
Increase Merge Efficiency in LSM Trees Through
Coordinated Partitioning of Sorted Runs

Qizhong Mao∗, Vagelis Hristidis†
Computer Science and Engineering, University of California, Riverside, USA

Email: ∗qmao002@ucr.edu, †vagelis@cs.ucr.edu

Abstract—The performance of an LSM-tree-based system
heavily relies on the compaction strategy employed. Two main
categories of compaction strategies exist: leveled and stack-based.
Leveled compaction offers several advantages. Firstly, its incre-
mental merge style enables breaking down large compactions into
smaller sub-compactions through partitioning. This partitioning
enhances parallelism during compaction execution, reduces write
stalling, and improves disk utilization. Additionally, for specific
workloads like sequential insertions, it allows moving entire
files to lower levels without the need for rewriting them, thus
saving disk I/O. These moves are known as trivial-moves. On the
other hand, stack-based policies typically lack support for these
desired properties. Their large compactions either perform no
partitioning or rely on naive partitioning methods, resulting in
limited opportunities for parallelism and trivial-moves.

The goal of this paper is to facilitate the compaction advan-
tages of leveled strategies in stack-based systems, hence creating a
hybrid strategy that combines the advantages of both worlds. To
achieve this, we propose two novel coordinated partitioning algo-
rithms, namely Local-Range and Global-Range. These algorithms
can be applied to any stack-based compaction strategy to enhance
parallelism during compactions and create more opportunities for
trivial-moves, resulting in improved overall compaction cost. We
extend RocksDB to support partitioning on stack-based strategies
and conduct a comparative analysis against several baselines
using various workloads. The experimental results demonstrate
that the Global-Range partitioning method significantly enhances
compaction performance with minimal overhead.

Index Terms—LSM, compaction, merge, stack-based, leveled,
partition

I. INTRODUCTION

Many existing LSM systems fall into two categories: stack-
based and leveled. Examples of the former include Aster-
ixDB [5], Bigtable [1], Cassandra [2], and HBase [3]. Stack-
based compaction strategies (defined in [15]) excel for high
ingestion rate scenarios. They generate fewer but larger files,
simplifying resource management by single-threaded com-
pactions without excessive file handlers in memory. However,
these strategies suffer drawbacks: 1) Long compaction times
can halt data ingestion (a.k.a. write stalls); 2) Low disk uti-
lization due to demanding temporary disk space; 3) Canceling
compactions is costly, often discarding merged data.

Leveled compaction is employed in LevelDB [4] and
RocksDB [6], utilizing partitioned compaction to maintain
small files. Data is incrementally merged across sorted runs
(levels), favoring multiple quick small compactions over larger

ones. This approach enables parallel compaction execution, en-
hancing system flexibility. Leveled compactions easily accom-
modate trivial moves, optimizing cases like ascending keys.
Disk utilization tends to be higher due to smaller compactions
not requiring extensive temporary space. Abort costs are lower
compared to stack-based compactions. Some workloads might
avoid rewriting files during compaction. Stack-based LSM
excels in write performance, while leveled LSM excels in read
performance and disk use. Previous research [15] explored
Binomial and MinLatency stack-based methods, achieving
optimal write efficiency while minimizing read amplification.

In this paper, we highlight the benefits of leveled policies
integrated with stack-based policies. We achieve heightened
compaction parallelism and enable trivial-moves through ef-
fective compaction partitioning algorithms. Clever partitioning
of records enables parallelization of large compactions for
enhanced write performance, or serialization to improve disk
use. Trivial-moves support additionally reduces disk I/O for
specific workloads.

Partitioning data across components in stack-based com-
paction presents challenges. We aim for minimizing overlaps
between partitions in different components to avoid the chain-
ing problem (Section III-B). However, components must inde-
pendently partition, unaware of other components’ boundaries.
An efficient partitioning algorithm must minimize overhead in
decision-making and overlap detection.

