An Access Cost-Aware Approach for Object Retrieval over
Multiple Sources

Benjamin Arai #t, Gautam Das +2, Dimitrios Gunopulos $3 , Vagelis Hristidis +4, Nick Koudas @5

#University of California, Riverside; University of Texas, Arlington®University of Athens, Greece
*Florida International University, ®University of Toronto
lparai @s. ucr.edu, 2gdas@se.uta.edu, 3dg@i.uoa.gr, “4vagelis@is.fiu.edu, °Skoudas@s.toronto.edu

ABSTRACT with accessing individual sources is not considered. Second, even
Source and object selection and retrieval from large multi-source if the costs were considered it is unclear how this could be done in

data sets are fundamental operations in many applications. In this@ Scalable and efficient (w.r.t., .g., bandwidth and latency) fashion

paper, we initiate research on efficient source (e.g., database) and The pro?lem_ oflsetlje(;tlng how muclh tot_access iaCh Iio‘i)r&e (|js 3';0
object selection algorithms on large multi-source data sets. Spech‘-'mportant or single data source applications such as PubMed [25]

ically, in order to acquire a specified number of satisfying objects and IMDE’ [18] (Internet Movie Databas_e). As an example of_adata
with minimum cost over multiple databases, the query engine needsSource with an access cost model that involves both bandwidth and

to determine the access overhead for individual data sources, thg/tency consider PubMed [25] (3|m|.lar cost models can b.e defined
overhead of retrieving objects from each source, and possibly other_for IMDB), a serwce_o_f the US Natlona_ll L!bra'fy of Medicine that
statistics such as estimating the frequency of finding a satisfying |nclu_des over o _m||||on_c_|tat|ons (.A citation is a reference to a
object in order to determine how many objects to retrieve from each PuPlished item, with sufficient detail to allow the reader to locate
data source. We adopt a probabilistic approach to source Selec_|t.)_from MI_EDLINE and other life science journals for biomedical
tion utilizing a cost structure and a dynamic programming model articles dating back to the 1950s [25.]' suppose the user knows that
for computing the optimal number of objects to retrieve from each €re has been a study performed linking some genetic character-

data source. Such a structure can be a valuable asset where there |§|tqlc toa Prope?slty f(;.r Zorrr]]e type ?f cancer Ige.g., brgast Eanlt(:er).
a monetary or time related cost associated with accessing large dis- e u“sers gc:a Is to find the set of papers that mention the “ey-
cancer” and also cite a paper that contains the phrase “ge-

tributed databases. We present a thorough experimental evaluatioﬁ"’or_d R
to validate our techniques using real-world data sets. netic propensity” in |ts_t|tle. We can perform a keyword search for
“cancer” but the query interface of PubMed does not allow keyword

conditions on the citations (this is a limitation of the public inter-

1. INTRODUCTION face). This query is not possible with the recent PubMed Advanced
Distributed object retrieval systems are becoming increasingly Search interface (http://www.nchi.nim.nih.gov/pubmed/advanced)
prevalent due to the growing size of data collections such as infor- either. Hence the client has to apply this extra filtering condition
mation logging, digitization of large periodicals (i.e., newspapers on the returned data. The question is: what is the best retrieval
and books), and so on. Several information retrieval platforms have strategy in order to get five satisfying papers given that the query
been developed including Google Bigtable [8] and OceanStore [4, “cancer” returns more than two million papers? That is, how many
20, 19, 26]. These systems answer queries by retrieving objectsobjects should be retrieved at every iteration, given the access cost
from one or more sources (each source may have varying benefits) characteristics (access overhead, per object cost) of the source? |
A key problem that such systems encounter is that many public in- Section A we provide details on the access cost model of PubMed.
terfaces have limited filters which cannot fulfill the user’s request For the distributed (multi-source) scenario we must identify which
exactly. In this case, more data than is necessary to satisfy the quersource(s) to use for retrieval of objects and create an access girateg
must be collected and then some filtering must be performed at theThis can be a difficult task when each source has a distinct access
client side. cost (e.g., latency, per-object monetary cost, etc.). This typestf co
Large distributed collections present several distinct problems. model is easy to see in modern information distribution sites. For

Naively, a distributed collection of objects could be treated as a instance, commercial legal research distributors (e.g., LexisNexis
single monolithic database where each source would be indepen-[21] & Westlaw [31]) offer a variety of data services based on sev-
dently accessed and the results from each source would be merge@ral pay-per-search revenue models. The public interfaces & thes
at the query node to create a single list of satisfying objects. There databases allow a limited set of conditions to be specified (e.g.,
are several problems with this approach. First, the cost associatedve may be able to specify a filing date range), but the client may

be interested in further selection criteria (e.g., keywords such as

“civil” and “riverside”). Such keyword searches are not allowgd b
Permission to copy without fee all or part of this material srged provided these interfaces, hence the client has to query both databases and
that the copies are not made or distributed for direct commiadiantage, apply the extra selection criteria on the returned data. Using our
the VLDB copyright notice and the title of the publicatiortits date appear, approach, we can minimize the total access cost of such a query.

and notice is given that copying is by permission of the VerygeaData . . e
Base Endowment. To copy otherwise, or to republish, to posteovers In our setting there are two tasks that we consider, specifically,

or to redistribute to lists, requires a fee and/or speciahssion from the source selectiorand object selection Source selection decides
publisher, ACM. which source(s) to retrieve objects from, whereas object selection
VLDB ‘10, September 13-17, 2010, Singapore decides how many objects to retrieve from each selected source.

Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/aD/0

These two tasks are interdependent and need to be addressed in Burther, we introduce an a priori approach to computing our prob-
holistic way as we explain below. abilistic model in such a way that the per-query computation cost
When multiple sources are available for retrieval, a decision must is minimized. Providing an efficient and scalable approach is cru-
be made on which source to access. Specifically, a decision need<ial in offering a competitive object retrieval system. Our goal is
to be made on which source will yield the highest benefit with to compute these statistics as a pre-processing step, so that they are
minimal cost (overhead) for the user. Further, this cost may be available for future queries.
in the form of money, bandwidth, and so on. Ideally, the system A data sourceS; stores a sefti, ..., t%;} of objects. The cost
should address source selection in an automated fashion that conef retrieving! objects fromsS; is Cost;(1). In this work we assume
siders source specific overhead and access costs. This system cafiost; (1) is monotone (increasing) dn
then be used to respond to the users input while minimizing cost Assuming a public interface for each source, allowing a limited
through accessing sources in an optimal fashion. set of conditions, a client may be interested in further selection con-

In order to select the optimal source for a given query, we need ditions not allowed by public interfaces. Therefore, the client must
to determine the relevance of each source so that we can choosapply some extra selection condition on the returned data. In our
the one most relevant to a given query. Individual objects within a setting, the interface to a source requests a nurhbéobjects to
system could be classified as relevant (satisfying) or non relevantretrieve. We represent this action@stNext;(1). Note that when
(unsatisfying). We adopt aobjective algorithmimotion of rele- a source is accessed, the objects retrieval continues from where is
vance with a binary degree, following the principles defined in [6]: stopped the previous time this source was accessed. This is a re-
an object either meets the requirements of the query or it does not.alistic assumption, given that a source access session is generally
Without loss of generality, a satisfying object can be described as open for a long enough time for the source to maintain the current
an object that meets the requirements of a predefined query. retrieval state.

