
Clustering-based Summarization of Transactional
Chatbot Logs

Luxun Xu
Computer Science & Engineering
University of California, Riverside

Email: lxu051@ucr.edu

Vagelis Hristidis
Computer Science & Engineering
University of California, Riverside

Email: vagelis@cs.ucr.edu

Nhat X.T. Le
Computer Science & Engineering
University of California, Riverside

Email: nle020@ucr.edu

Abstract—Transactional chatbots have become popular today,
as they can automate repetitive transactions such as making
an appointment or buying a ticket. As users interact with a
chatbot, rich chat logs are generated to evaluate and improve
the effectiveness of the chatbot, which is the ratio of chats that
lead to a successful state such as buying a ticket. A fundamental
operation to achieve such analyses is the clustering of the chats in
the chat log, which requires effective distance functions between
a pair of chat sessions.

In this paper, we propose and compare various distance
measures for individual messages as well as whole sessions. We
evaluate these measures using user studies on Mechanical Turk,
where we first ask users to use our chatbots, and then ask them to
judge the similarity of messages and sessions. Finally, we provide
anecdotal results showing that our distance functions are effective
in clustering messages and sessions.

I. INTRODUCTION

In the last years, chatbots (or conversational bots) have
gained popularity thanks to advances in deep learning and
natural language understanding. There has been much work
– especially recently, using deep learning techniques – on
how to train chatbots, using a training set of conversations
(see Section VI). Most of these systems’ goal is to generate a
bot message that is meaningful given the chat history. These
systems are effective and appropriate for several applications
such as providing basic information (e.g., a store’s opening
hours), or never-ending chitchat conversations. Recently, there
is also an increased interest in transactional chatbots, which
aim to complete a specific transaction instead of just keeping
a reasonable conversation going. Typical transactions include
making a medical transportation reservation, scheduling a
meeting, or connecting a patient to a suitable care provider.
Several real-world examples of such chatbots are Kayak, Dom
(from Domino’s) and Babylon Health (symptoms checker).

Note that open-ended informational bots, such as IBM
Watson, are outside the scope of this paper. Such bots typically
input a large knowledge base or even text documents, and
offer question-answering capabilities, e.g., “what disease is
associated with finger redness?” In contrast, we focus on
multi-step transactional scenarios, where a user is trying to
achieve a goal, such as booking a visit to a doctor office or
making a food delivery order.

A limitation of current transactional chatbots is that there
are no effective methods to utilize the chat logs to continuously
improve future users’ experience.

Fig. 1: Workflow of a transactional chatbot

We consider a comprehensive framework of transactional
chatbots, as illustrated in Figure 1. In this framework, an
administrator designs and deploys the chatbot. Once a fair
amount of users have used the chatbot, a log analysis en-
gine will analyze their chat logs to provide feedback to the
administrator. Based on the feedback, the administrator can
refine the chatbot logic to serve users better. In this paper, we
focus on the log analysis engine, which summarizes the chat
logs into clusters of similar chat sessions, in order to help the
administrator on how to improve the chatbots. For instance, a
cluster of similar erroneous user responses on the bot question
of delivery address helps the administrator re-formulate the bot
question into a clearer form.

The log analysis engine clusters chat logs at two levels: user
responses and whole chat sessions. To achieve good clustering
performance we propose novel distance functions, customized
to chat log data. Our distance functions for user responses
utilize a combination of textual, information extraction and
conversational features, well-tuned by Information Theoretic
Metric Learning technique. The chat session distance functions
use the aforementioned response distance function as a module
and employ sequence alignment techniques to consider the



conversation order.
We conduct user studies on Amazon Mechanical Turk

(MTurk), where we first ask workers to use our chatbots
to collect chat logs, and then ask them to compare pairs
of responses or sessions with respect to their distance. We
compare our distance functions against several baselines. For
responses, our distance function achieves 0.82 overall accuracy
over baseline’s 0.73. For sessions, our similarity function
also achieves an overall accuracy of 0.85, higher than other
measures.