We propose a suite of coordinated partitioning algorithms
for aligned partition boundaries across sorted runs, fostering
higher parallelism. The Local-Range and Global-Range algo-
rithms recursively split the key space in halves until partitions
contain the desired record count. Local-Range bases key space
on the smallest and largest actual keys in a component, while
Global-Range employs the smallest and largest possible values
for the entire database.

We assess these partitioning techniques using RocksDB
within stack-based strategies. Our approaches are contrasted
with size-based benchmarks, which establish new partitions
upon reaching a maximum data size. Notably, Global-Range
demonstrates better write efficiency.

In summary, this work offers the following contributions:

1) We introduce the challenge of enhancing parallelism in
stack-based compactions. We specifically identify the
chaining problem that limits the effectiveness of size-
based partitioning. (Section III)979-8-3503-2445-7/23/$31.00 © 2023 IEEE

2) We propose two coordinated partitioning approaches:
Local-Range and Global-Range partitioning. These
methods effectively address the chaining problem and
enable multiple parallel sub-compactions and trivial-
moves. (Section IV)

3) We implement the suggested partitioning algorithms
within RocksDB and assess their write and read per-
formance in comparison to No-partitioning and Size
partitioning using RocksDB’s UniversalCompaction.

4) We conduct extensive experiments on synthetic datasets,
demonstrating the superiority of our proposed methods
over existing baselines. (Section V)

The remainder of the paper is structured as follows. Sec-
tion II provides essential background information on LSM tree
compaction, while Section VI delves into the outcomes and
insights gained. Section VII explores related work, and we
conclude in Section VIII.

II. BACKGROUND

An LSM tree comprises memory and disk components,
with overlapping key ranges in disk components, potentially
requiring searching through all disk components for point
queries. A disk component, also known as a Sorted Run,
has strictly ordered keys and can be implemented as one
or multiple Sorted-String-Tables (SSTables), based on the
compaction strategy. Our previous work [15] compared stack-
based strategies to the leveled strategy, examining write,
read, and transient space trade-offs. The following sections
provide concise summaries of these compaction types and their
differences.

A. Stack-based Compaction

In a typical stack-based LSM tree, each sorted run cor-
responds to a single SSTable, and stack-based compactions
(a.k.a. full merge [11]) combine multiple sorted runs into
one (Figure 1a). Large SSTables can result from stack-based
compactions, with better write performance than leveled com-
pactions. However, they exhibit lower disk and CPU utilization
due to limited parallelization.

 Input SSTable Output SSTable Sorted Run SSTable

Merge

(a) Stack-based compaction of 2 sorted runs / SSTables.

Merge

(b) UniversalCompaction of 2 partitioned sorted runs.

Merge

(c) Leveled compaction of 3 SSTables between 2 sorted runs.

Fig. 1: Stack-based compaction v.s. Leveled compaction.

In stack-based compactions, merged SSTables generally
overlap, which is common for random key insertion. However,
certain workloads with sorted keys, like time-correlated or
bulk-loaded data, might not require compaction. Traditional
stack-based compactions overlook this and merge already
sorted data, causing unnecessary disk I/O. UniversalCom-
paction [7, §Universal Compaction] (Figure 1b) addresses this
with limited support for partitioning, though using suboptimal
size-based partitioning.

B. Partitioned Leveled Compaction

Leveled compaction in LevelDB [4] and RocksDB [6] di-
vides large sorted runs into smaller, non-overlapping SSTables
(Figure 1c). A sorted run is a list of SSTables with sorted, non-
overlapping key ranges, maintaining li ≤ ui < li+1 ≤ ui+1

for i-th SSTable key ranges. Leveled compaction (a.k.a. partial
merge [11]) selects only some SSTables in a run to keep each
compaction small. Typically, a maximum SSTable size limit θ
is set, creating ⌈S

θ ⌉ SSTables with size S, except for the last.
The partitioning, which is size-based, is straightforward with
minimal computation overhead and has proven to be efficient,
hence its widespread adoption in LevelDB and RocksDB.

Both LevelDB and RocksDB support trivial-move opera-
tions [7, §Compaction Trivial Move], where non-overlapping
SSTables are directly moved, minimizing I/O. Sequential
workloads benefit from this in fast compactions.

