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ABSTRACT  
There has been a great amount of work on query-independent 
summarization of documents. However, due to the success of Web 
search engines query-specific document summarization (query 
result snippets) has become an important problem, which has 
received little attention. We present a method to create query-
specific summaries by identifying the most query-relevant 
fragments and combining them using the semantic associations 
within the document. In particular, we first add structure to the 
documents in the preprocessing stage and convert them to 
document graphs. Then, the best summaries are computed by 
calculating the top spanning trees on the document graphs. We 
present and experimentally evaluate efficient algorithms that 
support computing summaries in interactive time. Furthermore, 
the quality of our summarization method is compared to current 
approaches using a user survey.   

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Search process 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
query-specific summarization, keyword search, Steiner tree 
problem, user survey 

1. INTRODUCTION 
As the number of documents available on users’ desktops and the 
Internet increases, so does the need to provide high-quality 
summaries in order to allow the user to quickly locate the desired 
information. A compelling application of document 
summarization is the snippets generated by Web search engines 
for each query result, which assist users in further exploring 
individual results. The Information Retrieval (IR) community has 
largely viewed text documents as linear sequences of words for 

the purpose of summarization (with some exceptions as explained 
in Section 2). Although this model has proven quite successful in 
efficiently answering keyword queries, it is clearly not optimal 
since it ignores the inherent structure in documents. 

Furthermore, most summarization techniques are query-
independent and follow one of the following two extreme 
approaches: Either they simply extract relevant passages viewing 
the document as an unstructured set of passages, or they employ 
Natural Language Processing techniques. The former approach 
ignores the structural information of documents while the latter is 
too expensive for large datasets (e.g., the Web) and sensitive to 
the writing style of the documents. 

In this paper, we propose a method to add structure, in form 
of a graph, to text documents in order to allow effective query-
specific summarization. That is, we view a document as a set of 
interconnected text fragments (passages). We focus on keyword 
queries since keyword search is the most popular information 
discovery method on documents, because of its power and ease of 
use. Our technique has the following key steps: First, at the 
preprocessing stage, we add structure to every document 
(explained later), which can then be viewed as a labeled, weighted 
graph, called the document graph. Then, at query time, given a set 
of keywords, we perform keyword proximity search on the 
document graphs to discover how the keywords are associated in 
the document graphs. For each document its summary is the 
minimum spanning tree on the corresponding document graph 
that contains all the keywords (or equivalent based on a 
thesaurus).  

The document graph is constructed as follows. First we parse 
the document and split it into text fragments using a delimiter 
(e.g., the new line character). Each text fragments becomes a node 
in the document graph. A weighted edge is added to the document 
graph between two nodes if they either correspond to adjacent text 
fragments in the text or if they are semantically related, and the 
weight of an edge denotes the degree of the relationship. There are 
many possible ways to define the degree of the relationship 
between two text fragments.  

In this work we consider two fragments to be related if they 
share common words (not stop words) and the degree of 
relationship is calculated by an adaptation of traditional IR term 
weighting formulas. We also consider a thesaurus to enhance the 
word matching capability of the system. To avoid dealing with a 
highly interconnected graph, which would lead to slower 
execution times and higher maintenance cost, we only add edges  
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Figure 1. Sample news document from www.cnn.com 

with weight above a threshold. Also notice that the edge weights 
are query-independent, so they can be precomputed. 

Example 1. Figure 2 shows the document graph for the document 
of Figure.1. The document is first split to text fragments v0…v16, 
which correspond to its paragraphs (other delimiters are possible 
as we explain below). Notice that the edge between nodes v8 and 
v7 has the highest weight because there are many infrequent (and 
hence with higher idf value) words that are common between 
them like “Donoghue” and “BrainGate”. �   
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Figure 2. Document Graph for the document in Figure 1. 

At query time, the precomputed document graph of a 
document is processed as follows to create the best query-specific 
summary. First, each node of the document graph is assigned a 
score according to the relevance of the corresponding text 
fragment to the query. To do so we employ traditional IR ranking 
functions. Notice that a full-text index is used to accelerate this 
step. Then, we execute our keyword proximity algorithms, which 
are inspired by the techniques developed in previous work on 
proximity search on graphs [7], where approximation algorithms 
are presented for the Group Steiner Tree problem (which is 
equivalent1 to the proximity search problem). The best summary 
is the top-ranked spanning tree that contains all the keywords. The 
ranking considers both the node and the edge weights (which are 
query-dependent and independent respectively). Notice that the 
problem can be easily modified to allow summaries that do not 
contain all keywords, although this case is not further discussed in 
this paper. 

Example 1 (cont’d). Table 1 shows the top-ranked spanning trees 
for the document graph of Figure 2 for the query “Brain chip 
research”. The values shown above the nodes in Table 1 indicate 
the node scores with respect to the query. The scores of the 
spanning trees are a function of their node and edge scores, as 
explained in Section 4. Notice that all results contain all query 
keywords. The top result is the best summary of the document of 
Figure 1 (the keywords of the query are shown in bold) for this 
query. Intuitively, this result is the best because it contains the 
minimum possible number of nodes and the edge that connects 
the two nodes is strong.  

