A System for Query-Specific Document Summarization’

Ramakrishna Varadarajan
School of Computing and Information Sciences
Florida International University
Miami, FL 33199

ramakrishna@ocis.fiu.edu

ABSTRACT

There has been a great amount of work on quenpimgent
summarization of documents. However, due to theesscof Web
search enginegjuery-specificdocument summarization (query
result snippets) has become an important problehichwhas
received little attention. We present a method reaie query-
specific summaries by identifying the most quengvant
fragments and combining them using the semantiocasfons
within the document. In particular, we first addusture to the
documents in the preprocessing stage and converh tho
document graphsThen, the best summaries are computed
calculating the top spanning trees on the docurgesmpphs. We
present and experimentally evaluate efficient algors that
support computing summaries in interactive timertti@rmore,
the quality of our summarization method is compa@durrent
approaches using a user survey.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval: Search process

General Terms
Algorithms, Performance, Experimentation.

Keywords
query-specific summarization, keyword search, $teiree
problem, user survey

1. INTRODUCTION

As the number of documents available on users’tdpskand the
Internet increases, so does the need to provida-duglity
summaries in order to allow the user to quicklyatecthe desired
information. A compelling application of document
summarization is the snippets generated by Welclseamgines
for each query result, which assist users in furtbeploring
individual results. The Information Retrieval (IB)mmunity has
largely viewed text documents as linear sequentegoads for

" Project partly supported by NSF grant [1S-0534530.

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeighed that copies are
not made or distributed for profit or commerciavadtage and that
copies bear this notice and the full citation oa fiist page. To copy
otherwise, or republish, to post on servers orewistribute to lists,
requires prior specific permission and/or a fee.

CIKM'06, November 5-11, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-433-2/06/0011...$5.00.

Vagelis Hristidis

School of Computing and Information Sciences

Florida International University
Miami, FL 33199

vagelis@cis.fiu.edu

the purpose of summarization (with some exceptamexplained
in Section 2). Although this model has proven gsitecessful in
efficiently answering keyword queries, it is clgariot optimal
since it ignores the inherent structure in document

Furthermore, most summarization techniques query-
independentand follow one of the following two extreme
approaches: Either they simply extract relevansagess viewing
the document as an unstructured set of passagéseyoemploy
Natural Language Processing techniques. The foaperoach
ignores the structural information of documentslatiie latter is

by too expensive for large datasets (e.g., the Wel)samsitive to

the writing style of the documents.

In this paper, we propose a method to add structurferm
of a graph, to text documents in order to alloveetie query-
specificsummarization. That is, we view a document astafe
interconnected text fragments (passages). We fooukeyword
queries since keyword search is the most populfarnmation
discovery method on documents, because of its pangrease of
use. Our technique has the following key stepsstFiat the
preprocessing stage, we add structure to every ndecu
(explained later), which can then be viewed asalél, weighted
graph, called thdocument graphThen, at query time, given a set
of keywords, we perform keyword proximity search ¢me
document graphs to discover how the keywords aseceged in
the document graphs. For each document its sumisathe
minimum spanning tree on the corresponding docungeaph
that contains all the keywords (or equivalent based a
thesaurus).

The document graph is constructed as follows. Fiesparse
the document and split it into text fragments usaglelimiter
(e.g., the new line character). Each text fragmbatomes a node
in the document graph. A weighted edge is addedegaocument
graph between two nodes if they either corresporatijacent text
fragments in the text or if they are semanticadijated, and the
weight of an edge denotes the degree of the raktiip. There are
many possible ways to define the degree of thetioakhip
between two text fragments.

In this work we consider two fragments to be relafethey
share common words (not stop words) and the degfee
relationship is calculated by an adaptation ofitraal IR term
weighting formulas. We also consider a thesaurusnttance the
word matching capability of the system. To avoidldg with a
highly interconnected graph, which would lead toowsr
execution times and higher maintenance cost, weadd edges

(v0) Brain chip offers hope for paralyzed

(v1) A team of neuroscientists have successfully implanted a chip
into the brain of a quadriplegic man, allowing him to control a
computer.

(v2) Since the insertion of the tiny device in June, the 25-year-old
has been able to check email and play computer games simply
using thoughts. He can also turn lights on and off and control a
television, all while talking and moving his head.

(v3) The chip, called BrainGate, is being developed by
Massachusetts-based neurotechnology company Cyberkinetics,
following research undertaken at Brown University, Rhode
Island.

(v4) Results of the pilot clinical study will be presented to the
Society for Neuroscience annual conference in San Diego,
California, on Sunday. Up to five more patients are to be
recruited for further research into the safety and potential utility
of the device.

(v5) BrainGate offers the possibility of hitherto unimaginable
levels of independence for the severely disabled.

(v6) Although many are able to control computers with their eyes
or tongue, such techniques remain dependent on muscular
function and require extensive training.

(v7) John Donoghue, professor of neuroscience at Brown and a
co-founder of Cyberkinetics in 2001, said that BrainGate could
help paralyzed peopled control wheelchairs and communicate
using email and Internet-based phone systems.

(v8) "Our ultimate goal is to develop the BrainGate System so
that it can be linked to many useful devices," said Donoghue, who
this month received an innovation award from Discover
Magazine for his work on BrainGate.

(v9) "This includes medical devices such as muscle stimulators,
to give the physically disabled a significant improvement in their
ability to interact with the world."

(v10) Donoghue's initial research, published in the science
journal Nature in 2002, consisted of attaching an implant to a
monkey's brain that enabled it to play a simple pinball computer
game remotely.

(v11) The four-millimeter square chip, which is placed on the
surface of the motor cortex area of the brain, contains 100
electrodes each thinner than a hair which detect neural electrical
activity. The sensor is then connected to a computer via a small
wire attached to a pedestal mounted on the skull.

(v12) "While these results are preliminary, I am extremely
encouraged by what has been achieved to-date," said John
Mukand of the Sargent Rehabilitation Center, who oversaw the
pilot study.

(v13) "We now have early evidence that a person unable to move
their arms, hands and legs can quickly gain control of a system
which uses thoughts to control a computer and perform
meaningful tasks. With additional development this may
represent a significant breakthrough for people with severe
disabilities."

