
ObjectRank: Authority-Based Keyword Search in Databases
(extended version)

Andrey Balmin
IBM Almaden Research

San Jose, CA 95120
abalmin@us.ibm.com

Vagelis Hristidis
School of Computer Science

Florida International University
Miami, FL 33199
vagelis@cs.fiu.edu

Yannis Papakonstantinou
Computer Science

UC, San Diego
La Jolla, CA 92093
yannis@cs.ucsd.edu

Abstract

The ObjectRank system applies authority-based
ranking to keyword search in databases modeled
as labeled graphs. Conceptually, authority orig-
inates at the nodes (objects) containing the key-
words and flows to objects according to their se-
mantic connections. Each node is ranked accord-
ing to its authority with respect to the particular
keywords. One can adjust the weight of global
importance, the weight of each keyword of the
query, the importance of a result actually con-
taining the keywords versus being referenced by
nodes containing them, and the volume of au-
thority flow via each type of semantic connection.
Novel performance challenges and opportunities
are addressed. First, schemas impose constraints
on the graph, which are exploited for performance
purposes. Second, in order to address the issue of
authority ranking with respect to the given key-
words (as opposed to Google’s global PageRank)
we precompute single keyword ObjectRanks and
combine them during run time. We conducted
user surveys and a set of performance experiments
on multiple real and synthetic datasets, to assess
the semantic meaningfulness and performance of
ObjectRank.

1 Introduction

PageRank [8] is an excellent tool to rank the global im-
portance of the pages of the Web, proven by the success
of Google 1. However, Google uses PageRank as a tool
to measure the global importance of the pages, indepen-
dently of a keyword query. (Google also uses other IR
techniques to estimate the relevance of a page to a key-
word query, which is then combined with the PageRank
value to calculate the final score of a page.) More recent
works [18, 26] apply PageRank to estimate the relevance

1http://www.Google.com

Paper Authors=“H. Gupta , V.
Harinarayan, A. Rajaraman, J.
Ullman” Title=“Index Selection
for OLAP.” Year=“ICDE 1997”

Paper Authors=“J. Gray, A.
Bosworth, A. Layman, H. Pirahesh”
Title=“Data Cube: A Relational
Aggregation Operator Generalizing
Group-By, Cross-Tab, and Sub-
Total.” Year= “ICDE 1996”

Paper Authors=“C. Ho, R. Agrawal,
N. Megiddo, R. Srikant”
Title=“Range Queries in OLAP Data
Cubes.” Year=“SIGMOD 1997”

Paper Authors=“R. Agrawal, A.
Gupta, S. Sarawagi”
Title=“Modeling Multidimensional
Databases.” Year=“ICDE 1997”

Author Name=“R. Agrawal”

cites

by

Year Name=“ICDE”,
Year=1997,
Location=Birmingham

contains

contains cites

cites

cites

by

Conference
Name=“ICDE”

has
instance

Figure 1: A subset of the DBLP graph

of pages to a keyword query. We appropriately extend and
modify PageRank to perform keyword search in databases
for which there is a natural flow of authority between their
objects (e.g.: bibliographic or complaints databases as we
explain below).

Consider the example of Figure 1, which illustrates a
small subset of the DBLP database in the form of a la-
beled graph (author, conference and year nodes except for
“R. Agrawal”, “ICDE” and “ICDE 1997” respectively are
omitted to simplify the figure). Schema graphs, such as
the one of Figure 3, describe the structure of database
graphs. Given a keyword query, e.g. the single key-
word query “OLAP”, ObjectRank sorts the database ob-
jects by their importance with respect to the user-provided
keywords. Figure 2 illustrates the top-10 “OLAP” pa-
pers in the DBLP subset (produced by our online demo
at http://www.db.ucsd.edu/ObjectRank)2 currently
used by the ObjectRank prototype. Notice that many en-
tries (the “Data Cube” and the “Modeling Multidimen-
sional Databases” papers in Figure 1) of the top-10 list
do not contain the keyword “OLAP” (“OLAP” is not even
contained in their abstracts) but they clearly constitute im-
portant papers in the OLAP area, since they may be ref-
erenced by other papers of the OLAP area or may have

2The DBLP subset currently used by ObjectRank was
copied from our XKeyword [20] database (demo available at
http://www.db.ucsd.edu/XKeyword) and consists of
the available publications in 12 major database conferences, including
SIGMOD, VLDB, PODS, ICDE, ICDT and EDBT, up to year 2001.

been written by authors who have written other important
“OLAP” papers.

Conceptually, the ranking is produced in the following
way: Myriads of random surfers are initially found at the
objects containing the keyword “OLAP” and then they tra-
verse the database graph. In particular, at any time step
a random surfer is found at a node and either (i) makes
a move to an adjacent node by traversing an edge, or (ii)
jumps randomly to an “OLAP” node without following
any of the links. The probability that a particular traver-
sal happens depends on multiple factors, including the type
of the edge (in contrast to the Web link-based search sys-
tems [8, 18, 26]). These factors are depicted in an authority
transfer schema graph. Figure 4 illustrates the authority
transfer schema graph that corresponds to the setting that
produced the results of Figure 2. Assuming that the proba-
bility that the surfer moves back to an “OLAP” node is 15%
(damping factor [8]), the collective probability to move to a
referenced paper is up to 85%× 70% (70% is the authority
transfer rate of the citation edge as we explain below), the
collective probability to move to an author of the paper is
up to 85% × 20%, the probability to move from the paper
to the forum where the paper appeared is up to 85%×10%,
and so on. As is the case with the PageRank algorithm as
well, as time goes on, the expected percentage of surfers
at each node v converges (Section 2) to a limit r(v). Intu-
itively, this limit is the ObjectRank of the node.

An alternative way to conceive the intuition behind Ob-
jectRank is to consider that authority/importance flows in
the database graph in the same fashion that [24] defined
authority-based search in arbitrary graphs. Initially the
“OLAP” authority is found at the objects that contain the
keyword “OLAP”. Then authority/importance flows, fol-
lowing the rules in the authority transfer schema graph, un-
til an equilibrium is established that specifies that a paper
is authoritative if it is referenced by authoritative papers, is
written by authority authors and appears in authority con-
ferences. Vice versa, authors and conferences obtain their
authority from their papers. Notice that the amount of au-
thority flow from, say, paper to cited paper or from paper
to author or from author to paper, is arbitrarily set by a do-
main expert and reflects the semantics of the domain. For
example, common sense says that in the bibliography do-
main a paper obtains very little authority (or even none) by
referring to authoritative papers. On the contrary it obtains
a lot of authority by being referred by authoritative papers.
Our DBLP demo offers to the user more than one author-
ity flow settings, in order to accommodate multiple user
profiles/requirements. We believe the ability to customize
authority flow schemes is central to ObjectRank, since we
should not assume that “one size fits all” when it comes to
opinions about authority flow. For example, there is one
setting for users that primarily care for papers with high
global importance and another for users that primarily care
for papers that are directly or indirectly heavily referenced
by papers that have the keywords. We expect that multiple
settings make sense in all non-trivial ObjectRank applica-

tions.
Keyword search in databases has some unique char-

acteristics, which make the straightforward application of
the random walk model as described in previous work
[8, 18, 26] inadequate. First, every database has differ-
ent semantics, which we can use to improve the quality of
the keyword search. In particular, unlike the Web, where
all edges are hyperlinks3, the database schema exhibits the
types of edges, and the attributes of the nodes. Using
the schema we specify the ways in which authority flows
across the nodes of the database graph. For example, the
results of Figure 2 were obtained by annotating the schema
graph of Figure 3 with the authority flow information that
appears in Figure 4.

Furthermore, previous work [8, 18, 26] assumes that,
when calculating the global importance (in our framework
we make a clear distinction between the global importance
of a node and its relevance to a keyword query), the random
surfer has the same probability to start from any page p of
the base set (we call this probability base ObjectRank of p).
However, this is not true for every database. For example,
consider a product complaints database (Figure 21). In this
case, we represent the business value of a customer by as-
signing to his/her node a base ObjectRank proportional to
his/her total sales amount.

Another novel property of ObjectRank is adjustability,
which allows for the tuning of the system according to the
domain- and/or user-specific requirements. For example,
for a bibliographic database, a new graduate student desires
a search system that returns the best reading list around
the specified keywords, whereas a senior researcher looks
for papers closely related to the keywords, even if they
are not of a high quality. These preference scenarios are
made possible by adjusting the weight of the global impor-
tance versus the relevance to the keyword query. Chang-
ing the damping factor d offers another calibration oppor-
tunity. In particular, larger values of d favor nodes pointed
by high-authority nodes, while smaller values of d favor
nodes containing the actual keywords (that is, nodes in the
base set). The handling of queries with multiple keywords
offers more flexibility to the system as we describe in Sec-
tion 3. For example, we may want to assign a higher weight
to the relevance of a node to an infrequent keyword.