Also observe that Result #4 is ranked lower than Result #3 
even though it has fewer nodes. The reason is that the nodes of 
Result #4 are connected through very commonly occurring words 

                                                                 
1 The proximity problem is slightly harder since the sets of nodes do not 
have to be disjoint. 



like “computer” and “brain” whereas in Result #3 they are 
connected through infrequent words like “Friehs”. Notice that to 
compute the frequency of a keyword we consider all documents of 
the corpus. �  

 
Table 1. Top-5 summaries for query “Brain Chip Research” 

Rank Score   Summary 

1 67.74 
v100.017v0

0.046 0.008

 

2 84.77 
v70.027v0

0.046 0.0

v4

0.0003
0.027

 

3 87.64 
v140.043v1

0.012 0.0

v15

0.0005
0.037

 

4 103.77 
v110.015v10

0.008 0.005

 

5 167.41 
v70.027v0

0.046 0.0

v14

0.0
0.032 v150.037

0.0005

 

 

The contributions of this paper are the following: 

• We present a framework to add structure to text 
documents, which is used for summarization purposes 
in this work, although it can be leveraged for other 
problems as well, like ranking of query results. 

• We show how we can use the generated document 
graphs to create high-quality query-specific summaries. 
We performed two user surveys to compare the quality 
of our approach to other current approaches-Desktop 
search engines and DUC peers2. 

• We present and experimentally evaluate execution 
algorithms that prove the feasibility of our approach. 

• We built a prototype of the system, which is available 
on the Web at http://dbir.cs.fiu.edu/summarization. 

The paper is organized as follows. Section 2 presents the 
related work. Section 3 formally defines the problem, while 
Section 4 explains how we add structure to documents. Section 5 
presents the various algorithms for efficient summary computation 
using the document graphs. Sections 6 and 7 present the quality 
and performance experiments respectively. Section 8 describes the 
developed prototype. Finally Section 9 discusses our conclusions 
and future work. 

2. RELATED WORK 
2.1 Document Summarization.  
 A large corpus of work has focused on generating query-
independent summaries [6,3,16,5]. The OCELOT system [6] 
provides the summary of a web page by selecting and arranging 
the most (query-independent) “important” words of the page. 
OCELOT uses probabilistic models to guide the selection and 
ordering of words into a summary. Amitay and Paris [3] propose a 
new fully automatic pseudo-summarization technique for Web 

                                                                 
2 http://duc.nist.gov/ 

pages, where the anchor text of hyperlinked pages is used to 
construct summaries. This approach is unique since it ignores the 
actual content of a document. [5] uses lexical chains for text 
summarization. In particular, they use Wordnet to create all 
lexical chains and choose the strongest ones as a summary of the 
document. 

The majority of systems participating in the past Document 
Understanding Conference [11] (a large scale summarization 
evaluation effort sponsored by the United States government), and 
the Text Summarization Challenge [14] are extraction based. 
Extraction-based automatic text summarization systems extract 
parts of original documents and output the results as summaries 
[10,12,16,20,25]. Other systems based on information extraction 
[35,47] and discourse analysis [30,42] also exist but they are not 
yet usable for general-domain summarization. However these 
works do not exploit the inherent structure of the document and 
mostly focus on query-independent summaries. In this work (a 
preliminary version appears in [44]) we also show the semantic 
connections between the extracted fragments, which improve the 
quality as shown in Section 6. 

[29,31] use natural language processing techniques to create 
summaries for documents, which cannot scale to large corpora 
like the Web and are limited to the writing style of the page 
authors. 

White et al. [45,46], Tombros and Sanderson [43], Zechner 
[47] and Goldstein et al. [16] create query-dependent summaries 
using a sentence extraction model in which the documents (web 
pages) are broken up into their component sentences and scored 
according to factors such as their position, the words they contain, 
and the proportion of query terms they contain. A number of the 
highest-scoring sentences are then chosen as the summary. Lin 
[27] compresses the sentences to achieve better summaries. 
[1,19,38,39] select the best passage of a document as its summary. 
However, these works ignore possible semantic connections 
between the sentences or the possibility that linking a relevant set 
of text fragments will provide a better summary. Radev et al. [36] 
provide a technique for multi-document summarization used to 
cluster the results of a web keyword query. However, their 
clustering and summarization techniques are query-independent in 
contrast to our work. [13,32] provide a technique to rank 
sentences based on their similarity with other sentences across 
multiple documents and then provide a summary with the top 
ranked sentences. However, their methods are query-independent 
in contrast to our work. 

