Determine Watermark is shown in Figure 4.
The algorithm assumes that table E has been computed in
a preprocessing step. The algorithm uses O(k?) space and
determines the watermark solving k equations in the worst
case.

Algorithm DetermineWatermark (tuple ;) {
for j from k + 1 downto 1 {
Solve E; = f,(t}) and determine watermark

if watermark € I; return watermark

}

Figure 4: Algorithm Determine Watermark

4.3 An Example

Let us present an example of the algorithm’s operation.
Assume q is a query with ¢ = (0.1,0.6,0.3) and R, a view
with ¥ = (0.2,0.4,0.4). Let m1 = mgo =m3 =5 and M; =
Mo = M3 = 20. The sequence R, is shown in Figure 5.
To populate table E we use the equations of Figure 3 to
calculate the bounds for each attribute A;. Thus:

tupleID | A1 | A2 | A3 || fu(t) | fq(t)
1 10 | 17 | 20 16.8 | 17.2
20 | 20 | 11 164 | 17.3
17 | 18 | 12 154 | 16.1
15 | 10 | 8 10.2 9.9
5 10 | 12 9.8 10.1
15 110 | 5 9 9
12 5 5 6.4 5.7

O U WD

Figure 5: View R, and scores of each tuple based on
fv and f,



Ty, ] 5.11 [11.14] 14.17 17..20
A 5 5 fuE)-16
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Figure 6: Table E

Al(t) = maz(£828 5 Ay(t) = min(LLD=2 o),

’
As(t) = maz(LE2712 5),
Next we calculate e;s that make the terms in min or max
expressions equal.

e = 17, ey = 11, €3 = 14 (9)

We are now ready to fill table E. The table is presented in
Figure 6. Recall that ¢, is the first tuple of R,. Now we
solve Equation 4 for each of the 4 intervals starting with
the last one. In interval I, solving Equation 4 results in
fo(t') = 8.8 which is not in I4 and it is rejected. In I3 we
get fo(t') = 14.26 , which is valid. To output the first tuple
for f, we scan R, up to the first tuple with score greater
than or equal to f,(t') = 14.26. This is tuple t3 with score
15.4. So the minimum prefix of R, that we have to consider
in order to get the first result for query q consists of all tuples
t € [t5,t3]. We order these three tuples by f, and output
t2 and t,. Now in order to get further results we locate
the first unprocessed(not yet output) tuple in R,, which is
t2 and use it instead of t} in Equation 4. The algorithm
continues like this. If we repeat the above steps, we get the
following results. f,(t') = 13.1, so the prefix now becomes
just t3, which we output. Next we use ¢+ in Equation 4
and get f,(t') = 8.26, so the prefix is [t,t5]. We sort these
tuples and output 2 and t*. Next we use t¢ in Equation 4
and get f,(t') = 7.66, so our fourth prefix is just ¢35, which
we output. Finally output t7, which is the last unprocessed
tuple in R,.

5. VIEW SELECTION

PREFER materializes in advance multiple views in order
to provide short response time to client queries. In its sim-
plest version the view selection module (see Figure 8) inputs
from the user the relation R and the size [ of the maximum
view prefix that the PipelineResults Algorithm may have to
retrieve in order to deliver the first result of an arbitrary
preference query on R. The view selection module outputs
and materializes a set of view sequences V such that for ev-
ery query q there is at least one identifiable view R, € V
that “covers” gq, i.e., when R, is used to answer ¢ at most
[ tuples of R, are needed to deliver the first tuple of ¢. In
Section 6 we show experimentally that the number of views
needed to cover the whole space of possible queries is in the
order of 10 to 100 in typical cases. However, if space limita-
tions require that we build at most n views, a modified view
selection algorithm is used in order to cover the maximum
amount of queries with n views; since the problem of find-
ing such a maximum coverage, as we will show, is NP-hard,
PREFER uses a greedy algorithm that provides an approx-
imate solution. The details and the properties of the view
selection algorithm are described in Section 5.2. Note that,
in a similar fashion, PREFER can select views that guar-
antee the retrieval of the first m query results by retrieving

at most [ tuples. We describe the generalization to top-m
tuples in Section 5.1.1.