The fundamental component in multi-source object retrieval is We assume that we may have some statistics about the objects
the ability for a query to be submitted to the system and obtain stored in a source. Techniques like [9, 10] can be used to infer such
k satisfying objects (viz., an§) from a distributed database as information. If the sampling is performed in a query-dependent
though all the objects exist in a single, localized database. In or- way, then the cost of sampling should be added to the query cost. If
der for such a process to be useful in a commercial setting, the the sampling is performed as a query-independent pre-processing
solution must be both efficient and scalable. In this paper, we step, then we do not add its cost to a query. We follow the latter
present an optimal approach utilizing dynamic programming to re- in our experiments. We also present problem variants (SSNDD,
trieve anyk satisfying objects from multiple sources, minimizing MSNDD) where no source information is available and the algo-
cost (note: cost can be defined based on several criteria such as timethms adaptively learn the source probabilities.
and money), in a scalable manner to support both a large number The simplest way to model a source in terms of the frequency of

of users and a large number of sources. satisfying objects is through tlygiery satisfying probability; (Q).
Our Contributions: The main contributions of this paper are sum- Given a boolean selection quegy, the query satisfaction probabil-
marized as follows: ity p;(Q) is the probability that an object retrieved from soufe

satisfies. Instead of the query satisfaction probability, we may
¢ We introduce adaptive algorithms for source and object se- have a query-specific histografi; (Q) of the distribution of ob-
lection for the case when the expected frequency of satisfy- jects with respect t@).
ing objects is known. If this frequency is unknown, we pro- To setup the problem and develop our solutions we begin with
pose techniques to adaptively learn it, which work well for - the single source problem before continuing with the more chal-
sources where the retrieved objects represent a near-randomenging multiple source problem.

sample of the database.
PROB2.1 (SNGLE SOURCE, p;(Q) (SSQSP)).Given anyk

* We develop a probabilistic model for collections which con- (retrieve anyk results) queryQ, data sourceS; with access cost
tain various costs associated with accessing and retrieving Cost; (1), and query satisfaction probability; (Q), find best ac-
objects from multiple databases. cess strategy.

e We provide an efficient solution for computing our algorithms By access strategy we mean a sequence of nunilogrsbjects
utilizing pre-processing such that the per-query computationalto be retrieved from the source at each step. The best strategy is the
overhead is minimized. one that minimizes the access cost. An interesting variant of the

SSQSP problem is the case where there is no query satisfaction in-

formation. We call this variant Single Source, No Distribution Data

(SSNDD) problem. As we explain later, for the SSNDD problem,

our adaptive algorithms dynamically “learn” the source’s distribu-

tion.

e \We demonstrate the efficiency and feasibility of our approach
through a thorough experimental evaluation.

The rest of this paper is organized as follows. In Section 2 we
present our framework. We introduce our approach in Sections 3 -
4. We provide extensive experimental evaluations of our technique prog 2.2 (SNGLE SOURCE (SSNDD)). Given anyk query
in Section 5, and finally, in Section 6, we conclude this paper. Q, data sourceS; with access cosflost; (1), and no query satis-

faction information, find best access strategy.
2. DATAMODEL & PROBLEM STATEMENT

In this section we discuss the principles behind our approach for PROB2.3 ~ (MULTI-SOURCE, pi(Q) (MSQSP)). Given any-

. ;) . k query @, data sourcesSy, ..., S, with access cost€ost; (1),
cost-aware object_ ret_rleval. Th_e relatlonghlp of the cost model to and query satisfaction probabilities; (Q), find best access strat-
real data sources is discussed in Appendix A. eqy

Our focus of this paper is to provide a probabilistic model for
distributed collections which consider various economic costs asso- As in the single source case, an interesting variant of the MSQSP
ciated with accessing and retrieving objects over multiple sources. problem is when there is no query satisfaction information. We call

this variant Multi-Source, No Distribution Data (MSNDD) prob- Symbol | Definition

lem. Q Query
k Number of satisfying objects requested

PrROB 2.4 (MuLTI-SOURCE(MSNDD)). Given anyk query a; Access overhead cost for sourice
Q, data sourcesSy, ..., S, with access cost€'ost;(l), and no bi Per-object overhead cost for souice
query satisfaction information, find best access strategy. Number of sources to retrieve data from.
A source used for retrieving data from.

q

S;
Example: Several online databases have emerged where there are P Query satisfying probability for source

’

n

l

costs associated with both accessing the database and retrieving in-
formation on a per-object basis as a means of generating revenue.
There exists several revenue baseth discovery servicaaclud- Cost(l)
ing LexisNexis [21] and Westlaw [31], which provide daily legal ', l)
data such as civil litigation and bankruptcy filings. ’

Consider the following example, a trial lawyer is attempting to
find 10 new cases but is paying for searches on each database sep C(n')
arately. For each database there is a monetary cost for accessing
a database and an additional cost for accessing objects (e.g., doc-
uments) from each. Suppose there are three databBsed)-, Table 2: Symbol Description
and D3. We are also given some statistics for each database such
as the cost of connecting and accessing individual objects for each
databased;, a2, andas) and 61, b2, andbs) respectively.

Number of satisfying objects retrieved thus far
The number of objects to retrieve in next step
Access cost of source to retrieve | objects

Cost of completing?, givenn’ satisfying objects
retrieved so far, and objects will be retrieved in
next step

Cost of completing, givenn’ satisfying objects
retrieved so far

1000 = 1300 and C'ost3(1000) = 100 + 2 x 1000 = 2100.
Clearly, D, is the better choice for the first round.
l [D, [Do [D5 ‘ tF_ufr;her, sg!pp:)s?hintthe fir_st_iteTlation we ?b(;air\;vonly glgf tr:e_ 10
satisfying objects that we originally requested. We could retrieve
écces; Overhead (a) 300 1 | 100 additional objects fronD; but it may no longer be the most cost
er-object Overhead (b) 1 1 2 . . S , .
Query Satisfaction Probability (3) 1% | 0% | 1% effective source. Say we retrieve 100 object in the second iteration:
Cost1(100) = 300 + 1 x 100 = 400 andCost3(100) = 100 +
2 x 100 = 300 for databased, and D3 respectively. For the
second iteration) is no longer the minimum cost source. Since
we only need one satisfying object, a higher per-object cost can be
tolerated as long as the access cost is sufficiently low makKing

Table 1: Sample source overheads, per-object costs and proba-
bilities for sources D1, D2, and Ds.

Suppose a query engine receives a query to select 10 objects witH€ ideal source for the second round. _ L
the constrainQ=“filing AND civil AND riverside” (i.e., Find 10 Other examples can be demonstrated which show additional ways

which the optimal source may change during the retrieval process.
Although the optimal source may change for each iteration, we
database®:, D», andD; such that the total cost is minimized (in Show that our approach can adapt to varying constraints, consis-
this scenario sorting the objects in each database is not feasible!€Ntly selecting the most desirable source and retrieval rates.
since filings are continually being added). 3. ALGORITHMS FOR THE SSQSP
Naively, we could retrieve objects from the database with the PROBLEM
minimal access or per-object overhead but there are several prob
lems with this approach. First, even if we choose the best database In this section we present two algorithms to solve the SSQSP
for retrieval, the chosen database may not be the optimal choice if problem. The first one, Probabilistic Algorithm for SSQSP (P-
the query is not satisfied in the first round. Second, other greedy SSQSP), uses a probabilistic argument to estimate the number of
approaches (i.e., doubling the retrieval size for each iteration until objects that should be retrieved in order to complete the query with
all satisfying objects are located) may be employed as a shotgun@ given probability (e.g., 95%).
approach to retrieval but these types of techniques offer little ben- ~ The second algorithm, Dynamic Programming Method for SSQSP
efit in the way of leveraging available statistic about the individual (DP-SSQSP), is optimal and is based on dynamic programming
databases. principles. P-SSQSP can be viewed as a greedy compromise to
In contrast, we may be able to do much better if we consider the optimal DP-SSQSP. We use the notationstead ofp;(Q)
the access overhead, per-object cost, and underlying object fre-for simplicity. The two algorithms are experimentally compared in
quency (when available) when obtaining a satisfying object from Section 5.
each database. Using this information we can determine the op- Appendix B shows how these algorithms are adapted for the
timal database to select for retrieval. The above table shows thatMSQSP problem.
databaseD, contains both a low access overhead and per-object . g .
cost but there are no satisfying objects in the source (Query Satis-3'1 P-SSQSP: Probabilistic Algorlthm for
faction Probability = 0%), so we can disregatd. This leaves us SSQSP Problem
to considerD; and Ds. In this algorithm, the numbdrof objects to be retrieved in the
Notice thatD; contains a high access overhead but low per- next step is computed in a way that the a@nguery @ will be an-
object cost. However; contains a low access overhead but high swered with probability:% by the end of this step. Let’ be the
per-object cost. In additiorl); has ap; of 1% of obtaining a sat- number of satisfying objects retrieved so far (ile= n’ more sat-
isfying object (i.e., sample about 1000 objects) dngl has aps isfying objects need to be retrieved in the next steps).
of 1% of obtaining a satisfying object (i.e., sample about 1000 ob- The probability that exactly satisfying objects are contained in
jects). With this information we can compute the cost of retrieving the nextl objects is computed using the binomial distribution as
1000 objects from each database(asst; (1000) = 300 + 1 x Op* (1 —p)'.

