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ABSTRACT
Source and object selection and retrieval from large multi-source
data sets are fundamental operations in many applications. In this
paper, we initiate research on efficient source (e.g., database) and
object selection algorithms on large multi-source data sets. Specif-
ically, in order to acquire a specified number of satisfying objects
with minimum cost over multiple databases, the query engine needs
to determine the access overhead for individual data sources, the
overhead of retrieving objects from each source, and possibly other
statistics such as estimating the frequency of finding a satisfying
object in order to determine how many objects to retrieve from each
data source. We adopt a probabilistic approach to source selec-
tion utilizing a cost structure and a dynamic programming model
for computing the optimal number of objects to retrieve from each
data source. Such a structure can be a valuable asset where there is
a monetary or time related cost associated with accessing large dis-
tributed databases. We present a thorough experimental evaluation
to validate our techniques using real-world data sets.

1. INTRODUCTION
Distributed object retrieval systems are becoming increasingly

prevalent due to the growing size of data collections such as infor-
mation logging, digitization of large periodicals (i.e., newspapers
and books), and so on. Several information retrieval platforms have
been developed including Google Bigtable [8] and OceanStore [4,
20, 19, 26]. These systems answer queries by retrieving objects
from one or more sources (each source may have varying benefits).
A key problem that such systems encounter is that many public in-
terfaces have limited filters which cannot fulfill the user’s request
exactly. In this case, more data than is necessary to satisfy the query
must be collected and then some filtering must be performed at the
client side.

Large distributed collections present several distinct problems.
Näıvely, a distributed collection of objects could be treated as a
single monolithic database where each source would be indepen-
dently accessed and the results from each source would be merged
at the query node to create a single list of satisfying objects. There
are several problems with this approach. First, the cost associated
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with accessing individual sources is not considered. Second, even
if the costs were considered it is unclear how this could be done in
a scalable and efficient (w.r.t., e.g., bandwidth and latency) fashion.

The problem of selecting how much to access each source is also
important for single data source applications such as PubMed [25]
and IMDB [18] (Internet Movie Database). As an example of a data
source with an access cost model that involves both bandwidth and
latency consider PubMed [25] (similar cost models can be defined
for IMDB), a service of the U.S. National Library of Medicine that
includes over 17 million citations (A citation is a reference to a
published item, with sufficient detail to allow the reader to locate
it.) from MEDLINE and other life science journals for biomedical
articles dating back to the 1950s [25]. Suppose the user knows that
there has been a study performed linking some genetic character-
istic to a propensity for some type of cancer (e.g., breast cancer).
The user’s goal is to find the set of papers that mention the key-
word “cancer” and also cite a paper that contains the phrase “ge-
netic propensity” in its title. We can perform a keyword search for
“cancer” but the query interface of PubMed does not allow keyword
conditions on the citations (this is a limitation of the public inter-
face). This query is not possible with the recent PubMed Advanced
Search interface (http://www.ncbi.nlm.nih.gov/pubmed/advanced)
either. Hence the client has to apply this extra filtering condition
on the returned data. The question is: what is the best retrieval
strategy in order to get five satisfying papers given that the query
“cancer” returns more than two million papers? That is, how many
objects should be retrieved at every iteration, given the access cost
characteristics (access overhead, per object cost) of the source? In
Section A we provide details on the access cost model of PubMed.

For the distributed (multi-source) scenario we must identify which
source(s) to use for retrieval of objects and create an access strategy.
This can be a difficult task when each source has a distinct access
cost (e.g., latency, per-object monetary cost, etc.). This type of cost
model is easy to see in modern information distribution sites. For
instance, commercial legal research distributors (e.g., LexisNexis
[21] & Westlaw [31]) offer a variety of data services based on sev-
eral pay-per-search revenue models. The public interfaces of these
databases allow a limited set of conditions to be specified (e.g.,
we may be able to specify a filing date range), but the client may
be interested in further selection criteria (e.g., keywords such as
“civil” and “riverside”). Such keyword searches are not allowed by
these interfaces, hence the client has to query both databases and
apply the extra selection criteria on the returned data. Using our
approach, we can minimize the total access cost of such a query.

In our setting there are two tasks that we consider, specifically,
source selectionand object selection. Source selection decides
which source(s) to retrieve objects from, whereas object selection
decides how many objects to retrieve from each selected source.



These two tasks are interdependent and need to be addressed in a
holistic way as we explain below.

When multiple sources are available for retrieval, a decision must
be made on which source to access. Specifically, a decision needs
to be made on which source will yield the highest benefit with
minimal cost (overhead) for the user. Further, this cost may be
in the form of money, bandwidth, and so on. Ideally, the system
should address source selection in an automated fashion that con-
siders source specific overhead and access costs. This system can
then be used to respond to the users input while minimizing cost
through accessing sources in an optimal fashion.

In order to select the optimal source for a given query, we need
to determine the relevance of each source so that we can choose
the one most relevant to a given query. Individual objects within a
system could be classified as relevant (satisfying) or non relevant
(unsatisfying). We adopt anobjective algorithmicnotion of rele-
vance with a binary degree, following the principles defined in [6]:
an object either meets the requirements of the query or it does not.
Without loss of generality, a satisfying object can be described as
an object that meets the requirements of a predefined query.

The fundamental component in multi-source object retrieval is
the ability for a query to be submitted to the system and obtain
k satisfying objects (viz., any-k) from a distributed database as
though all the objects exist in a single, localized database. In or-
der for such a process to be useful in a commercial setting, the
solution must be both efficient and scalable. In this paper, we
present an optimal approach utilizing dynamic programming to re-
trieve anyk satisfying objects from multiple sources, minimizing
cost (note: cost can be defined based on several criteria such as time
and money), in a scalable manner to support both a large number
of users and a large number of sources.
Our Contributions: The main contributions of this paper are sum-
marized as follows:

• We introduce adaptive algorithms for source and object se-
lection for the case when the expected frequency of satisfy-
ing objects is known. If this frequency is unknown, we pro-
pose techniques to adaptively learn it, which work well for
sources where the retrieved objects represent a near-random
sample of the database.

• We develop a probabilistic model for collections which con-
tain various costs associated with accessing and retrieving
objects from multiple databases.

• We provide an efficient solution for computing our algorithms
utilizing pre-processing such that the per-query computational
overhead is minimized.

• We demonstrate the efficiency and feasibility of our approach
through a thorough experimental evaluation.

The rest of this paper is organized as follows. In Section 2 we
present our framework. We introduce our approach in Sections 3 -
4. We provide extensive experimental evaluations of our technique
in Section 5, and finally, in Section 6, we conclude this paper.