We present next the key definitions of “coverage” of a
query by a view. Section 5.1 provides algorithms that de-
cide coverage and compute (precisely and approximately)
the space covered by a view. Section 5.2 uses the cover-
age algorithms in a view selection algorithm that either (i)
produces a set of views that covers the space of all possible
queries (referred to as query space), or (ii) produces the best
approximate set of n views that cover as much query space
as possible.

DEFINITION 2. The ranked materialized view R, covers

the query q for its top m results using l tuples, if the PipelineRe-

sults Algorithm generates the top-m result tuples of q by us-
ing at most the top-l tuples of R,. We will say that q is
covered by R, using | tuples to indicate that the first result
tuple of q requires at most | tuples of R, to be retrieved.

We will often also say R, covers g when the number [ of
tuples needed is obvious from the context.

DEFINITION 3. The space Sk, C [0,1]* covered by the
view sequence R, using | tuples is the set of all query pref-
erence vectors ¢ such that the first result of q can be derived
using only the top-l tuples of R, .

5.1 Deciding Coverageand Computingthe Space

Covered by A View

We describe next two key algorithms of the view selection
module:

1. the view cover decision algorithm is given a sequence
Ry, anumber [, and a query ¢ and decides in O(1) time
whether ¢ is covered by R, using ! tuples.* Notice that
the algorithm uses only the I-th tuple of R,.

2. the view cover algorithm inputs a view sequence R,
and a number [ and returns the k-dimensional space
Sk, -

For both algorithms the key point is the following: Since
we want to guarantee that at most [ tuples from R, will
be read whenever a query g uses R, we have to place the
first watermark at t,. By the watermark properties and a
mathematical manipulation similar to the one of page 4.2
we derive the inequality

k

Fot) + 3 (@i — v) Au(th) < falth) (10)

i=1

In Equation 10 the only unknowns are the components of the
vector (qi1,...,qk), for which Zle ¢; = 1. Hence the view
cover decision algorithm requires that we simply plug the
vector (g1, ...,qx) in Equation 10. The view cover problem
requires solving Equation 10, which is a linear function. Its
solution Sﬁgv is in general a convex polytope [12]. In general
computing the exact solution of Equation 10 is not an easy
computational task. We reduce the computational costs in-
volved by computing an optimistic approximation of the so-
lution however. More specifically, we compute the minimum
and maximum values of each ¢; that tightly bound the solu-
tion polytope, deriving an axis-aligned Minimum Bounding

4Obviously the PipelineResults Algorithm could be used as
the view cover decision algorithm but its complexity is O(l).



Hyperrectangle (MBH). Determining the MBH%U of the so-
lution of Equation 10 can be performed very efficiently; it
consists of determining the solutions to the following k& con-
straint optimization problems:

Folt) + 38 (g0 — vi) Ai(t) < fqlth)

min g st { S g=1 (11)
¢ =0
Foltn) + 300 (4 — vi) Ai() < fa(ty)

max q; S.t Zle g =1 (12)

¢ >0

Each constraint optimization problem is linear and can be
solved in polynomial time using standard off the shelf op-
timization methods such as Simplex. Simplex is a widely
used method, requiring O(k2) space to derive a solution.
Even for very large k it usually reaches the solution in a few
iterations.

5.1.1 Guarantees For Multiple Results

Providing guarantees for multiple results from R, can
take place in a similar fashion. One can repeat the above
process for the second desired watermark position. If the
corresponding convex polytopes intersect, all the queries
falling inside the intersection, satisfy both guarantees. Let
£i,1 <1i < N be the positions of watermark Tj"q we wish to
guarantee. Repeating the procedure above for each ¢;, will
provide a sequence of minimum bounding hyperrectangles
MBH,;. If me:1 M BH,; is not null, then every query falling
in, satisfies all guarantees. If ﬂfi 1 MBH; is null, then we
are certain that such a guarantee cannot be provided by R,
for any query. Since MBH is an optimistic approximation
of the solution convex polytope, if a pair of MBH’s does not
intersect, then the corresponding convex solutions don’t in-
tersect either. However, it is possible to have an non null
intersection of all the MBHs but a null intersection of the
corresponding convex solutions. This introduces an error
which we evaluate in Section 6.

