
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2009-01-0038 1

Effective Navigation of Query Results
Based on Concept Hierarchies

Abhijith Kashyap, Vagelis Hristidis, Michalis Petropoulos, and Sotiria Tavoulari

Abstract— Search queries on biomedical databases, such as PubMed, often return a large number of results, only a small

subset of which is relevant to the user. Ranking and categorization, which can also be combined, have been proposed to

alleviate this information overload problem. Results categorization for biomedical databases is the focus of this work. A natural

way to organize biomedical citations is according to their MeSH annotations. MeSH is a comprehensive concept hierarchy used

by PubMed. In this paper, we present the BioNav system, a novel search interface that enables the user to navigate large

number of query results by organizing them using the MeSH concept hierarchy. First, the query results are organized into a

navigation tree. At each node expansion step, BioNav reveals only a small subset of the concept nodes, selected such that the

expected user navigation cost is minimized. In contrast, previous works expand the hierarchy in a predefined static manner,

without navigation cost modeling. We show that the problem of selecting the best concepts to reveal at each node expansion is

NP-complete and propose an eff icient heuristic as well as a feasible optimal algorithm for relatively small trees. We show

experimentally that BioNav outperforms state-of-the-art categorization systems by up to an order of magnitude, with respect to

the user navigation cost. BioNav for the MEDLINE database is available at http://db.cse.buffalo.edu/bionav.

Index Terms—Interactive data exploration and discovery, Search process, Graphical user interfaces, Interaction styles.

——————————  ——————————

1 INTRODUCTION

he last decade has been marked by unprecedented
growth in both the production of biomedical data and
the amount of published literature discussing it. The

MEDLINE database, on which the PubMed search engine
operates, contains over 18 million citations, and the data-
base is currently growing at the rate of 500,000 new cita-
tions each year [20]. Other biological sources, such as Ent-
rez Gene [18] and OMIM [21], witness similar growth. As
claimed in previous work [26], the ability to rapidly sur-
vey this literature constitutes a necessary step toward
both the design and the interpretation of any large scale
experiment. Biologists, chemists, medical and health
scientists are used to searching their domain literature –
such as PubMed– using a keyword search interface. Cur-
rently, in an exploratory scenario where the user tries to
find citations relevant to her line of research and hence
not known a priori, she submits an initially broad key-
word-based query that typically returns a large number
of results. Subsequently, the user iteratively refines the
query, if she has an idea of how to, by adding more key-
words, and re-submits it, until a relatively small number
of results are returned. This refinement process is prob-
lematic because after a number of iterations the user is not
aware if she has over-specified the query, in which case

relevant citations might be excluded from the final query
result.

As an example, a query on PubMed for ―cancer‖ re-
turns more than 2 million citations. A more specific
query, ―breast cancer treatment‖, returns 111,433 cita-
tions. Our running example query for ―prothymosin‖, a
nucleoprotein gaining attention for its putative role in
cancer development, returns 313 citations. The size of the
query result makes it difficult for the user to find the cita-
tions that she is most interested in, and a large amount of
effort is expended searching for these results. Many solu-
tions have been proposed to address this problem –
commonly referred to as information overload [1,2,3,9,16].
These approaches can be broadly classified into two
classes: ranking and categorization - which can also be
combined. Ranking presents the user with a list of results
ordered by some metric of relevance [9] or by content
similarity to a result or a set of results [16]. In categoriza-
tion [1,2,3], query results are grouped based on hierar-
chies, keywords, tags or attribute values. User studies
have demonstrated the usefulness of categorization in
finding relevant results of exploratory queries [12]. While
ranked results are useful when the ranking function is
aligned with user preferences or the result list is small in
size, categorization is generally employed by users when
ranking fails or the query is too ―broad‖[12].

BioNav belongs primarily to the categorization class,
which is especially suitable for this domain given the rich
concept hierarchies (e.g., MeSH [19]) available for bio-
medical data. We augment our categorization techniques
with simple ranking techniques. BioNav organizes the
query results into a dynamic hierarchy, the navigation tree.
Each concept (node) of the hierarchy has a descriptive
label. The user then navigates this tree structure, in a top-
down fashion, exploring the concepts of interest while

xxxx- xxxx/0x/$xx.00 © 200x IEEE

————————————————

 Abhijith Kashyap is with the Department of Computer Science and Engi-
neering, University at Buffalo, SUNY, Buffalo, NY 14260. E-mail:
rk39@cse.buffalo.edu.

 Vagelis Hristridis is with the School of Computing and Information
Sciences, Florida International University, Miami FL 33199. E-mail: vage-
lis@cis.fiu.edu.