2. DATA MODEL & PROBLEM STATEMENT
In this section we discuss the principles behind our approach for

cost-aware object retrieval. The relationship of the cost model to
real data sources is discussed in Appendix A.

Our focus of this paper is to provide a probabilistic model for
distributed collections which consider various economic costs asso-
ciated with accessing and retrieving objects over multiple sources.

Further, we introduce an a priori approach to computing our prob-
abilistic model in such a way that the per-query computation cost
is minimized. Providing an efficient and scalable approach is cru-
cial in offering a competitive object retrieval system. Our goal is
to compute these statistics as a pre-processing step, so that they are
available for future queries.

A data sourceSi stores a set{ti1, . . . , t
i
ni} of objects. The cost

of retrievingl objects fromSi isCosti(l). In this work we assume
Costi(l) is monotone (increasing) onl.

Assuming a public interface for each source, allowing a limited
set of conditions, a client may be interested in further selection con-
ditions not allowed by public interfaces. Therefore, the client must
apply some extra selection condition on the returned data. In our
setting, the interface to a source requests a numberl of objects to
retrieve. We represent this action asGetNexti(l). Note that when
a source is accessed, the objects retrieval continues from where is
stopped the previous time this source was accessed. This is a re-
alistic assumption, given that a source access session is generally
open for a long enough time for the source to maintain the current
retrieval state.

We assume that we may have some statistics about the objects
stored in a source. Techniques like [9, 10] can be used to infer such
information. If the sampling is performed in a query-dependent
way, then the cost of sampling should be added to the query cost. If
the sampling is performed as a query-independent pre-processing
step, then we do not add its cost to a query. We follow the latter
in our experiments. We also present problem variants (SSNDD,
MSNDD) where no source information is available and the algo-
rithms adaptively learn the source probabilities.

The simplest way to model a source in terms of the frequency of
satisfying objects is through thequery satisfying probabilitypi(Q).
Given a boolean selection queryQ, the query satisfaction probabil-
ity pi(Q) is the probability that an object retrieved from sourceSi

satisfiesQ. Instead of the query satisfaction probability, we may
have a query-specific histogramHi(Q) of the distribution of ob-
jects with respect toQ.

To setup the problem and develop our solutions we begin with
the single source problem before continuing with the more chal-
lenging multiple source problem.

PROB 2.1 (SINGLE SOURCE, pi(Q) (SSQSP)).Given any-k
(retrieve anyk results) queryQ, data sourceSi with access cost
Costi(l), and query satisfaction probabilitypi(Q), find best ac-
cess strategy.

By access strategy we mean a sequence of numbersl of objects
to be retrieved from the source at each step. The best strategy is the
one that minimizes the access cost. An interesting variant of the
SSQSP problem is the case where there is no query satisfaction in-
formation. We call this variant Single Source, No Distribution Data
(SSNDD) problem. As we explain later, for the SSNDD problem,
our adaptive algorithms dynamically “learn” the source’s distribu-
tion.

PROB 2.2 (SINGLE SOURCE (SSNDD)). Given any-k query
Q, data sourceSi with access costCosti(l), and no query satis-
faction information, find best access strategy.

PROB 2.3 (MULTI -SOURCE, pi(Q) (MSQSP)). Given any-
k queryQ, data sourcesS1, . . . , Sq with access costsCosti(l),
and query satisfaction probabilitiespi(Q), find best access strat-
egy.

As in the single source case, an interesting variant of the MSQSP
problem is when there is no query satisfaction information. We call



this variant Multi-Source, No Distribution Data (MSNDD) prob-
lem.

PROB 2.4 (MULTI -SOURCE (MSNDD)). Given any-k query
Q, data sourcesS1, . . . , Sq with access costsCosti(l), and no
query satisfaction information, find best access strategy.

Example: Several online databases have emerged where there are
costs associated with both accessing the database and retrieving in-
formation on a per-object basis as a means of generating revenue.
There exists several revenue baseddata discovery servicesinclud-
ing LexisNexis [21] and Westlaw [31], which provide daily legal
data such as civil litigation and bankruptcy filings.

Consider the following example, a trial lawyer is attempting to
find 10 new cases but is paying for searches on each database sep-
arately. For each database there is a monetary cost for accessing
a database and an additional cost for accessing objects (e.g., doc-
uments) from each. Suppose there are three databases,D1, D2,
andD3. We are also given some statistics for each database such
as the cost of connecting and accessing individual objects for each
database (a1, a2, anda3) and (b1, b2, andb3) respectively.

D1 D2 D3

Access Overhead (a) 300 1 100
Per-object Overhead (b) 1 1 2
Query Satisfaction Probability (p) 1% 0% 1%

Table 1: Sample source overheads, per-object costs and proba-
bilities for sourcesD1, D2, andD3.

Suppose a query engine receives a query to select 10 objects with
the constraintQ=“filing AND civil AND riverside” (i.e., Find 10
civil lawsuit filing which are in the county of riverside). The goal of
the query is to locate 10 objects which satisfy the queryQ accessing
databasesD1, D2, andD3 such that the total cost is minimized (in
this scenario sorting the objects in each database is not feasible
since filings are continually being added).

Näıvely, we could retrieve objects from the database with the
minimal access or per-object overhead but there are several prob-
lems with this approach. First, even if we choose the best database
for retrieval, the chosen database may not be the optimal choice if
the query is not satisfied in the first round. Second, other greedy
approaches (i.e., doubling the retrieval size for each iteration until
all satisfying objects are located) may be employed as a shotgun
approach to retrieval but these types of techniques offer little ben-
efit in the way of leveraging available statistic about the individual
databases.

In contrast, we may be able to do much better if we consider
the access overhead, per-object cost, and underlying object fre-
quency (when available) when obtaining a satisfying object from
each database. Using this information we can determine the op-
timal database to select for retrieval. The above table shows that
databaseD2 contains both a low access overhead and per-object
cost but there are no satisfying objects in the source (Query Satis-
faction Probability = 0%), so we can disregardD2. This leaves us
to considerD1 andD3.

Notice thatD1 contains a high access overhead but low per-
object cost. However,D3 contains a low access overhead but high
per-object cost. In addition,D1 has ap1 of 1% of obtaining a sat-
isfying object (i.e., sample about 1000 objects) andD3 has ap3
of 1% of obtaining a satisfying object (i.e., sample about 1000 ob-
jects). With this information we can compute the cost of retrieving
1000 objects from each database asCost1(1000) = 300 + 1 ×

Symbol Definition
Q Query
k Number of satisfying objects requested
ai Access overhead cost for sourcei.
bi Per-object overhead cost for sourcei.
q Number of sources to retrieve data from.
Si A source used for retrieving data from.
p Query satisfying probability for sourceS
n′ Number of satisfying objects retrieved thus far
l The number of objects to retrieve in next step

Cost(l) Access cost of source to retrieve l objects
C(n′, l) Cost of completingQ, givenn′ satisfying objects

retrieved so far, andl objects will be retrieved in
next step

C(n′) Cost of completingQ, givenn′ satisfying objects
retrieved so far

Table 2: Symbol Description

1000 = 1300 andCost3(1000) = 100 + 2 × 1000 = 2100.
Clearly,D1 is the better choice for the first round.