5.2 Selecting Views To Materialize

The simplest version of the view selection algorithm covers
every possible query with at least one view R,. That is, the
view selection algorithm generates a set of views V such that
the union of the query spaces covered by the views covers
the whole space [0,1]%, i.e., URUEVSva = [0,1]*. In prac-
tice, the algorithm considers a discretization of the [0, 1]
space by using a user-provided discretization parameter d.
Then the space has {#(z1,...,zk)|xs = rid,rs € Z,z; €
[0,1], 2% | &; = 1} points and the view selection algorithm
keeps introducing views until no point is left uncovered. The
O(1) view cover decision algorithm is used to check whether
a given view R, covers a query gq.

In reality space constraints may exist and only a finite
number of views, C' can be actually materialized. Thus, the
choice of a “good” set of ranked views to materialize is an
important issue. This gives rise to the following constraint
optimization problem.

PROBLEM 1. (View Selection = Under Space
Constraint) Given a set of views Ry,..., RS that covers
the space [0, 1]}C select C' views that maximize the number of
points in [0,1]* covered.

Problem 1 is an instance of the mazimum coverage prob-

Algorithm ViewSelection(){

while (not all preference vectors in [0, l]k covered)

{ Randomly pick v € [0,1]" and add it to the list
of views, L

}

GREEDY «— 0

for [=1 to C{

select v € L that covers the maximum uncovered
vectors in [0,1]*

GREEDY «— GREEDY |J M BH;

}

}

Figure 7: Ranked View Selection Under Space Con-
straint

lem [11], as the following reduction shows: The space of all
possible preference vectors, [0, 1]*, can be considered as the
reference set. Each of the views is a “subset” of [0, 1]* con-
taining a number of preference vectors. We wish to select C
“subsets” to maximize the number of elements of the refer-
ence set that are covered. The maximum coverage problem
is NP-Hard as set cover can be easily reduced to it. However,
it can be approximated efficiently as the following theorem
shows:

THEOREM 3  (GREEDY APPROXIMATION). The Greedy
Heuristic 1s an 1 — é approximation for maximum coverage.

Proof: See [11].

The Greedy heuristic works iteratively by picking the next
view from the collection RL,..., RS that covers the max-
imum number of uncovered elements of [0,1]*. Figure 7
summarizes our approach.

5.3 Selecting A Ranked View for a Preference
Query

Query processing, once C views have been materialized
proceeds as follows. The MBH’s of the views are stored in a
data structure supporting “point in hyperrectangle” queries,
such as an R-tree [10, 14]. At query time, we use the data
structure to identify the MBH and subsequently the ranked
views whose MBH’s contain the point. An extra check is
performed (using the view cover decision algorithm) to find
the ranked views that actually cover the given query. The
reason for the extra check is that the M BHﬁg,U is only an
approximation of the convex polytope Sﬁgv and it is possible
that ¢ € MBHL, but ¢ ¢ Sk,. This is a side effect of
the approximation of the exact solution. On the average,
the ratio of the polytope’s volume to the MBH’s volume is
close to the ratio of the volume of a k-dimensional sphere of
diameter d over a k-dimensional cube of side d. We evaluate
the effectiveness of the approximation in Section 6 and we
find that on the average 3% of the queries (for the range of
parameters of our experimentation) fall in the MBH but not
in the convex polytope.

When the overall number of views that we materialized is
bounded, it is likely that not all points of [0, 1] are covered.
Thus it is possible to generate preference vectors that are
not covered by any of the stored views. For such queries, we
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cannot provide performance guarantees based on our con-
struction. We execute them by choosing the ranked view
with an MBH nearest to the preference vector, as a heuris-
tic.

5.4 PREFER System Architecture

The overall system architecture is shown in Figure 8. Us-
ing algorithm ViewSelection we select a number of views
and we materialize them. A relational DBMS is used for
storing the views. The user interacts with PREFER through
an applet which connects to the database through JDBC.
The MBH’s of the views are stored in an R-tree and given a
preference vector, we identify using the R-tree the MBH that
encloses it. The MBH points to a materialized view, which
we subsequently use to apply our algorithms to identify and
retrieve the results and ship it to the user.