 Michalis Petropoulos is with the Department of Computer Science and
Engineering, University at Buffalo, SUNY, Buffalo, NY 14260. E-mail:
mpetropo@cse.buffalo.edu.

 Sotiria Tavoulari is with the Department of Pharmacology, Yale Universi-
ty, New Haven, CT 06520. E-mail: sotiria.tavoulari@yale.edu.

Manuscript received (insert date of submission if desired).

T

http://db.cse.buffalo.edu/bionav

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2009-01-0038

MESH (313)

Amino Acids, Peptides, and Proteins (310)

Proteins (307)

Nucleoproteins (40)

Biological Phenomena, Cell Phenomena, and Immunity (217)

Cell Physiology (161)

Cell Growth Processes (99)

Genetic Processes (193)

Gene Expression (92)

Transcription, Genetic (25)

95 more nodes

2 more nodes

45 more nodes

4 more nodes

3 more nodes

15 more nodes

10 more nodes

1 more node

Histones (15)

Fig. 1. Static Navigation on the MeSH Concept Hierarchy1

ignoring the rest.
An intuitive way to categorize the results of a query on

PubMed is by using the MeSH static concept hierarchy
[19], thus utilizing the initiative of the US National Li-
brary of Medicine (NLM) to build and maintain such a
comprehensive structure. Each citation in MEDLINE is
associated with several MeSH concepts in two ways: (i)
by being explicitly annotated with them, and (ii) by men-
tioning those in their text (see Section 7 for details). Since
these associations are provided by PubMed, a relatively
straightforward interface to navigate the query result
would first attach the citations to the corresponding
MeSH concept nodes and then let the user navigate the
navigation tree. Fig. 1 displays a snapshot of such an in-
terface where shown next to each node label is the count
of distinct citations in the subtree rooted at that node. A
typical navigation starts by revealing the children of the
root ranked by their citation count, and is continued by
the user expanding on or more of them, revealing their
ranked children and so on, until she clicks on a concept
and inspects the citations attached to it. A similar inter-
face and navigation method is used by e-commerce sites,
such as Amazon and eBay. For this example interaction,
we assume that some of the citations the user is interested
in are available on the three indicated concepts corres-
ponding to three independent lines of research related to
prothymosin, and therefore the user is interested in navi-
gating to these concepts. These include, ―Histones‖,
which play a role in gene regulation and are essential for
virus replication and tumor growth, ―Cell Groth
Processes‖ and ―Transcription, Genetic‖, a key process for
synthesis and replication of RNA and thus plays an im-
portant role in the duplication of cancer cells.

Note that the user is not aware that the relevant results
are available specifically on these nodes – she is only in-
terested in narrowing down the results, using a familiar
concept hierarchy, instead of going through all the re-
sults.

1 The complete tree can be seen at http://db.cse.buffalo.edu/allnav

(a)

(b)

(c)

(d)
Fig. 2. Dynamic navigation steps to reach the concept "Histones" for
the query "prothymosin"

The above static same for every query result navigation
method is problematic when the MeSH hierarchy (or one
with similar properties) is used for categorization for the
following reasons:

 The massive size of the MeSH hierarchy (over
48,000 concept nodes) makes it challenging for the
users to effectively navigate to the desired con-
cepts and browse the associated records. Even if
we remove from the MeSH concept nodes with no
citations attached to them, the 313 distinct query
results for ―prothymosin‖ are attached to 3,940
nodes, which is the actual size of the navigation
tree in Fig. 1. Combined with the fact that the
MeSH hierarchy is quite bushy on the upper le-
vels, this means that the user has to inspect, for
example, a total of 152 concept nodes before she
reaches the indicated concept ―Histones‖; a num-
ber comparable to the distinct citation count in the
query result. A common practice [28] for hierarchy

KASHYAP ET AL.: EFFECTIVE NAVIGATION OF QUERY RESULTS BASED ON CONCEPT HIERARCHIES 3

navigation is to show only a subset of a node’s
children, which would be appropriate if only few
nodes contain many results. Unfortunately, this is
not the case for the MeSH navigation tree; most of
the 98 children of the root in Fig. 1 have many re-
sults (the first three shown have 310, 217 and 193).

