
A Declarative Approach for Specifying User-Centric Communication

Peter J. Clarke, Vagelis Hristidis, Yingbo Wang, Nagarajan Prabakar and Yi Deng
School of Computing and Information Sciences

Florida International University
Miami, FL 33199, USA

email: {clarkep, vagelis, ywang002, prabu, deng}@cis.fiu.edu

ABSTRACT

The rapidly growing, reliable network infrastructure avail-
able today is enabling several classes of communica-
tion and collaborative applications. Already, a wide
range of communication applications, tools and services
(e.g., IP telephony, instant messaging, digital video con-
ferencing, and multimedia collaboration), and many do-
main- or industry-specific communication applications
(e.g., telemedicine, disaster management, and defense) have
been developed and deployed. However, these communica-
tion applications have been conceived, designed and devel-
oped vertically and separately with little or no connection to
each other. In addition, there has been little or no attention
paid to how the end-user specifies his/her communication
needs when using these applications.

We propose a new paradigm to define user-centric commu-
nications, which is based on a simple and declarative Com-
munication Modeling Language (CML) and a network ab-
straction middleware, which we call Communication Vir-
tual Machine (CVM). To clarify this paradigm we draw a
parallelism to the transformation that has taken place in
the data management domain over the last two decades. In
this paper we focus on CML and present two concrete and
equivalent variants, an XML-based and a graphical. We ar-
gue that the proposed CML can facilitate the specification
of a wide range of user-centric communication scenarios in
several domains.

KEYWORDS: Data communication, modeling lan-
guage, model-based development.

1. INTRODUCTION

An increasing number of communication applications
are being developed and deployed due to the continuous
improvement in network capacity and reliability. Examples
range from IP telephony, instant messaging, video confer-
encing, multimedia collaboration, to specialized communi-

cation applications for telemedicine, disaster management,
and scientific collaboration [1, 11, 14, 17, 27]. Today, all
trends indicate that the pace of innovation of new commu-
nication and collaborative applications is expected to accel-
erate further, given the growing support provided by the re-
liable and high-performance network infrastructure. Ack-
erman et al. [1] supports this claim by describing how
the advances in technology are expected to influence the
Telemedicine domain.

Despite the advances in the areas of high-level pro-
gramming languages (from Java to visual languages) and
development environments (e.g., Eclipse 1), and the gener-
ation of numerous network libraries (e.g., TCP/IP Sockets),
the development of a communication application remains a
cumbersome and costly process. In addition to the devel-
opment complexity, communication applications are tied to
the networks considered at development time and cannot
keep pace with the rapidly changing network specifications
and capabilities (new protocols like SIP, WiFi IEEE 802.11,
H323 [10]). In short, today there is no common model, ar-
chitecture, or systematic method to specify communication
services that are reconfigurable, and network- and device-
independent. This significantly limits the pace of innova-
tion for a new generation of communication tools, and thus
slows down the return on massive investment on network
infrastructure and limits industry growth.

We present a new paradigm to develop and deploy user-
centric communication applications which satisfies the fol-
lowing requirements: (a) be declarative and intuitive, (b)
provide a level of abstraction on both the device and net-
work specifics, and (c) integrate seamlessly with applica-
tions to handle their communication logic. Note we the
term user represents an end-user or an application. This
paradigm consists of a simple and declarative Communica-
tion Modeling Language (CML), and a network abstraction
middleware, which we call Communication Virtual Ma-
chine (CVM). We identify the following major challenges

1http://www.eclipse.org/

Figure 1: Parallelism to mediator technology in data management.

to realize these requirements: First, what properties must
a language possess to be intuitive yet powerful enough to
model the majority of user-centric communication scenar-
ios? Second, how can this modeling language fit into the
process of application development in order to handle the
communication-specific functionality (the communication
logic)? Third, how can a communication scenario speci-
fied with this declarative modeling language be realized on
a heterogeneous collection of networks and devices? In this
paper we address the first two questions. We address the
third question in [10], which is addressed in Section 2.