III. PROBLEM DEFINITION

A. Motivation: Expensive Compactions

While most stack-based compaction strategies outperform
the partitioned leveled compaction approach in writes [15],
they face the following issues:

• Large compactions tie up substantial CPU, memory, and
disk resources for extended periods, often leading to write
stalls that hinder or halt new incoming writes.

• Compactions are restricted to single-thread execution
because of the requirement for a single output SSTable.
This might not fully utilize advanced hardware such as
SSDs to achieve enhanced write throughput. The chaining
problem described also limits parallel thread compaction.

• For specific workloads, such as sequential data ingestion
with monotonically increasing keys, partitioned leveled
compaction can move files without rewriting, conserving
substantial disk I/O. However, typical stack-based strate-
gies do not capitalize on trivial-moves, as they usually
rewrite existing SSTables.

Addressing these issues involves partitioning sorted runs in
stack-based LSM trees. Instead of one SSTable per sorted run,
each run can be divided into one or more separate SSTables,
akin to the partitioned leveled LSM tree. With a well-designed
partitioning algorithm, larger compactions can be divided into
smaller sub-compactions. Each sub-compaction processes only
a subset of input sorted run SSTables. When multiple sub-
compactions are scheduled in one compaction, they can be
executed concurrently by multiple threads, enhancing overall

write throughput and reducing compaction duration. Addition-
ally, non-overlapping SSTables within a compaction can be
moved trivially to the output sorted run, conserving disk I/O
and further boosting write performance.

B. Chaining Problem in Parallel Compactions

The size-based partitioning method can be easily ported for
stack-based LSM trees. However, this approach often leads to
the chaining problem, where most or all input SSTables need
to be grouped in a single sub-compaction. In Figure 2, when
merging sorted runs A and B with keys {1, 3, 5, 7, 9, 11, 13}
and {4, 6, 8, 10, 12, 14}, respectively, and a maximum SSTable
size limit (θ = 3), size-based partitioning allows only one sub-
compaction due to the inability to split the components into
disjoint groups. Conversely, Global-Range partitioning (ex-
plained in Section IV) enables efficient scheduling of two sub-
compactions and one trivial-move for enhanced compaction of
these sorted runs.

Input Sorted Run B

4, 6, 8 10, 12, 14
B1 B2

1, 3, 4 5, 6, 7 8, 9, 10 11, 12, 13
C1 C2 C3 C4

Output Sorted Run C
C5
14

Input Sorted Run A

1, 3, 5 7, 9, 11
A1 A2

13
A3

1, 3, 5 7, 9, 11

4, 6, 8 10, 12, 14

13

Sub-Compact 1

(a) Size Partitioning

1, 3
A1

9, 11, 13
A3

5, 7
A2

4, 6 8, 10
B1 B2

12, 14
B3

Sub-Compact 1

5, 7

4, 6
Sub-Compact 2

9, 11, 13

8, 10 12, 14

1, 3 4, 5
C1 C2

6, 7
C3

8, 9
C4

10, 11
C5

12, 13, 14
C6

Output Sorted Run C

Trivial
Move

Input Sorted Run A Input Sorted Run B

(b) Global-Range Partitioning

Fig. 2: Size partitioning v.s. Global-Range partitioning.

C. Trivial-Move: I/O Efficiency

RocksDB’s UniversalCompaction allows trivial moves un-
der strict conditions. A trivial move is feasible when a com-
paction selects only one SSTable, and it does not overlap with
any other in the output sorted run [7, §Compaction Trivial
Move]. This often means all level 0 SSTables do not overlap
[7, §Universal Compaction]. Due to stack-based compaction’s
merging of consecutive SSTables, an SSTable will merge if
between two overlapping SSTables. For instance, merging
SSTables with key ranges [1, 10], [21, 30], and [6, 15] mandates
the second SSTable’s merge despite non-overlap.