(v14) Surgeon Gerhard Friehs, associate professor of clinical
neurosciences at Brown Medical School, who implanted the
device, described the results as "spectacular" and "almost
unbelievable."

(v15) "Here we have a research participant who is capable of
controlling his environment by thought alone -- something we
have only found in science fiction so far," said Friehs.

(v16) "I hope that the trial will continue as successfully as it has
started and that all other candidates will have as great an
experience as our first candidate did."

Figure 1. Sample news document from www.cnn.com

with weight above a threshold. Also notice that ¢age weights

are query-independent, so they can be precomputed.

Example 1.Figure 2 shows the document graph for the document
of Figure.1. The document is first split to texdgments v0...v16,
which correspond to its paragraphs (other delimite possible

as we explain below). Notice that the edge betwestes v8 and

V7 has the highest weight because there are mémygirent (and
hence with higher idf value) words that are comnt@tween
them like “Donoghue” and “BrainGate”.

Figure 2. Document Graph for the document in Figurel.

At query time, the precomputed document graph of a
document is processed as follows to create theduesy-specific
summary. First, each node of the document grapss$gyned a
score according to the relevance of the correspondext
fragment to the query. To do so we employ traddldR ranking
functions. Notice that a full-text index is usedédoccelerate this
step. Then, we execute our keyword proximity altons, which
are inspired by the techniques developed in previaark on
proximity search on graphs [7], where approximatidgorithms
are presented for the Group Steiner Tree probletnictwis
equivalen{ to the proximity search problem). The best summary
is the top-ranked spanning tree that containdalkeywords. The
ranking considers both the node and the edge vee(gtitich are
query-dependent and independent respectively).cBldtiat the
problem can be easily modified to allow summariest tdo not
contain all keywords, although this case is nathferr discussed in
this paper.

Example 1 (cont’d). Table 1 shows the top-ranked spanning trees
for the document graph of Figure 2 for the querydiB chip
research”. The values shown above the nodes ireThirdicate
the node scores with respect to the query. Theescof the
spanning trees are a function of their node anc: estpres, as
explained in Section 4. Notice that all results tagm all query
keywords. The top result is the best summary ofdibeument of
Figure 1 (the keywords of the query are shown ildbéor this
query. Intuitively, this result is the best becaitseontains the
minimum possible number of nodes and the edge dbahects
the two nodes is strong.

Also observe that Result #4 is ranked lower thasuR
even though it has fewer nodes. The reason isttigahodes of
Result #4 are connected through very commonly ecauwords

Y he proximity problem is slightly harder since #es of nodes do not
have to be disjoint.

like “computer” and “brain” whereas in Result #3eyhare
connected through infrequent words like “Friehsbtide that to
compute the frequency of a keyword we consided@tuments of
the corpus.

Table 1. Top-5 summaries for query “Brain Chip Resarch”

Rank | Score Summary
1 67.74 0.046 0.008
()09 (o)
2 84.77 0.046 0.0 0.0003
@ 0.027 @ 0.027 0
3 87.64 0.012 0.0 0.0005
@ 0.043 (14 0.037 @
4 103.77 | 0.008 0.005
@ 0.015 @
5 167.41 | 0.046 0.0 0.0 0.0005
@ 0027 (7)) 0.032 @M@

The contributions of this paper are the following:

¢« We present a framework to add structure to text
documents, which is used for summarization purposes
in this work, although it can be leveraged for othe

problems as well, like ranking of query results.

¢ We show how we can use the generated document

graphs to create high-quality query-specific suniesar

We performed two user surveys to compare the gualit
of our approach to other current approaches-Desktop

search engines and DUC péers

* We present and experimentally evaluate execution [y ever

algorithms that prove the feasibility of our apprioa
* We built a prototype of the system, which is auaia
on the Web alittp://dbir.cs.fiu.edu/summarization

The paper is organized as follows. Section 2 pitestre
related work. Section 3 formally defines the proflewhile
Section 4 explains how we add structure to docusneSection 5
presents the various algorithms for efficient sumyne@mputation
using the document graphs. Sections 6 and 7 préserguality
and performance experiments respectively. Sectides8ribes the
developed prototype. Finally Section 9 discusseasconclusions
and future work.

2. RELATED WORK

2.1 Document Summarization.

A large corpus of work has focused on generatingngu
independent summaries [6,3,16,5]. The OCELOT sys[ém
provides the summary of a web page by selectingaarahging
the most (query-independent) “important” words b& tpage.
OCELOT uses probabilistic models to guide the siglecand
ordering of words into a summary. Amitay and PE8]spropose a
new fully automatic pseudo-summarization technidoe Web

2 http://duc.nist.gov/

pages, where the anchor text of hyperlinked pagessed to
construct summaries. This approach is unique sirigaores the
actual content of a document. [5] uses lexical mhdbr text
summarization. In particular, they use Wordnet teate all
lexical chains and choose the strongest ones ammary of the
document.

The majority of systems participating in the pastcDment
Understanding Conference [11] (a large scale suimataon
evaluation effort sponsored by the United Stateguonent), and
the Text Summarization Challenge [14] are extractlmased.
Extraction-based automatic text summarization systextract
parts of original documents and output the resadtsummaries
[10,12,16,20,25]. Other systems based on informagixtraction
[35,47] and discourse analysis [30,42] also exigtthey are not
yet usable for general-domain summarization. Howethese
works do not exploit the inherent structure of tteeument and
mostly focus on query-independent summaries. 1a work (a
preliminary version appears in [44]) we also shtw semantic
connections between the extracted fragments, winigiove the
quality as shown in Section 6.

[29,31] use natural language processing technitpeseate
summaries for documents, which cannot scale toelaapora
like the Web and are limited to the writing stylé the page
authors.