Parallelism to data management. To better understand the
proposed paradigm, we draw a parallelism to the data man-
agement area. Figure 1 captures the parallelism between
the proposed paradigm and accessing heterogeneous data
sources. As the use of computers and databases increases,
we reach a point where data (for a particular organization
or for the whole internet) is dispersed to a large number of
sources with different data models (e.g., relational, XML,
text, and so on), data schemas and querying interfaces (e.g.,
SQL, XQuery, and keyword search). However, applica-
tions require access to multiple of these data sources and
researchers have found that developing specialized access
mechanisms for each data source is cumbersome and also
inflexible since if a legacy database is replaced by a newer
one, the application has to be changed. Hence, the logi-
cal data abstraction paradigm has been proposed, to hide
the specifics of the underlying sources and export a uniform
interface to the applications for querying data. The right
part of Figure 1 shows a popular mediator architecture [5],
where Xquery [24] is used as the common data extraction

language.

In the communication domain there is a similar need
to abstract the underlying device and network infrastructure
and provide a unified communication abstraction layer. The
CVM plays the role of the mediator and it handles the exe-
cution of communication requests specified in CML (which
corresponds to XQuery in Figure 1). The Network Commu-
nication Broker (NCB) [26], described in Section 2, plays
the role of the data wrapper and provides an abstraction of
the network and device specifics. Notice that the arrows
between the left and right parts of Figure 1 depict the corre-
spondences between the two paradigms.
Contributions. In this paper we:

1. Propose a new paradigm for specifying user-centric
communication.

2. Present a new Communication Modeling Language
(CML) for user-centric communications. Two equiv-
alent variants of CML are defined: an XML-based (X-
CML) and a graphical (G-CML).

3. Describe our prototype that supports our new paradigm
for user-centric communication.

4. Present a case study on the communications needs in
a real medical environment. We show how CML can
model the communication needs for this environment.

The paper is organized as follows. Section 2 pro-
vides an overview of the Communication Virtual Machine
(CVM). Section 3 describes formally the two CML variants
and the transformation between them. Section 4 presents
our prototype and the details of the architecture of the CVM

layer where the user communication needs are specified.
Section 5 discusses the related work and we conclude in
Section 6.

2. CVM

In this section we provide an overview of the Commu-
nication Virtual Machine (CVM) which enables the realiza-
tion of the user communication needs specified using the
Communication Modeling Language (CML). The essence
of CVM is that it facilitates a user-centric communication
defined using CML. As shown in Figure 2, CVM lies be-
tween the communication network and the user (or appli-
cation). The user defines a communication scenario using
CML, and CVM handles the execution of the communica-
tion.

The design of CVM handles the common tasks per-
formed by communication applications. These tasks in-
clude: presentation of the data/information being commu-
nicated, interfacing with user devices that are sources/sinks
for the data/information, composition of the communica-
tion services that the application provides (to end-users),
and interfacing with underlying communication network(s)
that deliver the data/information. A key design principle
of CVM is the separation of concerns. The flexibility of
CVM comes from separating and encapsulating major as-
pects of communication concerns into individual compart-
ments, which can be handled separately. At a broader level,
CVM encapsulates the specification and processing of user
communication logic into a horizontal layer cross cutting
different communication applications and services, and by
doing so, it allows us to uniformly and systematically ad-
dress these concerns across these applications. In addition,
it provides the conceptual basis to develop uniform inter-
faces to communication devices and networks and hence
makes it possible to manage user communication transpar-
ent to the heterogeneity of device types, network protocols
and configurations.

As mentioned earlier, the CVM divides communication
concerns into four major levels of abstraction. The four lev-
els of abstraction, shown in Figure 2, represent the key arti-
facts of the CVM and include the: (1) user communication
interface, which allows users to declaratively specify their
communication needs and requirements (in CML), (2) syn-
thesis engine, which provides the process and techniques
to automatically synthesize a user communication instance
(a specification of communication using CML as explained
in Section 3) to an executable form called communication
control script, (3) user-centric communication middleware,
which executes the communication control script to manage
and coordinate the delivery of communication services to

users independent of the underlying network configuration,
and (4) network communication broker (NCB), which pro-
vides a network-independent API to the user-centric com-
munication middleware and works with the underlying net-
works to implement the communication services. Each
layer in the CVM model on the initiator side communicates
virtually with its peer layer at the participant site (see Fig-
ure 2). The user communication interface communicates
changes to a communication instance or schema (see Sec-
tion 3) to its peer layer, the synthesis engine negotiates ele-
ments of the communication instances with its peer layer,
the user-centric communication middleware performs the
actual communication logic defined in the communication
instance with its peer, while the network communication
broker (NCB) handles session communication with its peer.
This layered division of responsibility has similar principles
to the well established OSI layered stack model for network
communication [9].