IV. PROPOSED LOCAL-RANGE AND GLOBAL-RANGE
PARTITIONING

In this section, we extend stack-based compaction with
partitioning (Section IV-A). An overview of Local-Range and
Global-Range partitioning is in Section IV-B. Importantly,
proposed partitioning does not affect compaction’s sorted runs
selection, hence minimal impact on read and write amplifi-
cation. It could also reduce transient space amplification by
merging individual partitions.

A. Partitioned Stack-based Compaction

A leveled compaction involves either a trivial-move with
one SSTable or sub-compactions with multiple overlapping
SSTables. In a stack-based compaction, SSTables that do
not overlap within the same compaction can be present due
to the fact that all SSTable in the input sorted runs must
be selected. To enhance stack-based compaction efficiency,
supporting trivial-moves within compaction (instead of rewrit-
ing all SSTables) is beneficial. In a partitioned stack-based
compaction, input SSTables are grouped to avoid overlap. Each
group undergoes either a trivial-move (if only one SSTable)
or a sub-compaction.

By analyzing input SSTable metadata, we create non-
overlapping groups for parallel execution of trivial-moves or
sub-compactions. Parallel execution via multi-threaded sub-
compactions boosts write throughput but requires more CPU,
memory, and disk usage, which depends on hardware. To
mitigate chaining issues outlined in Section III-B, we introduce
Local-Range and Global-Range partitioning algorithms. These
algorithms partition SSTables according to predefined key
ranges, effectively generating more sub-compactions.

B. Local-Range and Global-Range Partitioning

Just like k-d trees [10], Local-Range and Global-Range
partitioning utilize binary space partitioning in the one-
dimensional key space. The distinction lies in how they define
the key space for binary splitting: Local-Range employs the
key range of SSTables to be merged, while Global-Range uses
the entire key space. Both algorithms iteratively partition keys
until all partitions are smaller than θ.

Figure 3 shows the partitioning algorithms (Size, Local-
Range, Global-Range, No-partitioning) applied to the same
sorted run. Local-Range partitioning divides the key range [4,
254] at mean ⌊ 4+254

2 ⌋ = 129, then further splits left and right
partitions at ⌊ 4+129

2 ⌋ = 66 and ⌊ 129+254
2 ⌋ = 191. Global-

Range partitioning’s first split is at mean of key space [0, 255],
always ⌊ 0+255

2 ⌋ = 127, followed by splits at ⌊ 0+127
2 ⌋ = 63

and ⌊ 128+255
2 ⌋ = 191. Both algorithms halt when all partitions

are no larger than 10.
When comparing these algorithms: No-partitioning results

in a single partition covering most of the key space. Size
partitioning forms partitions with comparable file sizes, irre-
spective of keys. Local-Range partitioning ensures similar key
span sizes among SSTables. Global-Range partitioning aligns
SSTables within fixed bounds, always 2b wide in a key space
of size 2B , where 0 ≤ b ≤ B.

0 32 64 96 128 160 192 224 255

Global

Local

Size

No 40:[4,254]

10:[4,58] 10:[59,92] 10:[96,173] 10:[175,254]

6:[4,34] 8:[41,66] 10:[67,122] 7:[135,175] 9:[202,254]

4:[4,30] 8:[33,63] 8:[64,92] 4:[96,122] 7:[135,175] 9:[202,254]

Fig. 3: Overview of No-partitioning, Size, Local-Range partitioning and Global-Range partitioning on a sorted run of 40 8-bit unsigned
integer keys. Maximum SSTable size limit θ = 10. SSTable size as the number of keys, the smallest key and the largest key are annotated
in each rectangle representing an SSTable. Actual keys are shown in dashed vertical lines.

When merging multiple partitioned sorted runs, Global-
Range partitioning often generates more sub-compactions due
to shared boundaries. Figure 4 illustrates a randomly generated
example of partitioned stack-based compactions involving
three sorted runs. Size and Local-Range partitioning result in a
single sub-compaction each, whereas Global-Range partition-
ing yields three sub-compactions and one trivial-move.