This paper has the following contributions.
• We propose a novel distance function for chat responses

to a bot question using textual, Information Extraction
(IE), sentiment, and user interaction history (response
time and attempts) features.

• We extend the response distance function to work for
whole chat sessions.

• We present experiments on the analysis of chat logs we
collected through MTurk, which shows that our distance
functions outperform baselines.

• We publish the chat logs that we collected through
MTurk, as well as the pairwise labels of responses and
chat sessions 1.

The rest of the paper is structured as follows. In Section II,
we discuss the architecture of the chatbot platform and the
problem definition. We propose our distance functions for
user responses and whole sessions in Section III and IV
respectively. In Section V, we present our experimental results
and followed by related work in Section VI and conclusions
in Section VII.

II. CHATBOT PLATFORM AND PROBLEM DEFINITION

A. Transactional Chatbot Abstraction

A transactional chatbot consists of (a) a logical flow descrip-
tion that defines the flow of the chatbot, and (b) an Information
Extraction (IE) engine that extracts entities from the user input
at each step. The extracted entities and entity values (as shown
in Figure 2) are collected and subsequently determine the flow
of the bot. For example, in Figure 3, the IE engine tries to
extract the entity “location” from user’s response to the first
(root) chatbot message. If such an entity value is successfully
extracted, the bot moves on to the next message. Otherwise,
it repeats the same message until the expected entities and
values are extracted. Moreover, the extracted entity values
can also be used as branching conditions. For example, in
Figure 5, depending on the user’s response to Q8, the bot can
develop through different branches based on the entity and
value extracted.

Note that slot-filling bots, like Amazon Lex, where the bot
consists of a list of questions to fill slots – e.g., “what type
of flowers?” or “when will you pick them up?” – can also
be viewed as an abstraction of transactional chatbots, where a
sequence of questions (called “prompt”) defines the bot logic,
similar to one in Figure 3, and “slot type” defines the entity.

1Data avalibale at https://github.com/LuxunXu/ChatbotDataset

However, such bots generally do not support easy branching
capabilities.

Fig. 2: Information Extraction engine

Fig. 3: Food ordering bot flowchart

Fig. 4: Hobby bot flowchart

B. Chat Log Clustering Problem

To effectively cluster chat logs, we need an effective dis-
tance function, which is the focus of this paper. We divide
this into two steps: first we compute the distance between two
individual responses, and then use this function to compute
the distance between two chat sessions.
Compute the distance between two user responses: A user
response is a user message in response to a bot message. We

https://github.com/LuxunXu/ChatbotDataset


Fig. 5: Branching bot flowchart

view two responses as similar if they can be treated in the
same way by the administrator for the purpose of improving
the chatbot. Take a bot message “What is your date of birth?”
as an example. User responses can be considered similar in
the following cases (not an exhaustive list):

• If they are both “valid”, that is, if the IE engine correctly
processes one (such as successfully extracting entity or
entity values), it will likely process the other correctly.
For example, “10/12/1983” and “1/12/2001” are both
“valid” responses (so that the admin does not need to
do anything about them).

• If they are both “invalid” in the same fashion. For
example, (i) both responses are completely irrelevant to
the bot message, e.g., “I have a headache”. (ii) If both
responses may be incorrectly parsed by the IE engine due
to its own limitation. For instance, response “05231990”
resembles some characteristics of a birth date but may
be extracted as a phone number by the IE engine. In
this case, the admin will have to train a more robust IE
engine. (iii) If both responses reveal similar confusion
by the user due to possible imperfect designs of bot. For
example, “Jan 02” and “March 04” both miss the “year”.
In this case, the admin can split the bot message into
simpler questions, or modify it to be more specific.

Compute the distance between two chat sessions: We define
a session as a sequence of bot messages and user massages.
Similar to user response distance, we define two sessions sim-
ilar, if they can be treated together by the admin. Intuitively,
two sessions are similar if they have similar sequences of bot
messages and user messages.