White et al. [45,46], Tombros and Sanderson [4&chher
[47] and Goldstein et al. [16] create query-depahd@mmaries
using a sentence extraction model in which the oerus (web
pages) are broken up into their component sentesiogsscored
according to factors such as their position, thedsahey contain,
and the proportion of query terms they contain.uinber of the
highest-scoring sentences are then chosen as thmay. Lin
[27] compresses the sentences to achieve bettemaries.
[1,19,38,39] select the best passage of a docuaseitd summary.
these works ignore possible semantic adiores
between the sentences or the possibility thatrigld relevant set
of text fragments will provide a better summarydBaet al. [36]
provide a technique for multi-document summarizaticsed to
cluster the results of a web keyword query. Howgeuéaeir
clustering and summarization techniques are quetggpendent in
contrast to our work. [13,32] provide a technique rank
sentences based on their similarity with other exares across
multiple documents and then provide a summary lih top
ranked sentences. However, their methods are dodependent
in contrast to our work.

The idea of splitting a Web page to fragments reenhused
by Cai et al. [9], Lee et al. [26] and Song et[4l], where they
extract query-independent rankings for the fragmefor the
purpose of improving the performance of web searuth also to
facilitate web mining and accessibility. Cai et @] partition a
web page into blocks using the vision-based pageneetation
algorithm. Based on block-level link analysis, tt@pposed two
new algorithms, Block Level PageRank and Block Lé#d'S to
extract authoritative parts of a page. Lee et2dl] fiscuss a Web
block classification algorithm after Web page dwis into
semantic blocks, while Song et al.[41] provide éag
algorithms for block importance.

Finally, all major Web search engines (Google, Ydho
MSN Search, and so on) generate query-specifigostspof the

returned results. Although their algorithms are pablished, we

observed that they simply extract some of the gkeyyords and

their surrounding words. Recently, some of thesepamies made
available tools to provide the same search and pship
functionality on a user's desktop [17,33]. We im#uthese

snippets in our user study of Section 6.

2.2 IR Ranking.

In creating the document graph and computing thieneeights,
we adopt ranking principles from the Information tial
community. Various methods for weighting terms haween
developed [40]. The most widely used are the Okaguation 1)
and the pivoted normalization weighting, which besed on the
tf-idf principle.

N —df + 05
df + 05

(kg +Dtf

' dl
-b)+b—)+
(ki@-b)+b avdl) tf
tf is the term’s frequency in document,
gtf is the term’s frequency in query,
N is the total number of documents in the collettio
df is the number of documents that contain the term
dl is the document length (in words),
avdl is the average document length and
k1 (between 1.0-2.0), b (usually 0.75), and k3
(between 0-1000) are constants

(k3 +Dqtf
" kg +qtf

@)

Zln

t0Q,d

2.3 Keyword search in data graphs.

In the second stage of our approach, when the decugraphs
are already created and a query arrives, the syséamthes the
document graphs for sub-trees that contain all yqleeywords.

This problem has been studied by the database aaph-g
algorithms communities. In particular, recent w§ithk,7,2,22,21,

24,18] has addressed the problem of free-form kegwearch on
structured and semi-structured data. These workswiovarious

techniques to overcome the NP-completeness of theups
Steiner problem, to which the keyword proximity mbaproblems
can be reduced.

Goldman et al. [15] use precomputation to minimibe
runtime cost. BANKS [7] views the database as glyrand
proposes algorithms to approximate the Group Steifree
problem. We consider and experimentally evaluatéifitations
of these algorithms in this work. XRANK [18] workm XML
trees, which simplifies the problem. Li et al. [2&ckle the
problem of proximity search on the Web, which iswed as a
graph of hyperlinked pages. They use of the conaeipt
information unit which can be viewed as a logical Web document
consisting of multiplgohysicalpages. [2,22,21] perform keyword
search on relational databases and exploit thenszlproperties
to achieve efficient execution.

Finally, notice that Buneman et al. [8] view thelplem of
adding structure to unstructured data from a cotalylalifferent
angle: how to define a schema to describe a lalgglguh (e.g., an
XML document).

3. PROBLEM DEFINITION

Let D={d1,d,,,...,d} be a set of documentd,d,,,...,d. Also let
size(q) be the length ofi in humber of wordsTerm frequency
tf(d,w) of term (word) w in documentd is the number of
occurrences ofv in d. Inverse document frequenmf(w) is the
inverse of the number of documents containing t&rim them.

A keyword quen@Q is a set of keyword®={w;,...,w}. The
result of the keyword query, which is not the foofishis work, is
a list of documents fror® ranked according to their relevance to
Q. A key component in our work is tlicument grapli(V,E)of
a documentl, whichis defined as follows:

Definition 1 (Document Graph). Thedocument grapls(V,E)of
a document is defined as follows:

e dis split to a set of non-overlapping text fragnsd(i),
each corresponding to a nodgV.

e An edgee(u,vYE is added between nodesv/V if
there is an association (further discussed in Seat)
betweert(u) andt(v) in d.

Hence, we can views as an equivalent representationdpf
where the associations between text fragments$ are depicted.
Example 1 explains a possible document graph ferdticument
of Figure 1. Notice that there are many ways toingefthe
document graph for a document. In this work we ofolla
semantic approach where a delimiter is chosen ¢atertext
fragments, and edges are added when the text fragmentain
common (or equivalent) words as we explain in $aci.

Furthermore, notice that the nodes and edges of the
document graph may be weighed according to a yaraét
reasons, both query-dependent and independentekample,
authority flow techniques [4] on the document gragdn be
employed to assign both query-dependent and indigperscores.
In this work (see Section 4) we consider query-ddpat (resp.

independent) weights for the nodes (resp. edges).

Definition 2 (Minimal Total Spanning Tree). Given a
document grapl(V,E) aminimal total spanning treef G with
respect to a keyword que®={wy,...,w} is a sub-tred of G that
is both:

e Total every keywordw/Q is contained in at least one
node ofT.

e Minimal: we cannot remove any node fromand still
have a total sub-tree.

A summaryof a document with document grapi®, with
respect to a keyword que®@={w,,...,W}, is a minimal total
spanning tree dB for Q.