On the performance level, calculating the ObjectRank
values in runtime is a computationally intensive operation,
especially given the fact that multiple users query the sys-
tem. This is resolved by precomputing an inverted index
where for each keyword we have a sorted list of the nodes
with non-trivial ObjectRank for this keyword. During run-
time we employ the Threshold Algorithm [13] to efficiently
combine the lists. However, our approach induces the cost
of precomputing and storing the inverted index. Regarding
the space requirements, notice that the number of keywords

3Previous works [26, 9, 7] assign weights on the edges of the data
graph according to the relevance of the incident nodes’ text to the key-
words. In contrast, we assign authority transfer rates on the schema graph,
which captures the semantics of the database, since the relevance factor is
reflected in the selection of the base set.

41.34 Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab,
and Sub-Total. Jim Gray, ICDE 1996

36.62 Index Selection for OLAP. Himanshu Gupta, ICDE 1997
35.11 Range Queries in OLAP Data Cubes. Ching-Tien Ho, SIGMOD 1997
31.03 Discovery-Driven Exploration of OLAP Data Cubes. Sunita Sarawagi, EDBT 1998
30.7 OLAP and Statistical Databases: Similarities and Differences. Arie Shoshani, PODS 1997
30.23 Implementing Data Cubes Efficiently. Venky Harinarayan, SIGMOD 1996
29.42 Relative Prefix Sums: An Efficient Approach for Querying Dynamic OLAP Data Cubes.

Steven Geffner, ICDE 1999
28.49 Modeling Multidimensional Databases. Rakesh Agrawal, ICDE 1997
26.96 Summarizability in OLAP and Statistical Data Bases. Hans-J. Lenz, SSDBM 1997
26.75 Data Warehousing and OLAP for Decision Support (Tutorial). Surajit Chaudhuri, SIGMOD 1997

Figure 2: Top 10 papers on “OLAP” returned by Objec-
tRank

Conference Year Paper Author

cites

1:n 1:n m:n

m:n

Figure 3: The DBLP schema graph.

of a database is typically limited, and less than the number
of users in a personalized search system [22]. Furthermore,
we do not store nodes with ObjectRank below a threshold
value (chosen by the system administrator), which offers a
space versus precision tradeoff. In Section 7 we show that
the index size is small relative to the database size for two
bibliographic databases.

Regarding the index computation, we present and exper-
imentally evaluate two classes of optimizations. First, we
exploit the structural properties of the database graph. For
example, if we know that the objects of a subgraph of the
schema form a Directed Acyclic Graph (DAG), then given
a topological sort of the DAG, there is an efficient straight-
forward one-pass ObjectRank evaluation. We extend the
DAG case by providing an algorithm that exploits the effi-
cient evaluation for DAGs in the case where a graph is “al-
most” a DAG in the sense that it contains a large DAG sub-
graph. In particular, given a graph G with n nodes, which is
reduced to a DAG by removing a small subset of m nodes,
we present an algorithm which reduces the authority cal-
culation into a system of m equations - as opposed to the
usual system of n equations. Furthermore, we present opti-
mization techniques when the data graph has a small vertex
cover, or if it can be split into a set of subgraphs and the
connections between these subgraphs form a DAG.

Second, notice that the naive approach would be to cal-
culate each keyword-specific ObjectRank separately. We
have found that it is substantially more efficient to first cal-
culate the global ObjectRank, and use these scores as ini-
tial values for the keyword-specific computations. This ac-
celerates convergence, since in general, objects with high
global ObjectRank, also have high keyword-specific Ob-
jectRanks. Furthermore, we show how storing a prefix of
the inverted lists allows the faster calculation of the Objec-
tRanks of all nodes.

The semantic and performance contributions of
this paper are evaluated using two user surveys
and a detailed experimental evaluation respectively.
We have implemented a web interface, available at
http://www.db.ucsd.edu/ObjectRank, to query
a subset of the DBLP database using the ObjectRank
technique.

Conference Year Paper Author
0.3

0.3

0.3

0.1

0.7 cites

0.2

0.2

0 cited

Figure 4: The DBLP authority transfer schema graph.

The essential formal background on PageRank and au-
thority search is presented in Section 2. Section 3 presents
the semantics of ObjectRank and Section 4 describes the
system’s architecture. The algorithms used to calculate Ob-
jectRank are presented in Section 5 and are experimentally
evaluated in Section 7. We present the results of two user
surveys in Section 6. Furthermore, related work is dis-
cussed in Section 9. Finally, conclusions and future work
are discussed in Section 11.

2 Background
We describe next the essentials of PageRank and authority-
based search, and the random surfer intuition. Let (V,E)
be a graph, with a set of nodes V = {v1, . . . , vn} and
a set of edges E. A surfer starts from a random node
(web page) vi of V and at each step, he/she follows a
hyperlink with probability d or gets bored and jumps to
a random node with probability 1 − d. The PageRank
value of vi is the probability r(vi) that at a given point
in time, the surfer is at vi. If we denote by r the vector
[r(v1), . . . , r(vi), . . . , r(vn)]T then we have

r = dAr +
(1 − d)
|V | e (1)

where A is a n×n matrix with Aij = 1
OutDeg(vj)

if there is
an edge vj → vi in E and 0 otherwise, where OutDeg(vj)
is the outgoing degree of node vj . Also, e = [1, . . . , 1]T .

The above PageRank equation is typically precomputed
before the queries arrive and provides a global, keyword-
independent ranking of the pages. Instead of using the
whole set of nodes V as the base set, i.e., the set of nodes
where the surfer jumps when bored, one can use an arbi-
trary subset S of nodes, hence increasing the authority as-
sociated with the nodes of S and the ones most closely as-
sociated with them. In particular, we define a base vector
s = [s0, . . . , si, . . . , sn]T where si is 1 if vi ∈ S and 0
otherwise. The PageRank equation is then

r = dAr +
(1 − d)
|S| s (2)

Regardless of whether one uses Equation 1 or Equa-
tion 2 the PageRank algorithm solves this fixpoint using
a simple iterative method, where the values of the (k+1)-th
execution are calculated as follows:

r(k+1) = dAr(k) +
(1 − d)
|S| s (3)

The algorithm terminates when r converges, which is
guaranteed to happen under very common conditions [25].
In particular, A needs to be irreducible (i.e., (V,E) be
strongly connected) and aperiodic. The former is true due

Parameter property Parameters
Application -
specific

authority transfer
rates, global ObjectRank
calculation, damping
factor

Combination
of scores

normalization scheme,
global ObjectRank weight,
AND or OR semantics

Performance epsilon, threshold

Table 1: Parameters of ObjectRank

to the damping factor d, while the latter happens in prac-
tice.

The notion of the base set S was suggested in [8] as a
way to do personalized rankings, by setting S to be the set
of bookmarks of a user. In [18] it was used to perform
topic-specific PageRank on the Web. We take it one step
further and use the base set to estimate the relevance of a
node to a keyword query. In particular, the base set consists
of the nodes that contain the keyword as explained next.

3 ObjectRank Semantics
In this section we formally define the framework of this
work, and show how ObjectRank ranks the nodes of a
database with respect to a given keyword query, given a
set of calibrating (adjusting) parameters (Table 1). In par-
ticular, Section 3.1 describes how the database and the au-
thority transfer graph are modeled. Section 3.2 shows how
the keyword-specific and the global ObjectRanks are cal-
culated and combined to produce the final score of a node.
Finally, Section 3.3 presents and addresses the challenges
for multiple-keyword queries.

3.1 Database Graph, Schema, and Authority Transfer
Graph

We view a database as a labeled graph, which is a
model that easily captures both relational and XML
databases. The data graph D(VD, ED) is a labeled
directed graph where every node v has a label λ(v) and
a set of keywords. For example, the node “ICDE 1997”
of Figure 1 has label “Year” and the set of keywords
{‘‘ICDE’’, ‘‘1997’’, ‘‘Birmingham’’}.
Each node represents an object of the database and may
have a sub-structure. Without loss of generality, Objec-
tRank assumes that each node has a tuple of attribute
name/attribute value pairs. For example, the “Year” nodes
of Figure 1 have name, year and location attributes.
Notice that the keywords appearing in the attribute values
comprise the set of keywords associated with the node.
One may assume richer semantics by including the meta-
data of a node in the set of keywords. For example, the
metadata “Forum”, “Year”, “Location” could be included
in the keywords of a node. The specifics of modeling the
data of a node are orthogonal to ObjectRank and will be
neglected in the rest of the discussion.

