
IRanker: Query-Specific Ranking of Reviewed Items
Moloud Shahbazi

UC Riverside
Email: mshah008@cs.ucr.edu

Matthew Wiley
UC Riverside

Email: mwile001@cs.ucr.edu

Vagelis Hristidis
UC Riverside

Email: vagelis@cs.ucr.edu

Abstract—Item (e.g., product) reviews are one of the most
popular types of user-generated content in Web 2.0. Reviews
have been effectively used in collaborative filtering to recommend
products to users based on similar users, and also to compute
a product’s star rating. However, little work has studied how
reviews can be used to perform query-specific ranking of items.
In this paper, we present efficient top-k algorithms to rank items,
by weighing each review’s rating by its relevance to the user
query. We propose a non-random access algorithm and perform
a comprehensive evaluation of our method on multiple datasets.
We show that our solution significantly outperforms the baseline
approach in terms of query response time.

I. INTRODUCTION

In the current era of Web 2.0, users generate huge numbers
of reviews for products and services in various domains such
as movies and physicians. A review typically consists of
a text description and a star rating score. There has been
much work on several aspects of Internet reviews such as
extracting features from reviews [11], summarizing them [5],
and detecting fake reviews [10].

A key challenge is how to leverage reviews to help users
find the best items. Existing work has mainly focused on two
directions. First, collaborative filtering studies how the reviews
of similar users may be leveraged to recommend products to
users [13]. Second, reviews – typically their average rating and
number – are being used to rank products, along with other
features like price, combined by learning to rank algorithms
[3].

In this paper we argue for a more effective use of reviews
in item ranking, by introducing a ranking scheme which takes
into account the user’s interest in particular aspects of the
search result. Figure 1 shows an example of a user of an on-
line footwear store who searches for “durable” shoes that are
also suitable for “back-pain”. If the search results are sorted
by the commonly used average rating score, the left shoe is
ranked higher, even though the right shoe has better ratings for
the user’s properties of interest. IRanker improves the results’
quality by considering the relevance of each review to the user
query, where a query can be expressed by a list of keywords
or concepts.
Problem Statement: Our core problem is defined as follows:
given (a) a set of reviews for each item, where each review
consists of a set of concepts and a rating score, and (b) a query
that consists of a set of concepts, compute the top ranked items
for the query. In our solution, each review’s rating is weighed
by the similarity (relevance) of the review to the query.
Challenges and Algorithms Overview: A key challenge
is that we cannot precompute a rating score for an item
as it depends on the user query. Existing early termination
algorithms that process list prefixes to compute the top-k
results [4], [6] cannot be applied, because for an unseen review,
we do not know its rating nor its similarity to the query.

Fig. 1: Two possible top search result for a query.

These two quantities have an intimate dependency to each
other and the overall item score. Further, due to the interplay
between similarity (which may be partially known during the
execution of the algorithm) and rating of unseen or partially
seen reviews, we are faced with a combinatorial number
of cases for computing the terminating condition threshold.
Instead, we propose a linear cost method to compute this
threshold.

Moreover, in contrast to the setting of top-k algorithms [4],
[6] where multi-attribute objects are ranked, we rank items
that are collections of objects (reviews). We show that this
cannot be handled by simply adding another level of top-k
lists aggregation.

II. DEFINITIONS

An item I , which may be a doctor or an Amazon prod-
uct, contains a set {r1, r2, ..., rn} of user reviews. A review
r = {c1, c2, ..., cn; rating} consists of a set of concepts ci
and a numeric rating score between 0 and 1. For instance,
a review may be r = {“cancer”, “cardiac”, “EKG”; 0.6},
which expresses that the concepts “cancer”, “cardiac” and
“EKG” are mentioned in the review, and the user rated the
item with a score of 0.6.
Item Ranking Problem: Given a collection I of items, a
query Q = {q1, q2, ..., qm}, which is a set of concepts, and k
requested top results, return the top-k items in I with highest
score score(Q, I).