Problem 1 (Summarization). Given a document/D and its
document grapks, and a keyword quer, find the top summary,
i.e., the minimum score minimal total spanning tree

Notice that the totality property implies that weeltAND
semantics, that is, require all keywords to behia summary.
Another alternative i©OR semantics where not all keywords are
required to be in the summar@R semantics are useful in the
following scenarios: (a) the keywords are rare drahce no

document contains all of them, so to summarizeqgtnery result
we needOR semantics and (b) in order to have more compact
summaries we may choose to not display the lessorigupt

is preferable since paragraphs are typically shod
leads to more compact document graphs.

Example 1 (cont'd) The new-line character was used to parse the

keywords. In this paper we only present our resoltsAND
semantics due to space limitations. Our technigmelsalgorithms
can be extended to generate summariesOBrsemantics, by
relaxing the totality constraint on summary spagrtiees.

Furthermore, the fact that the summaries are minmaans
that we do not allow any nodes not containing aeyword as
leaf nodes in the summary tree. However, nodes mdtkeywords
can be internal nodes. For example, in the secesdltrof Table

1, nodev7 has no keywords, but it acts as a connector betwee

nodesv0 andv4 which contain the keywords.

The score of a (summary) tréds calculated using a scoring
function based on the weights of the nodes andsedfé. The
scoring function used in this work is presente&éction 4.

Example 1 (cont'd). For the document of Figure 1 and the

keyword query “Brain Chip Research”, the top summarshown
in Figure 3.

Brain chip offers hope for paralyzed.

L Donoghue’s initiaresearch published in the science
journal Nature in 2002 consisted of attaching fjan
implant to a monkey’'srain that enabled it to play a
simple pinball computer game remotely.

Figure 3. Top summary of the document of Figure 1dr query
“Brain Chip Research”

Notice that by the definition of Problem 1, a sumynaay
contain internal text fragments with no query keyalgn which are
called Steiner nodes. The reason we include sudesds to
achieve semantic coherence in the generated suesnavhich
increases the user satisfaction as we show inde6tiIf brevity
is the top priority then Steiner nodes can be @uhitt

4. ADDING STRUCTURE TO
DOCUMENTS

As we explain below, there are many ways to creatd assign
weights to a document graph. In this section wesqne the
specific approach we follow to create a documerapigr In
particular, given a document’D, a queryQ and a set of input
parameters (explained below), we construct a doontirgeaph

G(V,E) Notice thatQ is only used in assigning weights to the

nodes ofG, which is a desirable property since the resGafan
be computed before queries arrive.

The following input parameters are
precomputation stage to create the document graph:

1. Threshold for edge weight®nly edges with weight not

belowthresholdwill be created in the document graph.

2. Parsing Delimiter The parsing delimiter is used to split
the document to text fragments. Typical choicestlage
new-line character (each text fragment correspénds

required at the

document of Figure 1 into 17 text fragmewfs...,v16

After parsing the document and creating the grapties
(text fragments), for each pair of nodasy we compute the
association degree between them, that is, the s@oegght)
EScore(e)of the edgee(u,v) If EScore(ejthreshold thene is
added toE. The score of edge(u,v)where nodesl, v have text
fragments(u), t(v) respectively is:

3 (f (W) W)+ () W) i (W)
ESCOI‘ée) — WOE(W)NE(V))

sizgt(u)) + sizet(v))

wheretf(d,w) is the number of occurrenceswfin d, idf(w)is the
inverse of the number of documents containngandsize(d)is
the size of the document (in words).

That is, for every wordv appearing in both text fragments
we add a quantity equal to tliddf score ofw. Notice that stop
words are ignored. Furthermore, we use thesaurdsssmmer
(we rely on Oracle interMedia as explained in Secff) to match
words that are equivalent. The sum is divided &y sbm of the
lengths of the text fragments in the same way asdificument
length @) is used in traditional IR formulas. Notice thajuation
2 is an adaptation of traditional IR formulas for pair of
documents.

Notice that alternative ways to compute the edgights are
possible, like the cosine document distance, whimlvever have
similar effect as thefidf method that we employ. In future
versions of our system we plan to also use Wordnelt Latent
Semantic Indexing techniques to improve the qualftthe edge
weights, which is challenging on the performanaelisince our
system is interactive.

The calculation of the edge weights concludes theryg
independent part of the document graph creatiorxt,Nehen a
query Q arrives, the nodes iV are assigned query-dependent
weights according to their relevanceQoln particular, we assign
to each noder corresponding to a text fragmet(t) node score
NScore(v)defined by the Okapi formula (Equation 1). In ortter
accelerate this step of assigning node scores \leatull-text
index on the seb of documents that efficiently allows locating
the nodes that contain the query keywords and cdfaulate the
query-dependent score. The details of this indexaart of the
scope of this paper.

4.1 Summary Scoring Function

Given the document graph G and a query Q, a sum(sabtree
of G) T is assigned a score Score(T) by combinireggcores of
the nodes MT and the edges[d. In particular Equation 3
computes the summary score

paragraph) or the period (each text fragment is a Score(T) = a 1 +Db 1 ©)

sentence). We found that for the domain of newslast
that we experimented with (see Section 6) the riegv-|

cdss et EScore(e) z NScore(v)

node v{IT

wherea andb are constants (we ugel andb=0.5),EScore(e)s
the score of edge using Equation 2NScore(v)is the score of
nodev using Equation 1.

Intuitively, if T is larger (has more edges) then its score
should degrade (increase) since larger trees deladser
semantic connections [23,2,22,7]. This is the reage take the
sum of the inverse of the edge scores in Equatidru@hermore,
if more nodes ofT are relevant td&, the score should improve
(decrease). Hence, we take the inverse of the dutheonode
scores.

Constanta andb are used to calibrate the importance of the
size of the summary (in number of edges) versusatheunt of
relevant information contained. In particular, régha values
boost the score of smaller and tightly connectethrsaries,
whereas higheb values benefit summaries with more relevant
content (i.e., containing nodes with high scorenweéspect to the
query). Notice thata and b can also be viewed as adjusting
parameters for the query-independent and depemdets of the
scoring function respectively.