III. USER RESPONSE DISTANCE FUNCTION

Our distance function is based on a combination of carefully
chosen features, and Information Theoretic Metric Learn-

ing [1] to automatically learn appropriate weights and depen-
dencies among these features.

A. Response Features

We model user responses by vectors of features (Table I)
and use their Euclidean distance as response distance function.
Statistical features capture basic structural information of the
response. Information extraction (IE) features capture how
confident or successful the IE engine extracts the entity.
Conversational features embeds the user’s effectiveness and
sentiment in responding to the bot. We later show that they
are useful in session clustering. For example, “attempt” feature
indicates the number of attempts of the current response to
the bot message due to repetition (when bot is unable to
understand the response). A high attempt number indicates
poor response quality and implies that the bot message is
poorly formulated. Lastly, we include a word embedding
feature to capture semantic information of a response. We use
fastText’s pre-trained English vectors [2] to construct a 300-
dimensional vector for each response.

B. Mahalanobis Distance and Metric Learning

Euclidean distance is often not a good metric in high
dimensions due to its lack of considering variable correlations.
This issue can be solved by using Mahalanobis distance. Given
a set of n points x1, . . . , xn in Rd, the (squared) Mahalanobis
distance is given in Equation 1 [1].

dA(xi, xj) = (xi − xj)
TA(xi − xj), (1)

Practically, matrix A is re-weighting the features. By choosing
a particular A matrix, we can boost or reduce certain features’
importance in the clustering.

We use the Information Theoretic Metric Learning (ITML)
algorithm [1] to learn matrix A that reflects the similarity
opinions of experts (we use pairwise similarity preferences
in our experiments). It is fast and scalable, thus applicable
to huge datasets. ITML assumes prior (expert) knowledge
regarding inter-point distances, which serves as constraints
in learning matrix A. Such constraints correspond to the
aforementioned similarity opinions of experts. In practice, we
input an d×n matrix (where d is the dimension of the response
vector and n is the number of responses to a particular bot
message) and similarity constraints, ITML learns matrix A
efficiently and matrix A is used in Equation 1 to calculate the
Mahalanobis distance between two responses. Moreover, the
input of ITML also requires a slack variable γ and an initial
matrix A0. We use γ = 1 and identity matrix for A0. We
denote distance between two responses as Dist(Ri, Rj).

IV. SESSION DISTANCE FUNCTION

We define a chat session as a sequence of conversational
pairs consisting of a bot message Q and a user response
R, as shown in Table II. Formally, we define Session A :
A1, A2, . . . , An, where Ai = (QA

i , R
A
i ) and len(A) = n.



Feature Type Feature Value

Statistical Feature

No. of Words/Tokens 3
No. of Digits 6
No. of Letters 3
Total Length 12

IE Feature (Confidence)

Food 0
Location 0
Datetime 0.965
Restaurant 0

Conversational Feature
Time to Respond (sec) 10
Attempt 1
Sentiment level 0.0

Word Embedding Feature fastText Vector

1.1321
-0.2313
...
0.9494

TABLE I: Features and raw values for sample response “May
29, 1992” in the food ordering bot shown in Figure 3

We first extend the distance between responses of the
same bot message to the similarity of any user responses in
Equation 2

SimR(Ai, Bj) =

{
DMax−Dist(RA

i ,RB
j )

DMax
if QA

i = QB
j ,

0 otherwise.
(2)

where DMax is the maximum distance between two responses
to the same bot message . Thus the similarity between two
responses will be between 0 and 1. Moreover, the similarity
between responses to different bot messages will be 0.

We define a matching M between session A and session
B as a way to match every conversational pair in A to a
correspondent in B. A conversational pair in session A can be
matched to either a single pair (with the same bot message)
in session B or null and vice versa. Formally, we define M
as following: M(Ai) = Bj or null .