The scoring function in Equation 1 is partly inspired by
Zhang et al. [14], where they weigh product ratings based on
the usefulness of each review. The main distinction of our
method is that we average review rating weighted by their
relevance to the query. If review usefulness is available, it can
also be multiplied. Note that usefulness is fixed for a review,
in contrast to relevance which is query-dependent.

score(Q, I) =

∑
r∈I QRSim(Q, r.concepts)× r.rating∑

r∈I QRSim(Q, r.concepts)
, (1)

where QRSim(Q, r) is the similarity of Q to the concepts
r.concepts in r.

We can extend this ranking function to include other item
and review features such as number of item reviews, price or
popularity or review helpfulness and freshness. Our main focus
is on how to compute the top results efficiently.

The problem of computing the semantic similarity between
two sets of concepts (of the item and the query) has been
extensively studied in the past [12], [2], [9]. In this work,
we consider Jaccard similarity, a popular and representative
similarity measure.

QRSim(Q, r) =
|Q ∩ r.concepts|
|Q ∪ r.concepts| (2)

III. RANKING ALGORITHM

In this section, we present our solution to compute the
top-k items for the item ranking problem. Fagin et al. [4]
proposed two algorithms with different access modes – TA has
random access and NRA does not – for finding the top-k multi-
attribute objects, based on a monotonic aggregation function,
when there is ranked list for each attribute. These algorithms
perform sorted access to the attribute lists in parallel, and
terminate when k objects are found whose scores are greater
than the maximum possible score of other objects.
NRA-IRanker: We propose NRA-IRanker, a non-random ac-
cess top-k items ranking algorithm that computes the exact
top-k results.

For the proposed algorithm to work, the aggregate function
in Equation 1 must be monotonic on the review ratings. That
is, if the rating of any review of an item is increased, the score
of that item is also increases, or stays the same. It is fairly easy
to see that Equation 1 satisfies this condition.

To store the data for the algorithm, we use Concepts
index, an inverted index that has a list for each concept.
This list contains information of the reviews that include the
key concept sorted by decreasing review rating. Since there
is no random access made for reviews, NRA-IRanker needs
to keep track of partially seen items as well as the partially
seen reviews. Thus, every review in a concept list includes the
following values: review-id, item-id, review rating, the total
number of item’s reviews and the total number of the concepts
of the review.

When a query Q is issued, NRA-IRanker works as follow-
ing:

While top-k items are not found, repeat:
1) Do a sequential sorted access to the query concepts

lists in parallel. Every time select next review from
the list with the maximum current review score. Then,
update the maximum possible score of the unseen
review which we denote by ymax.

2) For each review that has been seen in the concept list,
compute the minimum and maximum possible review
similarity.

3) For each item that has been seen in the concept list,
compute the minimum and maximum possible item
score.

4) Check termination condition by examining if there
are k items with a minimum possible score greater

than or equal to the ymax and the maximum possible
score of the rest of items.

To compute ymax, we need to estimate the reviews of the
unseen item that maximizes the score; note that we do not
know which item that is yet. According to Equation 1, if an
unseen item has one or more reviews, and all of them contain
only the query concept (a condition which maximizes the
Jaccard similarity shown in Equation 2) with maximum rating
(which we assume to be equal to the last seen review’s rating),
then ymax is equal to that rating. As a result, ymax is equal to
the maximum rating of the last seen review across all query
concepts lists. Formally, if Y = {y1, · · · , ym}, where yi is the
current rating of the ith concept list, then ymax = max Y .

As a result of non-random access pattern, there are three
types of reviews: (1) Seen reviews, (2) Partially seen reviews
and (3) Unseen reviews. A seen review is a review that has
been seen in all possible query concept lists, except the lists
that have been completely read or have a current rating smaller
than the review’s rating. Thus, the exact similarity of the seen
reviews to the query can be computed. A partially seen review
is the one currently seen in at least one query concept list and
could be seen in more lists in the future. For every partially
seen review, we maintain a minimum and a maximum possible
similarity to the query.