 A substantial number of duplicate citations are in-
troduced in the navigation tree of Fig. 1, since each
one of the 313 distinct citations is associated with
several concepts. Specifically, the total count of ci-
tations in Fig. 1 is 30,895. Naturally, the user
would like to know which concepts fragment the
query result into subsets of citations with as few
duplicate citations as possible across them. Cur-
rently, the only way to figure this out using the in-
terface in Fig. 1 is to click on different concept
nodes and inspect the attached citations. As an ex-
ample, the query results for ―prothymosin‖ are re-
lated to three independent lines of research,
represented by the three indicated concepts in Fig.
1, which are hard to locate. Among the total 139 ci-
tations attached to the three indicated concept
nodes, only 20 of them are duplicates.

BioNav introduces a dynamic navigation method that
depends on the particular query result at hand and is
demonstrated in Fig. 2. The query results are attached to
the corresponding MeSH concept nodes as in Fig. 1, but
then the navigation proceeds differently. The key action
on the interface is the expansion of a node that selectively
reveals a ranked list of descendant (not necessarily child-
ren) concepts, instead of simply showing all its children.

Fig. 2a, for example, shows the initial expansion of the
root node where only 8 (highlighted) descendants are
revealed compared to 98 children shown in Fig. 1. The
concepts are ranked by their relevance to the user query
and the number of them revealed depends on the charac-
teristics of the query results. Next, assuming the user is
interested in the ―Amino Acids...‖ node and judging that

the 310 attached citations is still a big number, she ex-
pands it by clicking on the ‖>>>‖ hyperlink next to it in
Fig. 2b. The user inspects the 6 concepts revealed and
decides that she is not interested in any of them. Hence,
she expands the ―Amino Acids...‖ node one more time in
Fig. 2c, revealing 4 additional concepts. Note that ―Nuc-
leoproteins‖ is an example of a descendant node being
revealed, since its parent node ―Proteins‖ is not revealed
in Fig. 2c. In Fig. 2d, the user expands the ―Nucleoprote-
ins‖ node and reveals ―Histones‖, one of the three key
concepts for the query. In the last step of the interaction,
the user clicks on the ―Histones‖ hyperlink and the 15
corresponding citations are displayed in a separate frame
as shown in Fig. 3.

To reach ―Histones‖ using the BioNav navigation me-
thod only 23 concepts are revealed, after 4 node expan-
sions, compared to 152 concepts, also after 4 expansions,
with the static navigation method of Fig. 1.

For each expansion, the displayed descendant concepts
are chosen in a way that the expected navigation cost is
minimized, based on an intuitive navigation cost model
we present in Section 3. The cost model estimates the ex-
ploration probability for a node based on its selectivity,
that is, the ratio of attached citations before and after the
query. The navigation cost for a concept node is also pro-
portional to the density of the navigation subtree rooted
at this node in terms of citation count. Intuitively, the se-
lection is done such that every expansion reduces max-
imally the expected remaining navigation cost. For exam-
ple, the reason that ―Proteins‖ is not displayed in Fig. 2 is
that it is too general given the query results and the origi-
nal distribution of citations in the PubMed database (de-
tails in Sections 3 and 4), and hence displaying it would
lead to an expected increase in the user navigation cost,
based on the user navigation cost model.

In addition to the static hierarchy navigation works
mentioned above, there are works on dynamic categoriza-
tion of query results (e.g., the Clusty search engine [29],

Fig. 3. BioNav Interface

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2009-01-0038

or [2], [3]), which create unsupervised query-dependent
results clusters, but do not study how the clusters should
be navigated. BioNav is distinct since it offers dynamic
navigation on a predefined hierarchy, as is the MeSH
concept hierarchy. Another difference is that BioNav uses
a navigation cost model to minimize the navigation cost.

We make the following contributions:
1. A comprehensive framework for navigating large

query results from PubMed using MeSH, an ex-
tensive concept hierarchy used for indexing cita-
tions in MEDLINE (Section 2).

2. A formal cost model for measuring the navigation
cost incurred by the user (Sections 3 and 4).

3. A complexity result proving that expanding the
tree in a way that minimizes the user’s navigation
cost is an NP-complete problem (Section 5).

4. An efficient heuristic and a feasible optimal algo-
rithm for minimizing the navigation cost (Section
5).

5. Experimental results validating the effectiveness of
the BioNav system when compared to state-of-the-
art categorization systems (Section 8).

6. An online version of the BioNav system is availa-
ble at http://db.cse.buffalo.edu/bionav.

Although we specifically target the biomedical domain
in this work, the approach can be directly applied to data-
sets where tuples are classified using terms from a con-
cept hierarchy. The core of the first contribution has been
presented in our preliminary short paper [13]. The
BioNav system architecture and implementation is pre-
sented in Section 7. Related work is discussed in Section 9
and the paper concludes in Section 10.