Further, suppose in the first iteration we obtain only 9 of the 10
satisfying objects that we originally requested. We could retrieve
additional objects fromD1 but it may no longer be the most cost
effective source. Say we retrieve 100 object in the second iteration:
Cost1(100) = 300 + 1 × 100 = 400 andCost3(100) = 100 +
2 × 100 = 300 for databasesD1 andD3 respectively. For the
second iteration,D1 is no longer the minimum cost source. Since
we only need one satisfying object, a higher per-object cost can be
tolerated as long as the access cost is sufficiently low makingD3

the ideal source for the second round.2

Other examples can be demonstrated which show additional ways
which the optimal source may change during the retrieval process.
Although the optimal source may change for each iteration, we
show that our approach can adapt to varying constraints, consis-
tently selecting the most desirable source and retrieval rates.

3. ALGORITHMS FOR THE SSQSP
PROBLEM

In this section we present two algorithms to solve the SSQSP
problem. The first one, Probabilistic Algorithm for SSQSP (P-
SSQSP), uses a probabilistic argument to estimate the number of
objects that should be retrieved in order to complete the query with
a given probability (e.g., 95%).

The second algorithm, Dynamic Programming Method for SSQSP
(DP-SSQSP), is optimal and is based on dynamic programming
principles. P-SSQSP can be viewed as a greedy compromise to
the optimal DP-SSQSP. We use the notationp instead ofpi(Q)
for simplicity. The two algorithms are experimentally compared in
Section 5.

Appendix B shows how these algorithms are adapted for the
MSQSP problem.

3.1 P-SSQSP: Probabilistic Algorithm for
SSQSP Problem

In this algorithm, the numberl of objects to be retrieved in the
next step is computed in a way that the any-k queryQ will be an-
swered with probabilityx% by the end of this step. Letn′ be the
number of satisfying objects retrieved so far (i.e.,k − n′ more sat-
isfying objects need to be retrieved in the next steps).

The probability that exactlys satisfying objects are contained in
the nextl objects is computed using the binomial distribution as
(

l

s

)

ps (1− p)l−s.



Hence, the probability thatQ is satisfied by retrievingl objects
is given by thecumulative binomial distribution. This is the prob-
ability that at leastk − n′ satisfying objects are retrieved, which is

P (Q completed) =
l
∑

s=k−n′

(

l

s

)

ps (1− p)l−s (1)

We pick the minimuml such thatP (Q completed) ≥ x%. That
is,

l = argminl

{

l
∑

s=k

(

l

s

)

ps (1− p)l−s ≥ x%

}

(2)

Note thatl is recomputed at every step. Fortunately, sincel is
an integer and always positive we can efficiently compute the bino-
mial coefficient for each value ofl utilizing the Chernoff-Hoeffding
inequality [17]. A key drawback of P-SSQSP algorithm is that the
user must pick anx value, which plays a critical role in the perfor-
mance of the algorithm. Intuitively,x should be higher for sources
with high overhead cost, so that the probability of a subsequent re-
trieval step is small. In the following section (Section 3.2) we will
explore the use of dynamic programming to take into account the
cost incurred in the event that the next step does not complete the
query.

k − n′ l

1 11
2 21
3 31

Table 3: Sample values for P-SSQSP algorithm forp = 10%
and x% = 95%.

EXAMPLE 1. Consider a source withp = 0.1, and letx =
90%. Table 3 shows for given values ofk−n′ (number of requested
satisfying objects) the numberl of objects to retrieve to complete
the query.

3.1.1 Space & Time Complexity
The space complexity of P-SSQSP is constant since we just need

to evaluate the formula. Assuming the binomial coefficient can
be computed in time linear ink (we can say this because we can
compute the binomial coefficient incrementally from 1 tok):

(

n
k

)

×
n− k

k + 1
=

(

n
k + 1

)

As shown above, each successive binomial coefficient is propor-
tional to the current one. Using this property, the time complexity
of P-SSQSP isO(k · l2) per re-computation, which is expensive
for large values ofl. The time complexity can be reduced if a max
value (lmax) for l is known (e.g., max access cost we are willing
to pay, or size of source). Since we know from Equation 1 that the
function is monotonically decreasing, we perform binary search on
the values ofl from k + 1 to lmax until the appropriatel is found
(setting probability just abovex%). This optimization provides an
improved time complexityO(l · k · log(l)) per source access.

3.2 DP-SSQSP: Dynamic Programming
Algorithm for SSQSP Problem

Overview: As mentioned above, the performance of P-SSQSP de-
pends on the choice ofx and there is no simple way to estimate a
good value for it. We now present DP-SSQSP which is an optimal
algorithm based on dynamic programming. The optimality is intu-
itively due to the fact that DP-SSQSP takes into account the cost

incurred in the case that the next step does not complete the query
(does not retrieve all any-k objects). Table 2 shows the symbols
used.
Dynamic Programming Formulas: A key quantity in DP-SSQSP
is the optimal expected costC(n′, l) of completing the queryQ,
given thatn′ satisfying objects have been retrieved so far, andl
objects will be retrieved in the next step. Obviously,C(n′, l) = 0
if n′ ≥ k. To computeC(n′, l), we need to consider all possible
scenarios, that is, possible numbers of returned satisfying objects.

Another key quantity isC(n′) (note the overloading ofC(.)),
which is the optimal expected cost to completeQ given thatn′

satisfying objects have been retrieved so far. It is

C(n′) = min
l∈INC(n′, l) (3)

We now go back to the calculation ofC(n′, l). In order to ac-
count for all possible scenarios, the following formula is used.

C(n′, l) =

k−n′

∑

s=0

(

P (s sat in l retr) · C(n′ + s)
)

(4)

+ Cost(l)

whereP (s sat in l retr) is the probability that exactlys satisfying
objects are contained inl retrieved objects.

P (s sat in l retr) =

(

l

s

)

ps (1− p)l−s (5)

Recall thatCost(l) is the access cost of the source to retrievel
objects (do not confuseC(.) with Cost(.)).