We define the similarity between two sessions A and B as
the maximum similarity over all matchings between them.

Sim(A,B) = max
M

n∑
i

SimR(Ai,M(Ai)) (3)

where n is the length of A. The matching that maximizes the
session similarity is called the optimal matching. Note that,
there are pairs in B without matched pairs in A, but they
do not change the above similarity formula (without loss of
generality). The final session similarity is normalized by the
greater length between Session A and Session B as below.

SimNorm(A,B) =
Sim(A,B)

max(len(A), len(B))
(4)

We consider two variants of matching, one where crossing
is allowed and one when not. A matching is non-crossing if,
given two matched pairs M(Ai1) = Bj1 and M(Ai2) = Bj2 ,
without loss of generality, if Ai1 precedes Ai2 , i.e. i1 < i2,
then Bj1 must precede Bj2 , i.e. j1 < j2.

The matching, where crossing is not allowed (we call it
ordered), is illustrated in Figure 6a whereas matching with
crossing is illustrated in Figure 6b. When crossing is allowed
(we call it unordered), the matching may produce a higher
similarity between two sessions (because more matchings
between conversational pairs are possible) but the structure
of the sessions (flow of the chat) is not strictly considered.
When crossing is allowed, we can use Hungarian algorithm to
find the matching that maximize the similarity between two
sessions.

By Message Variable

Bot Hi, I can help you order food from popular
restaurant chains.

–

Bot Please enter your address. Q1 A1User 5 Buckingham ct, Rockledge, FL, 32955 R1

Bot Please enter the restaurant name you prefer
(within 10 miles).

Q2

A2

User Chili’s R2

Bot Chili’s is set as your restaurant. Now please
let me know what you want to order.

Q3

A3

User Honey Chipotle Chicken Crispers R3

Bot Honey Chipotle Chicken Crispers will be or-
dered. When do you want it to be delivered?

Q4

A4

User 1:00 pm R4

Bot Thanks! Your order will be delivered on
2019-01-11 13:00:00!

–

TABLE II: a session example from a food ordering bot

A. Sequence Alignment for Ordered Matching

We compute similarity between two sessions using sequence
alignment technique [3] for ordered matching because the
alignment produced naturally corresponds to matching without
crossing. Dynamic programming is used with the recurrence
relation defined in Equation 5.

SimP (Ai, Bj) = max

 SimP (Ai−1, Bj)
SimP (Ai, Bj−1)

SimP (Ai−1, Bj−1) + SimR(Ai, Bj)
(5)

where SimP (Ai, Bj) is the similarity between sessions
A1, . . . , Ai and B1, · · · , Bj , that is, the prefixes of the sessions
that end in Ai and Bj . Sim(A,B) = Sim(An, Bm), where
n and m are the lengths of A and B respectively. Typically,
sequence alignment penalizes for unmatched pairs. Instead, we
indirectly account for this by dividing by the maximum length
as shown in Equation 4.

Figure 7 illustrates a typical process of finding the optimal
alignment by dynamic programming. In this example, the
normalized similarity is SimNorm(A,B) = 1.3

3 = 0.433.
Moreover, the optimal matching can be obtained by perform-
ing standard back-tracing. The time complexity for finding the
maximum similarity is O(mn), where m and n are the length
of two sessions respectively.



B. Other Similarity Functions

In this section, we propose two similarity functions that
only consider one of the two main properties of a session, the
structure or the content, which we include in our experimental
evaluation to study which of the two properties is more
important in defining a distance function, and if combining
them is a good idea.

Structure-only: Structure-only similarity function only con-
siders the structure of chat sessions, which is defined as the
sequence of bot questions (on the bot flow diagram) triggered
through the user’s responses. In particular, we use Boolean
values (shown in Equation 6) to indicate if there is a match
between two conversational pairs.