The idea of splitting a Web page to fragments has been used 
by Cai et al. [9], Lee et al. [26] and Song et al. [41], where they 
extract query-independent rankings for the fragments, for the 
purpose of improving the performance of web search and also to 
facilitate web mining and accessibility. Cai et al. [9] partition a 
web page into blocks using the vision-based page segmentation 
algorithm. Based on block-level link analysis, they proposed two 
new algorithms, Block Level PageRank and Block Level HITS to 
extract authoritative parts of a page. Lee et al. [26] discuss a Web 
block classification algorithm after Web page division into 
semantic blocks, while Song et al.[41] provide learning 
algorithms for block importance. 

Finally, all major Web search engines (Google, Yahoo!, 
MSN Search, and so on) generate query-specific snippets of the 



returned results. Although their algorithms are not published, we 
observed that they simply extract some of the query keywords and 
their surrounding words. Recently, some of these companies made 
available tools to provide the same search and snippet 
functionality on a user’s desktop [17,33]. We include these 
snippets in our user study of Section 6. 

 

2.2  IR Ranking.   
In creating the document graph and computing the node weights, 
we adopt ranking principles from the Information Retrieval 
community. Various methods for weighting terms have been 
developed [40]. The most widely used are the Okapi (Equation 1) 
and the pivoted normalization weighting, which are based on the 
tf-idf principle. 
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tf is the term’s frequency in document, 
qtf is the term’s frequency in query, 
N is the total number of documents in the collection, 
df is the number of documents that contain the term, 
dl is the document length (in words), 
avdl is the average document length and 
k1 (between 1.0–2.0), b (usually 0.75), and k3     

(between 0–1000) are constants 

 (1) 

 

2.3 Keyword search in data graphs.   
In the second stage of our approach, when the document graphs 
are already created and a query arrives, the system searches the 
document graphs for sub-trees that contain all query keywords. 
This problem has been studied by the database and graph-
algorithms communities. In particular, recent work [15,7,2,22,21, 
24,18] has addressed the problem of free-form keyword search on 
structured and semi-structured data. These works follow various 
techniques to overcome the NP-completeness of the Group 
Steiner problem, to which the keyword proximity search problems 
can be reduced.  

Goldman et al. [15] use precomputation to minimize the 
runtime cost. BANKS [7] views the database as a graph and 
proposes algorithms to approximate the Group Steiner Tree 
problem. We consider and experimentally evaluate modifications 
of these algorithms in this work. XRANK [18] works on XML 
trees, which simplifies the problem. Li et al. [28] tackle the 
problem of proximity search on the Web, which is viewed as a 
graph of hyperlinked pages. They use of the concept of 
information unit, which can be viewed as a logical Web document 
consisting of multiple physical pages. [2,22,21] perform keyword 
search on relational databases and exploit the schema properties 
to achieve efficient execution. 

Finally, notice that Buneman et al. [8] view the problem of 
adding structure to unstructured data from a completely different 
angle: how to define a schema to describe a labeled graph (e.g., an 
XML document). 

3. PROBLEM DEFINITION 
Let D={d1,d2,,…,dn} be a set of documents d1,d2,,…,dn. Also let 
size(di) be the length of di in number of words. Term frequency 
tf(d,w) of term (word) w in document d is the number of 
occurrences of w in d. Inverse document frequency idf(w) is the 
inverse of the number of documents containing term w in them.  

A keyword query Q is a set of keywords Q={w1,…,wm}. The 
result of the keyword query, which is not the focus of this work, is 
a list of documents from D ranked according to their relevance to 
Q. A key component in our work is the document graph G(V,E) of 
a document d, which is defined as follows: 
 

Definition 1 (Document Graph).  The document graph G(V,E) of 
a document d is defined as follows:  

• d is split to a set of non-overlapping text fragments t(v), 
each corresponding to a node v∈V. 

• An edge e(u,v)∈E is added between nodes u,v∈V if 
there is an association (further discussed in Section 4) 
between t(u) and t(v) in d. �  

Hence, we can view G as an equivalent representation of d, 
where the associations between text fragments of d are depicted. 
Example 1 explains a possible document graph for the document 
of Figure 1. Notice that there are many ways to define the 
document graph for a document. In this work we follow a 
semantic approach where a delimiter is chosen to create text 
fragments, and edges are added when the text fragments contain 
common (or equivalent) words as we explain in Section 4. 

Furthermore, notice that the nodes and edges of the 
document graph may be weighed according to a variety of 
reasons, both query-dependent and independent. For example, 
authority flow techniques [4] on the document graph can be 
employed to assign both query-dependent and independent scores. 
In this work (see Section 4) we consider query-dependent (resp. 
independent) weights for the nodes (resp. edges). 

Definition 2 (Minimal Total Spanning Tree).  Given a 
document graph G(V,E), a minimal total spanning tree of G with 
respect to a keyword query Q={w1,…,wm} is a sub-tree T of G that 
is both: 

• Total: every keyword w∈Q is contained in at least one 
node of T. 

• Minimal: we cannot remove any node from T and still 
have a total sub-tree. �  

A summary of a document d with document graph G, with 
respect to a keyword query Q={w1,…,wm}, is a minimal total 
spanning tree of G for Q.  