Precomputation. In order to boost the performance of the
algorithms, we precompute and store the followirfgrimation:

« A full-text index is built, as discussed above, to
efficiently locate the nodes that contain the kesogo
and calculate their query-specific score.

e The all-pairs shortest paths between the nodedef t
document graptG of every documentl. That is, for
each pair of nodes,v/ G, we precompute and store the
shortest patli~u~...~y~v.

5.1 Multi-Result Enumeration Algorithm

This algorithm returns a ranked list of summar@sd document
and a query. In particular, it returns a summaryefach possible
combination of nodes that contain the keywords.

The algorithm (Figure 4) proceeds as follows. Fivgt find
all combinations of nodes s that are minimal (no node is
redundant) and total (contain all keywordsQh Then, for each
combination we create a complete gr&Hcalledclosure

Example 1 (cont'd). The top summaryl for the document of
Figure 1 with document graph shown in Figure 2hsven in
Figure 4.T has a single edgdw®,v10)with score determined by
the common word “brain” betweeu® andv10. Also, the scores of
nodesv0, v10 are computed using Equation 1, for the query
“Brain chip research”.

5. EFFICIENT SUMMARY
COMPUTATION

This section tackles the problem of how; given ttecument
graph G of a document for a queryQ, to compute the top
summary (or summaries) farwith respect tdQ. For clarity, we
only present algorithms foAND semantics. Notice that the
problem of finding the top summary (total minimphaning tree)
is very similar to the Group Steiner Tree probled#][which is
known to beNP-completeOur problem is slightly more complex
since the groups of nodes are not disjoint, in remttto the Group
Steiner Problem, which is defined as follows:

Given an undirected, connected, and weighted g@pfV,
E, I), whereV is the set of all vertices iB, E is the set of edges in
G, and | is a weight function which maps each eddé& to a
non-negative real number; and given a fanR%{R,....R} of
disjoint groups of vertices, wheR is a subset o, the problem
is to find a minimum-cost treé which contains at least one vertex
from each groupR. Since the weights of the graph are non-

MultiResultEnumeration (document graph G, query Q)
1. Results—[J; /*stores summaries*/

2. Find all nodes irG that contain some keyword f; /*use
full-text index*/

3. Find all minimal combinations of nodes that whiaken
together contain all keywords @

4. For each minimal node combinatiGrlo

{

5. Createlosure graphG, that contains only the nodes@)

6. Find all possible spanning tregsf G;

7. Calculate the score of each spanning tr&uising Eq. 3;

8. Pick the spanning tr@ewith the minimum score;

9. Replace the edgesvin T with their precomputed shortest
paths u~u~...~y~v; /* i.e., we are adding the Steiner
nodes.*/

10. TrimT to make it a minimal total spanning tree;

11. Calculate the score @f using Equation 3 and adfl to
Results

12. Sort and output summariesRasults

}

negative, the solution is a tree-structure.

In contrast to previous work on proximity search deta
graphs (see Section 2) where the kof21,7] or all [2,22] total
minimal spanning trees are requested, in our SuipaiEm
problem we typically care for only the single tapranary, that is,
the top-1 total minimal spanning tree. This allawsre efficient
algorithms as we explain below. Notice that the spreéed
algorithms, which can be viewed as approximatiohnthe Group
Steiner Tree problem, can be divided along two diens. First,
we have multi-result and top-1 algorithms, whicimpaite a set of
summaries or a single summary for a document arsdygpair
respectively. Second, we have enumeration and ekpgn
algorithms, which follow different execution appcbas as
explained below.

Figure 4. Multi-Result Enumeration Algorithm

graph) that contains all nodes in the combination arlepairs
edges between them with weight equal to their destgtaken by
the precomputed all-pairs shortest paths). Thencaleulate all
possible spanning trees i@, and compute their scores using
Equation 3. Then, for the top spanning tree wertrtbe Steiner
nodes and trim redundant nodes to make it minifiken its
accurate score is computed and added to the rdstlt&inally,
the results are ranked and displayed.

Example 2. Consider the document graph in Figure 2 and the
query “Brain chip research”. The nodes that contaekeywords
arev0, v1, v3, v4, v10, vliandvls We then find all minimal and
total node combinations, which ared{ v10} {v15, v0}, {vO, v3},

{v4, v0}, and so on. For each combination we create a @osur to any other node that contains additional query keywords than

graph. For example, the closure graph for the stcombination

is v15~vOwith edge weight 0.096 (which is the length of the
shortest path from15 to v0). We then find all possible spanning
trees of this graph, which is jusi5~vO0,for the above closure
graph. Then, we replace the edge betwe®handvO with the
shortest path between them, whiclvl&~v14~v7~vQThis tree is
already minimal and hence we output this resulbh@lavith its
score. The Steiner nodes in this resultvdrandv?, which don’t
have any keywords in them but are used to relageother 2
nodesy15andvo.

5.2 Top-1 Enumeration Algorithm

The Top-1 enumeration algorithm returns only onersary per
document, for a query. The reason we created teariints for
both the enumeration and the expanding searchi¢8ed.3, 5.4)
is that typically the user only requests a singlenmary for a
document, as in the case of snippets in Web segigime results.

This algorithm is similar but more efficient thamet multi-
result enumeration algorithm, because it only athds Steiner
nodes (line 9 in Figure 4) for a single spannirgtin particular,
this algorithm finds the top spanning tree amony raide
combinations and then substitutes the Steiner nodb#e the
multi-result algorithm finds the top spanning taed substitutes
the Steiner nodes for each node combination. Tleedmscode
for this algorithm has the following difference irespect to
Figure 4: Lines 8-11 are moved outside the for-jabjat is, the
for-loops ends at line 7.

Example 2 (cont'd). For the document graph in Figure 2 and
query “Brain chip research”, this algorithm goesotigh the same
steps as in the case of enumeration algorithmoibputes all
node combinations as explained in the previous pl@niThe
only difference is that this algorithm first findee minimum-
score spanning treel~v3 with edge weight 0.03 (which is the
length of the shortest path fron to v3) among all spanning trees
of all node combinations, and then replaces thae edith the
shortest pathvl~v2~v3 where v2 is the Steiner node and
recomputes the score and displays it as the summwifarhe
document.