s

civil lawsuit filing which are in the county of riverside). The goal of
the query is to locate 10 objects which satisfy the quggccessing

Hence, the probability thad is satisfied by retrieving objects incurred in the case that the next step does not complete the query
is given by thecumulative binomial distributionThis is the prob- (does not retrieve all ang-objects). Table 2 shows the symbols
ability that at leask — n’ satisfying objects are retrieved, which is used.

. Dynamic Programming Formulas: A key quantity in DP-SSQSP
_ L\ I—s is the optimal expected cost(n’,) of completing the query,

P(Q completed) = Z <s>p (1=p) (1) given thatn’ satisfying objecEs ha)ve been retrieved so far, and
objects will be retrieved in the next step. Obviougl(n',1) = 0

s=k—n'

We pick the minimuni such thatP(Q completed) > x%. That if n’ > k. To computeC'(n’, 1), we need to consider all possible
is, scenarios, that is, possible numbers of returned satisfying objects.
) ' (1 . s Another key quantity i<C'(n’) (note the overloading of’(.)),
I = argmini { > g P A=p) 7" 2 a% @) which is the optimal expected cost to complédegiven thatn’
s=k

satisfying objects have been retrieved so far. Itis

Note thatl is recomputed at every step. Fortunately, sihte
an integer and always positive we can efficiently compute the bino- C(n") = min,_pyC(n',1) 3
mial coefficient for each value éiutilizing the Chernoff-Hoeffding . ,
inequality [17]. A key drawback of P-SSQSP algorithm is that the We now go bagk to the cqlculatlon 61(".). In ordgr to ac-
user must pick am value, which plays a critical role in the perfor- count for all possible scenarios, the following formula is used.

mance of the algorithm. Intuitively; should be higher for sources

with high overhead cost, so that the probability of a subsequent re- k—n'
trieval step is small. In the following section (Section 3.2) we will C(n',1)=>_ (P(ssatinlretr)-C(n'+5s)) (4)
explore the use of dynamic programming to take into account the 5=0
cost incurred in the event that the next step does not complete the + Cost(l)
uery.
query whereP(s sat in [retr) is the probability that exactly satisfying
E—n objects are contained irretrieved objects.
1 11 !
2 21 P(s satinlretr) = ()pS (1—p)® (5)
3 |31 5
Table 3: Sample values for P-SSQSP algorithm fop = 10% Recall thatCost (1) is the access cost of the source to retrieve
and 2% = 95%. objects (do not confus€(.) with Cost(.)).

Note in Equation 4 that the summation goes up ton’, because
if more thank —n' satisfying objects are returned the c6%t’ +s)

ExamPLE 1. Consider a source Wi“?"/ = 0.1, and letz = would be 0, since the query answer would have been answered.
90%. Table 3 shows for given valuesiot-n’ (number of requested A challenge in solving Equation 3 is that it is recursive. Since
satisfying objects) the numberf objects to retrieve to complete ¢ (y/ 7) is a function ofC(n’) (the term in the sum fos = 0 in
the query. Equation 4). Hence, we need to find the IV value for which the

: : o p
3.1.1 Space & Time Complexity following e}gfu??tlon produces the minimu@y(n').

The space complexity of P-SSQSP is constant since we just need Z (P(s sat inlretr) - C(n' + s)) + Cost(l)
to evaluate the formula. Assuming the binomial coefficient can Cln') ===
n =

be computed in time linear ik (we can say this because we can
compute the binomial coefficient incrementally from 1fo

6
1 — P(0 sat in I retr) ©

The termsC(n’ + s) for s > 0 are computed in the previous
(n) « = k - (n) steps of DP-SSQSP algorithm and are hence treated as constants
k E+1 k+1 in Equation 6. Thd value that minimizesC(n’) in Equation 6

As shown above, each successive binomial coefficient is propor- €@n be computed either analytically, using derivatives (solve for
tional to the current one. Using this property, the time complexity C(7'), take derivative or, set derivative equal to 0), or numeri-

of P-SSQSP i©(k - I2) per re-computation, which is expensive cally. We use numeric methods in our experiments, which are more
for large values of. The time complexity can be reduced if amax 9eneral. For the numeric methods to be efficient, we must assume
value (imaz) for [is known (e.g., max access cost we are willing thatCost(l) is monot_onlcally increasing with which is clearly a

to pay, or size of source). Since we know from Equation 1 that the reasc.)nfalblelassumpnon. , . .

function is monotonically decreasing, we perform binary search on Details: As in every dynamic programming algorithm, we need to
the values of from k + 1 t0 Lua. until the appropriaté is found fill up a table with interdependent values. As shown in Table 4,

(setting probability just above%). This optimization provides an ~ OUr dynamic programming table has the following columns: n', I,

improved time complexity) (I - k - log(l)) per source access. cm/, l)_' C(n').
)) We fill up the table (see Table 4) from top-down. The value
3.2 DP-SSQSP: Dynamic Programming in the bottom right cell is the expected optimal cost of the query
A|gorithm for SSQSP Problem execution. During query execution we read the table as follows: If

. AN .
Overview: As mentioned above, the performance of P-SSQSP de- we have retrieved:’ safisfying objects so far, we use the lookup

' . L ,
pends on the choice af and there is no simple way to estimate a table tq find th? rOW,W'th the minimur@(n’, {) value among the
good value for it. We now present DP-SSQSP which is an optimal rows with the givern’”.)
algorithm based on dynamic programming. The optimality is intu- ~ THEOREM1 (OPTIMALITY OF DP-SSQSP)DP-SSQSPisan
itively due to the fact that DP-SSQSP takes into account the cost OPtimal algorithm for the SSQSP problem.

l n’ [l [c(n',1) [c(n') ‘
k any 0 0

E—11] 1 (1—-p)*xC(k—1)+ Cost(1) min(
Ek—11] 2 (1 —p)?*C(k—1)+ Cost(2) C(k-1,1),
k1| 3 Clk—1,2),
E—11 ..)
E—2] 2 | (1—-p)?*C(k—2)+2p(1 —p)*C(k —1) + Cost(2) mian(
F—2 3 | (1-p) +Clk—2)+3p(1 —p)?*C(k—1) T Cost(3) | C(k — 2,2),
F—2 | 4 Clk—2,3),
k—2)
k—k

The proof of this theorem follows from the fact that the dynamic

Table 4: Dynamic programming table created using DP-SSQSP algoritin.

programming algorithm considers the whole search space, and se- For the problems SSNDD (Single-Source, No Distribution Data)

lects the optimal solution.

