
A System for Query-Specific Document Summarization*

ABSTRACT
There has been a great amount of work on query-independent
summarization of documents. However, due to the success of Web
search engines query-specific document summarization (query
result snippets) has become an important problem, which has
received little attention. We present a method to create query-
specific summaries by identifying the most query-relevant
fragments and combining them using the semantic associations
within the document. In particular, we first add structure to the
documents in the preprocessing stage and convert them to
document graphs. Then, the best summaries are computed by
calculating the top spanning trees on the document graphs. We
present and experimentally evaluate efficient algorithms that
support computing summaries in interactive time. Furthermore,
the quality of our summarization method is compared to current
approaches using a user survey.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search process

General Terms
Algorithms, Performance, Experimentation.

Keywords
query-specific summarization, keyword search, Steiner tree
problem, user survey

1. INTRODUCTION
As the number of documents available on users’ desktops and the
Internet increases, so does the need to provide high-quality
summaries in order to allow the user to quickly locate the desired
information. A compelling application of document
summarization is the snippets generated by Web search engines
for each query result, which assist users in further exploring
individual results. The Information Retrieval (IR) community has
largely viewed text documents as linear sequences of words for

the purpose of summarization (with some exceptions as explained
in Section 2). Although this model has proven quite successful in
efficiently answering keyword queries, it is clearly not optimal
since it ignores the inherent structure in documents.

Furthermore, most summarization techniques are query-
independent and follow one of the following two extreme
approaches: Either they simply extract relevant passages viewing
the document as an unstructured set of passages, or they employ
Natural Language Processing techniques. The former approach
ignores the structural information of documents while the latter is
too expensive for large datasets (e.g., the Web) and sensitive to
the writing style of the documents.

In this paper, we propose a method to add structure, in form
of a graph, to text documents in order to allow effective query-
specific summarization. That is, we view a document as a set of
interconnected text fragments (passages). We focus on keyword
queries since keyword search is the most popular information
discovery method on documents, because of its power and ease of
use. Our technique has the following key steps: First, at the
preprocessing stage, we add structure to every document
(explained later), which can then be viewed as a labeled, weighted
graph, called the document graph. Then, at query time, given a set
of keywords, we perform keyword proximity search on the
document graphs to discover how the keywords are associated in
the document graphs. For each document its summary is the
minimum spanning tree on the corresponding document graph
that contains all the keywords (or equivalent based on a
thesaurus).

The document graph is constructed as follows. First we parse
the document and split it into text fragments using a delimiter
(e.g., the new line character). Each text fragments becomes a node
in the document graph. A weighted edge is added to the document
graph between two nodes if they either correspond to adjacent text
fragments in the text or if they are semantically related, and the
weight of an edge denotes the degree of the relationship. There are
many possible ways to define the degree of the relationship
between two text fragments.

In this work we consider two fragments to be related if they
share common words (not stop words) and the degree of
relationship is calculated by an adaptation of traditional IR term
weighting formulas. We also consider a thesaurus to enhance the
word matching capability of the system. To avoid dealing with a
highly interconnected graph, which would lead to slower
execution times and higher maintenance cost, we only add edges

* Project partly supported by NSF grant IIS-0534530.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’06, November 5–11, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-433-2/06/0011...$5.00.

Vagelis Hristidis
School of Computing and Information Sciences

Florida International University
Miami, FL 33199

vagelis@cis.fiu.edu

Ramakrishna Varadarajan
School of Computing and Information Sciences

Florida International University
Miami, FL 33199

ramakrishna@cis.fiu.edu

Figure 1. Sample news document from www.cnn.com

with weight above a threshold. Also notice that the edge weights
are query-independent, so they can be precomputed.

Example 1. Figure 2 shows the document graph for the document
of Figure.1. The document is first split to text fragments v0…v16,
which correspond to its paragraphs (other delimiters are possible
as we explain below). Notice that the edge between nodes v8 and
v7 has the highest weight because there are many infrequent (and
hence with higher idf value) words that are common between
them like “Donoghue” and “BrainGate”. �

v0

v3

v1

v2

0.026

0.015

0.015

v7 v13

v14

0.027

0.017 0.043v10

0.023

v4v8

v5

0.015

0.058 0.091

0.015
0.053

0.027

0.028

0.015

v6

0.044

0.06

0.015

0.015

0.015

0.032

0.060

v90.015 0.015

v12

v11
0.015

0.015

0.015

0.015

v15v16 0.015

0.037

Figure 2. Document Graph for the document in Figure 1.

At query time, the precomputed document graph of a
document is processed as follows to create the best query-specific
summary. First, each node of the document graph is assigned a
score according to the relevance of the corresponding text
fragment to the query. To do so we employ traditional IR ranking
functions. Notice that a full-text index is used to accelerate this
step. Then, we execute our keyword proximity algorithms, which
are inspired by the techniques developed in previous work on
proximity search on graphs [7], where approximation algorithms
are presented for the Group Steiner Tree problem (which is
equivalent1 to the proximity search problem). The best summary
is the top-ranked spanning tree that contains all the keywords. The
ranking considers both the node and the edge weights (which are
query-dependent and independent respectively). Notice that the
problem can be easily modified to allow summaries that do not
contain all keywords, although this case is not further discussed in
this paper.

Example 1 (cont’d). Table 1 shows the top-ranked spanning trees
for the document graph of Figure 2 for the query “Brain chip
research”. The values shown above the nodes in Table 1 indicate
the node scores with respect to the query. The scores of the
spanning trees are a function of their node and edge scores, as
explained in Section 4. Notice that all results contain all query
keywords. The top result is the best summary of the document of
Figure 1 (the keywords of the query are shown in bold) for this
query. Intuitively, this result is the best because it contains the
minimum possible number of nodes and the edge that connects
the two nodes is strong.