While Global-Range partitioning enhances parallelism
through multiple sub-compactions, it often generates more
SSTables. In the provided example, Size partitioning results in
10 SSTables post-compaction, while Local-Range and Global-
Range partitioning yield 16 and 15 respectively. In practice,
both Local-Range and Global-Range produce 1.5 to 2 times
more SSTables compared to Size partitioning with the same θ.
A surplus of SSTables can elevate maintenance overhead and
potentially hinder range query performance due to increased
file scanning requirements.

V. EXPERIMENTS

A. Experimental Setup

To ensure fairness, we selected RocksDB as the testbed for
comparing partitioned stack-based and leveled compactions.
RocksDB is the sole key-value store engine supporting both
compaction types. We incorporated the proposed partitioning
algorithms for UniversalCompaction in RocksDB. To prevent
redundant iterations of all keys during the partitioning phase of
compaction, we have implemented a dedicated lightweighted
histogram to estimate the distributions of the merging keys.

We compare four stack-based partitioning algorithms (No-
partition, Size, Local-Range, and Global-Range) with the
default Leveled compaction. To evaluate write and read perfor-
mance, we conduct two sets of experiments covering unique-
random and zipf distributuions over UInt keys: with unique-
random distribution, keys are random with no duplicates; with
zipf distribution, keys are skewed using a Zipfian distribution
with q = 0.5. In both sets, uint64_t numbers in big-endian
binary format are used, values are random 1016-byte byte
strings, and each flushed SSTable’s key range could span the
entire key space.

Both sets consist of loading 41,943,040 key-value pairs dur-
ing a loading phase (approx. 40 GB). Subsequently, 100,000
point queries (Get) and 10,000 range queries (Iterator) of
size 1,000 are performed. Additionally, 10,000 keys pre-warm
the table cache before executing any point or range queries.

The tests are performed on an AWS EC2 c5.4xlarge instance
with 16 CPU cores and 32 GB memory. All RocksDB options

are kept at default, except max subcompactions, which is set
to 16 to match the available CPU cores. Leveled compaction
uses Size partitioning by default.

B. Experimental Results with UInt Keys

Random Key Distribution: In a uniform distribution of keys,
sorted runs span the entire key space [0, 264 − 1] uniformly.
Global-Range partitioning outperforms No-partitioning and
Size partitioning by 8% and 13% respectively (Figure 5).
Size partitioning is slower than No-partitioning as it can’t
schedule sub-compactions and involves additional overhead
from scanning multiple SSTables due to the chaining issue.

In this key distribution, keys exhibit greater uniformity,
favoring Global-Range partitioning’s binary-split function in
generating partitions with closely aligned key range and data
sizes. Consequently, while Global-Range partitioning produces
slightly more SSTables than Size partitioning—by just 8%
(Figure 6)—Local-Range partitioning generates 70% more
SSTables than Size partitioning, resulting in elevated resource
management overhead.

Global-Range and Local-Range partitioning yield the high-
est and second-highest compaction throughput, respectively
(Figure 7). These algorithms optimize multithreading for
merging large data sets. In contrast, Size partitioning and No-
partitioning show comparable behavior, with Size partitioning
unable to coordinate sub-compactions. Leveled compaction
demonstrates superior multi-threaded throughput but records
the lowest overall compaction throughput due to elevated write
amplification and subsequent data merging.

Despite the increased number of SSTables, Global-Range
partitioning maintains superior performance in point query and
range query (Figure 8). Notably, Leveled compaction excels
in read performance due to fewer sorted runs resulting from
increased data merging.

Among these distribution types, Global-Range partitioning
excels. It delivers superior write performance, the highest
compaction throughput, and reduced read query latencies,
albeit with a mere 8% increase in SSTables to manage.