As we mentioned earlier, the total number of reviews of
an item is stored in the review entries. Therefore, the number
of unseen reviews of a partially seen item is available for
computing the minimum and the maximum possible score of a
partially seen item. Thus, we define three types of items using
the number of unseen reviews: (1) Seen items, (2) Partially
seen items and (3) Unseen items.
Computing Query-Review Similarity Bounds: We begin by
describing the concept of “unsure” list. If a partially seen
review is not yet seen in a concept list and the current rating of
this list is greater than or equal to the rating of the review, the
presence of the review in this list is “unsure” (since concept
lists are sorted by review rating). If a review r is “unsure” in
z lists out of the |Q| lists of the query concepts, the maximum
possible similarity of this review to the query is achieved
when this review is in all “unsure” lists. On the other hand,
the minimum possible similarity is achieved when the review
does not exist in any “unsure” list. Equations 3 and 4 define
the maximum and the minimum possible similarities of the
partially seen reviews to the query Q respectively.

XPQRSim(Q, r) =
z + f

|r|+ |Q| − z − f
, z + f ≤ |Q| (3)

MPQRSim(Q, r) =
f

|r|+ |Q| − f
, z + f ≤ |Q| (4)

Where f is the number of concepts lists that review is
“seen” in them and z, the number of “unsure” concepts lists
formally stated as z = |{yi|yi ≥ r.rating, yi ∈ Y, yi 6= null}|.
where Y is the set of current ratings of query concept lists.
A null value as a current rating means that the list has been
read completely. Based on Equations 3 and 4, since z = 0
for the seen reviews, the minimum and the maximum possible
similarities are equal to the exact similarity of the review. For

Fig. 2: An example of possible [rating, similarity] pairs of
an unseen review shown by black points on the diagram for a
query consisting of nine query concepts.

unseen reviews, where f = 0, the minimum possible similarity
of u, an unseen review, and Q is 0.

The maximum possible similarity of an unseen review
depends on its rating, as explained by the example in Figure 2.
The leftmost point (1/4, 7/9) denotes that if the rating of an
unseen review is equal to 1/4, then its maximum similarity
would be 7/9, because at best it may contain seven of the nine
query concepts, as the first two lists have been completely read
(null) and the last six lists have current ratings greater than 1/4.
Similarly, the other points denote possible rating and maximum
possible similarity combinations, [rating, similarity].

Formally, we define U , the set of possible
[rating, similarity] pairs for QRSim as follows:

U = {[yl,
|l|yo ≥ yl, yo ∈ Y |

|Q|]|yl ∈ Y }

Note that if an unseen review does not include any query
concept then its similarity is equal to 0 and it does not affect
the item’s score.
Computing Item Score Bounds: Now that we have defined
the space of possible [rating, similarity] values for unseen
reviews, we need to decide which combination of them would
maximize the score of a partially seen item. We use Theo-
rem III.1 and Theorem III.2 to compute the maximum score
of a partially seen item.

Theorem III.1. Let I be an item with h unseen reviews and
a set R of seen reviews. If there is a set U of candidate [s, w]
(s stands for the rating and w stands for similarity) pairs, in
order to maximize the score of I , we can reuse a single pair
in U for all h unseen reviews.

Similarly, to minimize the score of item I , we use one pair
that is [0,maxwj] for all h unseen reviews. Proof is omitted
to conserve space.

Next, we describe how we compute the minimum and the
maximum possible scores of partially seen items based on
the weighted mean of review ratings for items as defined in
Equation 1 using the minimum and the maximum possible
similarities of the partially seen and unseen reviews.

It is not practical to check all combinations of query-review
similarities in order to compute the maximum score. Instead,
we invoke Theorem III.2 to compute the maximum possible
score of a partially seen item with an optimal greedy solution,
which has linear complexity on the number of item reviews.