Each edge e from u to v is labeled with its role λ(e) (we
overload λ) and represents a relationship between u and v.
For example, every “paper” to “paper” edge of Figure 1 has

the label “cites”. When the role is evident and uniquely de-
fined from the labels of u and v, we omit the edge label. For
simplicity we will assume that there are no parallel edges
and we will often denote an edge e from u to v as “u → v”.

The schema graph G(VG, EG) (Figure 3) is a directed
graph that describes the structure of D. Every node has an
associated label. Each edge is labeled with a role, which
may be omitted, as discussed above for data graph edge
labels. We say that a data graph D(VD, ED) conforms to
a schema graph G(VG, EG) if there is a unique assignment
µ such that:

1. for every node v ∈ VD there is a node µ(v) ∈ VG such
that λ(v) = λ(µ(v));

2. for every edge e ∈ ED from node u to node v there is
an edge µ(e) ∈ EG that goes from µ(u) to µ(v) and
λ(e) = λ(µ(e)).

Authority Transfer Schema Graph. From the schema
graph G(VG, EG), we create the authority transfer schema
graph GA(VG, EA) to reflect the authority flow through
the edges of the graph. This may be either a trial and er-
ror process, until we are satisfied with the quality of the
results, or a domain expert’s task. In particular, for each
edge eG = (u → v) of EG, two authority transfer edges,
ef

G = (u → v) and eb
G = (v → u) are created. The two

edges carry the label of the schema graph edge and, in ad-
dition, each one is annotated with a (potentially different)
authority transfer rate - α(ef

G) and α(eb
G) correspondingly.

We say that a data graph conforms to an authority transfer
schema graph if it conforms to the corresponding schema
graph. (Notice that the authority transfer schema graph has
all the information of the original schema graph.)

Figure 4 shows the authority transfer schema graph that
corresponds to the schema graph of Figure 3 (the edge la-
bels are omitted). The motivation for defining two edges
for each edge of the schema graph is that authority poten-
tially flows in both directions and not only in the direction
that appears in the schema. For example, a paper passes
its authority to its authors and vice versa. Notice however,
that the authority flow in each direction (defined by the au-
thority transfer rate) may not be the same. For example, a
paper that is cited by important papers is clearly important
but citing important papers does not make a paper impor-
tant.

Notice that the sum of authority transfer rates of the out-
going edges of a schema node u may be less than 14, if the
administrator believes that the edges starting from u do not
transfer much authority. For example, in Figure 4, confer-
ences only transfer 30% of their authority.

Authority Transfer Data Graph. Given a data graph
D(VD, ED) that conforms to an authority transfer schema
graph GA(VG, EA), ObjectRank derives an authority
transfer data graph DA(VD, EA

D) (Figure 5) as follows.
For every edge e = (u → v) ∈ ED the authority transfer
data graph has two edges ef = (u → v) and eb = (v → u).

4In terms of the random walk model, this would be equivalent to the
disappearance of a surfer.

Paper Authors=“H. Gupta, V.
Harinarayan, A. Rajaraman, J.
Ullman” Title=“Index Selection
for OLAP.” Year=“ICDE 1997”

Paper Authors=“J. Gray, A.
Bosworth, A. Layman, H. Pirahesh”
Title=“Data Cube: A Relational
Aggregation Operator Generalizing
Group-By, Cross-Tab, and Sub-
Total.” Year= “ICDE 1996”

Paper Authors=“C. Ho, R. Agrawal,
N. Megiddo, R. Srikant”
Title=“Range Queries in OLAP Data
Cubes.” Year=“SIGMOD 1997”

Paper Authors=“R. Agrawal, A.
Gupta, S. Sarawagi”
Title=“Modeling Multidimensional
Databases.” Year=“ICDE 1997”

Author Name=“R. Agrawal”

0.7

Year Name=“ICDE”,
Year=1997,
Location=Birmingham

0.15

0.15 0.7

0.35

0.350.1

0.1

0.05
0.066

0.1 0.1

Conference
Name=“ICDE”

0.3

0.3

Figure 5: Authority transfer data graph

The edges ef and eb are annotated with authority transfer
rates α(ef) and α(eb). Assuming that ef is of type ef

G, then

α(ef) =

{
α(ef

G
)

OutDeg(u,ef
G

)
, if OutDeg(u, ef

G) > 0

0, if OutDeg(u, ef
G) = 0

(4)

where OutDeg(u, ef
G) is the number of outgoing edges

from u, of type ef
G. The authority transfer rate α(eb) is

defined similarly. Figure 5 illustrates the authority transfer
data graph that corresponds to the data graph of Figure 1
and the authority schema transfer graph of Figure 4. No-
tice that the sum of authority transfer rates of the outgoing
edges of a node u of type µ(u) may be less than the sum
of authority transfer rates of the outgoing edges of µ(u) in
the authority transfer schema graph, if u does not have all
types of outgoing edges.

3.2 Importance vs. Relevance.

The score of a node v with respect to a keyword query w is
a combination of the global ObjectRank rG(v) of v and the
keyword-specific ObjectRank rw(v). We propose the fol-
lowing combining function, although other functions may
be used as well:

rw,G(v) = rw(v) · (rG(v))g (5)

where g is the global ObjectRank weight, which determines
how important the global ObjectRank is. Notice that g
may be accessible to the users or fixed by the administra-
tor. The calculations of the keyword-specific and the global
ObjectRank are performed as follows (we assume single-
keyword queries at this point).

Keyword-specific ObjectRank. Given a single keyword
query w, ObjectRank finds the keyword base set S(w)
(from now on referred to simply as base set when the key-
word is implied) of objects that contain the keyword w and
assigns an ObjectRank rw(vi) to every node vi ∈ VD by
resolving the equation

rw = dArw +
(1 − d)
|S(w)| s (6)

where Aij = α(e) if there is an edge e = (vj → vi) in
EA

D and 0 otherwise, d controls the base set importance,
and s = [s1, . . . , sn]T is the base set vector for S(w), i.e.,
si = 1 if vi ∈ S(w) and si = 0 otherwise.

The damping factor d determines the portion of Objec-
tRank that an object transfers to its neighbors as opposed

to keeping to itself. It was first introduced in the original
PageRank paper [8], where it was used to ensure conver-
gence in the case of PageRank sinks. However, in addition
to that, in our work it is a calibrating factor, since by de-
creasing d, we favor objects that actually contain the key-
words (i.e., are in base set)as opposed to objects that ac-
quire ObjectRank through the incoming edges. The value
for d used by PageRank [8] is 0.85, which we also adopt
when we want to balance the importance of containing the
actual keywords as opposed to being pointed by nodes con-
taining the keywords.

Global ObjectRank. The definition of global ObjectRank
is different for different applications or even users of the
same application. In this work, we focus on cases where the
global ObjectRank is calculated applying the random surfer
model, and including all nodes in the base set. The same
calibrating parameters are available, as in the keyword-
specific ObjectRank. Notice that this way of calculating
the global ObjectRank, which is similar to the PageRank
approach [8], assumes that all nodes (pages in PageRank)
initially have the same value. However, there are many
applications where this is not true, as we discuss in Sec-
tion 11.

3.3 Multiple-Keywords Queries.

We define the semantics of a multiple-keyword query
“w1, . . . , wm” by naturally extending the random walk
model. We consider m independent random surfers, where
the ith surfer starts from the keyword base set S(wi). For
AND semantics, the ObjectRank of an object v with respect
to the m-keywords query is the probability that, at a given
point in time, the m random surfers are simultaneously at
v. Hence the ObjectRank rw1,...,wm

AND (v) of the node v with
respect to the m keywords is

rw1,...,wm

AND (v) =
∏

i=1,...,m

rwi(v) (7)

where rwi(v) is the ObjectRank with respect to the key-
word wi.

For OR semantics, the ObjectRank of v is the proba-
bility that, at a given point in time, at least one of the m
random surfers will reach v. Hence, for two keywords w1

and w2 it is

rw1,w2
OR (v) = rw1(v) + rw2(v) − rw1(v)rw2(v) (8)

and for more than two, it is defined accordingly. Notice that
[18] also sums the topic-sensitive PageRanks to calculate
the PageRank of a page.