SimR(Ai, Bj) =

{
1 if QA

i = QB
j ,

0 otherwise.
(6)

Document-based: We can also consider chat sessions as
documents, where each document is a collection of all user
responses from the chat session. We use a vector space model
(with term frequency) to represent each document and use
cosine similarity to measure similarity between two sessions.

Fig. 6: (a) Left - Ordered matching, (b) Right - Unordered matching

Fig. 7: Dynamic programming calculation of optimal matching
for the example of Figure 6a. Arrows illustrates back-tracing
process, where “-” indicates a matching to null, and “M”
indicates a matching between Ai and Bj .

V. EXPERIMENTS

We conduct experiments to evaluate our response distance
and session similarity functions. We first asked Mechanical
Turk users to use our chatbots to collect chat logs, and then
performed another experiment asking users to evaluate the
similarity between pairs of responses or sessions.

We have built a chatbot platform, SmartBot360, which
allows designing and deploying chatbots on Web pages,

Fig. 8: SmartBot360 web interface

Facebook Messenger and on SMS. It follows the chatbot
abstraction described in Section II-A, where the logic of the
chatbot is defined by a flow diagram and an IE engine (we use
wit.ai [4] in our experiments) is used to extract entities and
entity values. The flow diagram is executed by our Chatbot
Execution Engine (Figure 1). Figure 8 shows the web interface
of SmartBot360 for the food ordering bot in action.

A. Response Similarity

To evaluate the effectiveness of response distance function,
we collect human labels judging similarity of two pairs of
responses. If one pair of responses is more similar than
the other, the distance between them should be smaller. We
measure the accuracy of the distance function agreeing with
the labels. Our baseline is using fastText vector only. Other
competitors include using non-fastText features and combining
them. We also include comparisons for features with or
without metric learning. Therefore, without metric learning,
Euclidean distance is used whereas with metric learning,
Mahalanobis distance is used. Furthermore, we find out that
non-fastText features tend to have wide ranges. Hence, we
perform min-max normalization on non-fastText features as
an extra pre-processing step.

We start by deploy the food-ordering bot (Figure 3) on
SmartBot360 platform and use Amazon Mechanical Turk
(MTurk) to get people to use our chatbot. Next, we give MTurk
workers a simple labeling task as illustrated in Figure 9.
Specifically, each labeling task has two pairs of responses (to
the same bot message), where the first response of each pair is
fixed. MTurk workers need to label which pair of responses is
more similar than the other both syntactically and semantically.
For example, “Pair ONE” is the desired label in Figure 9. We
also give a third “neutral” option if two pairs are really close.

For each bot message, we randomly generated 300 pairs
under the condition that the two pairs generated must differ
by at least 20% according to our baseline. This condition
minimizes pairs that are too close to label because we want
workers to choose a positive label instead of a neutral one.



Fig. 9: Mechanical Turk task example

For all 300 labeling tasks, each one of them was assigned to
three different workers. Only the labeling tasks that receive
unanimous labels (either Pair ONE or TWO) are selected as
valid labels as shown in Table III.

We also collect similarity labels for pairs of responses
for ITML using MTurk. We randomly generate 200 pairs of
responses to each bot message and ask MTurk workers to label
them as similar or dissimilar. Each labeling task is assigned
to three workers and the majority vote becomes the label.
In practice, this labeling can be done by experts such as the
administrator.

As shown in Table III, our proposed distance function
combining all features with metric learning yields the highest
accuracy for all four bot messages. It is the only one that
achieves over 80% overall accuracy. We also theorize that IE
features play an important role in the distance function. That is,
a higher quality IE engine tends to produce better result. This
can be backed by the fact that the accuracy for Q1 and Q4 is
higher than that of Q2 and Q3, because Q1 and Q4 use Wit.ai to
extract entities and fine-grained values for IE features, whereas
Q2 and Q3 use nutritionix API [5] that is only able to extract
Boolean values for IE features.