Skewed (Zipf) Key Distribution: The performance in write,
compaction, and read is comparable to the random key distri-
bution, as shown in Figures 9, 10, and 11. No-partitioning has
slightly lower range query latency due to reduced file scanning.
Remarkably, Local-Range partitioning decreases SSTables by
13%, while Global-Range partitioning increases them by 38%
compared to the random key distribution (Figure 12). Overall,

0%

50%

100%

Si
ze

 R
at

io
s

of
 In

pu
t 3

0%

50%

100%

Si
ze

 R
at

io
s

of
 In

pu
t 2

0%

50%

100%
Si

ze
 R

at
io

s
of

 In
pu

t 1

0 1 2 3 4 5 6 7 8

Key Space (×261)
(a) Size

0%

50%

100%

Si
ze

 R
at

io
s

of
 O

ut
pu

t

0 1 2 3 4 5 6 7 8

Key Space (×261)
(b) Local-Range

0 1 2 3 4 5 6 7 8

Key Space (×261)
(c) Global-Range

Fig. 4: Examples of merging with different partitioning algorithms. Top three rows show SSTable size ratios relative to θ in three input sorted
runs. The bottom row displays size ratios of the output sorted run from merging these inputs. Same-colored SSTables form sub-compactions.
Keys are consistent across rows. Sorted runs 1–3 originate from prior flushes and compactions.

No Size Local Global
Universal

0
5

10
15
20
25

To
ta

l W
rit

e
Ti

m
e

(m
in

)

14.3 15.0 14.4 13.1

Size
Leveled

15.2

Fig. 5: Random UInt: Total write time.

No Size Local Global
Universal

0
400
800

1200
1600

To
ta

l S
ST

ab
le

s

6

650
1104

701

Size
Leveled

677

Fig. 6: Random UInt: SSTable statistics.

0

250

500

750

Av
er

ag
e

M
B

/s

394 371 335 346

0 0

505
565

394 371 399
512

1 Thread Compaction 2+ Threads Compaction All

267

652

359

No Size Local Global
Universal

0

100

200

300

To
ta

l S
iz

e
(G

B
)

213 213

111

40
0 0

102

203213 213 213
244

Size
Leveled

170
129

298

Fig. 7: Random UInt: Compaction statistics.

0
3
6

G
et

 1

0.9 0.9 0.9 0.8
3.1 3.1

4.5
3.1

Average Latency (ms) P99.5 Tail Latency (ms)

0.2 1.2

No Size Local Global
Universal

0
15
30

Ite
r 1

k

10.6 11.9 12.7 10.6
16.7 19.3 19.6 17.3

Size
Leveled

4.7
13.1

Fig. 8: Random UInt: Read query latency.

Global-Range partitioning excels in write performance, with a
minor trade-off in read performance and increased SSTables.

VI. DISCUSSION

The proposed Local-Range and Global-Range partitioning
algorithms effectively increase LSM compaction parallelism in
most tested workloads. Global-Range partitioning achieves the

No Size Local Global
Universal

0
5

10
15
20
25

To
ta

l W
rit

e
Ti

m
e

(m
in

)

14.2 15.0 14.1 12.6

Size
Leveled

15.4

Fig. 9: Skewed UInt: Total write time.

0

250

500

750

Av
er

ag
e

M
B

/s
396 371 341 328

0 0

440
557

396 371 412
493

1 Thread Compaction 2+ Threads Compaction All

264

648

354

No Size Local Global
Universal

0

100

200

300

To
ta

l S
iz

e
(G

B
)

213 213

50 41
0 0

163 179
213 213 213 220

Size
Leveled

171
129

300

Fig. 10: Skewed UInt: Compaction statistics.

0
3
6

G
et

 1

0.9 0.9 0.9 0.9

4.2 4.2 3.2 3.0

Average Latency (ms) P99.5 Tail Latency (ms)

0.2 1.2

No Size Local Global
Universal

0
15
30

Ite
r 1

k

10.8 11.7 12.4 12.4
19.0 18.5 19.3 19.1

Size
Leveled

4.7
13.2

Fig. 11: Skewed UInt: Read query latency.