5.3 Multi-Result Expanding Search

Algorithm

The basic idea behind this algorithm (inspired lioy algorithm in
BANKS [7]) is that we start from the nodes that tzom the query
keywords and progressively expand them in paratgl we find

all minimal total spanning trees. The advantagéhisf algorithm
compared to the enumeration algorithms is that weat need to
repeat the processing for all combinations of npdésch may be
too many if the document is large and contains naTyrrences
of the query keywords.

In particular, the algorithm (Figure 5) finds (ugithe full-
text index) all the nodes that match some keywand$ie query
and starts expanding them incrementally, the begtximum-
score) edge at a time. We call the subgraph crefated each
keyword nodev expanding areeaof v. Notice that, in contrast to
BANKS, we use the precomputed all-pairs shorteitipdata to
efficiently grow the expanding area. That is, wéyaonsider the
edges that are contained in a shortest path frensurrent node

v. When two or more expanding areas meet we chegidssible
new summaries. If a summary is found, it is trimnedecome
minimal and its score is calculated using EquaBoithe parallel
expansion of the expanding areas terminated wheneé&ch
combination of nodes that contains all keywordsjrtexpanding
areas have met.

Example 3. For the document graph in Figure 2 and the query
“Brain chip research”, the keyword nodes afe v1, v3, v4, v10,
v11,andvl5 We grow the expanding areawifto vO~v10which

is the first precomputed single source shortest patsourcevO
and check for possible summaried~v10is total as well as
minimal and hence we add it to the set of resilts.grow each
expanding area using its precomputed shortest pathsn we
growvltovl~v2,v3tov3~v2,v4tov4~v3 vi0to vi0~v9vllto
vll~vlOand once we expandll we have another summary
v11~v10that is total and minimal. We keep doing this utite
expanding areas of all the keywords nodes have bestnand
hence we can’t have any more possible summariehande we
terminate.

MultiResultExpandingSearch(document graphG, query Q)
1. Results—[; /*stores summaries*/

2. Find all node8l={N4,...,N} that contain th&keywords in
Q; /*N; has the nodes that contayt/

3. Repeat until the expanding areas of all contlina of
nodes inNjy,...,N, meet. {

4. For each nodein N do
{

5. Add to the expanding area wfthe maximum-score
adjacent edge from the (precomputed) shortest paths
starting atv and ending at a node knot containing the
same keywords ag

6. Check for new results (summari€E) /*i.e., trees that
contain a node from each Mf,...,N, */

Trim summarie$ to become minimal;

Calculate the score ®fusing Equation 3 and store in
Results

9. Sort and output summariesRasults

H}

Figure 5. Multi-Result Expanding Search Algorithm

5.4 Top-1 Expanding Search Algorithm

This algorithm differs from the multi-result expang search
algorithm in that it stops expanding the expandingas once the
first summary is produced. Intuitively this greedpproach
produces a high-quality summary, as the trees mexifirst have
smaller sizes, which implies smaller scores (Equat). The

pseudo code for the Top-1 expanding search algoritiffers

from the multi-result variant in that, once it fsxé summary in
line 6 it trims it, calculates the score and add® iresults and
exits the loop. So we have an extra line in Figur&a. break;”.

Example 3 (cont'd). For the document graph in Figure 2 and the summaries provide coherency in the aggregatiomefkeyword-

query “Brain chip research”, this algorithm goesotigh the same
steps as its multi-result variant, but stops expapdnce it finds
the first summary, which ig10~v1las explained in the previous
example.

6. QUALITY EXPERIMENTS

To evaluate the quality of the results of our apphyp we
conducted two surveys. The subjects of the surveyfifteen

students (of all levels and various majors) of Fhtho were not
involved in the project. In this survey the usersrevasked to
evaluate the summaries based on their quality &wd(a longer
summary carries more information but is less dbi)sEach
participant was asked to compare the summariesamid them,
assigning a score of 1 to 5, according to theirlityuéor the

corresponding query. A rank of 5 (1) representsstiramary that
is most (least) descriptive.

6.1 Comparison with DUC dataset
The dataset used in this survey consists of teardents and two
queries taken from the DUC 2005 datisas shown in Table 2.

We compare our summaries with DUC Peer summaries fo

quality. DUC peers are human and automatic sumsaised in
quality evaluation. We compared our summaries agaie DUC
peers with highest linguistic quality. Unfortungtemost of the
summaries in the DUC datasets are query-indeperatahtthe
few query-dependent ones are multi-document. Hanaarder to
compare our work to that of DUC we used the follagvimethod
to extract single-document summaries from queryeddpnt
multi-document summaries for a set of ten documents two

containing-sentences.

6.2 Comparison with Google and MSN
Desktop

The dataset used in this survey consists of twosngecuments
taken from the technology section of cnn.com. Theigipants
were asked to evaluate the quality of the summarfethe two
documents with respect to five queries. We chosigsl where
keywords appear both close and far from each otker.each
query-document pair, three summaries are
corresponding to (a) the result of the Top-1 expandearch
algorithm, (b) Google Desktop’s summary, and (c) N\MS
Desktop’s summary. Summaries (b) and (c) were ededty
indexing the two documents in our desktop and thammitting
the five queries to the Desktop engines. The sunesiare the
snippets output for these documents. In order topawe apples
to apples, we chose queries for which the lengtth@fsummaries
produced by all three methods are similar, sinearty it is not
fair to compare summaries of different lengths amses people
favor conciseness while others the amount of in&ion.

In this survey we set constamto 1 andb to 0.5 in Equation
3, which we found to produce higher-quality summsriNotice
that by increasing the value of constantve favor short results,
while by increasing constanb we favor longer and more
informative results. Hence, by settiago 1 andb to 0.5 we favor
shorter summaries, which have similar size to thesgproduced
by Google and MSN Desktop. This makes their corgparfairer.