Theorem III.2. Given an item I with a set R of n partially
seen reviews, where each review r has a known r.rating, min-

Fig. 3: An example case of Theorem III.2. Here we show a
list of an item’s reviews sorted by review rating in descending
order. The maximum possible score of the item is achieved
when the first two reviews are weighted by the maximum
possible similarity, and the last three reviews are weighted
by the minimum possible similarity.

imum similarity MPQRSim(Q, r), and maximum similarity
XPQRSim(Q, r), there is a review ri ∈ R such that the score
of I is maximized if we assign similarity XPQRSim(Q, r)
to all reviews with rating greater than or equal to ri.rating
and MPQRSim(Q, r) to the rest.

Figure 3 shows a list of five reviews sorted by rating, and
r2 is the divider review (review ri as stated in Theorem III.2).
We omit the proof to conserve space.

In the presence of unseen reviews with unknown ratings,
we compute a locally maximum item score for every possible
pair of [rating, similarity] of unseen reviews. Therefore, the
maximum possible score of the item is the maximum of all
local maximum scores (for a [rating, similarity] pair).

Similarly, in order to calculate the minimum possible score
of a partially seen item, there is only one way to partition the
sorted list of partially seen reviews by rating such that query-
review similarity is maximized for the first partition and it is
minimized for the second partition.

IV. EVALUATION

In this section we evaluate the run-time performance of our
proposed algorithm. We start by describing experimental set-
tings followed by the experimental results. Then, we compare
the run-time performance of our proposed algorithms against
two baselines and discuss the results in detail.

1) Experimental Setting:
Baseline Algorithm: We compare our solution to a baseline
algorithm that uses the same Concepts index as used in NRA-
IRanker to get all the reviews that contain at least one of the
query concepts. Then, we group the reviews of each item and
compute the weighted average based on Equation 2.
Dataset: In order to evaluate our algorithm, we use healthcare
provider reviews that are crawled from the vitals.com and
ucomparehealthcare.com websites. We merge items and re-
views of these two websites into a single dataset and in the
following we will refer to the combined dataset as the Doctors
dataset. Using the MetaMap tool [1], we extracted medical
concepts from the textual content of the reviews.

In addition to Doctors dataset, we use Amazon product
reviews dataset [8]. This dataset is collected from Amazon.com
and is a fairly comprehensive collection of English language
product data in a wide variety of categories such as books,
clothing and movies. Each product is provided with its reviews
including textual reviews and star ratings. Table I summarizes
the characteristics of the datasets used in this study.
Experimental Setup and Parameters: The Concepts index is
stored in a Cassandra data store [7] on a single node. We chose
a NoSQL store, because we only need an efficient mechanism

10
0

10
1

10
2

10
3

 10 20 30 40 50 60 70 80 90 100

R
u
n
−

ti
m

e
 (

m
s
)

top−(k)

(a) Doctors

10
0

10
1

10
2

10
3

10
4

10
5

 10 20 30 40 50 60 70 80 90 100

R
u
n
−

ti
m

e
 (

m
s
)

top−(k)

(b) Amazon

10
0

10
1

10
2

10
3

10
4

10
5

 10 20 30 40 50 60 70 80 90 100

#
re

a
d
 o

p
e
ra

ti
o
n
s

top−(k)

(c) Doctors

10
0

10
1

10
2

10
3

10
4

10
5

 10 20 30 40 50 60 70 80 90 100

#
re

a
d
 o

p
e
ra

ti
o
n
s

top−(k)

(d) Amazon

BaseLine NRA

Fig. 4: Time and number of read operations vs. number of top
items for queries of size |Q| = 3.

TABLE I: Datasets’ characteristics.

Dataset #Items #Reviews Reviews
per Item

Concepts
per Review

Doctors 248580 726996

Min: 1
Max: 249
Mean: 2.9
Median: 5

Min: 0
Max: 121
Mean: 3.29
Median: 7

Amazon 9743974 82037337

Min: 1
Max: 25260
Mean: 8.4
Median: 2

Min: 1
Max:1719
Mean: 26.65
Median: 15

to look up index lists and no SQL capabilities. Other key-value
stores can also be used.