Problem 1 (Summarization). Given a document d∈D and its 
document graph G, and a keyword query Q, find the top summary, 
i.e., the minimum score minimal total spanning tree. 

Notice that the totality property implies that we use AND 
semantics, that is, require all keywords to be in the summary. 
Another alternative is OR semantics where not all keywords are 
required to be in the summary. OR semantics are useful in the 
following scenarios: (a) the keywords are rare and hence no 



document contains all of them, so to summarize the query result 
we need OR semantics and (b) in order to have more compact 
summaries we may choose to not display the less important 
keywords. In this paper we only present our results on AND 
semantics due to space limitations. Our techniques and algorithms 
can be extended to generate summaries for OR semantics, by 
relaxing the totality constraint on summary spanning trees. 

Furthermore, the fact that the summaries are minimal means 
that we do not allow any nodes not containing any keyword as 
leaf nodes in the summary tree. However, nodes with no keywords 
can be internal nodes. For example, in the second result of Table 
1, node v7 has no keywords, but it acts as a connector between 
nodes v0 and v4 which contain the keywords. 

The score of a (summary) tree T is calculated using a scoring 
function based on the weights of the nodes and edges of T. The 
scoring function used in this work is presented in Section 4.  

Example 1 (cont’d). For the document of Figure 1 and the 
keyword query “Brain Chip Research”, the top summary is shown 
in Figure 3. 

Figure 3. Top summary of the document of Figure 1 for query 
“Brain Chip Research” 

Notice that by the definition of Problem 1, a summary may 
contain internal text fragments with no query keywords, which are 
called Steiner nodes. The reason we include such nodes is to 
achieve semantic coherence in the generated summaries, which 
increases the user satisfaction as we show in Section 6. If brevity 
is the top priority then Steiner nodes can be omitted. 

4. ADDING STRUCTURE TO 
DOCUMENTS 
As we explain below, there are many ways to create and assign 
weights to a document graph. In this section we present the 
specific approach we follow to create a document graph. In 
particular, given a document d∈D, a query Q and a set of input 
parameters (explained below), we construct a document graph 
G(V,E). Notice that Q is only used in assigning weights to the 
nodes of G, which is a desirable property since the rest of G can 
be computed before queries arrive. 

The following input parameters are required at the 
precomputation stage to create the document graph: 

1. Threshold for edge weights. Only edges with weight not 
below threshold will be created in the document graph. 

2. Parsing Delimiter. The parsing delimiter is used to split 
the document to text fragments. Typical choices are the 
new-line character (each text fragment corresponds to a 
paragraph) or the period (each text fragment is a 
sentence). We found that for the domain of news articles 
that we experimented with (see Section 6) the new-line 

is preferable since paragraphs are typically short and 
leads to more compact document graphs. 

Example 1 (cont’d) The new-line character was used to parse the 
document of Figure 1 into 17 text fragments v0,…,v16. �  

After parsing the document and creating the graph nodes 
(text fragments), for each pair of nodes u,v we compute the 
association degree between them, that is, the score (weight) 
EScore(e) of the edge e(u,v). If EScore(e)≥threshold, then e is 
added to E. The score of edge e(u,v) where nodes u, v have text 
fragments t(u), t(v) respectively is:  
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where tf(d,w) is the number of occurrences of w in d, idf(w) is the 
inverse of the number of documents containing w, and size(d) is 
the size of the document (in words). 

That is, for every word w appearing in both text fragments 
we add a quantity equal to the tf⋅idf score of w. Notice that stop 
words are ignored. Furthermore, we use thesaurus and stemmer 
(we rely on Oracle interMedia as explained in Section 7) to match 
words that are equivalent. The sum is divided by the sum of the 
lengths of the text fragments in the same way as the document 
length (dl) is used in traditional IR formulas. Notice that Equation 
2 is an adaptation of traditional IR formulas for a pair of 
documents. 

Notice that alternative ways to compute the edge weights are 
possible, like the cosine document distance, which however have 
similar effect as the tf⋅idf method that we employ. In future 
versions of our system we plan to also use Wordnet and Latent 
Semantic Indexing techniques to improve the quality of the edge 
weights, which is challenging on the performance level since our 
system is interactive.   

The calculation of the edge weights concludes the query-
independent part of the document graph creation. Next, when a 
query Q arrives, the nodes in V are assigned query-dependent 
weights according to their relevance to Q. In particular, we assign 
to each node v corresponding to a text fragment t(v) node score 
NScore(v) defined by the Okapi formula (Equation 1). In order to 
accelerate this step of assigning node scores we built a full-text 
index on the set D of documents that efficiently allows locating 
the nodes that contain the query keywords and also calculate the 
query-dependent score. The details of this index are out of the 
scope of this paper. 