3.4 Weigh keywords by frequency

A drawback of the combining function of Equation 7 is that
it favors the more popular keywords in the query. The rea-
son is that the distribution of ObjectRank values is more
skewed when the size |S(w)| of the base set S(w) in-
creases, because the top objects tend to receive more ref-
erences. For example, consider two results for the query

(a)
47.31 11.44 An XML Indexing Structure with Relative Region Coordinate. Dao Dinh Kha, ICDE 2001
41.02 3.08 DataGuides: Enabling Query ... Optimization in Semistructured... Roy Goldman, VLDB 1997
7.44 28.43 Access Path Selection in a RDBMS. Patricia G. Selinger, SIGMOD 1979
31.44 3.24 Querying Object-Oriented Databases. Michael Kifer, SIGMOD 1992
26.73 3.09 A Query … Optimization Techniques for Unstructured Data. Peter Buneman, SIGMOD 1996

(b)
47.31 11.44 An XML Indexing Structure with Relative Region Coordinate. Dao Dinh Kha, ICDE 2001
7.44 28.43 Access Path Selection in a RDBMS. Patricia G. Selinger, SIGMOD 1979
2.04 102.1 R-Trees: A Dynamic Index Structure for Spatial Searching. Antonin Guttman, SIGMOD 1984
1.73 112.7 The K-D-B-Tree: A Search Structure For Large … Indexes. John T. Robinson, SIGMOD 1981
41.02 3.08 DataGuides: Enabling Query … Optimization in Semistructured... Roy Goldman, VLDB 1997

Figure 6: Top 5 papers on “XML Index”, with and without
emphasis on “XML”

“XML AND Index” shown in Figure 6. Result (b) corre-
sponds to the model described above. It noticeably favors
the “Index” keyword over the “XML”. The first paper is the
only one in the database that contains both keywords in the
title. However, the next three results are all classic works
on indexing and do not apply directly to XML. Intuitively,
“XML” as a more specific keyword is more important to the
user. Indeed, the result of Figure 6 (a) was overwhelmingly
preferred over the result of Figure 6 (b) by participants of
our relevance feedback survey (Section 6). The latter re-
sult contains important works on indexing in semistruc-
tured, unstructured, and object-oriented databases, which
are more relevant to indexing of XML data. This result is
obtained by using the modified formula:

rw1,...,wm(v) =
∏

i=1,...,m

(rwi(v))g(wi) (9)

where g(wi) is a normalizing exponent, set to g(wi) =
1/log(|S(wi)|). Using the normalizing exponents
g(“XML”) and g(“Index”) in the above example is equiv-
alent to running in parallel g(“XML”) and g(“Index”) ran-
dom walks for the “XML” and the “Index” keywords re-
spectively.

3.5 Compare to single base set approach

One can imagine alternative semantics to calculate the Ob-
jectRank for multiple keywords, other than combining the
single-keyword ObjectRanks. In particular, consider com-
bining all objects with at least one of the keywords into a
single base set. Then a single execution of the ObjectRank
algorithm is used to determine the scores of the objects. In-
cidentally, these semantics were used in the HITS system
[24]. We show that such “single base set” semantics can be
achieved by combining single-keyword ObjectRank values
applying appropriate exponents. Furthermore, we explain
how our semantics avoid certain problems of “single base
set” semantics.

In order to compare to the “single base set” approach
for AND semantics (Equation 7), we consider two scenar-
ios and assume without loss of generality that there are two
keywords. First, assume that we only put in the base set
S objects that contain both keywords. These objects will
be in both keyword-specific base sets as well, so these ob-
jects and objects pointed by them will receive a top rank in
both approaches. Second, if S contains objects containing
any of the two keywords, we may end up ranking high-
est an object that is only pointed by objects containing one
keyword. This cannot happen with the keyword-specific

Timber: A Native XML
Database

Updates for Structure
Indexes

FastMap: A fast
Algorithm for Indexing ...

A Unified Approach for
Indexed and non-

Indexed Spatial Joins

Blobworld: A System for
Region-based Image
Indexing and Retrieval

DataGuides: Enabling
Query Formulation and

Optimization in
Semistructured

Databases

The R*-tree: An
efficient and robust
access method for

points and rectangles

Base Set

Figure 7: Example where “HITS” approach fails in AND
semantics.

base sets approach. For example, in Figure 7, the “single
base set” approach would rank the R∗ paper higher than the
DataGuides paper for the query “XML AND Index”, even
though the R∗ paper is irrelevant to XML.

For OR semantics (Equation 8), the base set S in
the“single base set” approach is the union of the keyword-
specific base sets. We compare to an improved version
of the “single base set” approach, where objects in base
set are weighted according to the keywords they contain,
such that infrequent keywords are assigned higher weight.
In particular, if an object contains both keywords, for a
two keyword query, it is assigned a base ObjectRank of
(1−d) · (1

|S(w1)| +
1

|S(w2)|). Then, using the Linearity The-
orem in [22], we can prove that the ObjectRanks calculated
by both approaches are the same.

4 Architecture

Figure 8: System Architecture.

Figure 8 shows the architecture of the ObjectRank sys-
tem, which is divided into two stages. The preprocessing
stage consists of the ObjectRank Execution module, which
inputs the database to be indexed, the set of all keywords
that will be indexed, and a set of parameters (the rest of
the adjusting parameters are input during the query stage).
In particular these parameters are: (i) the damping factor
d, (ii) the authority transfer rates α(eG)’s of the authority
transfer schema graph GA, (iii) the convergence constant
epsilon which determines when the ObjectRank algorithm
converges, and (iv) the threshold value which determines

the minimum ObjectRank that an object must have to be
stored in the ObjectRank Index.

The ObjectRank Execution module creates the Ob-
jectRank Index, which is an inverted index, indexed by
the keywords. For each keyword w, it stores a list of
〈id(u), rw(u)〉 pairs for each object u that has rw(u) ≥
threshold. The pairs are sorted by descending rw(u) to
facilitate an efficient querying method as we describe be-
low. The ObjectRank Index has been implemented as an
index-based table, where the lists are stored in a CLOB at-
tribute. A hash-index is built on top of each list to allow for
random access, which is required by the Query module.

The Query module inputs a set of sorted 〈id(u), rw(u)〉
pairs lists L1, . . . , Lm and a set of adjusting parameters,
and outputs the top-k objects according to the combining
function (Equation 7 or 8). In particular, these parameters
are: (i) the semantics to be used (AND or OR), (ii) the
normalization scheme, i.e., the exponents to use, and (iii)
the global ObjectRank weight. The naive approach would
be to make one pass of all lists to calculate the final Ob-
jectRank values for each object and then sort this list by
final ObjectRank. Instead, we use the Threshold Algorithm
[13] which is guaranteed to read the minimum prefix of
each list. Notice that the Threshold Algorithm is appli-
cable since both combining functions (Equations 7 and 8)
are monotone, and random access is possible on the stored
lists.

Finally, the Database Access module inputs the result
ids and queries the database to get the suitable informa-
tion to present the objects to the user. This information
is stored into an id-indexed table, that contains a CLOB at-
tribute value for each object id. For example, a paper object
CLOB would contain the paper title, the authors’ names,
and the conference name and year.

5 ObjectRank Index creation

This section presents algorithms to create the ObjectRank
index. Section 5.1 presents an algorithm for the case of
arbitrary authority transfer data graphs DA. Sections 5.2
and 5.3 show how we can do better when DA is a directed
acyclic graph (DAG) and “almost” a DAG respectively (the
latter property is explained in Section 5.3). Sections 5.4,
5.5 present optimizations when the authority transfer graph
has a small vertex cover, or is a DAG of subgraphs. Finally,
Section 5.6 presents optimization opportunities based on
manipulating the initial values of the iterative algorithm.

5.1 General algorithm

Figure 9 shows the algorithm that creates the ObjectRank
Index. The algorithm accesses the authority transfer data
graph DA many times, which may lead to a too long ex-
ecution time if DA is very large. Notice that this is usu-
ally not a problem, since DA only stores object ids and a
set of edges which is small enough to fit into main mem-
ory for most databases. Notice that lines 2-4 correspond to
the original PageRank calculation [8] modulo the authority
transfer rates information.

CreateIndex(keywordsList, epsilon, threshold, α(.), d){
01. For each keyword w in keywordsList do {
02. While not converged do
03. /*i.e., ∃v, |r(k+1)(v) − r(k)(v)| > epsilon*/
04. MakeOnePass(w,α(.), d);
05. StoreObjectRanks();
06. }
}
MakeOnePass(w,α(.), d) {
07. Evaluate Equation 6 using the r from

the previous iteration on the right side;
}
StoreObjectRanks() {
08. Sort the 〈id(i), r(vi)〉 pairs list by r(vi) and

store it in inverted index, after removing pairs with
r(vi) < threshold;

}

Figure 9: Algorithm to create ObjectRank Index

5.2 DAG algorithm

There are many applications where the authority transfer
data graph is a DAG. For example a database of papers and
their citations (ignoring author and conference objects),
where each paper only cites previously published papers,
is a DAG. Figure 10 shows an improved algorithm, which
makes a single pass of the graph DA and computes the ac-
tual ObjectRank values. Notice that there is no need for
epsilon any more since we derive the precise solution of
Equation 6, in contrast to the algorithm of Figure 9 which
calculates approximate values. The intuition is that Objec-
tRank is only transferred in the direction of the topological
ordering, so a single pass suffices. Notice that topologically
sorting a graph G(V,E) takes time Θ(V + E) [11] in the
general case. In many cases the semantics of the database
can lead to a better algorithm. For example, in the papers
database, we can efficiently topologically sort the papers
by first sorting the conferences by date. This method is
applicable for databases where a temporal or other kind of
ordering is implied by the link structure.