Also observe that Result #4 is ranked lower than Result #3
even though it has fewer nodes. The reason is that the nodes of
Result #4 are connected through very commonly occurring words

1 The proximity problem is slightly harder since the sets of nodes do not
have to be disjoint.

like “computer” and “brain” whereas in Result #3 they are
connected through infrequent words like “Friehs”. Notice that to
compute the frequency of a keyword we consider all documents of
the corpus. �

Table 1. Top-5 summaries for query “Brain Chip Research”

Rank Score Summary

1 67.74
v100.017v0

0.046 0.008

2 84.77
v70.027v0

0.046 0.0

v4

0.0003
0.027

3 87.64
v140.043v1

0.012 0.0

v15

0.0005
0.037

4 103.77
v110.015v10

0.008 0.005

5 167.41
v70.027v0

0.046 0.0

v14

0.0
0.032 v150.037

0.0005

The contributions of this paper are the following:

• We present a framework to add structure to text
documents, which is used for summarization purposes
in this work, although it can be leveraged for other
problems as well, like ranking of query results.

• We show how we can use the generated document
graphs to create high-quality query-specific summaries.
We performed two user surveys to compare the quality
of our approach to other current approaches-Desktop
search engines and DUC peers2.

• We present and experimentally evaluate execution
algorithms that prove the feasibility of our approach.

• We built a prototype of the system, which is available
on the Web at http://dbir.cs.fiu.edu/summarization.

The paper is organized as follows. Section 2 presents the
related work. Section 3 formally defines the problem, while
Section 4 explains how we add structure to documents. Section 5
presents the various algorithms for efficient summary computation
using the document graphs. Sections 6 and 7 present the quality
and performance experiments respectively. Section 8 describes the
developed prototype. Finally Section 9 discusses our conclusions
and future work.

2. RELATED WORK
2.1 Document Summarization.
 A large corpus of work has focused on generating query-
independent summaries [6,3,16,5]. The OCELOT system [6]
provides the summary of a web page by selecting and arranging
the most (query-independent) “important” words of the page.
OCELOT uses probabilistic models to guide the selection and
ordering of words into a summary. Amitay and Paris [3] propose a
new fully automatic pseudo-summarization technique for Web

2 http://duc.nist.gov/

pages, where the anchor text of hyperlinked pages is used to
construct summaries. This approach is unique since it ignores the
actual content of a document. [5] uses lexical chains for text
summarization. In particular, they use Wordnet to create all
lexical chains and choose the strongest ones as a summary of the
document.

The majority of systems participating in the past Document
Understanding Conference [11] (a large scale summarization
evaluation effort sponsored by the United States government), and
the Text Summarization Challenge [14] are extraction based.
Extraction-based automatic text summarization systems extract
parts of original documents and output the results as summaries
[10,12,16,20,25]. Other systems based on information extraction
[35,47] and discourse analysis [30,42] also exist but they are not
yet usable for general-domain summarization. However these
works do not exploit the inherent structure of the document and
mostly focus on query-independent summaries. In this work (a
preliminary version appears in [44]) we also show the semantic
connections between the extracted fragments, which improve the
quality as shown in Section 6.

[29,31] use natural language processing techniques to create
summaries for documents, which cannot scale to large corpora
like the Web and are limited to the writing style of the page
authors.

White et al. [45,46], Tombros and Sanderson [43], Zechner
[47] and Goldstein et al. [16] create query-dependent summaries
using a sentence extraction model in which the documents (web
pages) are broken up into their component sentences and scored
according to factors such as their position, the words they contain,
and the proportion of query terms they contain. A number of the
highest-scoring sentences are then chosen as the summary. Lin
[27] compresses the sentences to achieve better summaries.
[1,19,38,39] select the best passage of a document as its summary.
However, these works ignore possible semantic connections
between the sentences or the possibility that linking a relevant set
of text fragments will provide a better summary. Radev et al. [36]
provide a technique for multi-document summarization used to
cluster the results of a web keyword query. However, their
clustering and summarization techniques are query-independent in
contrast to our work. [13,32] provide a technique to rank
sentences based on their similarity with other sentences across
multiple documents and then provide a summary with the top
ranked sentences. However, their methods are query-independent
in contrast to our work.

The idea of splitting a Web page to fragments has been used
by Cai et al. [9], Lee et al. [26] and Song et al. [41], where they
extract query-independent rankings for the fragments, for the
purpose of improving the performance of web search and also to
facilitate web mining and accessibility. Cai et al. [9] partition a
web page into blocks using the vision-based page segmentation
algorithm. Based on block-level link analysis, they proposed two
new algorithms, Block Level PageRank and Block Level HITS to
extract authoritative parts of a page. Lee et al. [26] discuss a Web
block classification algorithm after Web page division into
semantic blocks, while Song et al.[41] provide learning
algorithms for block importance.

Finally, all major Web search engines (Google, Yahoo!,
MSN Search, and so on) generate query-specific snippets of the

returned results. Although their algorithms are not published, we
observed that they simply extract some of the query keywords and
their surrounding words. Recently, some of these companies made
available tools to provide the same search and snippet
functionality on a user’s desktop [17,33]. We include these
snippets in our user study of Section 6.

2.2 IR Ranking.
In creating the document graph and computing the node weights,
we adopt ranking principles from the Information Retrieval
community. Various methods for weighting terms have been
developed [40]. The most widely used are the Okapi (Equation 1)
and the pivoted normalization weighting, which are based on the
tf-idf principle.

qtfk

qtfk

tf
avdl

dl
bbk

tfk

df

dfN

dQt
+
+

++−

+
+

+−∑
∈ 3

3

1

1

,

)1(
.