4.1 Summary Scoring Function  
Given the document graph G and a query Q, a summary (subtree 
of G) T is assigned a score Score(T) by combining the scores of 
the nodes v∈T and the edges e∈T. In particular Equation 3 
computes the summary score.  
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Brain  chip offers hope for paralyzed.  
  Donoghue’s initial research published in the science 
journal Nature in 2002 consisted of attaching an 
implant to a monkey’s brain  that enabled it to play a  
simple pinball computer game remotely. 



where a and b are constants (we use a=1 and b=0.5), EScore(e) is 
the score of edge e using Equation 2, NScore(v) is the score of 
node v using Equation 1. 

Intuitively, if T is larger (has more edges) then its score 
should degrade (increase) since larger trees denote looser 
semantic connections [23,2,22,7]. This is the reason we take the 
sum of the inverse of the edge scores in Equation 3. Furthermore, 
if more nodes of T are relevant to Q, the score should improve 
(decrease). Hence, we take the inverse of the sum of the node 
scores. 

Constants a and b are used to calibrate the importance of the 
size of the summary (in number of edges) versus the amount of 
relevant information contained. In particular, higher a values 
boost the score of smaller and tightly connected summaries, 
whereas higher b values benefit summaries with more relevant 
content (i.e., containing nodes with high score with respect to the 
query). Notice that a and b can also be viewed as adjusting 
parameters for the query-independent and dependent parts of the 
scoring function respectively.  

Example 1 (cont’d). The top summary T for the document of 
Figure 1 with document graph shown in Figure 2 is shown in 
Figure 4. T has a single edge e(v0,v10) with score determined by 
the common word “brain” between v0 and v10. Also, the scores of 
nodes v0, v10 are computed using Equation 1, for the query 
“Brain chip research”. �   

5. EFFICIENT SUMMARY 
COMPUTATION  
This section tackles the problem of how; given the document 
graph G of a document d for a query Q, to compute the top 
summary (or summaries) for d with respect to Q. For clarity, we 
only present algorithms for AND semantics. Notice that the 
problem of finding the top summary (total minimal spanning tree) 
is very similar to the Group Steiner Tree problem [37], which is 
known to be NP-complete. Our problem is slightly more complex 
since the groups of nodes are not disjoint, in contrast to the Group 
Steiner Problem, which is defined as follows:  

Given an undirected, connected, and weighted graph G=(V, 
E, l), where V is the set of all vertices in G, E is the set of edges in 
G, and l  is a weight function which maps each edge e∈E to a 
non-negative real number; and given a family R={R1,….Rk} of 
disjoint groups of vertices, where Ri is a subset of V, the problem 
is to find a minimum-cost tree T which contains at least one vertex 
from each group Ri. Since the weights of the graph are non-
negative, the solution is a tree-structure. 

In contrast to previous work on proximity search on data 
graphs (see Section 2) where the top-k [21,7] or all [2,22] total 
minimal spanning trees are requested, in our summarization 
problem we typically care for only the single top summary, that is, 
the top-1 total minimal spanning tree. This allows more efficient 
algorithms as we explain below. Notice that the presented 
algorithms, which can be viewed as approximations of the Group 
Steiner Tree problem, can be divided along two dimensions. First, 
we have multi-result and top-1 algorithms, which compute a set of 
summaries or a single summary for a document and query pair 
respectively. Second, we have enumeration and expanding 
algorithms, which follow different execution approaches as 
explained below. 

Precomputation. In order to boost the performance of the 
algorithms, we precompute and store the following information: 

• A full-text index is built, as discussed above, to 
efficiently locate the nodes that contain the keywords 
and calculate their query-specific score.  

• The all-pairs shortest paths between the nodes of the 
document graph G of every document d. That is, for 
each pair of nodes u,v∈G, we precompute and store the 
shortest path u~u1~…~ur~v.  

5.1 Multi-Result Enumeration Algorithm 
This algorithm returns a ranked list of summaries for a document 
and a query. In particular, it returns a summary for each possible 
combination of nodes that contain the keywords.  

The algorithm (Figure 4) proceeds as follows. First, we find 
all combinations of nodes in G that are minimal (no node is 
redundant) and total (contain all keywords in Q). Then, for each  
combination we create a complete graph Gc (called closure  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Multi-Result Enumeration Algorithm 

graph) that contains all nodes in the combination and all-pairs 
edges between them with weight equal to their distance (taken by 
the precomputed all-pairs shortest paths). Then, we calculate all 
possible spanning trees in Gc, and compute their scores using 
Equation 3. Then, for the top spanning tree we insert the Steiner 
nodes and trim redundant nodes to make it minimal. Then its 
accurate score is computed and added to the results list. Finally, 
the results are ranked and displayed.  
Example 2. Consider the document graph in Figure 2 and the 
query “Brain chip research”. The nodes that contain the keywords 
are v0, v1, v3, v4, v10, v11, and v15. We then find all minimal and 
total node combinations, which are {v0, v10}, {v15, v0}, {v0, v3}, 

MultiResultEnumeration (document graph G, query Q) 