A preference query can be trivially answered using a DBMS,
by evaluating the preference function on each database tuple
and sorting the tuples by their score. We allow this option in
PREFER and one can observe in real time the performance
benefits of our approach.

6. EXPERIMENTAL RESULTS

To evaluate PREFER’s algorithms for the efficient execu-
tion of preference selection queries, we carried a detailed per-
formance evaluation. First we measured the running time
of our algorithms during their preprocessing step, where the
materialized view selection is performed. Then we evaluate
query performance as different parameters vary. We define
query performance as the fraction of queries that satisfy the
user-provided guarantee on the size of the view prefix that
PREFER has to retrieve from the view in order to retrieve
a user-provided number of top query results. We present a
comparison of our algorithms with other proposed state-of-
the-art solutions and finally compare with the time required
by a commercial database management system to complete
the same task.

The experiments use two synthetic datasets; the relation
attributes of the first dataset are independent while the at-
tributes in the second dataset are correlated. The database
consists of a relation houses with six attributes, namely:
HOUSEID, PRICE, BEDROOMS, BATHROOMS, SQ_FT

attributes Top-1 tuple
Discretization 0.1 | Discretization 0.05

3 25min 88min

4 60min 370min

5 190min 1800min

attributes Top-10 tuples
Discretization 0.1 | Discretization 0.05

3 30min 93min

4 65min 380min

5 210min 2000min

Figure 9: View Selection Algorithm Running Time

and YEAR. We performed experiments that used three, four
or five of the attributes (HOUSEID is not a preference at-
tribute). The cardinality of the five preference attributes is
1000000 , 10 , 8 , 3500 and 50 respectively for the random
dataset and 1, 500000 , 5, 5, 1500 and 50 respectively for
the correlated dataset. PRICE, BEDROOMS and SQ.FT
were used for experiments involving three attributes; BATH-
ROOMS was added as the fourth attribute and YEAR as
the fifth. For the random dataset, the attribute values are
chosen with a uniform distribution over their domain. In
the correlated dataset, we used correlation patterns that we
discovered in real datasets containing house information (we
did not use these datasets because they were relatively small
in size). The correlation coefficient between BEDROOMS
and the rest of the attributes, is between 0.35 and 0.73, and
the correlation of the other attribute pairs is at similar lev-
els.

We use a discretization of 0.1 for the domain from which
we draw view and query preference vectors (0 through 1, in
increments of 0.1), except for when the experiment involves
only three attributes in which case we use a granularity of
0.05 in order to have a sizeable number of possible prefer-
ence vectors and stress the view selection algorithm. The
computing environment consisted of a dual Pentium II with
512MB RAM running Windows NT Workstation 4.0, where
all experiments were executed, and a PII 256MB RAM Win-
dows NT Server 4.0, where the datasets were stored in an
Oracle DBMS. PREFER is implemented in Java. The two
computers were connected through a LAN.

The preprocessing phase of our algorithms, essentially the
solution to the optimization problems of Equation 12, was
carried out using the simplex method. We used a widely
available implementation of the Simplex method as a black
box. Such methods are well studied in the literature and
highly optimized for performance.

View Selection Running Time. Our first experiment
assesses the running time that the view selection algorithm
takes to cover the space of all queries. Figure 9 presents
the running time of the algorithm for various parameters
of interest, namely number of attributes in the underlying
dataset, discretization of the domain of preference vectors
and number of result tuples (1 or 10) that we require guar-
antees for, on a 50K tuple database. The guarantee provided
in this case is 500 tuples (size of view prefix). The times in
the figure include the time to find the 500-th ranked tuple
(located with a single pass over the underlying dataset) of as



many views as were required, plus the time to solve the view
cover decision problem, as described earlier. The running
time increases with the number of attributes in the dataset,
as the preference vector space increases in size; more effort is
required to cover the entire space. It also increases with the
granularity of the preference vectors as the space becomes
denser in candidate query points that the algorithm has to
cover. Finally, the running time increases with the number
of result tuples we wish to provide guarantees for, as the
algorithm has to solve the view cover decision problem for
each result tuple we wish to have a guarantee for.