))1((

)1(
.

5.0

5.0
ln

tf is the term’s frequency in document,
qtf is the term’s frequency in query,
N is the total number of documents in the collection,
df is the number of documents that contain the term,
dl is the document length (in words),
avdl is the average document length and
k1 (between 1.0–2.0), b (usually 0.75), and k3

(between 0–1000) are constants

 (1)

2.3 Keyword search in data graphs.
In the second stage of our approach, when the document graphs
are already created and a query arrives, the system searches the
document graphs for sub-trees that contain all query keywords.
This problem has been studied by the database and graph-
algorithms communities. In particular, recent work [15,7,2,22,21,
24,18] has addressed the problem of free-form keyword search on
structured and semi-structured data. These works follow various
techniques to overcome the NP-completeness of the Group
Steiner problem, to which the keyword proximity search problems
can be reduced.

Goldman et al. [15] use precomputation to minimize the
runtime cost. BANKS [7] views the database as a graph and
proposes algorithms to approximate the Group Steiner Tree
problem. We consider and experimentally evaluate modifications
of these algorithms in this work. XRANK [18] works on XML
trees, which simplifies the problem. Li et al. [28] tackle the
problem of proximity search on the Web, which is viewed as a
graph of hyperlinked pages. They use of the concept of
information unit, which can be viewed as a logical Web document
consisting of multiple physical pages. [2,22,21] perform keyword
search on relational databases and exploit the schema properties
to achieve efficient execution.

Finally, notice that Buneman et al. [8] view the problem of
adding structure to unstructured data from a completely different
angle: how to define a schema to describe a labeled graph (e.g., an
XML document).

3. PROBLEM DEFINITION
Let D={d1,d2,,…,dn} be a set of documents d1,d2,,…,dn. Also let
size(di) be the length of di in number of words. Term frequency
tf(d,w) of term (word) w in document d is the number of
occurrences of w in d. Inverse document frequency idf(w) is the
inverse of the number of documents containing term w in them.

A keyword query Q is a set of keywords Q={w1,…,wm}. The
result of the keyword query, which is not the focus of this work, is
a list of documents from D ranked according to their relevance to
Q. A key component in our work is the document graph G(V,E) of
a document d, which is defined as follows:

Definition 1 (Document Graph). The document graph G(V,E) of
a document d is defined as follows:

• d is split to a set of non-overlapping text fragments t(v),
each corresponding to a node v∈V.

• An edge e(u,v)∈E is added between nodes u,v∈V if
there is an association (further discussed in Section 4)
between t(u) and t(v) in d. �

Hence, we can view G as an equivalent representation of d,
where the associations between text fragments of d are depicted.
Example 1 explains a possible document graph for the document
of Figure 1. Notice that there are many ways to define the
document graph for a document. In this work we follow a
semantic approach where a delimiter is chosen to create text
fragments, and edges are added when the text fragments contain
common (or equivalent) words as we explain in Section 4.

Furthermore, notice that the nodes and edges of the
document graph may be weighed according to a variety of
reasons, both query-dependent and independent. For example,
authority flow techniques [4] on the document graph can be
employed to assign both query-dependent and independent scores.
In this work (see Section 4) we consider query-dependent (resp.
independent) weights for the nodes (resp. edges).

Definition 2 (Minimal Total Spanning Tree). Given a
document graph G(V,E), a minimal total spanning tree of G with
respect to a keyword query Q={w1,…,wm} is a sub-tree T of G that
is both:

• Total: every keyword w∈Q is contained in at least one
node of T.

• Minimal: we cannot remove any node from T and still
have a total sub-tree. �

A summary of a document d with document graph G, with
respect to a keyword query Q={w1,…,wm}, is a minimal total
spanning tree of G for Q.

Problem 1 (Summarization). Given a document d∈D and its
document graph G, and a keyword query Q, find the top summary,
i.e., the minimum score minimal total spanning tree.

Notice that the totality property implies that we use AND
semantics, that is, require all keywords to be in the summary.
Another alternative is OR semantics where not all keywords are
required to be in the summary. OR semantics are useful in the
following scenarios: (a) the keywords are rare and hence no

document contains all of them, so to summarize the query result
we need OR semantics and (b) in order to have more compact
summaries we may choose to not display the less important
keywords. In this paper we only present our results on AND
semantics due to space limitations. Our techniques and algorithms
can be extended to generate summaries for OR semantics, by
relaxing the totality constraint on summary spanning trees.

Furthermore, the fact that the summaries are minimal means
that we do not allow any nodes not containing any keyword as
leaf nodes in the summary tree. However, nodes with no keywords
can be internal nodes. For example, in the second result of Table
1, node v7 has no keywords, but it acts as a connector between
nodes v0 and v4 which contain the keywords.

The score of a (summary) tree T is calculated using a scoring
function based on the weights of the nodes and edges of T. The
scoring function used in this work is presented in Section 4.

Example 1 (cont’d). For the document of Figure 1 and the
keyword query “Brain Chip Research”, the top summary is shown
in Figure 3.

Figure 3. Top summary of the document of Figure 1 for query
“Brain Chip Research”

Notice that by the definition of Problem 1, a summary may
contain internal text fragments with no query keywords, which are
called Steiner nodes. The reason we include such nodes is to
achieve semantic coherence in the generated summaries, which
increases the user satisfaction as we show in Section 6. If brevity
is the top priority then Steiner nodes can be omitted.

4. ADDING STRUCTURE TO
DOCUMENTS
As we explain below, there are many ways to create and assign
weights to a document graph. In this section we present the
specific approach we follow to create a document graph. In
particular, given a document d∈D, a query Q and a set of input
parameters (explained below), we construct a document graph
G(V,E). Notice that Q is only used in assigning weights to the
nodes of G, which is a desirable property since the rest of G can
be computed before queries arrive.