1.   Results ←∅; /*stores summaries*/  

2.  Find all nodes in G that contain some keyword of Q; /*use       
full-text index*/ 

3. Find all minimal combinations of nodes that when taken 
together contain all keywords in Q; 

4.   For each minimal node combination C do 

      { 

5.     Create closure graph Gc that contains only the nodes in C;  

6.     Find all possible spanning trees S of Gc; 

7.     Calculate the score of each spanning tree in S using Eq. 3;  

8.     Pick the spanning tree T with the minimum score; 

9.    Replace the edges u~v in T with their precomputed shortest 
paths u~u1~…~uk~v; /* i.e., we are adding the Steiner 
nodes.*/ 

10.   Trim T to make it a minimal total spanning tree; 

11.  Calculate the score of T using Equation 3 and add T to 
Results; 

12.    Sort and output summaries in Results; 

       } 

 



{ v4, v0}, and so on. For each combination we create a closure 
graph. For example, the closure graph for the second combination 
is v15~v0 with edge weight 0.096 (which is the length of the 
shortest path from v15 to v0). We then find all possible spanning 
trees of this graph, which is just v15~v0, for the above closure 
graph. Then, we replace the edge between v15 and v0 with the 
shortest path between them, which is v15~v14~v7~v0. This tree is 
already minimal and hence we output this result along with its 
score. The Steiner nodes in this result are v14 and v7, which don’t 
have any keywords in them but are used to relate the other 2 
nodes, v15 and v0. �   

5.2 Top-1 Enumeration Algorithm 
The Top-1 enumeration algorithm returns only one summary per 
document, for a query. The reason we created top-1 variants for 
both the enumeration and the expanding search (Sections 5.3, 5.4) 
is that typically the user only requests a single summary for a 
document, as in the case of snippets in Web search engine results. 

This algorithm is similar but more efficient than the multi-
result enumeration algorithm, because it only adds the Steiner 
nodes (line 9 in Figure 4) for a single spanning tree. In particular, 
this algorithm finds the top spanning tree among all node 
combinations and then substitutes the Steiner nodes, while the 
multi-result algorithm finds the top spanning tree and substitutes 
the Steiner nodes for each node combination. The pseudo-code 
for this algorithm has the following difference with respect to 
Figure 4: Lines 8-11 are moved outside the for-loop, that is, the 
for-loops ends at line 7.  
 

Example 2 (cont’d). For the document graph in Figure 2 and 
query “Brain chip research”, this algorithm goes through the same 
steps as in the case of enumeration algorithm. It computes all 
node combinations as explained in the previous example. The 
only difference is that this algorithm first finds the minimum-
score spanning tree v1~v3 with edge weight 0.03 (which is the 
length of the shortest path from v1 to v3) among all spanning trees 
of all node combinations, and then replaces that edge with the 
shortest path v1~v2~v3, where v2 is the Steiner node and 
recomputes the score and displays it as the summary of the 
document.  

5.3 Multi-Result Expanding Search 
Algorithm 
The basic idea behind this algorithm (inspired by the algorithm in 
BANKS [7]) is that we start from the nodes that contain the query 
keywords and progressively expand them in parallel until we find 
all minimal total spanning trees. The advantage of this algorithm 
compared to the enumeration algorithms is that we do not need to 
repeat the processing for all combinations of nodes, which may be 
too many if the document is large and contains many occurrences 
of the query keywords.  

In particular, the algorithm (Figure 5) finds (using the full-
text index) all the nodes that match some keywords in the query 
and starts expanding them incrementally, the best (maximum-
score) edge at a time. We call the subgraph created from each 
keyword node v expanding area of v. Notice that, in contrast to 
BANKS, we use the precomputed all-pairs shortest paths data to 
efficiently grow the expanding area. That is, we only consider the 
edges that are contained in a shortest path from the current node v 

to any other node u that contains additional query keywords than 
v. When two or more expanding areas meet we check for possible 
new summaries. If a summary is found, it is trimmed to become 
minimal and its score is calculated using Equation 3. The parallel 
expansion of the expanding areas terminated when for each 
combination of nodes that contains all keywords, their expanding 
areas have met.  

Example 3. For the document graph in Figure 2 and the query 
“Brain chip research”, the keyword nodes are v0, v1, v3, v4, v10, 
v11, and v15. We grow the expanding area of v0 to v0~v10, which 
is the first precomputed single source shortest path of source v0 
and check for possible summaries. v0~v10 is total as well as 
minimal and hence we add it to the set of results. We grow each 
expanding area using its precomputed shortest paths. Then we 
grow v1 to v1~v2, v3 to v3~v2, v4 to v4~v3, v10 to v10~v9, v11 to 
v11~v10 and once we expand v11 we have another summary 
v11~v10 that is total and minimal. We keep doing this until the 
expanding areas of all the keywords nodes have been met and 
hence we can’t have any more possible summaries and hence we 
terminate. �  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Multi-Result Expanding Search Algorithm 

5.4 Top-1 Expanding Search Algorithm 
This algorithm differs from the multi-result expanding search 
algorithm in that it stops expanding the expanding areas once the 
first summary is produced. Intuitively this greedy approach 
produces a high-quality summary, as the trees produced first have 
smaller sizes, which implies smaller scores (Equation 3). The 
pseudo code for the Top-1 expanding search algorithm differs 
from the multi-result variant in that, once it finds a summary in 
line 6 it trims it, calculates the score and adds it to results and 
exits the loop. So we have an extra line in Figure 5: “7a.  break;”. 