The architecture of CVM offers the following desirable fea-
tures:
On-Demand Programmable and User-Centric Commu-
nication. Rather than being forced to use fixed, custom
or generic communication products, CVM allows users to
specify their communication needs (in CML).
Horizontal Unification and Uniform User Experience.
The design of CVM is network, device, and application
independent. Hence, it is well positioned to serve as the
”middleware” to bridge the gap between network services
and end-user communication needs, and allow the model to
adapt to future changes in these areas.
Automated Service Delivery and Dynamic Reconfigura-
tion and Adaptation. The CVM has the ability to au-
tomatically generate communication applications from the
declarative user communication instance and schema. This
automated CVM synthesis process removes the need for
costly software development required for stovepipe com-
munication tools and makes on-demand composition of
communication services possible.

We now provide the intuition behind the role and fea-
sibility of the synthesis engine (see [10] for details). The
role of the synthesis engine is to automatically transform
a declarative user communication instance to an impera-
tive control script for the user-centric communication mid-
dleware. These control scripts represent the network- and
device-independent control logic represented in CML. The
synthesis engine puts together the control script by appro-
priately combining pre-defined scripts (e.g. schema and in-
stance negotiation, communication session establishment,
etc.) based on the user communication schema and in-
stance. These scripts are created as services within the
user-centric communication middleware, which in turn in-

Figure 2: Layered architecture of the Communication Virtual Machine.

terfaces with the NCB to handle session establishment and
media communication. The specifics of NCB and user-
centric communication middleware are presented in [26],
and will not be further discussed here.

In contrast to general-purpose, model-driven applica-
tion development [3], such synthesis is possible because of
the following reasons. First, procedures and patterns gov-
erning basic communication services are well defined and
well understood, and can thus be encoded into the trans-
formation algorithms. Second, the combination of the code
pieces cannot be performed in any arbitrary way, but only in
limited and known-in-advance ways, since CML has limited
expressive power. Third, the communication instance deals
only with network-, device- and application-independent
communication logic; and its structure is thus relatively
simple. Section 3 defines in detail the exact expressive
power of CML.

3. MODELING USER COMMUNICATION

In this section we describe the requirements of a com-
munication modeling language, which we distilled after
studying several test cases and discussing with domain ex-
perts. Then, we present the Communication Modeling Lan-
guage (CML) which is our proposed language to meet the
stated requirements. In particular, we have identified the
following requirements for the communication modeling
language:
Simplicity: Be simple and intuitive.
Network-independence: Be independent of network and
device characteristics.

Expressiveness: Model the large majority of communica-
tion scenarios 2.

In order to refine the expressiveness requirement, we
identify the following primitive communication operations:

1. Establish a connection.

2. Specify requested properties for a connection or a par-
ticular data transfer. These properties include quality
of service, security, access rights, suggested handling
of transferred data.

3. Transfer a piece of data or a data stream.

4. Group the transferred data such that the receiving sides
become aware of their association.

5. Close connection.

Notice that the above operations are by no means an ex-
haustive list. We considered a much longer list but chose the
above in order to build a minimal, intuitive and adequately
expressive first version of CML. Other operators which we
have considered but have postponed for later versions in-
clude communication constraints (e.g., if bandwidth is low
then do not send video streams) and timing commands (e.g.,
transfer the sensor output every 5 seconds). The goal of
CML as the first language in this area is to trigger the re-
search community to start developing communication lan-
guages in order to eventually reach a well-accepted stan-
dard3.

2Similar to SQL which can express the large majority of data queries
3In the same way as XQuery emerged by combining multiple earlier

XML language proposals

1. userSchema ::= local connection {connection}
2. connection ::= mediaAttached connection

remote {remote}
3. local ::= person isAttached device

4. remote ::= device isAttached person

5. mediaAttached ::= {medium} {form}
6. device ::= device deviceCapability {deviceCapability}
7. form ::= {form} {medium} | form

8. person ::= personNameA personIDA personRoleA

9. device ::= deviceIDA

10. medium ::= builtinTypeA mediumURLA

suggestedApplicationA actionA

11. deviceCapability ::= builtinTypeA

12. form ::= suggestedApplicationA actionA

13. actionA ::= ”send” | ”doNotSend” | ”startApplication”

Figure 3: EBNF representation of X-CML.