The following input parameters are required at the
precomputation stage to create the document graph:

1. Threshold for edge weights. Only edges with weight not
below threshold will be created in the document graph.

2. Parsing Delimiter. The parsing delimiter is used to split
the document to text fragments. Typical choices are the
new-line character (each text fragment corresponds to a
paragraph) or the period (each text fragment is a
sentence). We found that for the domain of news articles
that we experimented with (see Section 6) the new-line

is preferable since paragraphs are typically short and
leads to more compact document graphs.

Example 1 (cont’d) The new-line character was used to parse the
document of Figure 1 into 17 text fragments v0,…,v16. �

After parsing the document and creating the graph nodes
(text fragments), for each pair of nodes u,v we compute the
association degree between them, that is, the score (weight)
EScore(e) of the edge e(u,v). If EScore(e)≥threshold, then e is
added to E. The score of edge e(u,v) where nodes u, v have text
fragments t(u), t(v) respectively is:

()

))(())((

))())),(()),(((

)())()((

vtsizeutsize

widfwvttfwutft

eEScore vtutw

+

⋅+
=

∑
∈ I

(2)

where tf(d,w) is the number of occurrences of w in d, idf(w) is the
inverse of the number of documents containing w, and size(d) is
the size of the document (in words).

That is, for every word w appearing in both text fragments
we add a quantity equal to the tf⋅idf score of w. Notice that stop
words are ignored. Furthermore, we use thesaurus and stemmer
(we rely on Oracle interMedia as explained in Section 7) to match
words that are equivalent. The sum is divided by the sum of the
lengths of the text fragments in the same way as the document
length (dl) is used in traditional IR formulas. Notice that Equation
2 is an adaptation of traditional IR formulas for a pair of
documents.

Notice that alternative ways to compute the edge weights are
possible, like the cosine document distance, which however have
similar effect as the tf⋅idf method that we employ. In future
versions of our system we plan to also use Wordnet and Latent
Semantic Indexing techniques to improve the quality of the edge
weights, which is challenging on the performance level since our
system is interactive.

The calculation of the edge weights concludes the query-
independent part of the document graph creation. Next, when a
query Q arrives, the nodes in V are assigned query-dependent
weights according to their relevance to Q. In particular, we assign
to each node v corresponding to a text fragment t(v) node score
NScore(v) defined by the Okapi formula (Equation 1). In order to
accelerate this step of assigning node scores we built a full-text
index on the set D of documents that efficiently allows locating
the nodes that contain the query keywords and also calculate the
query-dependent score. The details of this index are out of the
scope of this paper.

4.1 Summary Scoring Function
Given the document graph G and a query Q, a summary (subtree
of G) T is assigned a score Score(T) by combining the scores of
the nodes v∈T and the edges e∈T. In particular Equation 3
computes the summary score.

∑
∑∈

∈

+=
Teedge

Tvnode

vNScore
b

eEScore
a

)(

1

)(

1
Score(T)

(3)

Brain chip offers hope for paralyzed.
 Donoghue’s initial research published in the science
journal Nature in 2002 consisted of attaching an
implant to a monkey’s brain that enabled it to play a
simple pinball computer game remotely.

where a and b are constants (we use a=1 and b=0.5), EScore(e) is
the score of edge e using Equation 2, NScore(v) is the score of
node v using Equation 1.

Intuitively, if T is larger (has more edges) then its score
should degrade (increase) since larger trees denote looser
semantic connections [23,2,22,7]. This is the reason we take the
sum of the inverse of the edge scores in Equation 3. Furthermore,
if more nodes of T are relevant to Q, the score should improve
(decrease). Hence, we take the inverse of the sum of the node
scores.

Constants a and b are used to calibrate the importance of the
size of the summary (in number of edges) versus the amount of
relevant information contained. In particular, higher a values
boost the score of smaller and tightly connected summaries,
whereas higher b values benefit summaries with more relevant
content (i.e., containing nodes with high score with respect to the
query). Notice that a and b can also be viewed as adjusting
parameters for the query-independent and dependent parts of the
scoring function respectively.

Example 1 (cont’d). The top summary T for the document of
Figure 1 with document graph shown in Figure 2 is shown in
Figure 4. T has a single edge e(v0,v10) with score determined by
the common word “brain” between v0 and v10. Also, the scores of
nodes v0, v10 are computed using Equation 1, for the query
“Brain chip research”. �

5. EFFICIENT SUMMARY
COMPUTATION
This section tackles the problem of how; given the document
graph G of a document d for a query Q, to compute the top
summary (or summaries) for d with respect to Q. For clarity, we
only present algorithms for AND semantics. Notice that the
problem of finding the top summary (total minimal spanning tree)
is very similar to the Group Steiner Tree problem [37], which is
known to be NP-complete. Our problem is slightly more complex
since the groups of nodes are not disjoint, in contrast to the Group
Steiner Problem, which is defined as follows:

Given an undirected, connected, and weighted graph G=(V,
E, l), where V is the set of all vertices in G, E is the set of edges in
G, and l is a weight function which maps each edge e∈E to a
non-negative real number; and given a family R={R1,….Rk} of
disjoint groups of vertices, where Ri is a subset of V, the problem
is to find a minimum-cost tree T which contains at least one vertex
from each group Ri. Since the weights of the graph are non-
negative, the solution is a tree-structure.