Note in Equation 4 that the summation goes up tok−n′, because
if more thank−n′ satisfying objects are returned the costC(n′+s)
would be 0, since the query answer would have been answered.

A challenge in solving Equation 3 is that it is recursive. Since
C(n′, l) is a function ofC(n′) (the term in the sum fors = 0 in
Equation 4). Hence, we need to find thel ∈ IN value for which the
following equation produces the minimumC(n′).

C(n′) =

k−n′

∑

s=1

(

P (s sat in l retr) · C(n′ + s)
)

+ Cost(l)

1− P (0 sat in l retr)
(6)

The termsC(n′ + s) for s > 0 are computed in the previous
steps of DP-SSQSP algorithm and are hence treated as constants
in Equation 6. Thel value that minimizesC(n′) in Equation 6
can be computed either analytically, using derivatives (solve for
C(n′), take derivative onl, set derivative equal to 0), or numeri-
cally. We use numeric methods in our experiments, which are more
general. For the numeric methods to be efficient, we must assume
thatCost(l) is monotonically increasing withl, which is clearly a
reasonable assumption.
Details: As in every dynamic programming algorithm, we need to
fill up a table with interdependent values. As shown in Table 4,
our dynamic programming table has the following columns: n’, l,
C(n′, l), C(n′).

We fill up the table (see Table 4) from top-down. The value
in the bottom right cell is the expected optimal cost of the query
execution. During query execution we read the table as follows: If
we have retrievedn′ satisfying objects so far, we use the lookup
table to find the row with the minimumC(n′, l) value among the
rows with the givenn′.

THEOREM 1 (OPTIMALITY OF DP-SSQSP).DP-SSQSP is an
optimal algorithm for the SSQSP problem.



n′ l C(n′, l) C(n′)

k any 0 0
k − 1 1 (1− p) ∗ C(k − 1) + Cost(1) min(
k − 1 2 (1− p)2 ∗ C(k − 1) + Cost(2) C(k − 1, 1),
k − 1 3 ... C(k − 1, 2),
k − 1 ... ... ...)
k − 2 2 (1− p)2 ∗ C(k − 2) + 2p(1− p) ∗ C(k − 1) + Cost(2) min(
k − 2 3 (1− p)3 ∗ C(k − 2) + 3p(1− p)2 ∗ C(k − 1) + Cost(3) C(k − 2, 2),
k − 2 4 ... C(k − 2, 3),
k − 2 ... ... ...)

... ... ... ...
k − k ... ... ...

Table 4: Dynamic programming table created using DP-SSQSP algorithm.

The proof of this theorem follows from the fact that the dynamic
programming algorithm considers the whole search space, and se-
lects the optimal solution.
Pre-computing Lookup Tables: At query time, the only informa-
tion we need is the optimal numberl of objects to be retrieved in
the next step, given the numberk − n′ of remaining satisfying ob-
jects that need to be retrieved to complete the query. Hence, from
the large table described above we only need to store the optimal
l value for eachk − n′, which is ak by 2 table, wherek is the
maximum numberk of results that we expect a query to request.
This table is calledlookup table. To handle sources with differ-
ent p values, we can store a lookup table for eachp value (e.g.,
p = 0.01, 0.02, . . . , 1). Then, at runtime, we only need to perform
a sequence of lookups, instead of regenerating the whole dynamic
programming table.

k − n′ l

1 42
2 91
3 144

Table 5: Lookup table for p = 0.01, k = 3, Cost(l) = 10+1 · l.

EXAMPLE 2. Table 5 shows the lookup table for a source with
p = 0.01 andCost(l) = 10 + 1 · l. The table shows the optimal
numberl of objects to retrieve in the next iteration for various num-
bers of remaining satisfying objects to be retrieved to complete the
query.
Space & Time Complexity: We now present the space and time
complexity of building the dynamic programming table shown in
Table 4. Recall that the table is populated top-down. For eachn′

value, once we computeCost(n′) we only need to keep the best
l value (that minimizesCost(n′, l)) andCost(n′, l). Hence, the
space requirement for the minimization isO(k).

The time complexity depends on the method used to find thel
value that minimizesC(n′) in Equation 6. Näıvely, for each value
of Cost(n′) we must compute the costCost(n′, l) for all possible
values ofl, we arrive at somelmax that is the number of points
that were computed in order to find the minimum. This gives us a
total time complexity ofO(k ·lmax ·(k − n′)), however, in practice
lmax for any given iteration, the optimal value forl tends to be very
close to the value ofl computed in the previous row of the dynamic
programming table. This is easy to see, considering that for each
row of the table the number of satisfying objects is increased by
only one.

4. ALGORITHMS FOR THE SSNDD &
MSNDD PROBLEMS

For the problems SSNDD (Single-Source, No Distribution Data)
and MSNND (Multi-Source, No Distribution Data), where no in-
formation on the distribution of query satisfying objects is avail-
able, we modify our dynamic programming algorithms to “learn”
the distribution from the objects retrieved during query execution.
Note that this learning is only possible when the results of the query
can be viewed as a random sample. This is generally not a realis-
tic assumption, particularly when the objects’ ranking for the query
conditions (“cancer” in the example of Section 1) are correlated to
the satisfaction condition (cite a paper that contains the phrase ge-
netic propensity in its title). Nevertheless, we describe below an
adaptation of the retrieval algorithms which works well in practice,
as shown in Section 5, when the above assumption is reasonable.

In particular, we compute the currentpi(Q) by performing a lin-
ear extrapolation of the objects retrieved to compute the satisfaction
ratio. The challenge with this is picking an appropriate initial re-
trieval stepl, given that no initial information is available for the
probability pi(Q). In our experiments, where the source access
cost function has the forma+ b · l, we use as a heuristic for the ini-
tial stepl the ratioa/b. The rational is that we should make larger
accesses for sources with high relative access overhead. If no sat-
isfying objects are returned, we keep increasing the retrieval size
(doubling the retrieval size for each round that zero satisfying ob-
jects have been retrieved). We stress here that there are alternative
methods [1, 27, 24] for incrementally computingpi(Q) but these
approaches are limited because they do not consider the case that
the next step does not complete the query. We refer to the dynamic
programming algorithms that learn the satisfaction probability as
DP-SSNDD and DP-MSNDD.