CML is used to define a communication schema as well
as a communication instance 4. A schema defines the al-
lowed configurations and data transfers. The relation be-
tween a schema and an instance is like the relation between
a class and an object. An instance is a diagram in which all
fields are filled with actual values. It captures all informa-
tion in a communication at a particular point in time, such
as who are the participants, what kind of capability each
device has, what is being transferred in this connection, etc.
On the other hand, a schema only provides some configura-
tions on what a conforming instance may contain.

In particular, we can specify in a schema the types of
participants (the personRole attribute of person in Fig-
ure 3), the types of transferred data (allowed builtin-Type in
medium in Figure 3), and the capabilities of the involved
devices (deviceCapability in Figure 3). On the other
hand, an instance is created by instantiating the entities of a
schema. For example, the abstract person entity in a schema
is replaced by one or more person instances (persons with
specified personIDs). We show examples of communica-
tion instances and schemas in Section 3.4. We present two
equivalent variants of CML: the XML-based (X-CML) and
the graphical (G-CML). The former is the version that CVM
understands and processes, while the later was developed
for user-friendliness reasons. In Section 3.3 we present al-
gorithms for the automatic translation between X-CML and
G-CML. Sections 3.1 and 3.2 describe X-CML and G-CML
respectively.

3.1. X-CML
X-CML is XML-based and hence its syntax is defined

by an XML Schema. Appendix A [7] defines a generic com-
munication schema, with no constraints on multiplicities,

4Similar to how a database language (e.g., SQL) is used to define both
the database schema and the database in-stance

Figure 4: Predefined (built-in) types for the CML.

personRoles, and so on. For presentation purposes we have
converted (and simplified) parts of this XML Schema to Ex-
tended Backus-Naur Form (EBNF) [22] form (stripping out
reference constraints that cannot be represented in EBNF),
shown in Figure 3, in order to explain the basic components
of CML. Notice that Figure 3 depicts an attribute grammar,
where attributes are denoted by an “A” subscript, terminals
by boldface and non-terminal by italics. Figure 4 shows
the hierarchy of builtin types (builtinTypeA) currently sup-
ported in the CML implementation in CVM.

CML defines a user-centric communication schema or
instance. By user-centric we mean that all communications
defined by a user in CML involve this user. This is shown in
the first derivation rule of Figure 3, where a single “local”
entity is defined for all connections the user is involved. A
connection is a user session, and is defined as a commu-
nication between a group of participants where exchanged
data is by default transferred to all participants. In addi-
tion to the local side, a connection contains a set of media
(mediaAttached) currently transferred in the connections
(session) and a set of remote participants (remote). Both
local and remote participants are associated with a commu-
nication device (e.g., PC, cell phone), which is associated
by a set of capabilities (deviceCapability). Notice how
the specific characteristics of a device like type (PC or cell
phone) or the network where it is connected (IP or cellu-
lar) are not defined, nor required. The reason is that CML
operates on an abstraction of the underlying network and
devices as mentioned above. We assume there is a single
device per person, which can be relaxed in future versions
if needed.

A medium is a data piece or data stream, like a Word
document or a live video feed respectively. A medium has a
type which is one of the predefined types (builtinTypeA)
supported by the system, a mediumURLA that contains
the location of the medium (a file location for a data piece
or a port for a data stream), a suggestedApplicationA

∗ indicates zero or more occurrences. + indicates one or more occurrences.

The link connecting the symbol is also repeated

(a) (b)

Figure 5: Grammar for the G-CML.

which defines the application that can be used to view or
process a medium (e.g., Powerpoint for ppt files), and an
actionA which defines a default action that is performed on
a medium. Actions “send” and “doNotSend” mean trans-
fer automatically the medium or wait for the user to choose
respectively, while ”startApplication” orders the system to
open the suggested application of the medium once trans-
ferred.

Finally, we believe it is crucial to model complex data.
For example, we present a medical scenario described in
Section 3.4 that requires transfers of complex medical data
consisting of multiple simple media. Complex data are rep-
resented using forms in CML, which are nested structures
that contain media as well as user-defined attributes (e.g.,
media with common suggestedApplicationA or actionA

settings can be grouped together in a form).