In contrast to previous work on proximity search on data
graphs (see Section 2) where the top-k [21,7] or all [2,22] total
minimal spanning trees are requested, in our summarization
problem we typically care for only the single top summary, that is,
the top-1 total minimal spanning tree. This allows more efficient
algorithms as we explain below. Notice that the presented
algorithms, which can be viewed as approximations of the Group
Steiner Tree problem, can be divided along two dimensions. First,
we have multi-result and top-1 algorithms, which compute a set of
summaries or a single summary for a document and query pair
respectively. Second, we have enumeration and expanding
algorithms, which follow different execution approaches as
explained below.

Precomputation. In order to boost the performance of the
algorithms, we precompute and store the following information:

• A full-text index is built, as discussed above, to
efficiently locate the nodes that contain the keywords
and calculate their query-specific score.

• The all-pairs shortest paths between the nodes of the
document graph G of every document d. That is, for
each pair of nodes u,v∈G, we precompute and store the
shortest path u~u1~…~ur~v.

5.1 Multi-Result Enumeration Algorithm
This algorithm returns a ranked list of summaries for a document
and a query. In particular, it returns a summary for each possible
combination of nodes that contain the keywords.

The algorithm (Figure 4) proceeds as follows. First, we find
all combinations of nodes in G that are minimal (no node is
redundant) and total (contain all keywords in Q). Then, for each
combination we create a complete graph Gc (called closure

Figure 4. Multi-Result Enumeration Algorithm

graph) that contains all nodes in the combination and all-pairs
edges between them with weight equal to their distance (taken by
the precomputed all-pairs shortest paths). Then, we calculate all
possible spanning trees in Gc, and compute their scores using
Equation 3. Then, for the top spanning tree we insert the Steiner
nodes and trim redundant nodes to make it minimal. Then its
accurate score is computed and added to the results list. Finally,
the results are ranked and displayed.
Example 2. Consider the document graph in Figure 2 and the
query “Brain chip research”. The nodes that contain the keywords
are v0, v1, v3, v4, v10, v11, and v15. We then find all minimal and
total node combinations, which are {v0, v10}, {v15, v0}, {v0, v3},

MultiResultEnumeration (document graph G, query Q)

1. Results ←∅; /*stores summaries*/

2. Find all nodes in G that contain some keyword of Q; /*use
full-text index*/

3. Find all minimal combinations of nodes that when taken
together contain all keywords in Q;

4. For each minimal node combination C do

 {

5. Create closure graph Gc that contains only the nodes in C;

6. Find all possible spanning trees S of Gc;

7. Calculate the score of each spanning tree in S using Eq. 3;

8. Pick the spanning tree T with the minimum score;

9. Replace the edges u~v in T with their precomputed shortest
paths u~u1~…~uk~v; /* i.e., we are adding the Steiner
nodes.*/

10. Trim T to make it a minimal total spanning tree;

11. Calculate the score of T using Equation 3 and add T to
Results;

12. Sort and output summaries in Results;

 }

{ v4, v0}, and so on. For each combination we create a closure
graph. For example, the closure graph for the second combination
is v15~v0 with edge weight 0.096 (which is the length of the
shortest path from v15 to v0). We then find all possible spanning
trees of this graph, which is just v15~v0, for the above closure
graph. Then, we replace the edge between v15 and v0 with the
shortest path between them, which is v15~v14~v7~v0. This tree is
already minimal and hence we output this result along with its
score. The Steiner nodes in this result are v14 and v7, which don’t
have any keywords in them but are used to relate the other 2
nodes, v15 and v0. �

5.2 Top-1 Enumeration Algorithm
The Top-1 enumeration algorithm returns only one summary per
document, for a query. The reason we created top-1 variants for
both the enumeration and the expanding search (Sections 5.3, 5.4)
is that typically the user only requests a single summary for a
document, as in the case of snippets in Web search engine results.

This algorithm is similar but more efficient than the multi-
result enumeration algorithm, because it only adds the Steiner
nodes (line 9 in Figure 4) for a single spanning tree. In particular,
this algorithm finds the top spanning tree among all node
combinations and then substitutes the Steiner nodes, while the
multi-result algorithm finds the top spanning tree and substitutes
the Steiner nodes for each node combination. The pseudo-code
for this algorithm has the following difference with respect to
Figure 4: Lines 8-11 are moved outside the for-loop, that is, the
for-loops ends at line 7.

Example 2 (cont’d). For the document graph in Figure 2 and
query “Brain chip research”, this algorithm goes through the same
steps as in the case of enumeration algorithm. It computes all
node combinations as explained in the previous example. The
only difference is that this algorithm first finds the minimum-
score spanning tree v1~v3 with edge weight 0.03 (which is the
length of the shortest path from v1 to v3) among all spanning trees
of all node combinations, and then replaces that edge with the
shortest path v1~v2~v3, where v2 is the Steiner node and
recomputes the score and displays it as the summary of the
document.

5.3 Multi-Result Expanding Search
Algorithm
The basic idea behind this algorithm (inspired by the algorithm in
BANKS [7]) is that we start from the nodes that contain the query
keywords and progressively expand them in parallel until we find
all minimal total spanning trees. The advantage of this algorithm
compared to the enumeration algorithms is that we do not need to
repeat the processing for all combinations of nodes, which may be
too many if the document is large and contains many occurrences
of the query keywords.

In particular, the algorithm (Figure 5) finds (using the full-
text index) all the nodes that match some keywords in the query
and starts expanding them incrementally, the best (maximum-
score) edge at a time. We call the subgraph created from each
keyword node v expanding area of v. Notice that, in contrast to
BANKS, we use the precomputed all-pairs shortest paths data to
efficiently grow the expanding area. That is, we only consider the
edges that are contained in a shortest path from the current node v

to any other node u that contains additional query keywords than
v. When two or more expanding areas meet we check for possible
new summaries. If a summary is found, it is trimmed to become
minimal and its score is calculated using Equation 3. The parallel
expansion of the expanding areas terminated when for each
combination of nodes that contains all keywords, their expanding
areas have met.