CreateIndexDAG(keywordsList, threshold, α(.), d){
01. Topologically sort nodes in graph DA;
02. /*Consecutive accesses to D′A are in topological order.*/
03. For each keyword w in keywordsList do {
04. MakeOnePass(w,α(.), d);
05. StoreObjectRanks();
06. }
}

Figure 10: Algorithm to create ObjectRank Index for
DAGs

In the above example, the DAG property was implied
by the semantics. However, in some cases we can infer this
property by the structure of the authority transfer schema
graph GA, as the following theorem shows.

Theorem 5.1 The authority transfer data graph DA is a
DAG if and only if
• the authority transfer schema graph GA is a DAG, or

• for every cycle c in GA, the subgraph D′A of DA con-
sisting of the nodes (and the edges connecting them),
whose type is one of the schema nodes of c, is a DAG.

5.3 Almost-DAG algorithm

The most practically interesting case is when the authority
transfer data graph DA is almost a DAG, that is, there is a
“small” set U of backedges, and if these edges are removed,
DA becomes a DAG. Notice that the set U is not unique,
that is, there can be many minimal (i.e., no edge can be
removed from U) sets of backedges. Instead of working
with the set of backedges U , we work with the set L of
backnodes, that is, nodes from which the backedges start.
This reduces the number of needed variables as we show
below, since |L| ≤ |U |.

In the papers database example (when author and con-
ference objects are ignored), L is the set of papers citing
a paper that was not published previously. Similarly, in
the complaints database (Figure 21), most complaints ref-
erence previous complaints. Identifying the minimum set
of backnodes is NP-complete5 in the general case. How-
ever, the semantics of the database can lead to efficient
algorithms. For example, for the databases we discuss in
this paper (i.e, the papers and the complaints databases), a
backnode is simply an object referencing an object with a
newer timestamp.

The intuition of the algorithm (Figure 11) is as fol-
lows: the ObjectRank of each node can be split to
the DAG-ObjectRank which is calculated ignoring the
backedges, and the backedges-ObjectRank which is due to
the backedges.

To calculate backedges-ObjectRank we assign a vari-
able ci to each backnode ci (for brevity, we use the same
symbol to denote a backnode and its ObjectRank), denot-
ing its ObjectRank. Before doing any keyword-specific
calculation, we calculate how ci’s are propagated to the
rest of the graph DA (line 5), and store this information
in C. Hence Cij is the coefficient with which to multiply
cj when calculating the ObjectRank of node vi. To calcu-
late C (lines 13-15) we assume that the backedges are the
only source of ObjectRank, and make one pass of the DAG
in topological order.

Then, for each keyword-specific base set: (a) we
calculate the DAG-ObjectRanks r′ (line 7) ignoring the
backedges (but taking them into account when calculat-
ing the outgoing degrees), (b) calculate ci’s solving a lin-
ear system (line 8), and (c) calculate the total ObjectRanks
(line 10) by adding the backedge-ObjectRank (C · c) and
the DAG-ObjectRank(r′). Each line of the system of line 8
corresponds to a backnode ci ≡ vj (i.e., the ith backnode
is the jth node of the topologically sorted authority transfer
data graph D′A), whose ObjectRank ci is the sum of the
backedge-ObjectRank (Cj · c) and the DAG-ObjectRank
(r′j). The overline notation on the matrices of this equa-
tion selects the L lines from each table that correspond to

5Proven by reducing Vertex Cover to it.

CreateIndexAlmostDAG(keywordsList, threshold, α(.), d){
01. c: vector of ObjectRanks of backnodes;
02. Identify backnodes, and topologically sort

the DAG (DA without the backedges) D′A;
03. /*Consecutive accesses to D′A are in topological order.*/
04. /*Backedges are considered in D′A for α(.) .*/
05. C=BuildCoefficientsTable();
06. For each keyword w in keywordsList do {
07. Calculate ObjectRanks vector r′ for D′A executing

MakeOnePass(w,α(.), d);
08. Solve c = C · c + r′;
09. /*D denotes keeping only the lines of D

corresponding to backnodes.*/
10. r = C · c + r′
11. StoreObjectRanks();
12. }
}
BuildCoefficientsTable(){
13. For each node vj do
14. r(vj) = d ·

∑
backnode ci points at vj

(α(ci → vj) · ci)+

d ·
∑

non−backnode vl points at vj
(α(vl → vj) · r(vl));

15. Return C, such that r = C · c
}

Figure 11: Algorithm to create ObjectRank Index for al-
most DAGs

the backnodes. We further explain the algorithm using an
example.

P5 P4 P3 P2 P1

P5 P4 P3 P2 P1

(a)

(b)

c1 c2

c1 c2

Figure 12: Almost DAG.

Example 1 The graph DA is shown in Figure 12 (a). As-
sume d = 0.5 and all edges are of the same type t with au-
thority transfer rate α(t) = 1. First we topologically sort
the graph and identify the backnodes c1 ≡ P5, c2 ≡ P4.
Then we create the coefficients table C (line 5), as follows:

r(P1) = 0

r(P2) = 0.5 · 0.5 · c2 = 0.25 · c2
r(P3) = 0.5 · c1
r(P4) = 0.5 · r(P2) + 0.5 · 0.5 · r(P3) =

0.125 · c1 + 0.125 · c2
r(P5) = 0.5 · 0.5 · r(P3) + 0.5 · 0.5 · r(P4) =

0.156 · c1 + 0.031 · c2

C =

⎡
⎢⎣

0 0
0 0.25

0.5 0
0.125 0.125
0.156 0.031

⎤
⎥⎦

Assume we build the index for one keyword w contained
in nodes P1, P3. We calculate (line 7) ObjectRanks for D′A
(taken by removing the backedges (dotted lines) from DA).

r(P1) = 0.5

r(P2) = 0.5 · 0.5 · r(P1) = 0.125

r(P3) = 0.5

r(P4) = 0.5 · 0.5 · r(P3) + 0.5 · r(P2) =

0.188

r(P5) = 0.5 · 0.5 · r(P4) + 0.5 · 0.5 · r(P3) +

0.5 · 0.5 · r(P1) = 0.297

r′ = [0.5 0.125 0.5 0.188 0.297]T

Solving the equation of line 8:[
c1
c2

]
=

[
0.156 0.031
0.125 0.125

][
c1
c2

]
+

[
0.297
0.188

]

we get: c = [0.361 0.263]T , where the overline-
notation selects from the matrices the 5-th and the 4-th
lines, which correspond to the backnodes c1 and c2 re-
spectively. The final ObjectRanks are (line 10): r =
[0.5 0.190 0.680 0.266 0.361]T .

This algorithm can be viewed as a way to reduce the
n×n ObjectRank calculation system of Equation 6, where
n is the size of the graph, to the much smaller |L| × |L|
equations system of line 8 of Figure 11. Interestingly, the
two equations systems have the same format r = Ar + b,
only with different coefficient tables A,b. The degree of
reduction achieved is inversely proportional to the number
of backnodes.

The linear, first-degree equations system of line 8 can
be solved using any of the well-studied arithmetic methods
like Jacobi and Gauss-Seidel [14], or even using the PageR-
ank iterative approach which is simpler because we do not
have to solve each equation with respect to a variable. The
latter is shown to perform better in Section 7.

Product1

Complaint2

Product2

Complaint1
Complaint3

Product3

Complaint4

Complaint5

Hubs Set

Figure 13: Hierarchical-graph.

5.4 Algorithm for graphs with small vertex cover

Similarly to the almost-DAG case, we can reduce the Ob-
jectRank calculation to a much smaller system (than the
one of Equation 6) if authority transfer data graph DA con-
tains a relatively small vertex cover H . For example, con-
sider a subset of the complaints database (Figure 21) con-
sisting of the products and the complaints (without the ref-
erence edge to other complaints). Then H is the set of the
products (Figure 13).6 We call the nodes of H hub-nodes.