We partition all the index lists into 8 KB chunks to allow
for incremental reading of the lists. That is, each index list is
a row in Cassandra, and each chunk in the list is a column in
this row.

Query workload generation: For the Doctors datasets, we
generate queries by choosing a set of query concepts, where
each concept is selected with probability proportional to its
frequency in the reviews. For every experiment, we present
results averaged over 100 queries. The queries for the Amazon
dataset are selected from the queries suggested by the website
in different categories. For example, ”spray face child sun
screen” is a search query suggested by amazon.com.

Parameters: We evaluate the performance of our algorithms
by varying the number of top items and the query size.

2) Experimental Results: In this section, we compare the
run-time performance of our algorithm against the baseline
using several experiments on Doctors and Amazon datasets.

Figure 4 shows the experimental run-time for Doctors and
Amazon datasets for different values of k, the number of top
items, given queries of size 3. Figures 4(a) and 4(b) show
the average retrieval time of different algorithms for different
datasets. In Figures 4(c) and 4(d) we demonstrate the total
number of read operations made to Concepts index.

The results of our experiment show that NRA-IRanker is

significantly faster than the baseline that process complete lists
to generate same exact top-k result and it needs to make much
less read accesses to the database.

10
0

10
1

10
2

10
3

10
4

1 2 3 5 10

R
u
n
−

ti
m

e
 (

m
s
)

Query Size

(a) Doctors

10
0

10
1

10
2

10
3

10
4

10
5

1 2 3 4 5

R
u
n
−

ti
m

e
 (

m
s
)

Query Size

(b) Amazon

Baseline NRA

Fig. 5: Time vs. query size for top-20 items.

We also show the query response time for different query
sizes in Figure 5. In this experiment, the query time of the
baseline method increases with increase in query size because
it reads more review lists per query concept and need to
process more data. For Amazon dataset, we use product queries
that have 5 terms at most. That explains the different range of
query size for Amazon dataset. The results clearly indicates
the significant run-time improvement using NRA-IRanker for
querying real world large scale datasets.

ACKNOWLEDGMENT

Partially supported by NSF grants IIS-1216007, IIS-
1447826 and IIS-1619463.

REFERENCES
[1] A. R. Aronson. Effective mapping of biomedical text to the umls

metathesaurus: the metamap program. In Proceedings of the AMIA
Symposium. American Medical Informatics Association, 2001.

[2] M. Batet, D. Sánchez, and A. Valls. An ontology-based measure to
compute semantic similarity in biomedicine. Journal of biomedical
informatics, 2011.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton,
and G. Hullender. Learning to rank using gradient descent. In ACM
ICML, 2005.

[4] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. Journal of Computer and System Sciences, 2003.

[5] M. Hu and B. Liu. Mining and summarizing customer reviews. In ACM
SIGKDD, 2004.

[6] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query
processing techniques in relational database systems. CSUR, 2008.

[7] A. Lakshman and P. Malik. Cassandra: a decentralized structured
storage system. ACM SIGOPS Operating Systems Review, 2010.

[8] J. McAuley, R. Pandey, and J. Leskovec. Inferring networks of
substitutable and complementary products. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 785–794. ACM, 2015.

[9] G. B. Melton, S. Parsons, F. P. Morrison, A. S. Rothschild, M. Marka-
tou, and G. Hripcsak. Inter-patient distance metrics using snomed ct
defining relationships. Journal of biomedical informatics, 2006.

[10] A. Mukherjee, B. Liu, and N. Glance. Spotting fake reviewer groups
in consumer reviews. In ACM WWW, 2012.

[11] A.-M. Popescu and O. Etzioni. Extracting product features and opinions
from reviews. In Natural language processing and text mining. Springer,
2007.

[12] R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and
application of a metric on semantic nets. Systems, Man and Cybernetics,
IEEE Transactions on, 1989.

[13] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering
techniques. Advances in artificial intelligence, 2009.

[14] Z. Zhang. Weighing stars: Aggregating online product reviews for
intelligent e-commerce applications. IEEE Intelligent Systems, 2008.