Pre-computing Lookup Tables: At query time, the only informa-
tion we need is the optimal numbépf objects to be retrieved in
the next step, given the numbler n’ of remaining satisfying ob-

and MSNND (Multi-Source, No Distribution Data), where no in-

formation on the distribution of query satisfying objects is avail-
able, we modify our dynamic programming algorithms to “learn”
the distribution from the objects retrieved during query execution.

jects that need to be retrieved to complete the query. Hence, fromNote that this learning is only possible when the results of the query
the large table described above we only need to store the optimalcan be viewed as a random sample. This is generally not a realis-

[value for eachk — n’, which is ak by 2 table, wherék is the
maximum numbek of results that we expect a query to request.
This table is calledookup table To handle sources with differ-
entp values, we can store a lookup table for eachalue (e.g.,

p =0.01,0.02,...,1). Then, at runtime, we only need to perform

tic assumption, particularly when the objects’ ranking for the query
conditions (“cancer” in the example of Section 1) are correlated to
the satisfaction condition (cite a paper that contains the phrase ge-
netic propensity in its title). Nevertheless, we describe below an
adaptation of the retrieval algorithms which works well in practice,

a sequence of lookups, instead of regenerating the whole dynamicas shown in Section 5, when the above assumption is reasonable.

programming table.

e
42
91
144

Table 5: Lookup table for p = 0.01, k = 3, Cost(l) = 10+1-1.

W N =

ExAamMPLE 2. Table 5 shows the lookup table for a source with
p = 0.01 andCost(l) = 10 + 1 - I. The table shows the optimal
numberi of objects to retrieve in the next iteration for various num-

In particular, we compute the curremt(@) by performing a lin-
ear extrapolation of the objects retrieved to compute the satisfaction
ratio. The challenge with this is picking an appropriate initial re-
trieval stepl, given that no initial information is available for the
probability p;(Q). In our experiments, where the source access
cost function has the form+ b - [, we use as a heuristic for the ini-
tial stepl the ratioa/b. The rational is that we should make larger
accesses for sources with high relative access overhead. If no sat-
isfying objects are returned, we keep increasing the retrieval size
(doubling the retrieval size for each round that zero satisfying ob-
jects have been retrieved). We stress here that there are alternative
methods [1, 27, 24] for incrementally computipgQ) but these

bers of remaining satisfying objects to be retrieved to complete the approaches are limited because they do not consider the case that

uery.
pace & Time Complexity: We now present the space and time

complexity of building the dynamic programming table shown in
Table 4. Recall that the table is populated top-down. For eédch
value, once we comput€ost(n’) we only need to keep the best
[value (that minimize€'ost(n’, 1)) and Cost(n’,1). Hence, the
space requirement for the minimization0gk).

The time complexity depends on the method used to find the
value that minimize€’'(n’) in Equation 6. Navely, for each value
of Cost(n’) we must compute the cotost(n',) for all possible
values ofl, we arrive at somé,,., that is the number of points

the next step does not complete the query. We refer to the dynamic
programming algorithms that learn the satisfaction probability as
DP-SSNDD and DP-MSNDD.

5. EXPERIMENTAL EVALUATION

In this section we present an experimental evaluation of our ap-
proach. The implementation of our techniques is in GNU C++ and
our evaluations were performed on a dual AMD Opteron 280 pro-
cessor system with 4GB of memory running Linux. The index lists
were stored in PostgreS®Ibut for our experiments large blocks

that were computed in order to find the minimum. This gives us a Were fetched and cached for usage in the application. For compari-

total time complexity oD (k-lima. - (kK — n')), however, in practice
Imaz fOr any given iteration, the optimal value fbrends to be very
close to the value dfcomputed in the previous row of the dynamic

son of our algorithms we offer several baseline approaches and two
real-world data sets to compare our results. We chose the IMDB
[18] (Internet Movie Database) data set because it is a well known

programming table. This is easy to see, considering that for eachand freely available and the Westlaw [31] set of legal documents
row of the table the number of satisfying objects is increased by because our approach is applicable to similar commercial data ag-

only one.

4. ALGORITHMS FOR THE SSNDD &
MSNDD PROBLEMS

gregation services. The multiple source problem is evaluated in
Appendix D.

http://www.postgresgl.org

5.1 Data Sets 5.3 Object Selection Experiments

We have conducted a series of experiments using two real-world In the first set of experiments we explore the performance of our
data sets: IMDB and Westlaw (new case summary reports for the algorithms for determining the number of objects to select from a
state of California over a two-month period). We chose the IMDB single source. In the following sections we will expand upon our
and Westlaw databases because the entire data sets were availabtebject selection approach to include multiple sources (i.e., source
to us for analysis and experimentation. This allowed us to calculate selection).
exact values such as (Q) as described in Section 2. Varying Access Overhead:In the first set of experiments we show

For the IMDB data set we have gathered all of the titksted how the DP-SSQSP, and DP-SSNDD algorithms perform in terms
totaling 236,627 titles and for each object (i.e., TV show, movie, of costdefined in Section A, specifically, the total cost for complet-
and so on) extracted a list of keywords describing each movie. This ing a query including access overhead and per-object cost. In Fig-
provides us with a database that can be used to perform a varietyures 1, 2, and 3 we show that for the IMDB data set DP-SSQSP con-
of searches such as locating specific genres and so on. For our exsistently outperforms both P-SSQSP and the baseline approaches.
periments we have compiled 25 queries (which contained at leastFurther, whem is unknown at query time DP-SSNDD outperforms
k = 100 satisfying objects for the purpose of experimental evalua- all of the baseline approaches (note that DP-SSNDD cannot be
tion). Examples of these queries include: “based-on-novel”, “kids- compared to P-SSQSP or DP-SSQSP directly since they require
and-family”, and “revenge”. The frequency of the keywords used p to be known at query time). Similarly our algorithms perform
for our evaluation ranges from about 1% to 5%. For each of our well using the Westlaw database as illustrated in Figures 4, 5, and 6
experiments, we execute the algorithms for all keywords and take achieving up to a 50% reduction in cost. For Figures 1 - 6 the cost
the average to display our results. For our experiments we retrievefunction is defined to be + b - I wherea € 10,50, 100 andb = 1.
objects from the IMDB data set in alphabetical order. Due to space constraints we have omitted experiments for varying

For the Westlaw data set we have gathered over 60,000 case fil-values ofb, but given the nature of the DP algorithms it should be
ings for the state of California over a two-month period. These clear that their performance is dependent upon the ratiotob.
filings include several types of cases involving divorce, criminal lit- It is important to note that for all of our experiments DP-SSQSP
igation, and property disputes. Indexed keywords for this data set consistently outperformed the other algorithms achieving the low-
include a variety of fields including location of filings, case types, est average cost. This suggests that there is a distinct benefit to
etc. For our experiments we compiled 25 keyword searches (which consideringa and b when determining the number of objects to
contained at least = 100 satisfying objects for the purpose of retrieve in the next step.
experimental evaluation). Examples of these queries include: “fi- The cost incurred by DP-SSNDD was on average higher than
nance”, “copyright”, and “trustee”. The frequency of the keywoord DP-SSQSP but for the majority of the experimental runs DP-SSNDD
used for our evaluation ranges from about 0.1% to 1.0%. For eachfollowed the performance of DP-SSQSP and always outperformed
of our experiments, we execute the algorithms for all keywords and the baseline approaches. This suggests that even wi&mn-
take the average to display our results. For our experiments weknown for the initial retrieval step there is sizable benefit to utiliz-

retrieve objects from the Westlaw data set in random order. ing the dynamic programming tables. Also, DP-SSNDD outper-
. . forms P-SSQSP when the access cost is lower for the Westlaw data
5.2 Experimental Setting set.