B. Session Similarity

We use human evaluation to measure the accuracy that
human labels of session pairs agree with the calculated ses-
sion similarity score. We design two new chatbots to study
session similarity to achieve high inter-coder agreement when
performing similarity-labeling tasks. We differentiate them in
terms of structures and we name them “hobby” (Figure 4) and
“branching” bot (Figure 5). Note that in Figure 5, node B1,
B2 and B3 use external APIs to generate the corresponding
bot messages, thus are not of interest in calculating session
similarity.

Again we use MTurk to collect chat logs and similarity-
labeling data. We show two pairs of sessions using a difference
viewer shown in Figure 10a and Figure 10b and only give
two options (either Pair ONE is more similar or Pair TWO).
Unfortunately, we are unable to get reliable labels from MTurk
workers. We believe that this is due to the difficulty of
the session labeling. Moreover, MTurk users vary greatly in
terms of understanding the set criteria. Instead, we asked
10 students from UC Riverside to label sessions similarities.
In the instruction, we state that by similar we mean both
syntactically and semantically so that the worker must take
both the flow of the chat and content of the responses into

account. Each similarity labeling task is assigned to three
different students. Since we only allow two options for each
label, the one with majority vote will be the final label. Finally,
we compare the accuracy that labels of pairs of sessions
that agree with the calculated session similarity score using
different similarity functions. We break tie in similarity score
comparisons arbitrarily.

The experimental results on the two bots are shown in
Tables IV and V. For hobby bot, our ordered-matching
and unordered-matching functions perform the best. This is
expected because the hobby bot is designed to be linear,
where the flow of the bot is somewhat “fixed”, thus there
is no crossing in any matching. Moreover, the structure-only
function performs bad because it is unable to differentiate
between sessions with the same flows but different contents.
The document-based function is the worst since it omits the
session flow completely.

For branching bot, document-based function performs better
compared to its performance on hobby bot. We believe that
this is due to the increased size of sessions. Since each
session for branching bot is larger, the structure of each
session is less important comparing to the content. This can
be backed by the fact that structure-only function performs the
worst for branching bot. Still, our ordered-matching approach
outperforms the rest. This shows that our method is effective in
capturing both structure and content characteristics in complex
chat sessions.

We now show a case study of session similarity. In Fig-
ures 10a and 10b, two sessions have the same structure where
the sequence of the bot messages and user messages are the
same, but Pair One is more similar because of the content
of responses. Therefore, structure-only method is unable to
tell the difference between two sessions, returning an equal
similarity score of 1.0 for both pairs. However, the two
matching methods as well as the document-based method,
which consider content are able to capture the difference
between two sessions, therefore agree with the label as shown
in Table VI.

C. Anecdotal Results from Clustering Responses and Sessions

We further show that our distance functions can be used
to generate meaningful clusters for both responses and ses-
sions. These clusters provide high-level ideas of how the bot
performs.

For response clustering, we use K-means clustering algo-
rithm. The number of clusters is determined by the elbow
method. In Table VII, we see that the majority of the users
are able to provide valid addresses. Invalid responses are
clustered in Cluster 1. In Cluster 5, it is shown that many
users only enter a state instead of an actual, detailed address.
This information suggests to the administrator to fine-tune the
question or to add certain checks so that the bot will not
progress if users only enter a state.

For session clustering, we use K-medoids clustering al-
gorithm, specifically PAM) [6], because we do not have a
vector representation of sessions. Similarly to responses, we



Features used Q1 accuracy
(n = 185)

Q2 accuracy
(n = 136)

Q3 accuracy
(n = 139)

Q4 accuracy
(n = 156)

Overall
accuracy

fastText only (baseline) 0.84 0.51 0.76 0.78 0.73
Non-fastText features only (normalized) 0.86 0.46 0.65 0.69 0.68
Non-fastText features only (normalized &
metric learning)

0.81 0.54 0.61 0.73 0.68

All features (with non-fastText features
normalized)