Table 3. Average summary ratings for document®1 and D2

topics. The sentences that have been extracteddrdatumend -
to construct the multi-document summary are vieveedd's Google Desktofl MSN Desktop| Top-1 Expanding
single-document summary for the query/topic. Notthat the Queries D1 D2 D1 D2 D1 D2
DUC summaries are created by extracting whole seetefrom 1 533 3671 233 361 as8f 361
documents.
Table 2. Average summary ratings for DUC topics 2 2.00 3.33| 200 3.00 4.3p 333
3 3.00 2.67| 0.67) 3.00 4.98 4.0(
Query 1 [nternational Organize Query 2 Women in
Crime) Parliament3 4 1.67 2.67| 1.67 3.00 4.6Y 4.0(
DUC Topic ID: d301i DUC Topic ID: d321f 5 2.00 1.67| 3.00 1.000 4.0 3.67
DUC| Top-1 DUC| Top-1
Doc. ID | Peer|Expanding Doc. D |PeelExpanding Table 4. Queries used for document®1 and D2
FT941-3237| 2.33 4.66 FT921-778p4.00, 2.50 Queries Documerdl DocumenD?2
FT944-8297| 2.50 3.33 FT922-19q 2.00 4.00 1 Microsoft worm protection| IT Research awards
FT931-3563| 2.83 3.00 FT921-931 2.00 4.33 2 Anti-virus protection Algorithms development
research
FT943-16477 4.00 4.17 FT922-13392.83] 4.17
3 Recovering worm deleted| Software projects
FT943-1623£I; 3.67 3.67 FT921-74] 2.33 3.67 files

The results of the survey prove the superioritgpwfapproach,
as shown in Table 2. Our method of combining exétc
sentences using semantic connections in the forBtaher trees
leads to higher user satisfaction than the trauktiosentence
extraction methods. In particular, the Steiner secgs in

3 http://duc.nist.gov/

Worm affected agencies | Large research grants

Deleted computer software Computer network
security project

The results of the survey, which prove the supiyi@f our
approach, are shown in Table 3. Notice that Goeglé MSN
Desktop systems do not always include all keywoairdsthe
summary when they are more than two and have lEtamies

displayed

between them. In contrast, our approach always sfira
meaningful way to connect them.

7. PERFORMANCE EXPERIMENTS

To evaluate the performance of our approach we asiataset of
200 news documents taken from the technology sectb
cnn.com. We used a PC with Pentium 4 2.44GHz psocesnd
256MB of RAM running Windows XP. The algorithms wer
implemented in Java. To build the full-text inder wsed Oracle
interMedia [34] and stored the documents in thalokge. JDBC
was used to connect to the database system.

First, we compare the performance of the four dlgors of
Section 5 for summarizing keyword queries of vasidengths.
The execution times consist of two parts: (a) thmputation of
the scores of the nodes of the document graph (nb@iethat this
is query-specific and cannot be precomputed), abd the
generation of the top summaries (minimal total sfrag trees) in
the document graph. The first part is handled byac@r
interMedia and the average times for a single darunfor
various-length queries are shown in Table 5.

Table 5. Average times to calculate node weights

Number of 2 3 4 5
keywords
Time (msec) 5.31 9.37 11.50 17.33
7
E 6
T
. 4
B
g 3
' 2
il
£ O
2 3 4 5
Number of keywords in query
O Multi-result Enumeration
@ Multi-result Expanding

(a) Multi-Result algorithms

6 pr—
£ s
N~
£ a4
I:
3
g
£,
2 3 4 5
Number of keywords in the query
O Top-1 Enumeration
B Top-1 Expanding

(b) Top-1 algorithms
Figure 6. Processing times

The second part of the execution is handled segiqray the
four algorithms and the results are shown in Figir¢a) and (b).
In particular, Figure 6 (a) compares the perforneasicthe Multi-
Result algorithms, whereas Figure 6 (b) the Topgbrahms. We
observe that the expanding search algorithms aterféhan the
enumeration ones, especially for long queries. Atsatice that
there is only a slight difference in the performamd the Top-1
and the Multi-Result algorithms, because the docurgeaphs are
relatively small and hence there is no big diffeerbetween
computing one or more summaries.

Notice that we do not compare the performance af ou
algorithms to BANKS, since our Multi-Result algdwits are
adaptations of the BANKS algorithms to our problemhich is
different as we explain in Section 5.

Finally, we measure the accuracy of the Top-1 vessiof
the algorithms. In particular, we measure (Tableh®) average
rank of the summary of the Top-1 algorithms in st of
summaries created by the Multi-Result algorithnwg. &le, if
the summary of the Top-1 algorithm appears astting summary
of the Multi-Result algorithm, then the rank isVBe observe that
the Top-1 expanding algorithm better approximatdse t
corresponding Multi-Result algorithm’s results.

Table 6. Average ranks of Top-1 Algorithms with repect to
Multi-Result algorithms

Number of keywords 2 3 4 5

Top-1 Enumeration 1.4 1.8 2.1 2.78
Algorithm.

Top-1 Expanding Search| 1.1 1.3 1.4 1.8
Algorithm.

8. CONCLUSIONS AND FUTURE WORK

In this work we presented a structure-based tecientq create
query-specific summaries for text documents. Intipalar, we
first create the document graph of a document pwesent the
hidden semantic structure of the document and theriorm
keyword proximity search on this graph. We showhwat user
survey that our approach performs better than atage of the art
approaches. Furthermore, we show the feasibilityusfapproach

with a performance evaluation

In the future, we plan to extend our work to acddonlinks
between documents of the dataset. For example, oiexpl
hyperlinks in providing summarization on the WehrtRermore,
we are investigating how the document graph caunsee to rank
documents with respect to keyword queries. Finallg, plan to
work on more elaborate techniques to split a docune text
fragments and assign weights on the edges of tbiendent graph.