5. EXPERIMENTAL EVALUATION
In this section we present an experimental evaluation of our ap-

proach. The implementation of our techniques is in GNU C++ and
our evaluations were performed on a dual AMD Opteron 280 pro-
cessor system with 4GB of memory running Linux. The index lists
were stored in PostgreSQL1 but for our experiments large blocks
were fetched and cached for usage in the application. For compari-
son of our algorithms we offer several baseline approaches and two
real-world data sets to compare our results. We chose the IMDB
[18] (Internet Movie Database) data set because it is a well known
and freely available and the Westlaw [31] set of legal documents
because our approach is applicable to similar commercial data ag-
gregation services. The multiple source problem is evaluated in
Appendix D.
1http://www.postgresql.org



5.1 Data Sets
We have conducted a series of experiments using two real-world

data sets: IMDB and Westlaw (new case summary reports for the
state of California over a two-month period). We chose the IMDB
and Westlaw databases because the entire data sets were available
to us for analysis and experimentation. This allowed us to calculate
exact values such aspi (Q) as described in Section 2.

For the IMDB data set we have gathered all of the titles2 listed
totaling 236,627 titles and for each object (i.e., TV show, movie,
and so on) extracted a list of keywords describing each movie. This
provides us with a database that can be used to perform a variety
of searches such as locating specific genres and so on. For our ex-
periments we have compiled 25 queries (which contained at least
k = 100 satisfying objects for the purpose of experimental evalua-
tion). Examples of these queries include: “based-on-novel”, “kids-
and-family”, and “revenge”. The frequency of the keywords used
for our evaluation ranges from about 1% to 5%. For each of our
experiments, we execute the algorithms for all keywords and take
the average to display our results. For our experiments we retrieve
objects from the IMDB data set in alphabetical order.

For the Westlaw data set we have gathered over 60,000 case fil-
ings for the state of California over a two-month period. These
filings include several types of cases involving divorce, criminal lit-
igation, and property disputes. Indexed keywords for this data set
include a variety of fields including location of filings, case types,
etc. For our experiments we compiled 25 keyword searches (which
contained at leastk = 100 satisfying objects for the purpose of
experimental evaluation). Examples of these queries include: “fi-
nance”, “copyright”, and “trustee”. The frequency of the keywords
used for our evaluation ranges from about 0.1% to 1.0%. For each
of our experiments, we execute the algorithms for all keywords and
take the average to display our results. For our experiments we
retrieve objects from the Westlaw data set in random order.

5.2 Experimental Setting
For all of our experiments we assume the cost is computed as

a+b · l. Unless otherwise specified we compute the exact binomial
coefficient when generating the dynamic programming tables for
each of our experiments. In order to evaluate our approach we offer
several single-source baselines:

• BAR (Base-AdaptStep-a/b): retrievea/b objects from the
source for the first round, doubling3 the sample size each
round untilk satisfying objects have been retrieved.

• BAK (Base-AdaptStep-K): retrievek objects from the source
for the first round, doubling the retrieval size each round until
k satisfying objects have been retrieved.

• BFR (Base-FixedStep-a/b):retrievea/b objects from the
source as a fixed-step process untilk satisfying objects have
been retrieved.

Additional baseline approaches have been omitted from the ex-
perimental evaluation section because they performed at least an
order of magnitude worse than the next competitive baseline ap-
proach.

As illustrated in Section 3, on-the-fly (at query time) computa-
tion of DP lookup tables may be slow. To address this issue we
pre-compute DP lookup tables for several values ofa, b, andp as a
pre-processing step, as discussed in Appendix C.
2A title can be one of several types of titles such as TV show,
movie, or documentary. Specifically, these titles are not limited
to only movies.
3Doubling l is a standard technique used in approximation algo-
rithms for fast convergence, and hence we also include them to
have a complete study.

5.3 Object Selection Experiments
In the first set of experiments we explore the performance of our

algorithms for determining the number of objects to select from a
single source. In the following sections we will expand upon our
object selection approach to include multiple sources (i.e., source
selection).
Varying Access Overhead:In the first set of experiments we show
how the DP-SSQSP, and DP-SSNDD algorithms perform in terms
of cost defined in Section A, specifically, the total cost for complet-
ing a query including access overhead and per-object cost. In Fig-
ures 1, 2, and 3 we show that for the IMDB data set DP-SSQSP con-
sistently outperforms both P-SSQSP and the baseline approaches.
Further, whenp is unknown at query time DP-SSNDD outperforms
all of the baseline approaches (note that DP-SSNDD cannot be
compared to P-SSQSP or DP-SSQSP directly since they require
p to be known at query time). Similarly our algorithms perform
well using the Westlaw database as illustrated in Figures 4, 5, and 6
achieving up to a 50% reduction in cost. For Figures 1 - 6 the cost
function is defined to bea+ b · l wherea ∈ 10, 50, 100 andb = 1.
Due to space constraints we have omitted experiments for varying
values ofb, but given the nature of the DP algorithms it should be
clear that their performance is dependent upon the ratio ofa to b.

It is important to note that for all of our experiments DP-SSQSP
consistently outperformed the other algorithms achieving the low-
est average cost. This suggests that there is a distinct benefit to
consideringa and b when determining the number of objects to
retrieve in the next step.

The cost incurred by DP-SSNDD was on average higher than
DP-SSQSP but for the majority of the experimental runs DP-SSNDD
followed the performance of DP-SSQSP and always outperformed
the baseline approaches. This suggests that even whenp is un-
known for the initial retrieval step there is sizable benefit to utiliz-
ing the dynamic programming tables. Also, DP-SSNDD outper-
forms P-SSQSP when the access cost is lower for the Westlaw data
set.
Relative Error: Next we consider the relative error to evaluate

the accuracy of our algorithms. We utilize the following formula
to estimate the relative error for each of our experiments. First, we
defineOptimal as the optimal query cost. Assuming that thek-th
satisfying result is at thes-th position (s ≥ k), Optimal is cost of
performing a single source access to retrieves objects. Cost is
simply the cost incurred by an algorithm subject to the cost model
defined in Section A. We can then evaluate the relative error for a
query as:

RelativeError =
(Cost−Optimal)

Optimal

As illustrated in Figures 7, 8, and 9, for various values ofk our
algorithms perform well using the IMDB data set. Specifically,
DP-SSQSP outperforms the baseline approaches in all of our ex-
periments achieving the lowest relative error (i.e., how much the
query overshot the optimal retrieval size). Similarly as shown in
Figures 10, 11, and 12, all our approaches consistently outperform
the baseline approaches for each of the experiments using the West-
law data set.