6A complaint can refer to more than one products.

P5 P4 P3 P2 P1

A1 A2 A3

L1

L2

Figure 14: Serializable Graph.

The intuition of the algorithm is the following: Let r(hi)
be the ObjectRank of hub-node hi. First, the ObjectRank of
every non-hub-node i is expressed as a function of the Ob-
jectRanks of the hub-nodes pointing to i. Then the r(hi)
is expressed as a function of the non-hub-nodes pointing
to hi. This expression is equal to r(hi), so we get |H|
such equations for the |H| hub-nodes. Hence we reduce
the computation to a |H| × |H| linear, first-degree system.
Notice that we omit the details of the optimizations of Sec-
tions 5.4 and 5.5 due to lack of space.

5.5 Serializing ObjectRank Calculation

This section shows when and how we can serialize the
ObjectRank calculation of the whole graph DA(VD, EA

D)
over ObjectRank calculations for disjoint, non-empty sub-
sets L1, . . . , Lr of VD, where L1 ∪ . . . ∪ Lr ≡ VD. The
calculation is serializable if we first calculate the Objec-
tRanks for L1, then use these ObjectRanks to calculate the
ObjectRanks of L2 and so on.

For example, consider the subset of the papers database
consisting of the papers, their citations and the authors,
where authority is transferred between the papers and from
a paper to its authors (and not vice versa). Figure 14 shows
how this authority transfer data graph can be serialized. In
particular, we first calculate the ObjectRanks for the nodes
in L1 and then for the nodes in L2, as we elaborate below.

To define when the calculation is serializable, we first
define the graph D′A(V ′, E′) with V ′ = {L1 ∪ . . . ∪ Lr}
and E′ = {(Li, Lj)|∃(vi, vj) ∈ EA

D ∧ vi ∈ Li ∧ vj ∈ Lj}.
That is, there is an edge (Li, Lj) in D′A if there is an edge
between two nodes vi ∈ Li, vj ∈ Lj of DA. The following
theorem defines when the ObjectRank calculation is serial-
izable.

Theorem 5.2 The ObjectRank calculation for DA is seri-
alizable iff D′A is a DAG.

The algorithm works as follows: Let L1, . . . , Lr be
topologically ordered. First, the ObjectRanks of the nodes
in L1 are computed ignoring the rest of DA. Then we do
the same for L2, including in the computation the set I of
nodes (and the corresponding connecting edges) of L1 con-
nected to nodes in L2. Notice that the ObjectRanks of the
nodes in I are not changed since there is no incoming edge
from any node of L2 to any node in I . Notice that any of

the ObjectRank calculations methods described above can
be used in each subset Li.

5.6 Manipulating Initial ObjectRank values

All algorithms so far assume that we do a fresh execution
of the algorithm for every keyword. However, intuitively
we expect nodes with high global ObjectRank to also have
high ObjectRank with respect to many keywords. We ex-
ploit this observation by assigning the global ObjectRanks
as initial values for each keyword specific calculation.

Furthermore, we investigate a space vs. time tradeoff.
In particular, assume we have limitations on the index size.
Then we only store a prefix (the first p nodes) of the nodes’
list (recall that the lists are ordered by ObjectRank) for each
keyword. During the query stage, we use these values as
initial values for the p nodes and a constant (we experimen-
tally found 0.03 to be the most efficient for our datasets) for
the rest7. Both ideas are experimentally evaluated in Sec-
tion 7.1.

6 Relevance Feedback Survey
To evaluate the quality of the results of ObjectRank, we
conducted two surveys. The first was performed on the
DBLP database, with eight professors and Ph.D. students
from the UC, San Diego database lab, who were not in-
volved with the project. The second survey used the pub-
lications database of the IEEE Communications Society
(COMSOC) 8 and involved five senior Ph.D. students from
the Electrical Engineering Department.

Each participant was asked to compare and rank two to
five lists of top-10 results for a set of keyword queries, as-
signing a score of 1 to 10, according to the relevance of the
results list to the query. Each result list was generated by
a different variation of the ObjectRank algorithm. One of
the results lists in each set was generated by the “default”
ObjectRank configuration which used the authority trans-
fer schema graph of Figure 4 and d = 0.85. The users
knew nothing about the algorithms that produced each re-
sult list. The survey was designed to investigate the qual-
ity of ObjectRank when compared to other approaches or
when changing the adjusting parameters.
Effect of keyword-specific ranking. First, we assess
the basic principle of ObjectRank, which is the keyword-
specific scores. In particular, we compared the default (that
is, with the parameters set to the values discussed in Sec-
tion 1) ObjectRank with the global ranking algorithm that
sorts objects that contain the keywords according to their
global ObjectRank (where the base-set contains all nodes).
Notice that this is equivalent to what Google used to9 do
for Web pages, modulo some minor difference on the cal-
culation of the relevance score by Google. The DBLP sur-

7Notice that, as we experimentally found, using the global Objec-
tRanks instead of a constant for the rest nodes is less efficient. The reason
is that if a node u is not in the top-p nodes for keyword k, u probably has
a very small ObjectRank with respect to k. However u may have a great
global ObjectRank.

8http://www.comsoc.org
9Google’s current ranking algorithm is not disclosed.

vey included results for two keyword queries: “OLAP”
and “XML”. The score was 7:1 and 5:3 in favor of the
keyword-specific ObjectRank for the first and second key-
word query respectively. The COMSOC survey used the
keywords “CDMA” and “UWB (ultra wideband)” and the
scores were 4:1 and 5:0 in favor of the keyword-specific
approach respectively.
Effect of authority transfer rates. We compared re-
sults of the default ObjectRank with a simpler version of
the algorithm that did not use different authority trans-
fer rates for different edge types, i.e., all edge types were
treated equally. In the DBLP survey, for both keyword
queries, “OLAP” and “XML”, the default ObjectRank won
with scores 5:3 and 6.5:1.5 (the half point means that a
user thought that both rankings were equally good) respec-
tively. In the COMSOC survey, the scores for “CDMA”
and “UWB” were 3.5:1.5 and 5:0 respectively.
Effect of the damping factor d. We tested three different
values of the damping factor d: 0.1, 0.85, and 0.99, for the
keyword queries “XML” and “XML AND Index” on the
DBLP dataset. Two points were given to the first choice
of a user and one point to the second. The scores were 2.5
: 8 : 13.5 and 10.5 : 11.5 : 2 (the sum is 24 since there
are 8 users times 3 points per query) respectively for the
three d values. We see that higher d values are preferred
for the “XML”, because “XML” is a very large area. In
contrast, small d are preferable for “XML AND Index”,
because few papers are closely related to both keywords,
and these papers typically contain both of them. The results
were also mixed in the COMSOC survey. In particular,
the damping factors 0.1, 0.85, and 0.99 received scores of
5:6:4 and 4.5:3.5:7 for the queries “CDMA” and “UWB”
respectively.
Effect of changing the weights of the keywords. We
compared the combining functions for AND semantics of
Equations 7 and 9 for the two-keyword queries “XML
AND Index” and “XML AND Query”, in the DBLP sur-
vey. The use of the normalizing exponents proposed in
Section 3.3 was preferred over the simple product function
with ratios of 6:2 and 6.5:1.5 respectively. In the COMSOC
survey, the same experiment was repeated for the keyword
query “diversity combining”. The use of normalizing ex-
ponents was preferred at a ratio of 3.5:1.5.

7 Experiments

In this section we experimentally evaluate the system and
show that calculating the ObjectRank is feasible, both in
the preprocessing and in the query execution stage. For
the evaluation we use two real and a set of synthetic
datasets: COMSOC is the dataset of the publications of
the IEEE Communications Society 10, which consists of
55, 000 nodes and 165, 000 edges. DBLPreal is a subset of
the DBLP dataset, consisting of the publications in twelve
database conferences. This dataset contains 13, 700 nodes
and 101, 500 edges. However, these datasets are too small
to evaluate the index creation algorithms. Hence, we also

10http://www.comsoc.org

created a set of artificial datasets shown in Table 2, using
the words of the DBLP dataset. The outgoing edges are dis-
tributed uniformly among papers, that is, each paper cites
on average 10 other papers. The incoming edges are as-
signed by a non-uniform random function, similar to the
one used in the TPC-C benchmark 11, such that the top-10%
of the most cited papers receive 70% of all the citations.

name #nodes #edges
DBLP30 3,000 30,000
DBLP100 10,000 100,000
DBLP300 30,000 300,000
DBLP1000 100,000 1,000,000
DBLP3000 300,000 3,000,000

Table 2: Synthetic Datasets.