MultiResultExpandingSearch(document graph G, query Q) 

1.   Results ←∅;  /*stores summaries*/  

2.   Find all nodes N={N1,…,Nm} that contain the  keywords in         
Q; /*Ni has the nodes that contain wi*/  

3.  Repeat until the expanding areas of all combinations of 
nodes in  N1,…,Nm  meet. {    

4.     For each node v in N do 

        { 

5.   Add to the expanding area of v the maximum-score       
adjacent edge from the (precomputed) shortest paths 
starting at v and ending at a node in N not containing the 
same keywords as v;            

6.     Check for new results (summaries) T; /*i.e., trees that 
contain a node from each of N1,…,Nm */ 

7.       Trim summaries T to become minimal; 

8.     Calculate the score of T using Equation 3 and store in 
Results; 

9.       Sort and output summaries in Results; 

         } } 



Example 3 (cont’d). For the document graph in Figure 2 and the 
query “Brain chip research”, this algorithm goes through the same 
steps as its multi-result variant, but stops expanding once it finds 
the first summary, which is v10~v11 as explained in the previous 
example. �  

6. QUALITY EXPERIMENTS 
To evaluate the quality of the results of our approach, we 
conducted two surveys. The subjects of the survey are fifteen 
students (of all levels and various majors) of FIU, who were not 
involved in the project. In this survey the users were asked to 
evaluate the summaries based on their quality and size (a longer 
summary carries more information but is less desirable).Each 
participant was asked to compare the summaries and rank them, 
assigning a score of 1 to 5, according to their quality for the 
corresponding query. A rank of 5 (1) represents the summary that 
is most (least) descriptive. 

6.1 Comparison with DUC dataset  
The dataset used in this survey consists of ten documents and two 
queries taken from the DUC 2005 dataset3, as shown in Table 2. 
We compare our summaries with DUC Peer summaries for 
quality. DUC peers are human and automatic summaries used in 
quality evaluation. We compared our summaries against the DUC 
peers with highest linguistic quality. Unfortunately, most of the 
summaries in the DUC datasets are query-independent and the 
few query-dependent ones are multi-document. Hence, in order to 
compare our work to that of DUC we used the following method 
to extract single-document summaries from query-dependent 
multi-document summaries for a set of ten documents over two 
topics. The sentences that have been extracted from a document d 
to construct the multi-document summary are viewed as d’s 
single-document summary for the query/topic. Notice that the 
DUC summaries are created by extracting whole sentences from 
documents. 

Table 2. Average summary ratings for DUC topics 

Query 1 (International Organized 
Crime) 

DUC Topic ID: d301i 

Query 2 (Women in 
Parliaments) 

DUC Topic ID: d321f 

 

Doc. ID  
DUC 
Peer 

Top-1 
Expanding Doc. ID 

DUC 
Peer 

Top-1 
Expanding 

FT941-3237 2.33 4.66 FT921-7786 4.00 2.50 

FT944-8297 2.50 3.33 FT922-190 2.00 4.00 

FT931-3563 2.83 3.00 FT921-937 2.00 4.33 

FT943-16477 4.00 4.17 FT922-13353 2.83 4.17 

FT943-16238 3.67 3.67 FT921-74 2.33 3.67 

The results of the survey prove the superiority of our approach, 
as shown in Table 2. Our method of combining extracted 
sentences using semantic connections in the form of Steiner trees 
leads to higher user satisfaction than the traditional sentence 
extraction methods. In particular, the Steiner sentences in 

                                                                 
3 http://duc.nist.gov/ 

summaries provide coherency in the aggregation of the keyword-
containing-sentences.  

6.2 Comparison with Google and MSN 
Desktop 
The dataset used in this survey consists of two news documents 
taken from the technology section of cnn.com. The participants 
were asked to evaluate the quality of the summaries of the two 
documents with respect to five queries. We chose queries where 
keywords appear both close and far from each other. For each 
query-document pair, three summaries are displayed 
corresponding to (a) the result of the Top-1 expanding search 
algorithm, (b) Google Desktop’s summary, and (c) MSN 
Desktop’s summary. Summaries (b) and (c) were created by 
indexing the two documents in our desktop and then submitting 
the five queries to the Desktop engines. The summaries are the 
snippets output for these documents. In order to compare apples 
to apples, we chose queries for which the length of the summaries 
produced by all three methods are similar, since clearly it is not 
fair to compare summaries of different lengths as some people 
favor conciseness while others the amount of information.  