For both the IMDB and Westlaw databases the relative error for
DP-SSQSP stays relatively flat between the values ofk, this is due
to the fact that taking into account the costs (i.e.,a andb) helps re-
duce the relative error of the individual queries. Any of the baseline
approaches may outperform the DP algorithms for a single query
but on average the DP algorithms should outperform the baseline
approaches. Notice that the DP algorithms consistently outperform
P-SSQSP in the Westlaw data set, but not the IMDB data set. These
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Figure 1: Comparison of average cost for
various values ofa. Each result is com-
puted as the average cost over 25 queries
wherek=25 using the IMDB data set.
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Figure 2: Comparison of average cost for
various values ofa. Each result is com-
puted as the average cost over 25 queries
wherek=50 using the IMDB data set.
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Figure 3: Comparison of average cost for
various values ofa. Each result is com-
puted as the average cost over 25 queries
wherek=100 using the IMDB data set.
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Figure 6: Comparison of average cost for
various values ofa. Each result is com-
puted as the average cost over queries 25
wherek=100 using the Westlaw data set.

results suggest that the algorithm is sensitive to the distribution of
data. Specifically, queries performed on the randomly organized
Westlaw data set tend to outperform queries on the alphabetically
organized IMDB data set.
Varying Query Size: As illustrated in Figures 7, 8, 9, 10, 11, and
12 P-SSQSP, DP-SSQSP, and DP-SSNDD significantly outperform
the baseline approaches using the IMDB and Westlaw data sets,
consistently achieving a relative error half the size of the worst
baseline approach.

In the case wherep is unknown we can employ DP-SSNDD as
described in Section 4. As illustrated in Figures 10, 11, and 12
DP-SSNDD achieves similar results to DP-SSQSP even thoughp
is unknown for the initial step. As expected, DP-SSNDD performs
well in comparison to the baselines, and outperforms P-SSQSP (re-
callp is available for P-SSQSP) as well. This suggests that ramp-up
cost associated with DP-SSNDD does not greatly affect the overall
performance of the algorithm.

6. CONCLUSION
In this paper, we have presented a cost aware approach to source

and object selection, utilizing a cost structure and dynamic pro-
gramming model for computing the optimal number of objects to
retrieve from each data source. Such a structure can be a valuable
asset where there is monetary or other costs associated with access-
ing large distributed databases.

We found that our approach excels in a variety of settings, such
as when the number of objects requested is large and the frequency
of retrieving a satisfying results is small. This can be explained by
the fact that in such a scenario, blind doubling and other similar

approaches do not fare well since the number of objects required
may vary greatly. In contrast, we found that our approach does
not greatly benefit object and source selection scenarios where the
overhead was extremely small. This is understandable consider-
ing that as the overhead for both object and source selection ap-
proaches zero, it becomes increasingly desirable to employ greedy
algorithms such as the doubling approach described earlier in the
paper.
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APPENDIX

A. ACCESS COST MODEL
In this section we provide evidence supporting the existence of

complex access cost models in real databases. In particular, we
show that the access cost of real data sources generally consists of
a relatively fixed overhead per access and a “per retrieved object”
cost.

As stated in the introduction, our goal is to optimize access such
that we minimize the total cost of retrieval for answering some
query. In order to perform this optimization, we need to gener-
ate a cost model. Specifically, our model assumes that there is a
distinct cost for accessing a source and a cost associated with re-
trieving individual objects. We break up the cost function into these
distinct costs to handle a cost for connection to a database, and a
cost for data transfer. This is motivated by real world databases
which do not offer sufficient filters to answer a user’s request—so
the filtering must be performed on the client’s side.

With every database connection there is an initiation “handshake”
which establishes a connection between the client and the server.
We represent the connection cost for each data source,Si, as some
constant cost,ai.

We derive an expression for the transfer cost of a constant amount
of data (i.e., the size of an object). Specifically, we can represent
this cost asb. Further, the cost of retrievingl objects from a data
source,Si, is bi · l.

Separating the connection establishment cost from the data trans-
fer cost allows us to apply the model to applications where indi-
vidual sources contain unique connection establishment and data
transfer costs. The cost function is defined to be,

Costi(l) = ai + bi · l (7)

whereai is the access overhead cost andbi is the per-object access
cost: ai is the cost of connecting to the data source (this may in-
clude authentication and other initiation procedures),bi is the cost
of retrieving individual objects from a data source. In approximat-
ing the retrieval cost withai andbi, we also make the implicit as-
sumption that the overhead of retrieving individual objects is simi-
lar for a local database.

An example of this model can be derived from the PubMed on-
line database with the ESearch4 online access system (searches
and retrieves document ids, term translations), which is developed
and maintained by National Center for Biotechnology Information
(NCBI).
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Figure 13: The average cost (seconds) to retrieve 1 to 1000
publication ids from the PubMed online database to satisfy the
query “cancer”. Each of the data points was averaged over 100
independent runs using a 1 Gb Internet connection.

4http://www.ncbi.nlm.nih.gov/entrez/query/static/esearch help.html

As shown in Figure 13, the access cost for ESearch can be ap-
proximated by a linear function. We can compute the linear regres-
sion for the sample queries to estimate the constants in our cost
model. There is a notable cost for connecting to the ESearch sys-
tem (a = 0.2752 seconds). This can be accounted for by several
possible underlying issues such as database connection initiation,
network latency, etc. In addition, there is a small cost for retrieving
individual objects (b = 0.0003 seconds). Note: similar results may
be obtained using other access systems (e.g., Westlaw and IMDB),
and values fora andb may vary depending upon several external
influences such as user interaction and Internet connectivity.

This example demonstrates that our linear cost model can be
applied to the commercially and publicly available systems. As
well, it shows that the cost of overshooting the number of objects
necessary to satisfy the query can become prohibitively expensive.
Further, the ratio ofa to b demonstrates that this is a non-trivial
approach.

B. ALGORITHMS FOR THE MSQSP
PROBLEM

In this section we consider the multiple source problem. To ad-
dress this problem we have to develop solutions for the problem of
source selection. We have sourcesS1, . . . , Sq with query satisfac-
tion probabilitiesp1(Q), . . . , pq(Q) respectively. We use the nota-
tion pi instead ofpi(Q) for simplicity. We assume in our analysis
that the sources have disjoint objects. However, the algorithms are
expected to perform well even for scenarios with reasonable over-
lap among sources. The only difference in the execution would be
that the duplicate objects are discarded. If overlap information was
available, it could be incorporated in our probabilistic model, and
would generally lead to an increase of the retrieval stepl.

B.1 P-MSQSP: Probabilistic Algorithm
for MSQSP Problem

Here we develop a probabilistic algorithm for the MSQSP prob-
lem. The algorithm at each step computes the numberl of ob-
jects to retrieve so that queryQ is completed with probabilityx%.
However, the introduction of multiple sources introduces new con-
straints such as the minimum access cost to a source. We build
on on the P-SSQSP algorithm, incorporating this idea as follows.
At every step we compute separately the numberli of objects to re-
trieve from each of the sources to complete the query with probabil-
ity x%. We pick the sourceSi with minimum access costCosti(li)
to do the next retrieval ofli objects.