9. REFERENCES

[1] J.Abracos and G. Pereira-Lopes. Statistical metfards
retrieving most significant paragraphs in newspaper
articles. In ACL/EACL Workshop on Intelligent Schla
Text Summarization, 1997

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A
System For Keyword-Based Search Over Relational
Databases. ICDE, 2002

[3] E. Amitay, C. Paris: Automatically Summarizing Web
Sites -Is there any way around it? CIKM, 2000

[4] A. Balmin, V. Hristidis, Y. Papakonstantinou: Autitg-
Based Keyword Queries in Databases using ObjectRank
VLDB, 2004

[5] R. Barzilay and M. Elhadad: Using lexical chainsttxt
summarization. ISTS, 1997

[6] A.L.BergerandV. O. Mittal, OCELOT: A System for
summarizing web pages. SIGIR, 2000

[7] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabantila
S,Sudarshan: Keyword Searching and Browsing in
Databases using BANKS. ICDE, 2002

[8] P.Buneman, S. Davidson, M. Fernandez, D.

Suciu "Adding Structure to Unstructured Data". ICDM
2003

[9] D. Cai, X. He, J.Wen, W.Ma: Block-level Link Analgs
SIGIR, 2004

[10] H.H. Chen, J.J. Kuo, and T.C. Su: Clustering and
Visualization in a Multi-Lingual Multi- Document
Summarization System. ECIR, 2003

[11] Document Understanding Conference http://duc.rast.g
2002

[12] H.P. Edmundson: New Methods in Automatic Abstragtin
ACM Journal, 1969

[13] G. Erkan and D.R. Radev. Lexrank: Graph-based
centrality as salience in text summarization. JABQ4

[14] T. Fukusima and M. Okumura: Text Summarization
Challenge Text Summarization Evaluation in JapaASW
2001

[15] R. Goldman, N. Shivakumar, S. Venkatasubramanian, H
Garcia-Molina: Proximity Search in Databases. VLDB,
1998

[16] J. Goldstein, M. Kantrowitz, V. Mittal, J. Carbohel
Summarizing text documents: Sentence selection and
evaluation metrics. ACM SIGIR, 1999

[17] Google Desktop search http://desktop.google.com/

[18] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.

XRANK: Ranked Keyword Search over XML Documents.

ACM SIGMOD, 2003

[19] M.A. Hearst . Using categories to provide contextfill-
text retrieval results. In Proceedings of the RIAO94

[20] E. Hovy and C.Y. Lin: The automated acquisitioriagfic
signatures for text summarization. ICCL, 2000

[21] V. Hristidis, L. Gravano, Y. Papakonstantinou: Eiffnt
IR-Style Keyword Search over Relational Databases.
VLDB, 2003

[22] V. Hristidis, Y. Papakonstantinou: DISCOVER: Keydor
Search in Relational Databases. VLDB, 2002

[23] V. Hristidis, Y. Papakonstantinou, A. Balmin: Keywdo
Proximity Search on XML Graphs. ICDE, 2003

[24] V. Kacholia, S. Pandit, S. Chakrabarti, S. SudarsRa
Desai, H. Karambelkar. Bidirectional Expansion For
Keyword Search on Graph Databases. VLDB, 2005

[25] J. Kupiec, J. Pederson, and F. Chen: A Trainable
Document Summarizer, SIGIR, 1995

[26] C.H. Lee, M.Y. Kan, S. Lai: Stylistic and Lexicab€
training for Web Block Classification. WIDM, 2004

[27] C.Y. Lin: Improving Summarization Performance by
Sentence Compression - A Pilot Study. IRAL, 2003

[28] W.S. Li, K. S. Candan, Q. Vu, and D. Agrawal: Reting
and Organizing Web Pages by "Information Unit", W\WWW
2001

[29] C. Y. Lin and E. Hovy. Identifying topics by positi. In
Proceedings of the ACL Conference on Applied Ndtura
Language Processing, 1997

[30] D. Marcu. Discourse trees are good indicators of
importance in text. Advances in Automatic Text
Summarization, 1999

[31] D. Marcu. The rhetorical parsing of natural langeisexts.
In Proceedings of the 35th Annual Meeting of the
Association for Computational Linguistics, 1997

[32] R. Mihalcea, P. Tarau, TextRank: Bringing Ordeoint
Texts, EMNLP 2004

[33] MSN Desktop search http://toolbar.msn.com/

[34] Oracle interMedia
http://www.oracle.com/technology/products/interngedi
2005

[35] D.R. Radev and K.R. McKeown: Generating Natural
Language Summaries from Multiple On-line Sources.
Computational Linguistics, 1998

[36] D.R.Radev, W. Fan, Z. Zhang: WebInEssence: A
Personalized Web-Based Multi-Document Summarization
and Recommendation System. NAACL Workshop on
Automatic Summarization, 2001

[37] P. W. G. Reich. Beyond Steiner’s Problem: A VLSI
Oriented Generalization. Workshop on Graph-Theoreti
Concepts in Computer Science, 1989

[38] G. Salton, A. Singhal, C. Buckley, M. Mitra. Autotita
text decomposition using text segments and texhése
Hypertext, 1996

[39] G. Salton, A. Singhal , M. Mitra, and C. Buckley:
Automatic text structuring and summarization.
Information Processing and Management, 1997

[40] A. Singhal: Modern Information Retrieval: A Brief
Overview, Google, IEEE Data Eng. Bull, 2001

[41] R. Song, H. Liu, J. Wen, W. Ma: Learning Block
Importance Models for Web Pages. WWW, 2004

[42] T. Strzalkowski, G. Stein, J. Wang, and B, WisdRdbust
Practical Text Summarizer. In I. Mani and M. Mayjpur
(eds), Advances in Automatic Text Summarizatiorga9

[43] A. Tombros, M. Sanderson. Advantages of Query Biase
Summaries in Information Retrieval. SIGIR 1998

[44] R. Varadarajan, V Hristidis: Structure-Based Query-
Specific Document Summarization. Poster paper EMCI
2005

[45] R. W. White, I. Ruthven and J. M. Jose: FindingeRaht
Documents using Top Ranking Sentences: An Evaluatio
of Two Alternative Schemes, SIGIR, 2002

[46] M. White, T. Korelsky, C. Cardie, V. Ng, D. Pierand
K. Wagstaff.: Multidocument Summarization via
Information Extraction. HLT, 2001

[47] K. Zechner. Fast generation of abstracts from igéne
domain text corpora by extracting relevant sentenice
Proceedings of the International Conference on
Computational Linguistics, 1996