For all of our experiments we assume the cost is computed as Relative Error: Next we consider the relative error to evaluate
a+b-1. Unless otherwise specified we compute the exact binomial the accuracy of our algorithms. We utilize the following formula
coefficient when generating the dynamic programming tables for to estimate the relative error for each of our experiments. First, we
each of our experiments. In order to evaluate our approach we offer defineOptimal as the optimal query cost. Assuming that thth
several single-source baselines: satisfying result is at the-th position ¢ > k), Optimal is cost of

e BAR (Base-AdaptStep-a/b):retrievea/b objects from the performing a single source access to retrievabjects. Cost is
source for the first round, doublifighe sample size each simply the cost incurred by an algorithm subject to the cost model

round until% satisfying objects have been retrieved. defined in Section A. We can then evaluate the relative error for a
¢ BAK (Base-AdaptStep-K): retrievek objects from the source query as:

for the first round, doubling the retrieval size each round until

k satisfying objects have been retrieved. Relative Error — (Cost — Optimal)
e BFR (Base-FixedStep-a/b):retrievea/b objects from the Optimal

source as a fixed-step process uhtilatisfying objects have

- As illustrated in Figures 7, 8, and 9, for various values afur
been retrieved.

algorithms perform well using the IMDB data set. Specifically,
Additional baseline approaches have been omitted from the ex- DP-SSQSP outperforms the baseline approaches in all of our ex-
perimental evaluation section because they performed at least arperiments achieving the lowest relative error (i.e., how much the
order of magnitude worse than the next competitive baseline ap- query overshot the optimal retrieval size). Similarly as shown in
proach. Figures 10, 11, and 12, all our approaches consistently outperform
As illustrated in Section 3, on-the-fly (at query time) computa- the baseline approaches for each of the experiments using the West-
tion of DP lookup tables may be slow. To address this issue we law data set.
pre-compute DP lookup tables for several values,df andp as a For both the IMDB and Westlaw databases the relative error for
pre-processing step, as discussed in Appendix C. DP-SSQSP stays relatively flat between the values diis is due
2 o . to the fact that taking into account the costs (iweandb) helps re-

A title can be one of several types of titles such as TV show, : S . .
movie, or documentary. Specifically, these titles are not limited duce the relative error of the individual queries. Any of th_e baseline
to only movies. approaches may outperform_the DP algorithms for a single query
3Doubling is a standard technique used in approximation algo- but on average the DP algorithms sh_ould outpe_rform the baseline
rithms for fast convergence, and hence we also include them to approaches. Notice that the DP algorithms consistently outperform
have a complete study. P-SSQSP in the Westlaw data set, but not the IMDB data set. These

Opfimal ——

50000 -

40000 -

30000+

Average Cost

20000+

10000+

50
Access Cost (a)

Figure 1: Comparison of average cost for Figure 2: Comparison of average cost for Figure 3: Comparison of average cost for
various values ofa. Each result is com-
puted as the average cost over 25 queries puted as the average cost over 25 queries puted as the average cost over 25 queries
where k=100 using the IMDB data set.

various values ofa. Each result is com-

where k=25 using the IMDB data set.

14000

12000

10000+

8000 [

Average Cost

60000

50000

40000

30000

20000

10000

25000

20000

15000

Opfimal —
DP-SSQS|

Access Cost (a)

where k=50 using the IMDB data set.

Opfimal

Average Cost

60000

50000

40000

30000

20000

10000

50000

40000

30000

Opfimal —

Access Cost (a)

various values ofa. Each result is com-

Opfimal
DP-SSQSP

6000 -

Average Cost
Average Cost
Average Cost

10000 20000

4000 -

5000 10000

2000 [

0 0

50
Access Cost (a)

50
Access Cost (a)

50
Access Cost (a)

Figure 4: Comparison of average cost for Figure 5: Comparison of average cost for Figure 6: Comparison of average cost for
various values ofa. Each result is com- various values ofa. Each result is com- various values ofa. Each result is com-
puted as the average cost over 25 queries puted as the average cost over queries 25 puted as the average cost over queries 25
where k=25 using the Westlaw data set. ~ where k=50 using the Westlaw data set. ~ where k=100 using the Westlaw data set.

results suggest that the algorithm is sensitive to the distribution of approaches do not fare well since the number of objects required
data. Specifically, queries performed on the randomly organized may vary greatly. In contrast, we found that our approach does
Westlaw data set tend to outperform queries on the alphabetically not greatly benefit object and source selection scenarios where the
organized IMDB data set. overhead was extremely small. This is understandable consider-
Varying Query Size: As illustrated in Figures 7, 8, 9, 10, 11, and ing that as the overhead for both object and source selection ap-
12 P-SSQSP, DP-SSQSP, and DP-SSNDD significantly outperform proaches zero, it becomes increasingly desirable to employ greedy
the baseline approaches using the IMDB and Westlaw data sets,algorithms such as the doubling approach described earlier in the
consistently achieving a relative error half the size of the worst paper.
baseline approach.

In the case wherp is unknown we can employ DP-SSNDD as 7[i] NﬁEAﬁEJBD%rwpgeEr qu D. Rubin. Maximum likelihood from
described in Section 4. As illustrated in Flgures 10, 11, and 12 incomplete data via the EM algorithmournal of the Royal
DP-SSNDD achieves similar results to DP-SSQSP even thpugh Statistical Society, Series Bage 39(1):138, 1977.
is unknown for the initial step. As expected, DP-SSNDD performs [2] B. Babcock and C. Olston. Distributed top-k monitoring. |
well in comparison to the baselines, and outperforms P-SSQSP (re- SIGMOD Conferencepages 28-39, 2003.
call pis available for P-SSQSP) as well. This suggests that ramp-up [3] W.-T. Balke, W. NejdI, W. Siberski, and U. Thaden. Praggiee
cost associated with DP-SSNDD does not greatly affect the overall distributed top k retrieval in peer-to-peer networksl®DE, pages

. 174-185, 2005.
performance of the algorithm. [4] D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
6. CONCLUSION

H. Weatherspoon, W. Weimer, C. Wells, B. Zhao, and
- J. Kubiatowicz. Oceanstore: An extremely wide-area stosggem.

In this paper, we have presented a cost aware approach to source |n U.C. Berkeley Technical Report UCB//CSD-00-110299.
and object selection, utilizing a cost structure and dynamic pro- [5] J. Bleiholder, Z. Lacroix, H. Murthy, F. Naumann, L. Ra&thand
gramming model for computing the optimal number of objects to M.-E. Vidal. Biofast: Challenges in exploring linked lifeisnce
retrieve from each data source. Such a structure can be a valuable sourcesSIGMOD Record33(2):72-77, 2004.
asset where there is monetary or other costs associated with access{6] P- Borlund. The concept of relevance in Wurnal of the American
ing large distributed databases. Sggl?)ety for Information Science and Technoldef(10):913-925,

We found that our approach excels in a variety of settings, such j

. . [7] J.P. Callan, Z. Lu, and W. B. Croft. Searching Distritiite
as when the number of objects requested is large and the frequency” * = giections with Inference Networks . BIGIR 1995.

of retrieving a satisfying results is small. This can be explained by [8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
the fact that in such a scenario, blind doubling and other similar M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A

Relative Error

25 50
Satisfying objects requested (k)

100

Figure 7: Comparison of the average rela-
tive error for various values of k. For each
result the average error is reported over
queries 25 wherea=10 using the IMDB
data set.

2

DP-SSQSPL

15

Relative Error
P~

05r

100
Satisfying objects requested (k)

25 50

Figure 10: Comparison of the average rel-
ative error for various values of k. For
each result the average error is reported
over queries 25 wherea=10 using the
Westlaw data set.

distributed storage system for structured dataD8D|, pages

205-218. USENIX Association, 2006.