B.2 DP-MSQSP: Dynamic Programming
Algorithm for MSQSP Problem

For DP-MSQSP a new constraint has been added; we must now
also consider the extra source id dimension. For each step in the
algorithm we must consider each source for selection. In particular,
Equations 3 and 4 are modified as follows:

C(n′) = min
l∈IN ,v∈1,...,q

C(n′, l, v) (8)

C(n′) =

k−n′

∑

s=1

(

Pv(s sat in l retr) · C(n′ + s)
)

+ Costv(l)

1− Pv(0 sat in l retr)
(9)

whereC(n′) is the expected cost of completingQ given thatn′

satisfying objects have been retrieved so far, and the next access
will be at sourceSv and will retrievel objects.

The dynamic programming table as shown in Table 6 has an ex-
tra columnv, which is the source id and goes from1, . . . , q. The



n′ l v C(n′, l, v) C(n′)

k any x 0 0
k − 1 1 1 (1− p1) ∗ C(k − 1) + Cost1(1) min(
k − 1 1 2 (1− p2) ∗ C(k − 1) + Cost2(1) C(k − 1, 1, 1),
k − 1 1 ... ... C(k − 1, 1, 2),
k − 1 1 q (1− pq) ∗ C(k − 1) + Costq(1) ...,
k − 1 2 1...q (1− pv)

2 ∗ C(k − 1) + Costv(2) C(k − 1, 2, 1),
k − 1 3 1...q (1− pv)

3 ∗ C(k − 1) + Costv(3) ...,
k − 1 ... ... C(k − 1, 2, q),
k − 1 C(k − 1, 3, 1),
k − 1 ...)
k − 2 2 1...q (1− pv)

2 ∗ C(k − 2) + 2pv(1− pv) ∗ C(k − 1) + Costv(2) ...
k − 2 3 1...q (1− pv)

3 ∗ C(k − 2) + 3pv(1− pv)
2 ∗ C(k − 1) + Costv(3)

k − 2 4 1...q ...
... ...
0 1 1...q Total cost of query
.... ...

Table 6: Dynamic programming table created using DP-MSQSP algorithm. The table shows how the first three values ofn′ are
recursively computed.

lookup tables also have an extra column, the source id. That is, for
eachn′ value, the lookup table stores the source idv, in addition to
the numberl of objects to retrieve from this source.

k − n′ l v

1 208 3
2 235 2
3 305 2
4 361 1

Table 7: Sample lookup table for DP-MSQSP.

EXAMPLE 3. Table 7 shows a sample lookup table for three
sources withp1(Q) = 0.03, p2(Q) = 0.02, p3(Q) = 0.01 and
Cost1 = 100 + 0.01 · l, Cost2=75+0.07·l, Cost3 = 50 + 0.1 · l
respectively. For instance, the second row shows that if two more
satisfying objects need to be retrieved to completeQ, the next ac-
cess should retrieve 235 objects from SourceS2.

THEOREM 2 (OPTIMALITY OF DP-MSQSP).DP-MSQSP is
an optimal algorithm for the MSQSP problem.

Space & Time Complexity: Similarly to the analysis of DP-SSQSP,
space complexity isO(k). We recall thatO(k · lmax · (k − n′))
is the cost of solving the minimization problem of Equation 6, for
multiple sources we simply extend our approach to consider all of
the sources for each value ofn′, which gives us the following com-
plexityO(q · k · lmax · (k − n′)).

C. GENERATING DP LOOKUP TABLES
As illustrated in Section 3, on-the-fly (at query time) computa-

tion of DP lookup tables may not be desirable due to time con-
straints or other resource limitations. To address this issue we pre-
compute DP lookup tables for several values ofa, b, andp as a
pre-processing step (the cost of computing a DP lookup table is
described in Sections 3.2 and B.2), we can then use these pre-
computed tables for future queries with minimal per-query over-
head (i.e., we only have to access the table containing the pre-
computed values). Given the numerous possible combinations for

a, b, andp, computing a DP lookup table for all possible combina-
tions can be prohibitively expensive.

For our experiments we compute DP lookup tables for various
a, b, andp combinations. Sincea andb are constant we compute
tables only for the values pertinent to our experiments, but addi-
tional DP lookup tables can be created to accommodate sources
with varying overhead. In contrast,p is not fixed (i.e., it may vary
greatly for each query), so we must compute a sufficient number of
DP lookup tables such that we adequately limit the error induced
by rounding the exactp value to a pre-computed (discrete) value.

In our setting, for a given query the DP lookup table contain-
ing matchinga, b, andp values is identified and used for retrieval.
In the event that an exact match fora, b, andp has not been pre-
computed, we can estimate the number of objects to retrieve for the
next step by using the entry with the closesta, b, andp values to
the query. For our experiments, to ensure an adequate number of
values forp are pre-computed we create several DP lookup tables:
p between 0.1% to 25% in 0.1% increments (we also tested smaller
increment sizes but we found that these additional DP lookup ta-
bles yielded little or no benefit for our experimental setting). This
ensured that for any given query the pre-computed DP lookup table
selected would not contain a deviation from the actualp of more
than 0.1%. As stated earlier in the paper (Sections 3.2 and B.2)
the storage requirement for DP lookup tables is reasonably small,
the storage requirement for the pre-computed DP lookup tables is
simply the number of DP lookup tables timesO(k). Appendix E
shows the times needed to generate the DP lookup tables.

D. MULTIPLE SOURCE EXPERIMENTS
In this section we evaluate the multiple-source algorithms for the

MSQSP Problem described in Appendix B. We use the following
baselines:

• BRFRM (Base-RoundRobin-Fixed-a/b-Multi): randomly
select an initial source, then retrieve objects in a round-robin
fashion retrievingai/bi objects from each source untilk sat-
isfying objects have been retrieved.

• BRAKM (Base-RoundRobin-Adapt-K-Multi): randomly se-
lect an initial source, retrievek objects from the initial source
for the first round, then in a round-robin fashion double the



retrieval size for each iteration untilk satisfying objects have
been retrieved.

To simulate an environment containing more than one source we
have split the IMDB and Westlaw databases each into 10 partitions.
Each partition represents a single source. The access overhead and
per-object cost for each source was distributed as shown in Table 8.

Source Access Overhead Per-object Cost
1 1000 0.1
2 900 0.3
3 800 0.6
4 700 1.0
5 600 1.5
6 500 2.1
7 400 2.8
8 300 3.6
9 200 4.5
10 100 5.5

Table 8: Source access overhead and object selection cost used
for each source for the multi-source experiments.