0.90 0.49 0.75 0.78 0.74

All features (with non-fastText features
normalized & metric learning)

0.92 0.72 0.81 0.82 0.82

TABLE III: Accuracies of the agreement of various distance function to the human opinion for the responses to four bot
messages. n denotes the number of response pairs with valid labels

Fig. 10a: Pair ONE: Session 3713 and Session 3179

Fig. 10b: Pair TWO: Session 3713 and Session 3563

Correct Wrong Accuracy

Ordered-matching 94 6 0.94
Structure-only 70 30 0.70
Unordered-matching 94 6 0.94
Document-based 56 44 0.56

TABLE IV: Hobby Bot Experiment Result

Correct Wrong Accuracy

Ordered-matching 75 25 0.75
Structure-only 58 42 0.58
Unordered-matching 66 34 0.66
Document-based 71 29 0.71

TABLE V: Branching Bot Experiment Result

use the elbow method to get the optimal number of clusters. In
Table VIII, Log 3163 and Log 3461 are two cluster medoids.
An intuitive interpretation from this clustering is that Log 3163
consists of only one round of user response, while Log 3461
consists of two rounds.

VI. RELATED WORK

Many studies on chatbots focus on response generation.
However, studies on chat logs are scarce, not to mention using
such studies to improve current chatbots. Therefore, we extend

Pair ONE Pair TWO Agrees w/ label

Ordered-matching 0.470 0.735 Yes
Structure-only 1.0 1.0 No
Unordered-matching 0.470 0.735 Yes
Document-based 0.073 0.304 Yes

TABLE VI: Session similarity case study

Cluster Sample Responses Explanation

1 [hi, 02546, 13060632, what time is
now?,...]

Invalid

2 [1250 rodeo drive, los angeles, 3653
losh lane,...]

Valid address 1

3 [104 market st, 1200 e 35th erie pa,...] Valid address 2
4 [south avenue florida, amherst ma,...] Valid address 3
5 [florida, new york, california, dallas,...] State/city only
6 [2121 wisconsin ave, nw, washington

dc 20007, 1 bridge street, chicago,...]
Valid address 4

TABLE VII: Response Cluster for Q1

relevant works to other forms of documents and study their
works on clustering and summarization.

Forum threads similarity Online forums resemble chat
logs because discussions in forums between users resemble
chat sessions in our context. There any many works on



Log 3163 Log 3461

Bot: What would you like to know? Bot: What would you like to know?
Human: Weather Human: Weather
Bot: Please enter the location. Bot: Please enter the location.
Human: Miami Human: Westlake village, ca
Bot: The weather in miami is 84.02 degrees fahrenheit

or 28.90 degrees celsius with broken clouds.
Bot: The weather in westlake village is 79.03 degrees

fahrenheit or 26.13 degrees celsius with haze.
Bot: Would you like to try again? Bot: Would you like to try again?
Human: No Human: Yes
Bot: Thanks! Bot: What would you like to know?

Human: Fact
Bot: 166,875,000,000 pieces of mail are delivered each

year in the us
Human: Would you like to try again?
Bot: No
Human: Thanks!

TABLE VIII: Medoids of two clusters of branching bot.

clustering forum topics or threads. Singh el al. [7] devise a
similarity measure between forum threads by decomposing
threads into weighted overlapping components. Specifically,
they divide threads into individual posts and post-reply pairs
and reduce the problem into finding a maximum weight
independent set. Said el al. [8] propose using asymmetric pair-
wise distance between posts to cluster posts in online forums.
A key difference we have from thread similarity works is that
the flow diagram in transactional chatbots imposes a more
structured sequence of message pairs, which is not available
in free-form threads. We leverage this structure in our distance
measures.