[9] A. Dasgupta, G. Das, and H. Mannila. A random walk apphoac
sampling hidden databases.SiIGMOD Conferencepages 629-640,

2007.
[10]

[11]

SystemsL5(3):195-222, 1997.
[12]

[13]
17(3):229-229, 1999.
[14]

Syst, 8(2):117-132, 1997.
[15]

[16]

23(2):126-137, 1994.
(17]

58(301):13-30, 1963.
[18]
[19]
46(2):33-38, 2003.

A. Dasgupta, N. Zhang, and G. Das. Leveraging countriméiion in
sampling hidden databases.|@DE, pages 329-340, 2009.

D. Dreilinger and A. E. Howe. Experiences with selegtsearch
engines using metasear@CM Transactions on Information

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation ailtpons for
middleware. InSymposium on Principles of Database Syst&2081.
N. Fuhr. A decision-theoretic approach to databasecsien in
networked IRACM Transactions on Information Systems

H. Garcia-Molina, Y. Papakonstantinou, D. Quass, AlaRaman,
Y. Sagiv, J. D. Ullman, V. Vassalos, and J. Widom. The tsimmis
approach to mediation: Data models and languagédstell. Inf.

L. Gravano and H. Garcia-Molina. Generalizing glossé¢ator-space
databases and broker hierarchiesvDB, pages 78-89, San
Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

L. Gravano, H. Garia-Molina, and A. Tomasic. The effectiveness of
gioss for the text database discovery probl&GMOD Rec.

W. Hoeffding. Probability inequalities for sums of baled random
variables.Journal of the American Statistical Association

The Internet Movie Database (IMDB), http://www.imdimb
J. Kubiatowicz. Extracting guarantees from cha@smmun. ACM

Relative Error

25 50 100 ’
Satisfying objects requested (k)
Figure 8: Comparison of the average rela-
tive error for various values of k. For each
result the average error is reported over
queries 25 wherea=50 using the IMDB

data set.
2

15

Relative Error

100
Satisfying objects requested (k)

25

Figure 11: Comparison of the average rel-
ative error for various values of k. For
each result the average error is reported
over queries 25 wherea=50 using the
Westlaw data set.

Relative Error

25 50 100
Satisfying objects requested (k)
Figure 9: Comparison of the average rela-
tive error for various values of k. For each
result the average error is reported over
queries 25 wherea=100 using the IMDB

data set.
2

Relative Error

100
Satisfying objects requested (k)

25 50

Figure 12: Comparison of the average rel-
ative error for various values of k. For
each result the average error is reported
over queries 25 wherea=100 using the
Westlaw data set.

[20] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels@mmadi,

S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.

[21]
[22]

2004.
(23]

Oceanstore: An architecture for global-scale persistenage. In
Proceedings of ACM ASPLOSCM, November 2000.
LexisNexus. http://www.lexisnexis.com/.

Z. Liu, C. Luo, J. Cho, and W. W. Chu. A probabilistic appch to
metasearching with adaptive probing.|@DE, pages 547-559,

G. A. Mihaila, L. Raschid, and M.-E. Vidal. Source sdlen and

ranking in the websemantics architecture: Using qualityaséd

[24]

[25]
[26]

[27]

metadata. IiAdvances in Computers 55: 89-17®M01.

R. Neal and G. Hinton. A view of the EM algorithm that jifists
incremental, sparse, and other variahtsarning in Graphical
Models pages 355-368, 2005.

PubMed. http://www.ncbi.nlm.nih.gov/pubmed/.

S. C. Rhea, P. R. Eaton, D. Geels, H. Weatherspoon, Bh&oZand
J. Kubiatowicz. Pond: The oceanstore prototypecAST, 2003.

J. M. Robert Hogg and A. Craig. Introduction to Matheroati

Statistics Pearson Prentice Hallpages 359-364, 2005.

[28]

[29]

M. Shmueli-Scheuer, C. Li, Y. Mass, H. Roitman, R. Schérded
G. Weikum. Best-effort top-k query processing under budgeta
constraints. INCDE, 2009.

M. Theobald, G. Weikum, and R. Schenkel. Top-k query @atibn
with probabilistic guarantees. MLDB, pages 648—-659, 2004.

[30] M.-E. Vidal, L. Raschid, and J. Mestre. Challenges ilesténg paths

for navigational queries: Trade-off of benefit of path versast of
plan. INnWebDB pages 61-66, 2004.

[31] Westlaw. http://www.westlaw.com/.

[32] J. Xu and J. Callan. Effective retrieval with distribdtcollections. In
SIGIR pages 112-120, 1998.

APPENDIX As shown in Figure 13, the access cost for ESearch can be ap-
proximated by a linear function. We can compute the linear regres-
A. ACCESS COST MODEL sion for the sample queries to estimate the constants in our cost
In this section we provide evidence supporting the existence of model. There is a notable cost for connecting to the ESearch sys-
complex access cost models in real databases. In particular, wetem (@ = 0.2752 seconds). This can be accounted for by several
show that the access cost of real data sources generally consists ofossible underlying issues such as database connection initiation,
a relatively fixed overhead per access and a “per retrieved object” network latency, etc. In addition, there is a small cost for retrieving
cost. individual objects § = 0.0003 seconds). Note: similar results may
As stated in the introduction, our goal is to optimize access such be obtained using other access systems (e.g., Westlaw and IMDB),
that we minimize the total cost of retrieval for answering some and values for andb may vary depending upon several external
query. In order to perform this optimization, we need to gener- influences such as user interaction and Internet connectivity.
ate a cost model. Specifically, our model assumes that there is a This example demonstrates that our linear cost model can be
distinct cost for accessing a source and a cost associated with re-applied to the commercially and publicly available systems. As
trieving individual objects. We break up the cost function into these well, it shows that the cost of overshooting the number of objects
distinct costs to handle a cost for connection to a database, and anecessary to satisfy the query can become prohibitively expensive.
cost for data transfer. This is motivated by real world databases Further, the ratio of: to b demonstrates that this is a non-trivial
which do not offer sufficient filters to answer a user’s request—so approach.
the filtering must be performed on the client’s side.

With every database connection there is an initiation “handshake”B, ALGORITHMS FOR THE MSQSP

which establishes a connection between the client and the server. PROBLEM
We represent the connection cost for each data sofifcas some _ _])
constant cosy;. In this section we consider the multiple source problem. To ad-

We derive an expression for the transfer cost of a constant amountdress this problem we have to develop solutions for the problem of
of data (i.e., the size of an object). Specifically, we can represent Source selection. We have sourcs. . ., S, with query satisfac-
this cost a$. Further, the cost of retrievingobjects from a data tion probabilitiesp: (Q), . . ., pe(Q) respectively. We use the nota-
sourceS;, isb; - 1. tion p; instead ofp; (Q) for simplicity. We assume in our analysis
Separating the connection establishment cost from the data transthat the sources have disjoint objects. However, the algorithms are
fer cost allows us to apply the model to applications where indi- expected to perform well even for scenarios with reasonable over-

vidual sources contain unique connection establishment and datd@p among sources. The only difference in the execution would be
transfer costs. The cost function is defined to be, that the duplicate objects are discarded. If overlap information was

Costi(l) = ai + bi -1 @ available, it could be incorporated in our prob_abilistic model, and
would generally lead to an increase of the retrieval $tep
wherea; is the access overhead cost @nés the per-object access . A .
cost: a; is the cost of connecting to the data source (this may in- B.1 P'MSQSP- Probabilistic Algo“thm
clude authentication and other initiation procedurésjs the cost for MSQSP Problem
of retrieving individual objects from a data source. In approximat- Here we develop a probabilistic algorithm for the MSQSP prob-
ing the retrieval cost witl; andb;, we also make the implicit as- lem. The algorithm at each step computes the nunihrob-
sumption that the overhead of retrieving individual objects is simi- jects to retrieve so that quety is completed with probability:%.
lar for a local database. However, the introduction of multiple sources introduces new con-
An example of this model can be derived from the PubMed on- straints such as the minimum access cost to a source. We build
line database with the ESeafchnline access system (searches on on the P-SSQSP algorithm, incorporating this idea as follows.
and retrieves document ids, term translations), which is developed At every step we compute separately the nunibef objects to re-
and maintained by National Center for Biotechnology Information trieve from each of the sources to complete the query with probabil-
(NCBI). ity z%. We pick the sourcé; with minimum access costost;(l;)
to do the next retrieval df, objects.