No Size Local Global
Universal

0
400
800

1200
1600

To
ta

l S
ST

ab
le

s

6

651
965 967

Size
Leveled

671

Fig. 12: Skewed UInt: SSTable statistics.

highest write throughput and compaction throughput, but can
result in more SSTables and degrade range query performance.
Local-Range partitioning also achieves high parallelism, cre-
ates fewer SSTables, and is suitable for systems with many
range queries. To reduce the number of SSTables, small
partitions can be grouped together or the maximum SSTable
size limit can be increased. For sequential or semi-sequential
key workloads, Size partitioning is recommended due to its

minimal SSTables, memory, and disk overhead.

A. Limitations and Future Work

Dynamic resource allocation: When using a large num-
ber of threads for compactions, the CPU can become a
bottleneck, resulting in reduced write throughput. In our work,
we address this issue by setting a hard limit on the maximum
number of sub-compactions through an option. However, it
would be beneficial to have an algorithm that dynamically
adjusts sub-compactions based on the number of available
CPU cores. Additionally, remote compaction techniques such
as those discussed in [8], [13] can significantly alleviate CPU
pressure, particularly in shared storage systems.

Hybrid stack-based and leveled compaction strategy:
The proposed partitioning algorithms can be applied to lev-
eled compactions, resulting in hybrid stack-based and leveled
compaction strategies. This approach preserves the benefits
of both stack-based and leveled compactions, ensuring high
write throughput, low read latencies, and efficient disk utiliza-
tion. Additionally, these partitioning algorithms can also be
explored for our previously proposed Binomial compaction
strategy, which offers comparable read performance to leveled
compaction while improving write performance.

VII. RELATED WORK

Partitioning Algorithms: Various partitioning algorithms
have been proposed for LevelDB and RocksDB, primarily
focusing on the leveled compaction policy. Some of these
algorithms can also be applied to stack-based policies. For
instance, the partitioning algorithm introduced in PE File [12]
is application-dependent and utilizes a binary split at the
median of keys, resembling a specialized version of Size
partitioning. Zhang et al. [21] and SifrDB [16] adopt a
similar partitioned stack-based design as the Size partitioning.
Another approach is the LWC-tree [20], [19], which uses
vertical grouping for partitioning, similar to the one used
in Leveled compaction. This technique also facilitates load
balancing across database nodes. PebblesDB [17] employs
range-based partitioning, where a randomly chosen key serves
as a guard for each range in a level. WB-tree [9], LSM-
trie [18], and HashKV [14] employ hash-based partitioning to
evenly distribute keys into SSTables, especially for workloads
that do not require range query support. It is important to note
that most of these approaches are not applicable to stack-based
compaction strategies, have limited support for range queries,
and may encounter the chaining issues.

VIII. CONCLUSIONS

In this work, we introduce two partitioning algorithms,
namely Local-Range and Global-Range partitioning, specif-
ically designed for stack-based compaction strategies. We
conduct a comparative study involving these two partitioning
algorithms, along with the existing Size partitioning and No-
partitioning approaches, using the widely-used RocksDB. Our
experimental results demonstrate that the proposed algorithms
can significantly enhance compaction throughput, achieving

improvements of up to 30%. Furthermore, they also exhibit
substantial enhancements in overall write throughput, with
gains of up to 20% over the No-partitioning or Size par-
titioning approaches when leveraging RocksDB’s Universal
Compaction. Remarkably, despite these performance enhance-
ments, the proposed algorithms demonstrate comparable or
even superior point query latency and only a minimal increase
of less than 10% in range query latency.

IX. ACKNOWLEDGEMENTS

This work was partially supported by NSF grants IIS-
2227669, IIS-1901379 and IIS-1838222.

REFERENCES

[1] “Bigtable,” 2019. [Online]. Available: https://cloud.google.com/bigtable
[2] “Cassandra,” 2019. [Online]. Available: http://cassandra.apache.org
[3] “HBase,” 2019. [Online]. Available: https://hbase.apache.org
[4] “LevelDB,” 2019. [Online]. Available: https://github.com/google/leveldb
[5] “AsterixDB,” 2020. [Online]. Available: https://asterixdb.apache.org
[6] “RocksDB,” 2020. [Online]. Available: https://rocksdb.org
[7] “RocksDB Wiki,” 2020. [Online]. Available: https://github.com/

facebook/rocksdb/wiki
[8] M. Y. Ahmad and B. Kemme, “Compaction management in distributed

key-value datastores,” Proc. VLDB Endow., vol. 8, no. 8, pp. 850–861,
Apr. 2015.