To store the databases in a RDBMS, we decomposed
them into relations according to the relational schema
shown in Figure 15. Y is an instance of a conference in
a particular year. PP is a relation that describes each pa-
per pid2 cited by a paper pid1, while PA lists the authors
aid of each paper pid. Notice that the two arrows from P
to PP denote primary-to-foreign-key connections from pid
to pid1 and from pid to pid2. We ran our experiments using
the Oracle 9i RDBMS on a Xeon 2.2-GHz PC with 1 GB
of RAM. We implemented the preprocessing and query-
processing algorithms in Java, and connect to the RDBMS
through JDBC.

C(cid,name)

Y(yid,year,cid)

P(pid,title,yid)

A(aid,name)

PP(pid1,pid2)

PA(pid,aid)

Figure 15: Relational schema.

The experiments are divided into two classes. First,
we measure how fast the ObjectRank Execution module
(Figure 8) calculates the ObjectRanks for all keywords and
stores them into the ObjectRank Index, using the CreateIn-
dex algorithm of Figure 9. The size of the ObjectRank In-
dex is also measured. This experiment is repeated for var-
ious values of epsilon and threshold, and various dataset
sizes. Furthermore, the General ObjectRank algorithm is
compared to the almost-DAG algorithm, and the effect of
using various initial ObjectRank values is evaluated. Sec-
ond, in Section 8 the Query module (Figure 8) is evaluated.
In particular, we measure the execution times of the com-
bining algorithm (Section 4) to produce the top-k results,
for various values of k, various numbers of keywords m,
and OR and AND semantics.
7.1 Preprocessing stage

General ObjectRank algorithm. Tables 3 and 4 show
how the storage space for the ObjectRank index decreases
as the ObjectRank threshold of the stored objects increases,

11http://www.tpc.org/tpcc/

threshold time (sec) nodes/keyword size (MB)
0.3 3702 84 2.20
0.5 3702 67 1.77
1.0 3702 46 1.26

Table 3: Index Creation for DBLPreal for epsilon = 0.1

threshold time (sec) nodes/keyword size (MB)
0.05 80829 9.4 1.17
0.07 80829 8.3 1.08
0.1 80829 7.7 1.03

Table 4: Index Creation for COMSOC for epsilon = 0.05

for the real datasets. Notice that DBLPreal and COMSOC
have 12, 341 and 40, 577 keywords respectively. Also no-
tice that much fewer nodes per keyword have ObjectRank
above the threshold in COMSOC, since this dataset is
more sparse and has more keywords. The time to create
the index does not change with threshold since threshold is
not used during the main execution loop of the CreateIndex
algorithm. Tables 5 and 6 show how the index build time
decreases as epsilon increases. The reason is that fewer it-
erations are needed for the algorithm to converge, on the
cost of lower accuracy of the calculated ObjectRanks. No-
tice that the storage space does not change with epsilon, as
long as epsilon < threshold.

Table 7 shows how the execution times and the stor-
age requirements for the ObjectRank index scale with
the database size for the DBLP synthetic datasets for
epsilon = 0.05 and threshold = 0.1. Notice that the
average number of nodes having ObjectRank higher than
the threshold increases considerably with the dataset size,
because the same keywords appear multiple times.
General ObjectRank vs. almost-DAG algorithm. Fig-
ure 16 compares the index creation time of the General
ObjectRank algorithm (Gen-OR) and two versions of the
almost-DAG algorithm, on the DBLP1000 dataset, for var-
ious number of backnodes. The algebraic version (Alg-A-
DAG) precisely solves the c = C · c + r′ system using an
off the self algebraic solver. The PageRank version (PR-A-
DAG) solves this system using the PageRank [8] iterative
method. The measured times are the average processing
time for a single keyword and do not include the time to
retrieve the base-set from the inverted text index, which is
common to all methods. Also, the time to calculate C is
omitted, since it C is calculated once for all keywords, and
it requires a single pass over the graph. The Iterative part
of the execution times corresponds to the one pass we per-
form on the DAG subgraph to calculate r′ for almost-DAG
algorithms, and to the multiple passes which consist the
whole computation for the General ObjectRank algorithm.

Also, notice that epsilon = 0.1 for this experiment (the

epsilon time (sec) nodes/keyword size (MB)
0.05 3875 67 1.77
0.1 3702 67 1.77
0.3 3517 67 1.77

Table 5: Index Creation for DBLPreal for threshold = 0.5

epsilon time (sec) nodes/keyword size (MB)
0.05 80829 7.7 1.03
0.07 77056 7.7 1.03
0.1 74337 7.7 1.03

Table 6: Index Creation for COMSOC for threshold =
0.1

0

0.5

1

1.5

2

2.5

3

3.5

4

Ti
m

e
(s

ec
)

50 50 100 100 150 150 200 200

PR-A-

DAG

Alg-A-

DAG

PR-A-

DAG

Alg-A-

DAG

PR-A-

DAG

Alg-A-

DAG

PR-A-

DAG

Alg-A-

DAG

Gen-OR

Number of Backnodes and Used Algorithm

Iterative part Calculate c r = Cc + r'

8.27 sec

Figure 16: Evaluate almost-DAG algorithm.

threshold value is irrelevant since it does not affect the pro-
cessing time, but only the storage space). The time to do
the topological sorting is about 20 sec which is negligible
compared to the time to calculate the ObjectRanks for all
keywords.
Initial ObjectRanks. This experiment shows how the con-
vergence of the General ObjectRank algorithm is acceler-
ated when various values are set as initial ObjectRanks. In
particular, we compare the naive approach, where we as-
sign an equal initial ObjectRank to all nodes, to the global-
as-initial approach, where the global ObjectRanks are used
as initial values for the keyword-specific ObjectRank cal-
culations. We found that on DBLPreal (COMSOC), for
epsilon = 0.1, the naive and global-as-initial approaches
take 16.3 (15.8) and 12.8 (13.7) iterations respectively.

Furthermore, we evaluate the space vs. time tradeoff
described in Section 5.6. Tables 8 and 9 show the average
number of iterations for epsilon = 0.1 on DBLPreal and
COMSOC respectively for various values of the precom-
puted list length p.

8 Query Stage Experiments
Figures 17 and 18 show how the average execution time
changes for varying number of requested results k, for two-
keyword queries on DBLPreal and COMSOC respectively.
We used the index table created with epsilon = 0.1 (0.05)

dataset time (sec) nodes/keyword size (MB)
DBLP30 2933 6 0.3
DBLP100 11513 21 0.7
DBLP300 45764 65 1.7
DBLP1000 206034 316 7.9
DBLP3000 6398043 1763 43.6

Table 7: Index Creation for Synthetic Datasets.

0

5

10

15

20

25

30

35

40

m
s

e
c

1 10 20 100

k

AND OR

Figure 17: Varying k in DBLPreal.

0

5

10

15

20

25

30

35
m

s
e

c

1 10 20 100

k

AND OR

Figure 18: Varying k in COMSOC.

0

10

20

30

40

50

60

70

m
s
e
c

1 2 3 4 5

keywords

AND OR

Figure 19: Varying # keywords in DBLPreal.

List length p iterations
13700 1
13000 1.2
8000 1.8
2500 3
800 8.7
100 13.3
0 16.3

Table 8: Number of iterations for various lengths of pre-
computed lists for DBLPreal

List length p iterations
55000 1
54000 2.9
30000 5.3
13000 6.5
1600 7.8
400 10.7
25 13
0 15.8

Table 9: Number of iterations for various lengths of pre-
computed lists for COMSOC

and threshold = 0.3 (0.1) for DBLPreal (COMSOC). The
times are averaged over 100 repetitions of the experiment.
Notice that the time does not increase considerably with k,
due to the fact that about the same number of random ac-
cesses are needed for small k values, and the processing
time using the Threshold Algorithm is too small. Also no-
tice that the times for COMSOC are slightly smaller than
DBLPreal, because the inverted lists are shorter. Figures 19
and 20 show that the execution time increases almost lin-
early with the number of keywords, which again is due to
the fact that the disk access time to the ObjectRank lists is
the dominant factor, since the processing time is too small.
Finally, notice that the execution times are shorter for OR
semantics, because there are more results, which leads to
a smaller prefix of the lists being read, in order to get the
top-k results.

0

10

20

30

40

50

60

70

m
s
e
c

1 2 3 4 5

keywords

AND OR

Figure 20: Varying # keywords in COMSOC.