In this survey we set constant a to 1 and b to 0.5 in Equation 
3, which we found to produce higher-quality summaries. Notice 
that by increasing the value of constant a, we favor short results, 
while by increasing constant b we favor longer and more 
informative results. Hence, by setting a to 1 and b to 0.5 we favor 
shorter summaries, which have similar size to the ones produced 
by Google and MSN Desktop. This makes their comparison fairer.  

Table 3. Average summary ratings for documents D1 and D2 

Google Desktop MSN Desktop Top-1 Expanding 

Queries D1 D2 D1 D2 D1 D2 

1 2.33 3.67 2.33 3.67 4.87 3.67 

2 2.00 3.33 2.00 3.00 4.33 3.33 

3 3.00 2.67 0.67 3.00 4.93 4.00 

4 1.67 2.67 1.67 3.00 4.67 4.00 

5 2.00 1.67 3.00 1.00 4.00 3.67 

 

Table 4. Queries used for documents D1 and D2 

Queries Document D1 Document D2 

1 Microsoft worm protection  IT Research awards 

2   Anti-virus protection Algorithms development 
research 

3   Recovering worm deleted  
files 

  Software projects 

4   Worm affected agencies   Large research grants 

5   Deleted computer software   Computer network 
security project 

The results of the survey, which prove the superiority of our 
approach, are shown in Table 3. Notice that Google and MSN 
Desktop systems do not always include all keywords in the 
summary when they are more than two and have big distances 



between them. In contrast, our approach always finds a 
meaningful way to connect them. 

7. PERFORMANCE EXPERIMENTS 
To evaluate the performance of our approach we used a dataset of 
200 news documents taken from the technology section of 
cnn.com. We used a PC with Pentium 4 2.44GHz processor and 
256MB of RAM running Windows XP. The algorithms were 
implemented in Java. To build the full-text index we used Oracle 
interMedia [34] and stored the documents in the database. JDBC 
was used to connect to the database system. 

First, we compare the performance of the four algorithms of 
Section 5 for summarizing keyword queries of various lengths. 
The execution times consist of two parts: (a) the computation of 
the scores of the nodes of the document graph (remember that this 
is query-specific and cannot be precomputed), and (b) the 
generation of the top summaries (minimal total spanning trees) in 
the document graph. The first part is handled by Oracle 
interMedia and the average times for a single document for 
various-length queries are shown in Table 5. 

Table 5. Average times to calculate node weights 

Number of 
keywords 

2 3 4 5 

Time (msec) 5.31 9.37 11.50 17.33 
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Figure 6. Processing times 

The second part of the execution is handled separately by the 
four algorithms and the results are shown in Figures 6 (a) and (b). 
In particular, Figure 6 (a) compares the performance of the Multi-
Result algorithms, whereas Figure 6 (b) the Top-1 algorithms. We 
observe that the expanding search algorithms are faster than the 
enumeration ones, especially for long queries. Also, notice that 
there is only a slight difference in the performance of the Top-1 
and the Multi-Result algorithms, because the document graphs are 
relatively small and hence there is no big difference between 
computing one or more summaries. 

Notice that we do not compare the performance of our 
algorithms to BANKS, since our Multi-Result algorithms are 
adaptations of the BANKS algorithms to our problem, which is 
different as we explain in Section 5.  

Finally, we measure the accuracy of the Top-1 versions of 
the algorithms. In particular, we measure (Table 6) the average 
rank of the summary of the Top-1 algorithms in the list of 
summaries created by the Multi-Result algorithms. For example, if 
the summary of the Top-1 algorithm appears as the third summary 
of the Multi-Result algorithm, then the rank is 3. We observe that 
the Top-1 expanding algorithm better approximates the 
corresponding Multi-Result algorithm’s results. 

Table 6. Average ranks of Top-1 Algorithms with respect to 
Multi-Result algorithms 

Number of keywords 2 3 4 5 

Top-1 Enumeration 
Algorithm. 

1.4 1.8 2.1 2.78 

Top-1 Expanding Search 
Algorithm. 

1.1 1.3 1.4 1.8 

8. CONCLUSIONS AND FUTURE WORK 
In this work we presented a structure-based technique to create 
query-specific summaries for text documents. In particular, we 
first create the document graph of a document to represent the 
hidden semantic structure of the document and then perform 
keyword proximity search on this graph. We show with a user 
survey that our approach performs better than other state of the art 
approaches. Furthermore, we show the feasibility of our approach 
with a performance evaluation. 

In the future, we plan to extend our work to account for links 
between documents of the dataset. For example, exploit 
hyperlinks in providing summarization on the Web. Furthermore, 
we are investigating how the document graph can be used to rank 
documents with respect to keyword queries. Finally, we plan to 
work on more elaborate techniques to split a document to text 
fragments and assign weights on the edges of the document graph. 
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