3.2. G-CML

The graphical variant of CML (G-CML) is analogous
to the E-R diagram [6] in the database world. The G-CML
is used to create graphical communication models for both
communication schemas and instances. Figure 5 shows the
graphical language for G-CML. Figure 5(a) shows the non-
terminal definitions of G-CML, while Figure 5(b) shows
the terminal definitions. The number in the first column of
Figure 5(a) corresponds to the equivalent production in the
EBNF representation of X-CML, shown in Figure 3. For
example, the first row of the table in Figure 5(a) shows the
structure of the userSchema non-terminal, which consists
of the local non-terminal connected to one or more connec-
tion non-terminals (connection). To indicate that a symbol
may be repeated we use the character “∗” for zero or more
repetitions and “+” for one or more repetitions. The first
row of the table in Figure 5(b) shows the terminal for con-
nection, which consists of a diamond shaped box with the
label “connection”. The remaining non-terminals and ter-

Figure 6: G-CML instance for the medical scenario.

minals in Figure 5 can be described in a similar manner.

G-CML uses a notation similar to E-R diagrams, how-
ever the semantics are different. The symbols used in G-
CML can be classified into three categories, these include:
(1) entities - person, device, medium and form, (2) re-
lationships - connection and isAttached, (3) attributes -
properties of the entities (e.g., suggestedApplicationA).
Section 3.4 describes an example of how G-CML is used to
model a medical scenario.

3.3. Transformation between G-CML and X-
CML

To achieve the transformation between X-CML and G-
CML and vice-versa we borrow techniques used in model-
based software development [13]. However, unlike the
techniques used in model-based software development, our
paradigm caters to a more restricted domain thereby provid-
ing us with the capability of easily automating the transfor-
mation process. The transformation between the two mod-
els is analogous to the concept of round-trip engineering
in model-based software development. Heckel and Voigt
[13] state that pair grammars are used to describe the source
and target languages together with a correspondence be-
tween source and target sentences. The authors show how
pair grammars may be used to transform UML models to
BPEL4WS [13], we use a similar approach to convert be-
tween the communication models. The pair grammars we
use in our models are shown in Figure 3 and Figure 5 re-
spectively, where some details have been omitted due to
space restrictions. We point out that the grammars in Fig-
ure 3 and Figure 5 are attribute grammars that is, terminals
may have attributes associated with them. The left produc-
tion rules of the pair grammar are shown in Figure 3 and the
right production rules are shown in Figure 5.

We use the numbers of the production rules to show the
correspondence between the rules. For example in Figure 3,
Rule 1 for the left production states that a userSchema, the
start symbol, consists of a local non-terminal and one or
more connections. The right production in Figure 5(a) also
shows that a userSchema consists of the local non-terminal
followed by one or more connection non-terminals. Note
that the EBNF grammar shown in Figure 3 represents the
generic communication schema defined in X-CML in Ap-
pendix A of [7].

3.4. Illustrative Example
To illustrate how CML is used to model the communi-

cation needs for an application we apply it to a real scenario
from the medical domain, which we constructed with the
help of our collaborators from the Miami Children’s Hos-
pital (MCH) [4]. We show how the user communication
needs are modeled using G-CML and the transformation to
the equivalent X-CML.

Scenario: Patient John Demo has been referred by Dr.
Sanchez (a heart specialist) to the Miami Children’s Hos-
pital (MCH) for heart surgery. Dr. Monteiro performs the
surgery on patient John Demo. After surgery Dr. Monteiro
contacts the referring doctor, Dr. Sanchez, to let him know
that the surgery went well and to show him the echocardio-
gram (echo) of the patient. Dr. Monteiro also sends Dr.
Sanchez the updated medical record for patient John Demo.

We define the communication schema and instance us-
ing G-CML. Figure 6 shows the communication instance of
the medical scenario. With the schema defined, we can con-
struct this instance quickly by assigning actual values to the
attributes associated with each entity and relationship. We
do not show the schema due to space limitations. The par-
ticipants in the communication instance shown in Figure 6
are Dr. Monteiro (the initiator) and Dr. Sanchez (the recip-

ient). The deviceCapabilities for each device in the con-
nection are LiveAudio, VideoFile, and TextFile. A form is
sent named PatientRec1, of formType PatientRec. The
two media in this form are RecSummary.html (TextFile)
and RecEcho.mpg (VideoFile). The corresponding X-
CML representation for the instance of Figure 5 is shown
in Appendix B [7].

4. UCI PROTOTYPE

To demonstrate the feasibility of using CML to spec-
ify the communication needs for user-centric applications,
our research group has developed a prototype of the CVM.
This prototype follows the layered architecture described in
Section 2. In this section we describe the architecture of the
layer where the communication logic is defined, the User
Communication Interface (UCI), which is the top layer in
the CVM (Figure 2). We also provide an overview of our
working prototype using the scenario of Section 3.4.