PubMed —— B.2 DP-MSQSP: Dynamic Programming
08| | Algorithm for MSQSP Problem
For DP-MSQSP a new constraint has been added; we must now
061] also consider the extra source id dimension. For each step in the

Cost

algorithm we must consider each source for selection. In particular,
Equations 3 and 4 are modified as follows:

! - !
C(n) :mmlew’va,m’qC(n ,1,v) (8)
k—n'
0 . ; . ’
1 100 200 300 400 500 600 700 800 900 1000 Z (Pu(s satiniretr) - C(n +5)) + Costy (1)
Number of objects requested (k) C(n') = s=1 9)

. . 1 — P, (0 sat in l retr)
Figure 13: The average cost (seconds) to retrieve 1 to 1000

publication ids from the PubMed online database to satisfy the whereC(n/) is the expected cost of completirg given thatn’
query “cancer”. Each of the data points was averaged over 100 gatisfying objects have been retrieved so far, and the next access
independent runs using a 1 Gb Internet connection. will be at sourceS, and will retrievel objects.

The dynamic programming table as shown in Table 6 has an ex-
tra columnu, which is the source id and goes fram. .., q. The

4http://www.ncbi.nIm.nih.gov/entrez/query/static/efs;xiemeIp.html

l n’ [l [v [C(n',l,v) [c(n') ‘
k any | = 0 0
E—1] 1 1 (1 —p1)*C(k—1)+ Costi(1) min(
F—1[1] 2 (1= p2)*C(k — 1) + Costa(1) Clk—1,1,1),
=1 1 | . C(k—1,1,2),
E—11] 1 q (1 —pq) x C(k —1) + Costye(1) e
k—1] 2 [1.q (1—py)?*C(k— 1)+ Cost,(2) C(k—1,2,1),
k—1] 3 |1.q (1 —py)**C(k—1) + Cost,(3) vy
=1 Clk—1,2,q),
k1 C(k —1,3,1),
kE—1)
E—2] 2 [1.9] (1 —-p,)?xCk—2)+2p,(1 — py) xC(k — 1) + Cost,(2)
E—21 3 [1.9] Q—p,)’*«C(k—2) +3p,(1 — p,)” * C(k — 1) + Cost,(3)
F—2| 4 [L.g
0 1 |1.q Total cost of query|

Table 6: Dynamic programming table created using DP-MSQSP algoritm. The table shows how the first three values of.’ are
recursively computed.

lookup tables also have an extra column, the source id. That is, for a, b, andp, computing a DP lookup table for all possible combina-

eachn’ value, the lookup table stores the source,ith addition to tions can be prohibitively expensive.

the numbel¥ of objects to retrieve from this source. For our experiments we compute DP lookup tables for various
a, b, andp combinations. Since andb are constant we compute

[k=n"] 1 Jv]| tables only for the values pertinent to our experiments, but addi-
1 2081 3 tional DP lookup tables can be created to accommodate sources
) 235 | 2 with varying overhead. In contragi,is not fixed (i.e., it may vary
3 305 | 2 greatly for each query), so we must compute a sufficient number of
4 3611 1 DP lookup tables such that we adequately limit the error induced

by rounding the exaqi value to a pre-computed (discrete) value.
Table 7: Sample lookup table for DP-MSQSP. In our setting, for a given query the DP lookup table contain-
ing matchinga, b, andp values is identified and used for retrieval.
In the event that an exact match forb, andp has not been pre-
computed, we can estimate the number of objects to retrieve for the
EXAMPLE 3. Table 7 shows a sample lookup table for three next step by using the entry with the closesb, andp values to

sources withp: (Q) = 0.03,p2(Q) = 0.02,p3(Q) = 0.01 and the query. For our experiments, to ensure an adequate number of
Cost1 = 100 + 0.01 - I, Cost2=75+0.07-1, Costs = 50 + 0.1 - | values forp are pre-computed we create several DP lookup tables:
respectively. For instance, the second row shows that if two more p between 0.1% to 25% in 0.1% increments (we also tested smaller
satisfying objects need to be retrieved to compigtehe next ac- increment sizes but we found that these additional DP lookup ta-
cess should retrieve 235 objects from SouSge bles yielded little or no benefit for our experimental setting). This

ensured that for any given query the pre-computed DP lookup table

THEOREM2 (OPTIMALITY OF DP-MSQSP).DP-MSQSPis selected would not contain a deviation from the acjuaF more
an optimal algorithm for the MSQSP problem. than 0.1%. As stated earlier in the paper (Sections 3.2 and B.2)
]) o) the storage requirement for DP lookup tables is reasonably small,
Space & Time Complexity: Similarly to the analysis of DP-SSQSP, he storage requirement for the pre-computed DP lookup tables is

space complexity i©)(k). We recall thatO(k - lmaa - (k —n')) simply the number of DP lookup tables timésk). Appendix E
is the cost of solving the minimization problem of Equation 6, for gnaws the times needed to generate the DP lookup tables.
multiple sources we simply extend our approach to consider all of

the sources for each valueof, which gives us the following com-
oloxity O k- Lor - (k - 1), D. MULTIPLE SOURCE EXPERIMENTS
In this section we evaluate the multiple-source algorithms for the

C. GENERATING DP LOOKUP TABLES MSQSP Problem described in Appendix B. We use the following

baselines:
As illustrated in Section 3, on-the-fly (at query time) computa- o _
tion of DP lookup tables may not be desirable due to time con- ® BRFRM (Base-RoundRobin-Fixed-a/b-Multi): randomly

straints or other resource limitations. To address this issue we pre- select an initial source, then retrieve objects in a round-robin
compute DP lookup tables for several valuesapb, andp as a fashion retrievingz; /b; objects from each source untilsat-
pre-processing step (the cost of computing a DP lookup table is isfying objects have been retrieved.

described in Sections 3.2 and B.2), we can then use these pre- o BRAKM (Base-RoundRobin-Adapt-K-Multi): randomly se-
computed tables for future queries with minimal per-query over- lect an initial source, retrievie objects from the initial source
head (i.e., we only have to access the table containing the pre- for the first round, then in a round-robin fashion double the

computed values). Given the numerous possible combinations for

retrieval size for each iteration untilsatisfying objects have =~ E. EVALUATION OF DP LOOKUP TABLE
been retrieved. CREATION

To simulate an environment containing more than one source we In our last set of experiments we explore the performance of
have split the IMDB and Westlaw databases each into 10 partitions. our algorithm in terms of generating DP lookup tables. We note
Each partition represents a single source. The access overhead anfilom Section 3.2 and Appendix B that we compute two types of
per-object cost for each source was distributed as shown in Table 8.DP lookup tables, namely, computing DP lookup tables for a single
source and multiple sources (we assume 10 sources as in previous

Source| Access Overhead Per-object Cost experiments). In Table 9 we show the performance of generating
1 1000 0.1 the DP lookup tables fok equals 100, 200, 300 using the tech-
2 900 0.3 ique for efficientl t t in | retr) as described |

3 800 06 nique for efficiently computing®(s sat in [retr) as described in
4 700 1.0 Section 3.1.