XML document similarity The structural similarity is
related to the problem of XML documents similarity. This
is because XML schema inherently supports tree structures,
which we can fit chat sessions (sequences of conversations)
into. Tekli et al. [9] feature comprehensive studies on XML
similarities which include tag similarity, edge similarity, path
similarity and etc. Path similarity can be a good metric for chat
sessions because chats successfully completing transactions
tend to follow similar paths. Nierman et al. [10] propose a tree
edit distance based similarity measure for XML documents.
However, XML document similarity measures do not naturally
distinguish the two roles (bot and user) in a chat session, nor
do they adequately model loops.

Document summarization Ultimately we aim to provide
chat log summaries, which is naturally relating to the multi-
document summarization problem. Mani et al. [11] provide a
method for summarizing similarities and differences of pairs of
related documents using a graph representation for text. Radev
et al. [12] propose centroid-based summarization of multiple
documents. Goldstein et al. [13] propose multi-document sum-
marization using sentence extraction. Summaries can be in a
form of extraction or abstraction [14]. Unlike these techniques,
which generally focus on the document’s textual content only,
our work also leverages the structure, which is important
in chat log data. Moreover, many of theses papers conduct
experiments on DUC datasets, thus their effectiveness on chat
session data remains unknown.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed distance functions for chatbot
responses and sessions that outperform baselines. We also
showed that these functions can be used to generate mean-
ingful clusters of responses and sessions. These clusters can
then be used to help the administrators to improve the bots. In
the future, we will focus on automatically generating high-
level cluster summaries as well as automatic improvement
suggestions. Ideally, such suggestions should be incorporated
into the system with little or no human intervention.

ACKNOWLEDGMENT

This work was partially supported by NSF grants IIS-
1838222, IIS-1619463, IIS-1901379 and IIS-1447826

REFERENCES

[1] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-
theoretic metric learning,” in ICML, 2007.

[2] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin,
“Advances in pre-training distributed word representations,” in LREC,
2018.

[3] W. Wang and O. R. Zaı̈ane, “Clustering web sessions by sequence
alignment,” in Proc. International Workshop on DEXA’02, 2002.

[4] “wit.ai,” http://wit.ai, 2019.
[5] “nutritionix api,” https://www.nutritionix.com/business/api, 2019.
[6] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduc-

tion to cluster analysis. John Wiley & Sons, 2009, vol. 344.
[7] A. Singh, D. P, and D. Raghu, “Retrieving similar discussion forum

threads: A structure based approach,” in Proc. SIGIR’12, 2012.
[8] D. Said and N. Wanas, “Clustering posts in online discussion forum

threads,” IJCSIT, 2011.
[9] J. Tekli, R. Chbeir, and K. Yetongnon, “An overview on xml similarity:

Background, current trends and future directions,” Computer science
review, 2009.

[10] A. Nierman and H. Jagadish, “Evaluating structural similarity in xml
documents.” in webdb, 2002.

[11] I. Mani and E. Bloedorn, “Multi-document summarization by graph
search and matching,” arXiv preprint cmp-lg/9712004, 1997.

[12] D. R. Radev, H. Jing, and M. Budzikowska, “Centroid-based summariza-
tion of multiple documents: sentence extraction, utility-based evaluation,
and user studies,” in NAACL-ANLP, 2000.

[13] J. Goldstein, V. Mittal, J. Carbonell, and M. Kantrowitz, “Multi-
document summarization by sentence extraction,” in NAACL-ANLP,
2000.

[14] H. Lin and J. Bilmes, “Multi-document summarization via budgeted
maximization of submodular functions,” in NAACL HLT’10, 2010.

http://wit.ai
https://www.nutritionix.com/business/api

	Introduction
	Chatbot Platform and Problem Definition
	Transactional Chatbot Abstraction
	Chat Log Clustering Problem

	User Response Distance Function
	Response Features
	Mahalanobis Distance and Metric Learning

	Session Distance Function
	Sequence Alignment for Ordered Matching
	Other Similarity Functions

	Experiments
	Response Similarity
	Session Similarity
	Anecdotal Results from Clustering Responses and Sessions

	Related Work
	Conclusion and Future Work
	References