4.1. Architecture of UCI
Figure 7 shows a block diagram of the UCI and the two

possible ways a user/application can interact with the UCI.
The figure also shows the flow of control and data, between
the user/application, the UCI and the Synthesis Engine (next
layer in Figure 2). The UCI consists of four major compo-
nents: (1) the communication modeling environment - pro-
vides the user with an environment to develop communica-
tion models (G-CML models) and transforms these models
into an X-CML model, (2) the schema transformation en-
vironment - transforms a X-CML instance to a synthesis-
ready-X-CML instance or stores the X-CML model to the
repository, (3) the repository - stores artifacts (e.g., gram-
mar rules and CML schemas) to support the creation of
CML models and the transformation between CML mod-
els, and (4) the UCI to synthesis engine (UCI-SE) interface
- provides a conduit for interaction with the synthesis en-
gine.

The main processing performed by the schema trans-
formation environment is transforming the X-CML model
into a synthesis-ready-X-CML model. This involves pars-
ing the X-CML model to identify if: (1) values are required
for any fields in the control or data parts of the X-CML, and
(2) a form type is declared or used in X-CML. Any miss-
ing data is set to default values that was either saved by
the user in a profile or to the system default values. User
communication models may be submitted to the CVM for
processing via the UCI using one of the two approaches,
these are: (1) a user/developer interacting with the graph-
ical interface in the communication modeling environment
to develop a communication model (schema or instance), or
(2) a user application submitting an X-CML instance of the

Figure 7: Block diagram of the User Communication
Interface (UCI).

user communication In the current version of the prototype
we are using Visual Language Desk (VLDesk) system [8]
as the graphical framework in the communication modeling
environment to develop the G-CML model.

4.2. Application of CVM
In our prototype, CVM is integrated with a medical

data retrieval system (i-Rounds R©) [23] to provide com-
munication between medical practitioners. Our prototype
is a collaborative effort between the School of Computing
and Information Sciences at FIU, Miami Children’s Hos-
pital (MCH), Teges R© Corporation [23] and IBM R©. MCH
is providing our research team with real scenarios in the
Telemedicine domain. The article by Burke and White [4]
from MCH describes how information technology is being
used to improve clinical outcomes for a congenital heart
team. Teges R© provided us with access to the Integrated
Clinical Information System (i-Rounds), which stores and
displays all medical data in MCH. IBM provided expertise
in the use of voice technology to interact with the i-Rounds
system.

Our prototype implements the scenario described in
Section 3.4, i.e., sending a summary of a patient record af-
ter a surgery. To send the post-operation patient record the
following steps are executed by the surgeon, Dr. Monteiro.
We assume that Dr. Monteiro is still in the operating room.

1. Dr. Monteiro activates the i-Rounds system and re-
trieves the patient record for John Demo using the
voice commands.

2. Dr. Monteiro activates the CVM client interface with
a voice command.

3. Dr. Monteiro tells the CVM client interface to contact
Dr. Sanchez.

4. Dr. Monteiro then tells the CVM client interface to
send the patient record.

After Dr. Monteiro retrieves the patient record using i-
Rounds, the “patient dash board” (the page navigation tool
in i-Rounds) is displayed with the CVM client interface em-
bedded. As Dr. Monteiro performs steps 2 and 3 the com-
munication model is created showing a connection between
himself and Dr. Sanchez. When step 4 is perform the CVM
send a form containing the current patient record to Dr.
Sanchez. When the form arrives on Dr. Sanchez’s device
the CVM displays the i-Rounds page containing the patient
information. It should be noted that for user-friendliness
purposes, a more high-level (icon-based) variant of G-CML
is used that we internally map to G-CML. Additional infor-
mation on the prototype, including screen shots, is provided
in [7].

After Dr. Monteiro performs Step 3 shown above, the
X-CML instance generated is shown in Appendix B [7].
This model is then passed to the CVM for processing. The
UCI transforms the X-CML instance into a X-CML ver-
sion ready for synthesis, validates the X-CML instance, and
sends it to the synthesis engine for processing. The remain-
ing layer of the CVM processes the request and delivers the
contents of the media to the receiver’s CVM.