We have chosen the above access overhead and per-object cost
for each source in order to maximize the number of the sources
represented in the DP lookup table. It is easy to see that if the
access overhead and per-object cost are not chosen carefully for
each source, a few sources will dominate all of the entries in the
DP lookup table.

For the multi-source experiments we show how DP-MSQSP per-
forms in terms of cost, specifically, the total cost for completing
a query including the access overhead and per-object costs across
all sources accessed. Figures 14 and 15 demonstrate that our ap-
proach consistently outperforms the baseline approaches for vari-
ous values ofk using the IMDB and Westlaw data sets. In addi-
tion, DP-MSQSP consistently outperforms P-MSQSP. Similar to
DP-SSQSP, the DP lookup tables allow for greater accuracy when
determining the number of objects to retrieve over the less robust
P-MSQSP, because costs are taken into account. For the multi-
source experiments P-SSQSP and DP-SSQSP are very effective in
keeping the cost low ask increases. Conversely, the baseline ap-
proaches experience a much more sporadic behavior. Results for
DP-MSNDD have been omitted due to space constraints.
Number of Sources Utilized: In our experiments, when a source
contains both a low access cost and a low per-object cost in com-
parison to other sources, it tends to dominate placement in the DP
lookup table. Even when access costs and per-object costs across
all sources are roughly equal, the dynamic programming algorithm
tends to favor just a few sources for selection even when 10 or
greater sources are available. This is understandable given the fact
that there are two scenarios that need to be considered for source se-
lection: 1) when the number of required satisfying objects is very
large and 2) when few satisfying objects are needed. In the first
case, a lower per-object cost is desired, and a higher access cost is
acceptable. However, in the second case, a higher per-object cost
can be tolerated as long as the access cost is sufficiently low.

For all of our experiments the number of sources utilized is never
greater than two even when several sources are represented in the
DP lookup table. For the majority of our experiments only one
source is used even if multiple iterations are performed, this sug-
gests that our dynamic programming algorithm does a reasonably
good job at estimating the number of objects to retrieve.

E. EVALUATION OF DP LOOKUP TABLE
CREATION

In our last set of experiments we explore the performance of
our algorithm in terms of generating DP lookup tables. We note
from Section 3.2 and Appendix B that we compute two types of
DP lookup tables, namely, computing DP lookup tables for a single
source and multiple sources (we assume 10 sources as in previous
experiments). In Table 9 we show the performance of generating
the DP lookup tables fork equals 100, 200, 300 using the tech-
nique for efficiently computingP (s sat in l retr) as described in
Section 3.1.

k (1) Source DP Table (10) Source DP Table
100 0.050 0.467
200 0.319 2.953
300 1.006 8.756

Table 9: Time (seconds) to generate dynamic programming ta-
bles for single and multiple source data sets.

A DP lookup table is created once for each query, and may be
used for several queries thereafter. The results suggests that our
approach can be effectively utilized for generating several dynamic
programming tables as a pre-processing step with reasonable over-
head.

F. RELATED WORK
Our problem is different from traditional data integration, where

the query capabilities and schemas of various sources are com-
bined. Instead, we assume that the problems of submitting a query
to multiple sources [14] and locating the relevant sources [16, 15]
are solved, and focus on the access strategy, i.e., the sequence and
depth of accesses.

Several approaches have been presented for thesource selection
problem (i.e., which source(s) to use for sampling where features
of individual sources such as probability of obtaining a satisfying
object, cost of accessing a source, and cost of accessing individual
objects may differ) [13, 16, 15, 32].

In [32] the authors employed the use of phrase information for
collection selection index(complete list of objects and frequency
for each) andquery expansion. Both of these approaches offer in-
creased discrimination capabilities across the different sources al-
lowing for higher accuracy in choosing the most promising source.
This approach is highly dependent upon a priori information and
it is unclear how this information can merge efficiently between
varying types of data sources without a significant overhead.

The best known algorithms which use frequency information for
performing source selection are GIOSS [16, 15] and CORI [7].
CORI works by creating acollection selection indexwhere each
source is represented by its objects and individual object frequency.
Each source is then ranked per query based on a object ranking
algorithm. The GIOSS (Glossary-Of-Servers Server) system [16,
15] provides an approach for source selection by storing statistics
of individual sources to estimate which source(s) may be the most
useful for answering individual queries. In general, this approach
uses term frequency information from individual sources to hint to
the user which source may be the most beneficial for a given query.
Mihaila et al. [23] present a framework to discover and combine
Internet sources to answer complex queries, considering the Qual-
ity of Data and utility of the sources. However, these approaches
do not address the problem of determining the optimal number of
objects to retrieve from a selected source or subsequent accesses.
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Figure 14: Comparison of the cost for the multi-source algo-
rithms, averaging 25 queries for various values ofk using the
IMDB data set.
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Figure 15: Comparison of the cost for the multi-source algo-
rithms, averaging 25 queries for various values ofk using the
Westlaw data set.

Vidal et al. [30] propose a technique based on a local utility
function to optimize the selection of paths in path queries on graph
databases; this framework is introduced in BioFast [5]. The local
utility function of a path is computed using its length, cardinality
and other factors. Although our problem setting is very different,
we can view the cost of accessing a source in our multi-source prob-
lem as a kind of local utility function.

Source and object selection is closely associated totop-k query
algorithms[12] andprobabilistic top-k query algorithms[29, 28] in
traditional database research. Further, these approaches have been
extended to distributed models answering queries on large multi-
source databases [3, 2]. These approaches specifically focus on
vertically partitioned (i.e., each source contains information about
a specific attribute or group of attributes) data and it is not clear
how these models can be applied to horizontally partitioned data in
our distributed setting.

Recent work has explored the notion of probing databases to re-
duce the amount of work done by the user for source selection [22].
In essence, this approach probes (samples) individual sources de-
veloping a summary for each source. These summaries are then
used to determine which source(s) are the most promising in sat-
isfying the user’s query. Further, approaches have been presented
which utilize data collected from past queries to adaptively predict
the utility of the individual sources [11].

Fuhr [13] presents an algorithm to compute the optimal number
of documents to retrieve from each of a set of sources to answer
an Information Retrieval query. Given the precision-recall graph of
each source they pick a prefix of each source to retrieve to mini-
mize the overall cost to getk relevant documents. However, their
algorithm is optimal only if the precision-recall graphs are accu-
rate, that is, it is not possible that a source will return a smaller
than expected number of relevant documents. In contrast, our dy-
namic programming algorithm factors in this possibility since it
just assumes a probability distribution of the relevant documents
(satisfying objects in our setting).
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