9 Related Work
We first present how state-of-the-art works rank the results
of a keyword query, using traditional IR techniques and ex-
ploiting the link structure of the data graph. Then we dis-
cuss about related work on the performance of link-based
algorithms.
Traditional IR ranking. Currently, all major database
vendors offer tools [2, 3, 1] for keyword search in single
attributes of the database. That is, they assign a score to
an attribute value according to its relevance to the keyword
query. The score is calculated using well known ranking
functions from the IR community [27], although their pre-
cise formula is not disclosed. Recent works [6, 19, 20, 5]
on keyword search on databases, where the result is a tree
of objects, either use similar IR techniques [6], or use the
simpler boolean semantics [19, 20, 5], where the score of
an attribute is 1 (0) if it contains (does not contain) the key-
words.

The first shortcoming of these semantics is that they
miss objects that are very related to the keywords, although
they do not contain them (Section 1). The second short-
coming is that the traditional IR semantics are unable to
meaningfully sort the resulting objects according to their
relevance to the keywords. For example, for the query
”XML”, the paper [15] on Quality of Service that uses an
XML-based language, would be ranked as high as a clas-
sic book on XML [4]. Again, the relevance information is
hidden in the link structure of the data graph.
Link-based semantics. To the best of our knowledge,
Savoy [28] was the first to use the link-structure of the Web
to discover relevant pages. This idea became more popular
with PageRank [8], where a global score is assigned to each
Web page as we explain in Section 2. However, directly ap-
plying the PageRank approach in our problem is not suit-
able as we explain in Section 1. HITS [24] employs mu-
tually dependant computation of two values for each web
page: hub value and authority. In contrast to PageRank, it is
able to find relevant pages that do not contain the keyword,
if they are directly pointed by pages that do. However,
HITS does not consider domain-specific link semantics and
does not make use of schema information. The relevance
between two nodes in a data graph can also be viewed as
the resistance between them in the corresponding electri-
cal network, where a resistor is added on each edge. This
approach is equivalent to the random walk model [12].

Richardson et al. [26] propose an improvement to
PageRank, where the random surfer takes into account the
relevance of each page to the query when navigating from
one page to the other. However, they require that every
result contains the keyword, and ignore the case of multi-
ple keywords. Haveliwala [18] proposes a topic-sensitive
PageRank, where the topic-specific PageRanks for each
page are precomputed and the PageRank value of the most
relevant topic is used for each query. Both works apply to
the Web and do not address the unique characteristics of
structured databases, as we discuss in Section 1. Further-
more, they offer no adjusting parameters to calibrate the

system according to the specifics of an application.
Recently, the idea of PageRank has been applied to

structured databases [16, 21]. XRANK [16] proposes a
way to rank XML elements using the link structure of the
database. Furthermore, they introduce a notion similar to
our ObjectRank transfer edge bounds, to distinguish be-
tween containment and IDREF edges. Huang et al. [21]
propose a way to rank the tuples of a relational database
using PageRank, where connections are determined dy-
namically by the query workload and not statically by the
schema. However, none of these works exploits the link
structure to provide keyword-specific ranking. Further-
more, they ignore the schema semantics when computing
the scores.
Performance. A set of works [17, 10, 22, 23] have tack-
led the problem of improving the performance of the orig-
inal PageRank algorithm. [17, 10] present algorithms to
improve the calculation of a global PageRank. Jeh and
Widom [22] present a method to efficiently calculate the
PageRank values for multiple base sets, by precomputing
a set of partial vectors which are used in runtime to cal-
culate the PageRanks. The key idea is to precompute in a
compact way the PageRank values for a set of hub pages,
through which most of the random walks pass. Then using
these hub PageRanks, calculate in runtime the PageRanks
for any base set consisting of nodes in the hub set. How-
ever, in our case it is not possible to define a set of hub
nodes, since any node of the database can be part of a base
set.

10 Conclusion and Future Work
We presented an adjustable framework to answer keyword
queries using the authority transfer paradigm, which we
believe is applicable to a significant number of domains
(though obviously not meaningful for every database). We
showed that our framework is efficient and semantically
meaningful, with an experimental evaluation and user sur-
veys respectively.

We investigated how this framework can be applied
with small modifications to applications other than biblio-
graphic, where the authority transfer intuition is applicable.
For example, consider a complaints database (Figure 21),
which stores the complaint reports of customers regarding
products of the company. Assume we wish to rank the com-
plaint reports according to their urgency, given that the goal
of the company is to keep the “good” customers satisfied,
and the “goodness” of a customer is the total sales associ-
ated with him/her. Then, the base set for the computation
of the global ObjectRank is the set of customers, and each
customer is given a base ObjectRank proportional to his/her
total sales amount. A reasonable assignment of authority
transfer rates is shown in Figure 21.

Finally, notice that many adjusting parameters are input
during the preprocessing stage (Figure 8). We plan to in-
vestigate the opportunities of moving some of these param-
eters to the query stage, that is, perform on-demand Objec-
tRank calculation instead of storing an ObjectRank index.
This would allow the user to input more parameters to cal-

Customer Complaint ProductSales
submitted

1

ref

0.7

has

0.3

0.3

about

Figure 21: Authority transfer schema graph for Complaints
database.

ibrate his/her query.

11 Acknowledgements
We thank Michael Sirivianos for creating the Web interface
of the ObjectRank demo. We also thank the reviewers for
their useful comments.

References
[1] http://msdn.microsoft.com/library/. 2001.

[2] http://technet.oracle.com/products/text/
content.html. 2001.

[3] http://www.ibm.com/software/data/db2/
extenders/textinformation/index.html. 2001.

[4] S. Abiteboul, D. Suciu, and P. Buneman. Data on the Web
: From Relations to Semistructured Data and Xml. Morgan
Kaufmann Series in Data Management Systems, 2000.

[5] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A Sys-
tem For Keyword-Based Search Over Relational Databases.
ICDE, 2002.

[6] G. Bhalotia, C. Nakhey, A. Hulgeri, S. Chakrabarti, and
S. Sudarshan. Keyword Searching and Browsing in
Databases using BANKS. ICDE, 2002.

[7] K. Bharat and M. R. Henzinger. Improved algorithms for
topic distillation in a hyperlinked environment. SIGIR,
1998.

[8] S. Brin and L. Page. The Anatomy of a Large-Scale Hyper-
textual Web Search Engine. WWW Conference, 1998.

[9] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Ragha-
van, and S. Rajagopalan. Automatic resource compilation
by analyzing hyperlink structure and associated text. WWW
Conference, 1998.

[10] Y. Chen, Q. Gan, and T. Suel. I/O-efficient techniques for
computing PageRank. CIKM, 2002.

[11] T. Cormen, C. Leiserson, and R. Rivest. Introduction to
Algorithms. MIT Press, 1989.

[12] P. G. Doyle and J. L. Snell. Random Walks and Electric Net-
works. Mathematical Association of America, Washington,
D. C., 1984.

[13] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation
Algorithms for Middleware. ACM PODS, 2001.

[14] G. H. Golub and C. F. Loan. Matrix Computations. Johns
Hopkins, 1996.

[15] X. Gu, K. Nahrstedt, W. Yuan, D. Wichadakul, and D. Xu.
An XML-based Quality of Service Enabling Language for
the Web. Journal of Visual Languages and Computing
13(1): 61-95, 2002.

[16] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked Keyword Search over XML Documents.
ACM SIGMOD, 2003.

[17] T. Haveliwala. Efficient computation of PageR-
ank. Technical report, Stanford University
(http://www.stanford.edu/ taherh/papers/efficient-pr.pdf),
1999.

[18] T. Haveliwala. Topic-Sensitive PageRank. WWW Confer-
ence, 2002.

[19] V. Hristidis and Y. Papakonstantinou. DISCOVER: Key-
word Search in Relational Databases. VLDB, 2002.

[20] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword
Proximity Search on XML Graphs. ICDE, 2003.

[21] A. Huang, Q. Xue, and J. Yang. TupleRank and Implicit Re-
lationship Discovery in Relational Databases. WAIM, 2003.

[22] G. Jeh and J. Widom. Scaling Personalized Web Search.
WWW Conference, 2003.

[23] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub. Ex-
trapolation Methods for Accelerating PageRank Computa-
tions. WWW Conference, 2003.

[24] J. M. Kleinberg. Authoritative sources in a hyperlinked en-
vironment. Journal of the ACM 46, 1999.

[25] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, United Kingdom, 1995.

[26] M. Richardson and P. Domingos. The Intelligent Surfer:
Probabilistic Combination of Link and Content Information
in PageRank. Advances in Neural Information Processing
Systems 14, MIT Press, 2002.

[27] G. Salton. Automatic Text Processing: The Transformation,
Analysis, and Retrieval of Information by Computer. Addi-
son Wesley, 1989.

[28] J. Savoy. Bayesian inference networks and spreading ac-
tivation in hypertext systems. Information Processing and
Management, 28(3):389–406, 1992.