[9] H. Amur, D. G. Andersen, M. Kaminsky, and K. Schwan, “Design of a
write-optimized data store,” Georgia Institute of Technology, Tech. Rep.,
2013.

[10] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[11] N. Dayan, T. Weiss, S. Dashevsky, M. Pan, E. Bortnikov, and M. Twitto,
“Spooky: Granulating LSM-tree compactions correctly,” Proc. VLDB
Endow., vol. 15, no. 11, pp. 3071–3084, 2022.

[12] C. Jermaine, E. Omiecinski, and W. G. Yee, “The partitioned exponential
file for database storage management,” The VLDB Journal, vol. 16, no. 4,
pp. 417–437, Oct. 2007.

[13] J. Li, P. Jin, Y. Lin, M. Zhao, Y. Wang, and K. Guo, “Elastic and stable
compaction for LSM-tree: A FaaS-based approach on TerarkDB,” in
Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, 2021, pp. 3906–3915.

[14] Y. Li, H. H. Chan, P. P. Lee, and Y. Xu, “Enabling efficient updates
in KV storage via hashing: Design and performance evaluation,” ACM
Transactions on Storage (TOS), vol. 15, no. 3, pp. 1–29, 2019.

[15] Q. Mao, S. Jacobs, W. Amjad, V. Hristidis, V. J. Tsotras, and N. E.
Young, “Comparison and evaluation of state-of-the-art LSM merge
policies,” The VLDB Journal, vol. 30, no. 3, pp. 361–378, 2021.

[16] F. Mei, Q. Cao, H. Jiang, and J. Li, “SifrDB: A unified solution for
write-optimized key-value stores in large datacenter,” in Proceedings of
the ACM Symposium on Cloud Computing, 2018, pp. 477–489.

[17] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham, “PebblesDB:
Building key-value stores using fragmented log-structured merge trees,”
in Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 497–514.

[18] X. Wu, Y. Xu, Z. Shao, and S. Jiang, “LSM-trie: An LSM-tree-based
ultra-large key-value store for small data items,” in 2015 USENIX Annual
Technical Conference (USENIX ATC 15), 2015, pp. 71–82.

[19] T. Yao, J. Wan, P. Huang, X. He, Q. Gui, F. Wu, and C. Xie,
“A light-weight compaction tree to reduce I/O amplification toward
efficient key-value stores,” in Proc. 33rd Int. Conf. Massive Storage
Syst. Technol.(MSST), 2017, pp. 1–13.

[20] T. Yao, J. Wan, P. Huang, X. He, F. Wu, and C. Xie, “Building efficient
key-value stores via a lightweight compaction tree,” ACM Transactions
on Storage (TOS), vol. 13, no. 4, pp. 1–28, 2017.

[21] W. Zhang, Y. Xu, Y. Li, and D. Li, “Improving write performance
of LSMT-based key-value store,” in 2016 IEEE 22nd International
Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2016,
pp. 553–560.

https://cloud.google.com/bigtable
http://cassandra.apache.org
https://hbase.apache.org
https://github.com/google/leveldb
https://asterixdb.apache.org
https://rocksdb.org
https://github.com/facebook/rocksdb/wiki
https://github.com/facebook/rocksdb/wiki

	Introduction
	Background
	Stack-based Compaction
	Partitioned Leveled Compaction

	Problem Definition
	Motivation: Expensive Compactions
	Chaining Problem in Parallel Compactions
	Trivial-Move: I/O Efficiency

	Proposed Local-Range and Global-Range Partitioning
	Partitioned Stack-based Compaction
	Local-Range and Global-Range Partitioning

	Experiments
	Experimental Setup
	Experimental Results with UInt Keys

	Discussion
	Limitations and Future Work

	Related Work
	Conclusions
	Acknowledgements
	References