5. RELATED WORK
Our survey of the literature revealed that although work

has been done in the various areas of user-centric com-
puting, there is currently no modeling language for defin-
ing user-centric communication models that is simple to
use and has the expressiveness of CML. Although several
model languages are used in software engineering and data
modeling none of them posses the properties outlined in
Section 3. We considered using a subset of UML 2.0 [19]
but realized that in order to create a model of the data to
be communicated and the logic of the communication sev-
eral UML diagrams would be required. That is, we would
require both static and dynamic UML diagrams to model
the communication required by the user, thereby making the
modeling process less user-centric.

Many of the concepts exhibited in model driven soft-
ware development (MDSD) [3] and model-driven architec-
tures (MDA) [18, 20] are used in developing our CML.
These concepts include the use of a visual modeling envi-
ronment, meta-models, and model transformations. Unlike
the approaches in MDSD and MDA we focus on a more
restricted domain i.e., communication. Our G-CML lan-
guage is similar to the E-R model [6] notation; however

the semantics we use are different. Unlike the E-R model,
we represent instances of the schema and in some cases the
entities have attributes that are shown in the entity box it-
self. We used VLDesk, a tool created by Costagliola et al.
[8], to create the G-CML models in the UCI. However, the
VLDesk tool lacks the functionality of transforming an X-
CML document into a G-CML model, a problem we are
currently addressing. We applied the concept of the pair
grammar during model transformation in the UCI [8, 13].

The modeling of the transmission media in the CML
is conservative when compared to the other models used to
describe media, such as the Dublin Core Metadata Initia-
tive (DCMI) [12] or the Resource Description Framework
(RDF) [25]. We decided to keep the attributes and actions
associated with the media simple to cater for the novice
user. However, we envision the extension of the attributes
and actions, and the inclusion of constraints in the future
version of the CML based on the DCMI and RDF.

Anderson et al. [2] describes an architecture style that
tightly couples the conceptual and implementation software
architectures. This approach focuses on the development
process of a multiuser interactive system by transforming
the conceptual design into implementation details such as
code and data distribution, caching and concurrency con-
trol. Phillips and Graham [21] present an architectural style
for synchronous groupware that allows the developer to de-
sign a conceptual architecture and semi-automatically refine
the design into an distributed implementation at runtime.
Our approach to specifying communication models is sim-
ilar to the that of scenario-based modeling by Phillips and
Graham [21], except that we focus only on the communica-
tion aspect. Unlike these approaches [2, 21] of developing
groupware, our approach focuses on providing the group-
ware user/developer with a means of specifying the com-
munication requirements of the application.

Communications services, such as the use of frame-
works for IP-based telecommunication (JAIN SIP [15], and
Java Media Framework [16], are usually tightly coupled
with the user applications. Our approach allows for the de-
coupling of the communication services from the applica-
tion logic thereby providing for (1) greater flexibility during
maintenance, (2) the ease of extending the communication
capabilities of the application, and (3) the ability to dynam-
ically change the communication model at runtime.

6. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new paradigm to specify
the communication needs of a user (end-user or applica-
tion). A language (CML) was presented to specify the com-
munication logic at a high-level thereby ignoring the partic-

ular characteristics of the underlying networks and devices.
CML is supported by the CVM system [DSC05]. Further-
more, two variants of CML were presented, an XML-based
(X-CML) and a graphical (G-XML), along with a descrip-
tion of the transformation process between them.

In the future we will extend CML and then CVM to
handle the new CML features. These features will allow the
user to specify access control for various participant roles,
constraints on the data communication, and a communica-
tion logging system. We envision that as more communica-
tion services become available to the user, CML will even-
tually become the language of choice to specify communi-
cation requirements.

ACKNOLWEDGEMENTS

This work was supported in part by the National Science
Foundation under grant HRD-0317692. The authors would
like to thank S. Masoud Sadjadi, Raju Rangaswami, and Chi
Zhang for their contributions to this work.

References
[1] M. Ackerman, R. Craft, F. Ferrante, M. Kratz, and H. S.

Salah Mandil. Telemedicine technology. Telemedicine
Jorunal and eHealth, 8(1):71–78, 2002.

[2] G. E. Anderson, T. C. N. Graham, and T. N. Wright. Drag-
onfly: linking conceptual and implementation architectures
of multiuser interactive systems. In Proceedings of the 22nd
ICSE, pages 252–261. ACM Press, 2000.

[3] J. Bettin. MDSD activities: The process view of an mdsd
project. Technical report, SoftMetaWare, May 2004. http:
//www.softmetaware.com/whitepapers.html.