Example 3. For the document graph in Figure 2 and the query
“Brain chip research”, the keyword nodes are v0, v1, v3, v4, v10,
v11, and v15. We grow the expanding area of v0 to v0~v10, which
is the first precomputed single source shortest path of source v0
and check for possible summaries. v0~v10 is total as well as
minimal and hence we add it to the set of results. We grow each
expanding area using its precomputed shortest paths. Then we
grow v1 to v1~v2, v3 to v3~v2, v4 to v4~v3, v10 to v10~v9, v11 to
v11~v10 and once we expand v11 we have another summary
v11~v10 that is total and minimal. We keep doing this until the
expanding areas of all the keywords nodes have been met and
hence we can’t have any more possible summaries and hence we
terminate. �

Figure 5. Multi-Result Expanding Search Algorithm

5.4 Top-1 Expanding Search Algorithm
This algorithm differs from the multi-result expanding search
algorithm in that it stops expanding the expanding areas once the
first summary is produced. Intuitively this greedy approach
produces a high-quality summary, as the trees produced first have
smaller sizes, which implies smaller scores (Equation 3). The
pseudo code for the Top-1 expanding search algorithm differs
from the multi-result variant in that, once it finds a summary in
line 6 it trims it, calculates the score and adds it to results and
exits the loop. So we have an extra line in Figure 5: “7a. break;”.

MultiResultExpandingSearch(document graph G, query Q)

1. Results ←∅; /*stores summaries*/

2. Find all nodes N={N1,…,Nm} that contain the keywords in
Q; /*Ni has the nodes that contain wi*/

3. Repeat until the expanding areas of all combinations of
nodes in N1,…,Nm meet. {

4. For each node v in N do

 {

5. Add to the expanding area of v the maximum-score
adjacent edge from the (precomputed) shortest paths
starting at v and ending at a node in N not containing the
same keywords as v;

6. Check for new results (summaries) T; /*i.e., trees that
contain a node from each of N1,…,Nm */

7. Trim summaries T to become minimal;

8. Calculate the score of T using Equation 3 and store in
Results;

9. Sort and output summaries in Results;

 } }

Example 3 (cont’d). For the document graph in Figure 2 and the
query “Brain chip research”, this algorithm goes through the same
steps as its multi-result variant, but stops expanding once it finds
the first summary, which is v10~v11 as explained in the previous
example. �

6. QUALITY EXPERIMENTS
To evaluate the quality of the results of our approach, we
conducted two surveys. The subjects of the survey are fifteen
students (of all levels and various majors) of FIU, who were not
involved in the project. In this survey the users were asked to
evaluate the summaries based on their quality and size (a longer
summary carries more information but is less desirable).Each
participant was asked to compare the summaries and rank them,
assigning a score of 1 to 5, according to their quality for the
corresponding query. A rank of 5 (1) represents the summary that
is most (least) descriptive.

6.1 Comparison with DUC dataset
The dataset used in this survey consists of ten documents and two
queries taken from the DUC 2005 dataset3, as shown in Table 2.
We compare our summaries with DUC Peer summaries for
quality. DUC peers are human and automatic summaries used in
quality evaluation. We compared our summaries against the DUC
peers with highest linguistic quality. Unfortunately, most of the
summaries in the DUC datasets are query-independent and the
few query-dependent ones are multi-document. Hence, in order to
compare our work to that of DUC we used the following method
to extract single-document summaries from query-dependent
multi-document summaries for a set of ten documents over two
topics. The sentences that have been extracted from a document d
to construct the multi-document summary are viewed as d’s
single-document summary for the query/topic. Notice that the
DUC summaries are created by extracting whole sentences from
documents.

Table 2. Average summary ratings for DUC topics

Query 1 (International Organized
Crime)

DUC Topic ID: d301i

Query 2 (Women in
Parliaments)

DUC Topic ID: d321f

Doc. ID
DUC
Peer

Top-1
Expanding Doc. ID

DUC
Peer

Top-1
Expanding

FT941-3237 2.33 4.66 FT921-7786 4.00 2.50

FT944-8297 2.50 3.33 FT922-190 2.00 4.00

FT931-3563 2.83 3.00 FT921-937 2.00 4.33

FT943-16477 4.00 4.17 FT922-13353 2.83 4.17

FT943-16238 3.67 3.67 FT921-74 2.33 3.67

The results of the survey prove the superiority of our approach,
as shown in Table 2. Our method of combining extracted
sentences using semantic connections in the form of Steiner trees
leads to higher user satisfaction than the traditional sentence
extraction methods. In particular, the Steiner sentences in

3 http://duc.nist.gov/

summaries provide coherency in the aggregation of the keyword-
containing-sentences.

6.2 Comparison with Google and MSN
Desktop
The dataset used in this survey consists of two news documents
taken from the technology section of cnn.com. The participants
were asked to evaluate the quality of the summaries of the two
documents with respect to five queries. We chose queries where
keywords appear both close and far from each other. For each
query-document pair, three summaries are displayed
corresponding to (a) the result of the Top-1 expanding search
algorithm, (b) Google Desktop’s summary, and (c) MSN
Desktop’s summary. Summaries (b) and (c) were created by
indexing the two documents in our desktop and then submitting
the five queries to the Desktop engines. The summaries are the
snippets output for these documents. In order to compare apples
to apples, we chose queries for which the length of the summaries
produced by all three methods are similar, since clearly it is not
fair to compare summaries of different lengths as some people
favor conciseness while others the amount of information.