5 600 15

6 500 51 k (1) Source DP Table (10) Source DP Table

7 400 28 100 0.050 0.467

8 300 3.6 200 0.319 2.953

9 200 4.5 300 1.006 8.756

10 100 55

)) Table 9: Time (seconds) to generate dynamic programming ta-
Table 8: Source access overhead and object selection cost used pjes for single and multiple source data sets.

for each source for the multi-source experiments.

) A DP lookup table is created once for each query, and may be
We have chosen the above access overhead and per-object cogised for several queries thereafter. The results suggests that our
for each source in order to maximize the number of the sources 5pproach can be effectively utilized for generating several dynamic

represented in the DP |00|(Up table. It is easy to see that if the programming tables as a pre-processing step with reasonable over-
access overhead and per-object cost are not chosen carefully fopggq.

each source, a few sources will dominate all of the entries in the

DP lookup table. F. RELATED WORK

For the multi-source experiments we show how DP-MSQSP per-
b QSPp Our problem is different from traditional data integration, where

forms in terms of cost, specifically, the total cost for completing bilit d sch £ vari
a query including the access overhead and per-object costs acros§'€ duery capabilities and schemas of various sources are com-
all sources accessed. Figures 14 and 15 demonstrate that our a Dined. Instead, we assume that the problems of submitting a query

proach consistently outperforms the baseline approaches for vari-t© Multiple sources [14] and locating the relevant sources [16, 15]
ous values ok using the IMDB and Westlaw data sets. In addi- are solved, and focus on the access strategy, i.e., the sequence and
tion, DP-MSQSP consistently outperforms P-MSQSP. Similar to dePth of accesses.

DP-SSQSP, the DP lookup tables allow for greater accuracy when St;alveral_ appror?cnes have been pres;ented fmlqhmehsele(;tion
determining the number of objects to retrieve over the less robust problem (i.e., which source(s) to use for sampling where features

P-MSQSP, because costs are taken into account. For the muIti-Of individual sources such as probability of obtaining a satisfying

source experiments P-SSQSP and DP-SSQSP are very effective irpbject, cost of_accessing a source, and cost of accessing individua
keeping the cost low ak increases. Conversely, the baseline ap- ©PJEcts may differ) [13, 16, 15, 32].

proaches experience a much more sporadic behavior. Results for In [3_2] the aut_hor§ employed the_use of phrase information for
DP-MSNDD have been omitted due to space constraints. collection selection indegcomplete list of objects and frequency

Number of Sources Utilized: In our experiments, when a source ©F €ach) andjuery expansianBoth of these approaches offer in-
contains both a low access cost and a low per-object cost in Com_creased discrimination capabilities across the different sources al-
parison to other sources, it tends to dominate placement in the DP!OWING for higher accuracy in choosing the most promising source.

lookup table. Even when access costs and per-object costs acros;his approach is highl_y depen_dent upon a priori_ i_nformation and
all sources are roughly equal, the dynamic programming algorithm itis .unclear how this |nformat|qn can merge efficiently between
tends to favor just a few sources for selection even when 10 or Va7Yind types of data sources without a significant overhead.
greater sources are available. This is understandable given the fact The b,ESt known alg(I)rlthms which use frequency |nf(érmat|on for
that there are two scenarios that need to be considered for source seqerflglrmlngk sct))urce sé ectlon” are GIO?S [16’. 1(15] ar? COthm'
lection: 1) when the number of required satisfying objects is very co Works by creating 8o e_ctlon s€ gcthn indewnere eac
large and 2) when few satisfying objects are needed. In the first source is repr_esented by its objects and individual object_ frequen(_:y.
case, a lower per-object cost is desired, and a higher access cost iEIaCh_ iourcehls then rank?d per qutfary based on a object ranking
acceptable. However, in the second case, a higher per-object cosflgort m. The GIOSS (Glossary-O -Servers Server) .system. [1.6’
can be tolerated as long as the access cost is sufficiently low. 151 pr_oyldes an approach for source selection by storing statistics
For all of our experiments the number of sources utilized is never of individual sources FO gs_tlmate Wh'_Ch source(s) may_be the most
greater than two even when several sources are represented in thS€ful for answering individual queries. In general, this approach
DP lookup table. For the majority of our experiments only one USES term frequency information from individual sources to hint to
source is used even if multiple iterations are performed, this sug- th.ehu?erwhllch source may befthe mostkbensf|C|aI fora %lven qt;J.ery.
gests that our dynamic programming algorithm does a reasonanyM' aila et al. [23] present a framework to discover and combine

good job at estimating the number of objects to retrieve Internet sources to answer complex queries, considering the Qual-
' ity of Data and utility of the sources. However, these approaches

do not address the problem of determining the optimal number of
objects to retrieve from a selected source or subsequent accesses.

70000 ' DP-MSQSPIiI i
60000
50000 -

40000

Cost
Cost

30000 -

20000

10000 [

5 10 20
Satisfying objects requested (k)

50000

40000

30000

20000

10000

T

T

T

T

DP-MSQSPC—/T

P-MSQSP
BRAKM

BRFRM mmmm |

20
Satisfying objects requested (k)

Figure 15: Comparison of the cost for the multi-source algo-

Figure 14: Comparison of the cost for the multi-source algo-
rithms, averaging 25 queries for various values of using the
IMDB data set.

rithms, averaging 25 queries for various values of using the
Westlaw data set.

Vidal et al. [30] propose a technique based on a local utility ulos was supported by NSF, and by the SemsorGrid4Env, Health-
function to optimize the selection of paths in path queries on graph e-Child, and MODAP projects funded by the European Commis-
databases; this framework is introduced in BioFast [5]. The local sion. Vagelis Hristidis was supported by NSF grant 11S-0811922
utility function of a path is computed using its length, cardinality and DHS grant 2009-ST-062-000016.

and other factors. Although our problem setting is very different,
we can view the cost of accessing a source in our multi-source prob-
lem as a kind of local utility function.

Source and object selection is closely associatddpek query
algorithms[12] andprobabilistic top-k query algorithm9, 28] in
traditional database research. Further, these approaches have bee
extended to distributed models answering queries on large multi-
source databases [3, 2]. These approaches specifically focus on
vertically partitioned (i.e., each source contains information about
a specific attribute or group of attributes) data and it is not clear
how these models can be applied to horizontally partitioned data in
our distributed setting.

Recent work has explored the notion of probing databases to re-
duce the amount of work done by the user for source selection [22].
In essence, this approach probes (samples) individual sourees de
veloping a summary for each source. These summaries are then
used to determine which source(s) are the most promising in sat-
isfying the user’s query. Further, approaches have been prdsente
which utilize data collected from past queries to adaptively predict
the utility of the individual sources [11].

Fuhr [13] presents an algorithm to compute the optimal number
of documents to retrieve from each of a set of sources to answer
an Information Retrieval query. Given the precision-recall graph of
each source they pick a prefix of each source to retrieve to mini-
mize the overall cost to gét relevant documents. However, their
algorithm is optimal only if the precision-recall graphs are accu-
rate, that is, it is not possible that a source will return a smaller
than expected number of relevant documents. In contrast, our dy-
namic programming algorithm factors in this possibility since it
just assumes a probability distribution of the relevant documents
(satisfying objects in our setting).

G. ACKNOWLEDGMENTS

Gautam Das was supported by NSF grants 0916277, 0845644
and 0812601, a grant from Dept of Education, and unrestricted gifts
from Microsoft Research and Nokia Research. Dimitrios Gunop-