[4] R. P. Burke and J. A. White. Internet rounds: A congenital
heart surgeon’s web log. Seminars in Thoracic and Cardio-
vascular Surgery, 16(3):283–292, 2004.

[5] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,
Y. Papakonstantinou, J. D. Ullman, and J. Widom. The
TSIMMIS project: Integration of heterogeneous infor-
mation sources. In Proceedings of of IPSJ Conference, pages
7–18. IEEE, Oct. 1994.

[6] P. P. Chen. The entity-relationship model: Toward a unified
view of data. ACM Trans. Database Syst., 1(1):9–36, 1976.

[7] P. J. Clarke, V. Hristidis, Y. Wang, N. Prabakar, and Y. Deng.
A unified architectural model for on-demand user-centric
communications. Technical Report FIU-SCIS-2006-01-02,
Florida International University, Jan 2006. http://www.
cis.fiu.edu/˜prabakar/cts2006/ (Mar 2006).

[8] G. Costagliola, V. Deufemia, and G. Polese. A framework
for modeling and implementing visual notations with appli-
cations to software engineering. ACM TOSEM, 13(4):431–
487, 2004.

[9] J. D. Day and H. Zimmermann. The osi reference model.
In Conformance testing methodologies and architectures for

OSI protocols, pages 38–44. IEEE Computer Society Press,
Los Alamitos, CA, USA, 1995.

[10] Y. Deng, S. M. Sadjadi, P. J. Clarke, C. Zhang, V. Hristidis,
R. Rangaswami, and N. Prabakar. A unified architectural
model for on-demand user-centric communications. Techni-
cal Report FIU-SCIS-2005-09, Florida International Univer-
sity, Sep 2005.

[11] DisasterHelp. https://disasterhelp.gov/
portal/jhtml/index.jhtml (June 2005).

[12] Dublin Core Metadata Initiative (DCMI). http://
dublincore.org/ (Dec 2005).

[13] R. Heckel and H. Voigt. Model-based development of
executable business processes for web services. LNCS,
3098:559–584, 2004.

[14] Internet2. Internet2 working groups, and special in-terest
groups, June 2005.

[15] JAIN SIP. Internet2 working groups, and special in-terest
groups, June 2005. https://jain-sip.dev.java.
net/ (May 2005).

[16] Java Media Framework API. Internet2 working groups, and
special in-terest groups, June 2005. http://java.sun.
com/products/java-media/jmf/ (May 2005).

[17] S. Kim, K. Pan, E. Sinderson, and E. J. Whitehead. Architec-
ture and data model of a webdav-based collaborative system.
In Proceedings of the Int’l Symp. on Collaborative Technolo-
gies and Systems, pages 48–55. IEEE, Jan. 2004.

[18] MODA-TEL. Mda foundations and key technologies (De-
liverable 3.4), July 2004. http://www.modatel.org/
(May 2005).

[19] OMG. Unified modeling language. http://www.uml.
org/ (Dec. 2005).

[20] OMG. mda guide ver-sion 1.0.1, June 2003. http://www.
omg.org/docs/omg/03-06-01.pdf (Mar. 2006).

[21] W. G. Phillips and T. N. Graham. Workspaces: A multi-
level architectural style for synchronous groupware. In Pro-
ceedings of Design, Specification and Verification of Interac-
tive Systems (DSV-IS 2003), pages 92–106. Springer LNCS,
2003.

[22] R. W. Sebesta. Concepts of Programming Languages. Addi-
son Wesley, sixth edition, 2003.

[23] TegesTM Corporation. http://www.teges.com/
index.asp (Dec. 2005).

[24] W3C. XML Query (XQuery). http://www.w3.org/
XML/Query/ (Dec. 2005).

[25] W3C. Resource Description Language (RDF), June 2003.
http://www.w3.org/TR/rdf-schema (Dec. 2006).

[26] C. Zhang, S. M. Sadjadi, W. Sun, R. Rangaswami, and
Y. Deng. User-centric communication middleware. Techni-
cal Report FIU-SCIS-2005-11-01, Florida International Uni-
versity, Nov 2005.

[27] H. Zhu, M. Turoff, and Z. Li. An object model for collabora-
tive systems and a toolkit to support collaborative activities.
In Proceedings of the 2000 Americas Conference on Infor-
mation Systems, pages 590–594, 2000.