In this survey we set constant a to 1 and b to 0.5 in Equation
3, which we found to produce higher-quality summaries. Notice
that by increasing the value of constant a, we favor short results,
while by increasing constant b we favor longer and more
informative results. Hence, by setting a to 1 and b to 0.5 we favor
shorter summaries, which have similar size to the ones produced
by Google and MSN Desktop. This makes their comparison fairer.

Table 3. Average summary ratings for documents D1 and D2

Google Desktop MSN Desktop Top-1 Expanding

Queries D1 D2 D1 D2 D1 D2

1 2.33 3.67 2.33 3.67 4.87 3.67

2 2.00 3.33 2.00 3.00 4.33 3.33

3 3.00 2.67 0.67 3.00 4.93 4.00

4 1.67 2.67 1.67 3.00 4.67 4.00

5 2.00 1.67 3.00 1.00 4.00 3.67

Table 4. Queries used for documents D1 and D2

Queries Document D1 Document D2

1 Microsoft worm protection IT Research awards

2 Anti-virus protection Algorithms development
research

3 Recovering worm deleted
files

 Software projects

4 Worm affected agencies Large research grants

5 Deleted computer software Computer network
security project

The results of the survey, which prove the superiority of our
approach, are shown in Table 3. Notice that Google and MSN
Desktop systems do not always include all keywords in the
summary when they are more than two and have big distances

between them. In contrast, our approach always finds a
meaningful way to connect them.

7. PERFORMANCE EXPERIMENTS
To evaluate the performance of our approach we used a dataset of
200 news documents taken from the technology section of
cnn.com. We used a PC with Pentium 4 2.44GHz processor and
256MB of RAM running Windows XP. The algorithms were
implemented in Java. To build the full-text index we used Oracle
interMedia [34] and stored the documents in the database. JDBC
was used to connect to the database system.

First, we compare the performance of the four algorithms of
Section 5 for summarizing keyword queries of various lengths.
The execution times consist of two parts: (a) the computation of
the scores of the nodes of the document graph (remember that this
is query-specific and cannot be precomputed), and (b) the
generation of the top summaries (minimal total spanning trees) in
the document graph. The first part is handled by Oracle
interMedia and the average times for a single document for
various-length queries are shown in Table 5.

Table 5. Average times to calculate node weights

Number of
keywords

2 3 4 5

Time (msec) 5.31 9.37 11.50 17.33

0
1

2
3

4
5

6
7

2 3 4 5
Number of keywords in query

P
ro

ce
ss

in
g
 t
im

e
(m

se
c)

Mult i-result Enumeration
Mult i-result Expanding

(a) Multi-Result algorithms

0

1

2

3

4

5

6

2 3 4 5
Number of keywords in the query

P
ro

ce
ss

in
g
 T

im
e
 (
m

se
c)

Top-1 Enumeration

Top-1 Expanding

(b) Top-1 algorithms

Figure 6. Processing times

The second part of the execution is handled separately by the
four algorithms and the results are shown in Figures 6 (a) and (b).
In particular, Figure 6 (a) compares the performance of the Multi-
Result algorithms, whereas Figure 6 (b) the Top-1 algorithms. We
observe that the expanding search algorithms are faster than the
enumeration ones, especially for long queries. Also, notice that
there is only a slight difference in the performance of the Top-1
and the Multi-Result algorithms, because the document graphs are
relatively small and hence there is no big difference between
computing one or more summaries.

Notice that we do not compare the performance of our
algorithms to BANKS, since our Multi-Result algorithms are
adaptations of the BANKS algorithms to our problem, which is
different as we explain in Section 5.

Finally, we measure the accuracy of the Top-1 versions of
the algorithms. In particular, we measure (Table 6) the average
rank of the summary of the Top-1 algorithms in the list of
summaries created by the Multi-Result algorithms. For example, if
the summary of the Top-1 algorithm appears as the third summary
of the Multi-Result algorithm, then the rank is 3. We observe that
the Top-1 expanding algorithm better approximates the
corresponding Multi-Result algorithm’s results.

Table 6. Average ranks of Top-1 Algorithms with respect to
Multi-Result algorithms

Number of keywords 2 3 4 5

Top-1 Enumeration
Algorithm.

1.4 1.8 2.1 2.78

Top-1 Expanding Search
Algorithm.

1.1 1.3 1.4 1.8

8. CONCLUSIONS AND FUTURE WORK
In this work we presented a structure-based technique to create
query-specific summaries for text documents. In particular, we
first create the document graph of a document to represent the
hidden semantic structure of the document and then perform
keyword proximity search on this graph. We show with a user
survey that our approach performs better than other state of the art
approaches. Furthermore, we show the feasibility of our approach
with a performance evaluation.

In the future, we plan to extend our work to account for links
between documents of the dataset. For example, exploit
hyperlinks in providing summarization on the Web. Furthermore,
we are investigating how the document graph can be used to rank
documents with respect to keyword queries. Finally, we plan to
work on more elaborate techniques to split a document to text
fragments and assign weights on the edges of the document graph.