Query Performance as function of the Dataset size.
Figure 10 presents the results of an experiment assessing the
query performance of PREFER with respect to the dataset
size. In this experiment we used datasets with four at-
tributes. We target a guarantee that the first result of a
random query is identified by retrieving at most 500 tuples
from the database. We vary the number of views allowed to
be materialized and we measure the fraction of the queries
that satisfy the guarantee we wish to provide. The frac-
tion of the queries is measured by exhaustively executing all
possible queries (whose vectors’ components fall on the 0.1
discretization) on the views that have been materialized and
counting the number of them that satisfy the guarantee. We
observe that the view selection algorithm scales gracefully
with the dataset size. For the case of correlated data (Figure
10(a)) increasing the number of tuples in the database by
five times, requires only doubling the number of materialized
views to cover 100% of the possible queries. Increasing the
number of tuples fifty times, requires tripling the number of
materialized views to cover 100% of the queries. Notice how
only ten views are enough to cover 90% of the query space
for a dataset with 10,000 correlated tuples (Figure 10(a)).
Since the distribution of tuple values is skewed, the distri-
bution of scores in each view is expected to be skewed as
well. It appears that for this dataset, as the number of tu-
ples increases, the sizes of the generated covered spaces are
smaller, since the number of tuples greater than a specific
watermark value decreases, due to skew. Consequently, for
a fixed number of views, we expect a smaller fraction of the
preference attribute space to be covered. This explains the
smaller slopes of the curves for increasing number of tuples.

Figure 10(b) presents the results of the same experiment
on the random dataset. In the case of random data (uni-
formly distributed attribute values) the number of addi-
tional views required to assure that all queries provide guar-
antees appears to grow very slowly with database size. Since
we are dealing with uniform data the score values are ex-
pected to be evenly distributed. The fraction of tuples
greater than a specific watermark value essentially remains
constant (for a truly uniform distribution). The MBH sizes
are varying in size in our case, as we just deal with a sam-
ple of a uniform distribution having some random variation,
but are not drastically different. As a result, the difference
in the fraction of space covered with the same number of
MBHs does not vary a lot as the number of tuples increases.

In Figure 10 for a fixed number of views there are two
reasons for missing the guarantee. The first reason is the
space that remains uncovered as a consequence of the im-
posed constraint on the number of views(essentially storage
space). The second is the approximation of the convex poly-
tope solutions with MBHs during the phase that we locate
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Figure 10: Varying the dataset size

which view is relevant for an incoming query. In both cases,
the error due to the approximation with MBHs is less than
3% on the average, signifying that our use of approximations
of the solutions is not an important source of error.

Varying the number of attributes. Figure 11 presents
the results of an experiment assessing the scalability of the
view selection algorithm with respect to the number of at-
tributes in the underlying dataset, which has 500,000 tuples.
Figure 11(a) presents the results of the experiment for the
correlated dataset. The number of tuples in the datasets
is the same, so as the number of attributes increases the
distribution of distances between the tuples is expected to
increase as well. We expect that the distribution of score val-
ues in each view becomes increasingly more skewed as the
dimensionality increases, for the types of preference func-
tions we consider in this paper. The number of tuples with
scores larger than a specific watermark value decreases for
this dataset as the number of attributes increases, yield-
ing smaller MBHs. This explains the different slopes of the
curves as the number of attributes increases. Contrasting
with figure 11(b) which presents the results of the same
experiment for random data, we observe that the overall
trends are the same, the curves however for random data,
especially as the number of attributes increase are steeper
(have higher slope). This is expected, since the distribution
is not as skewed and as a result, a larger fraction of the
preference attribute space is covered for the same number
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of materialized views. The error due to the approximation
of the solution with MBHs increases with the number of
attributes, but again is not the dominant source of error.

Query performance as a function of required guar-
antees. Figure 12 presents the results of an experiment
assessing the query performance of PREFER as a function
of the guarantees requested. We use four-attribute datasets
in this experiment. We vary the guarantees provided by the
queries, by increasing the maximum number of view tuples
read to report the first result of queries. Figures 12(a)(b)
show the results for the correlated dataset for two dataset
sizes, and Figures 12(c)(d) show the results for the random
datasets.