9. REFERENCES
[1] J.Abracos and G. Pereira-Lopes. Statistical methods for

retrieving most significant paragraphs in newspaper
articles. In ACL/EACL Workshop on Intelligent Scalable
Text Summarization, 1997

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A
System For Keyword-Based Search Over Relational
Databases. ICDE, 2002

[3] E. Amitay, C. Paris: Automatically Summarizing Web
Sites -Is there any way around it? CIKM, 2000

[4] A. Balmin, V. Hristidis, Y. Papakonstantinou: Authority-
Based Keyword Queries in Databases using ObjectRank.
VLDB, 2004

[5] R. Barzilay and M. Elhadad: Using lexical chains for text
summarization. ISTS, 1997

[6] A. L. Berger and V. O. Mittal, OCELOT: A System for
summarizing web pages. SIGIR, 2000

[7] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti and
S,Sudarshan: Keyword Searching and Browsing in
Databases using BANKS. ICDE, 2002

[8] P. Buneman, S. Davidson, M. Fernandez, D.
Suciu "Adding Structure to Unstructured Data". ICDM,
2003

[9] D. Cai, X. He, J.Wen, W.Ma: Block-level Link Analysis.
SIGIR, 2004

[10] H.H. Chen, J.J. Kuo, and T.C. Su: Clustering and
Visualization in a Multi-Lingual Multi- Document
Summarization System. ECIR, 2003

[11] Document Understanding Conference http://duc.nist.gov,
2002

[12] H.P. Edmundson: New Methods in Automatic Abstracting.
ACM Journal, 1969

[13] G. Erkan and D.R. Radev. Lexrank: Graph-based
centrality as salience in text summarization. JAIR, 2004

[14] T. Fukusima and M. Okumura: Text Summarization
Challenge Text Summarization Evaluation in Japan. WAS,
2001

[15] R. Goldman, N. Shivakumar, S. Venkatasubramanian, H.
Garcia-Molina: Proximity Search in Databases. VLDB,
1998

[16] J. Goldstein, M. Kantrowitz, V. Mittal, J. Carbonell:
Summarizing text documents: Sentence selection and
evaluation metrics. ACM SIGIR, 1999

[17] Google Desktop search http://desktop.google.com/
[18] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.

XRANK: Ranked Keyword Search over XML Documents.
ACM SIGMOD, 2003

[19] M.A. Hearst . Using categories to provide context for full-
text retrieval results. In Proceedings of the RIAO, 1994

[20] E. Hovy and C.Y. Lin: The automated acquisition of topic
signatures for text summarization. ICCL, 2000

[21] V. Hristidis, L. Gravano, Y. Papakonstantinou: Efficient
IR-Style Keyword Search over Relational Databases.
VLDB, 2003

[22] V. Hristidis, Y. Papakonstantinou: DISCOVER: Keyword
Search in Relational Databases. VLDB, 2002

[23] V. Hristidis, Y. Papakonstantinou, A. Balmin: Keyword
Proximity Search on XML Graphs. ICDE, 2003

[24] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R.
Desai, H. Karambelkar. Bidirectional Expansion For
Keyword Search on Graph Databases. VLDB, 2005

[25] J. Kupiec, J. Pederson, and F. Chen: A Trainable
Document Summarizer, SIGIR, 1995

[26] C.H. Lee, M.Y. Kan, S. Lai: Stylistic and Lexical Co-
training for Web Block Classification. WIDM, 2004

[27] C.Y. Lin: Improving Summarization Performance by
Sentence Compression - A Pilot Study. IRAL, 2003

[28] W.S. Li, K. S. Candan, Q. Vu, and D. Agrawal: Retrieving
and Organizing Web Pages by "Information Unit", WWW,
2001

[29] C. Y. Lin and E. Hovy. Identifying topics by position. In
Proceedings of the ACL Conference on Applied Natural
Language Processing, 1997

[30] D. Marcu. Discourse trees are good indicators of
importance in text. Advances in Automatic Text
Summarization, 1999

[31] D. Marcu. The rhetorical parsing of natural language texts.
In Proceedings of the 35th Annual Meeting of the
Association for Computational Linguistics, 1997

[32] R. Mihalcea, P. Tarau, TextRank: Bringing Order into
Texts, EMNLP 2004

[33] MSN Desktop search http://toolbar.msn.com/
[34] Oracle interMedia

http://www.oracle.com/technology/products/intermedia,
2005

[35] D.R. Radev and K.R. McKeown: Generating Natural
Language Summaries from Multiple On-line Sources.
Computational Linguistics, 1998

[36] D.R.Radev, W. Fan, Z. Zhang: WebInEssence: A
Personalized Web-Based Multi-Document Summarization
and Recommendation System. NAACL Workshop on
Automatic Summarization, 2001

[37] P. W. G. Reich. Beyond Steiner’s Problem: A VLSI
Oriented Generalization. Workshop on Graph-Theoretic
Concepts in Computer Science, 1989

[38] G. Salton, A. Singhal, C. Buckley, M. Mitra. Automatic
text decomposition using text segments and text themes.
Hypertext, 1996

[39] G. Salton , A. Singhal , M. Mitra, and C. Buckley:
Automatic text structuring and summarization.
Information Processing and Management, 1997

[40] A. Singhal: Modern Information Retrieval: A Brief
Overview, Google, IEEE Data Eng. Bull, 2001

[41] R. Song, H. Liu, J. Wen, W. Ma: Learning Block
Importance Models for Web Pages. WWW, 2004

[42] T. Strzalkowski, G. Stein, J. Wang, and B, Wise. A Robust
Practical Text Summarizer. In I. Mani and M. Maybury
(eds), Advances in Automatic Text Summarization, 1999

[43] A. Tombros, M. Sanderson. Advantages of Query Biased
Summaries in Information Retrieval. SIGIR 1998

[44] R. Varadarajan, V Hristidis: Structure-Based Query-
Specific Document Summarization. Poster paper at CIKM
2005

[45] R. W. White, I. Ruthven and J. M. Jose: Finding Relevant
Documents using Top Ranking Sentences: An Evaluation
of Two Alternative Schemes, SIGIR, 2002

[46] M. White, T. Korelsky, C. Cardie, V. Ng, D. Pierce, and
K. Wagstaff.: Multidocument Summarization via
Information Extraction. HLT, 2001

[47] K. Zechner. Fast generation of abstracts from general
domain text corpora by extracting relevant sentences. In
Proceedings of the International Conference on
Computational Linguistics, 1996