In each figure we report two curves each for different num-
ber of materialized views. We observe that in all cases, with
twenty views, the majority of queries satisfy a guarantee as
small as 500 tuples. A similar phenomenon with the im-
pact of skew exists in this case. For random data (Figure
12(c)(d)) for the same dataset size the fraction of queries
providing a specific guarantee is higher than in the case of
correlated data.

Comparison With The Onion Technique. Figure 13
presents an experimental comparison or PREFER, against
the Onion technique, which was briefly described in Sec-
tion 2. We implemented the Onion technique and we report
on the number of tuples retrieved from the database, for a
database with 50K tuples and 3 attributes, increasing the
number of query results requested. We vary the number of
results requested and the number of views materialized in
our technique. The Onion technique requires approximately
2.5 hours to construct the index for such a relation(50K
tuples and 3 attributes). The time is exponential to the
number of attributes. This was the maximum experiment
we could run with the Onion technique that would require
a reasonable amount of time for preprocessing.

For this experiment we construct materialized views by
imposing a guarantee of 500 tuples only for the first query
result (the guarantee is not that important in this case , since
we don’t cover the whole query space.) Thus the views are
constructed in a way that no guarantees are provided for
additional results with our technique and, so, we level the

query performance playground in order to fairly compare
with Onion, which is focused on the first result as well. Fig-
ure 13(a) presents the results for the correlated dataset. The
proposed technique is superior to the Onion technique even
with a single view available, for all requested results. We
also observe that the performance of our technique deteri-
orates slightly as the number of requested tuples increases.
This is not the case for the Onion technique. The perfor-
mance deteriorates rapidly and when more than 20 results
are requested it has to scan the entire dataset. This is be-
cause this dataset is decomposed into 20 convex hulls by
the Onion technique. It is interesting to notice that in this
experiment the views are constructed with a guarantee of
500 tuples only for the first result. Even in this case, the
proposed technique is capable of outperforming the Onion
technique for all requested results. Figure 13(b) presents
the results for the random dataset. We observe that when
only one view is available, the Onion technique is better
for the first result, but its performance deteriorates rapidly
for additional results. Moreover as the number of views in-
creases, our technique becomes much better for all results
retrieved, even though the views where constructed without
guarantees for additional results. For more than 10 results,
the Onion technique essentially performs a scan of the entire
dataset, because there are only 10 convex hulls in the Onion
index.

Query running time comparison to a commercial
DBMS. We present results of an experiment that compares
the average time that PREFER needs to output the top re-
sults of a query, as the number of results varies, to the time
that a commercial DBMS requires for the same task. We
use a 50000 tuples correlated dataset with four attributes
for this experiment. To measure the time of the DBMS,
we issue a SQL query containing the preference function in
the ORDER BY clause (required to order the result by the
score of the preference function) and measure the time to
output the top results. PREFER contains 34 materialized
views, that are chosen using algorithm View Selection for a
guarantee of 500 tuples, in a pre-processing step. This set
of views covers the whole preference vector space for that
guarantee. The results of the experiment are shown in Fig-
ure 14.



One can observe that the performance benefits are very
large. Even for 500 results requested, PREFER still requires
half the time of a straightforward SQL based approach. No-
tice, that the time required by the DBMS is almost the same
for all results as the entire relation has to be ranked before
a single result is output.

7. CONCLUSIONS

The widespread use of the world wide web as a front end
to database systems creates new opportunities for enhanced
query capabilities. In this direction we have introduced al-
gorithms to enhance database selection queries with user
preferences. Our algorithms make use of multiple database
views and are able to provide performance guarantees for
the types of selection queries considered in this paper. We
presented a methodology to derive the answer of a pref-
erence selection query from a materialized view containing
the output of another preference selection query. We have
presented algorithms to select the best views to materialize
given a constraint on the available space and have imple-
mented our algorithms on a prototype system called PRE-
FER on top of a commercial relational database manage-
ment system demonstrating the practical utility of our ap-
proach. Our results demonstrate that when compared with
other approaches proposed for this problem, one can achieve
great savings both in construction time as well as execution
time, using our proposed algorithms.

Many research issues remain for exploration. Consider-
ing other important database operations in conjunction with
the preference framework would be of great interest. Query
optimization of such operators as well as various dynamic
aspects of their execution are important issues for further
study. We plan to investigate these questions in our future
and ongoing work.
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