2 FRAMEWORK AND BIONAV OVERVIEW

The MeSH concept hierarchy is the starting point of the
framework and is defined as follows.

Definition 1 (Concept Hierarchy). A Concept Hierarchy
𝐻(𝑉,𝐸,𝑟) is a labeled tree consisting of a set 𝑉 of concept
nodes, a set 𝐸 of edges and is rooted at node 𝑟. Each node
𝑛 ∈ 𝑉 has a label 𝑙 and a unique identifier 𝑖𝑑.

According to the semantics of the MeSH concept hie-
rarchy [19], the label of a child concept node is more spe-
cific than the one of its parent. This also holds for most
concept hierarchies.

Once the user issues a keyword query, PubMed Bio-
Nav uses the Entrez Programming Utilities (eUtils) [7]
returns a list of citations, each associated with several
MeSH concepts. BioNav constructs an Initial Navigation
Tree by attaching to each concept node of the MeSH con-
cept hierarchy a list of its associated citations. Formally,
an Initial Navigation Tree 𝑇𝐼(𝑉𝐼 ,𝐸𝐼 , 𝑟) is a concept hie-
rarchy, where every node (concept) 𝑛 ∈ 𝑉1 is additionally
labelled with a results (citations) list 𝐿(𝑛).

In a given initial navigation tree, several concept nodes
might have an empty results list. Since MeSH is a rather
large concept hierarchy, BioNav reduces the size of the
initial navigation tree by removing the nodes with empty
results lists, while preserving the ancestor/descendant

relationships. Formally, the resulting structure is defined
as follows.

Definition 2 (Navigation Tree). A Navigation Tree
𝑇(𝑉,𝐸, 𝑟) is the maximum embedding of an initial naviga-
tion tree 𝑇𝐼(𝑉𝐼 , 𝐸𝐼 , 𝑟) such that no node 𝑛 ∈ 𝑉 is labeled with
an empty results list 𝐿(𝑛), excluding the root (in order to
maintain the tree structure and avoid the creation of a for-
est).

An embedding 𝑇(𝑉, 𝐸, 𝑟) of a tree 𝑇𝐼(𝑉𝐼 , 𝐸𝐼 , 𝑟) is an injec-
tion from 𝑉 to 𝑉𝐼 such that every edge in 𝐸 corresponds to
a path (disjoint from all other such paths) in 𝑇𝐼. An em-
bedding 𝑇 of a tree 𝑇𝐼, where both trees are rooted at node
𝑟, is maximum if no other node 𝑛 with a nonempty results
list 𝐿 𝑛 can be added to 𝑉 and 𝑇 still be an embedding.
The maximum embedding of the initial navigation tree is
recursively computed in a single depth-first left-to-right
traversal. If a non-leaf node 𝑛 has an empty results list
𝐿(𝑛), then add all children of 𝑛 to the parent of 𝑛 and re-
move it. If 𝑛 is a leaf, then remove it. Fig. 4a shows part of
the navigation tree for the ―prothymosin‖ query, where
the results lists are omitted for clarity.

The above procedure reduces the size of the initial na-
vigation tree, but the structure is still too big (3,940 nodes
for ―prothymosin‖) to simply display it to the user and let
her navigate it. BioNav minimizes the user’s effort to
reach the desired citations in the navigation tree by ex-
panding in a way that minimizes the expected overall
user navigation cost. Moreover, BioNav avoids informa-
tion clutter by hiding unimportant concept nodes leading
to interesting ones. This is achieved through a series of
expand actions that reveal only a few descendants (not
necessarily children) of the user selected node for further
navigation.

MESH

…

Proteins

Histones

…

…

……

Amino Acids… >>>

Nucleoproteins >>>

Transcription Factors >>>

MESH

…

…

(a) (b)

Transcription Factors Nucleoproteins

Amino Acids…

Fig. 4. (a) Navigation Tree, EdgeCut and Component Subtrees, (b)
Visualization of the EdgeCut on the user interface.

We model a node expansion at a given navigation step
as an EdgeCut in the navigation tree. In graph theory, an
EdgeCut in a graph 𝐺(𝑉, 𝐸) is a set of edges 𝐸𝐶 ⊆ 𝐸 such
that the graph 𝐺′(𝑉, 𝐸\𝐸𝐶) has more components than 𝐺.
For trees, any subset of the edges constitutes an EdgeCut,
since the removal of any single edge creates a new com-
ponent.

In Fig. 4a, the dashed line illustrates the EdgeCut cor-
responding to the expansion of the node ―Amino Acids...‖
and reveals the highlighted concepts of Fig. 4a. These re-

http://db.cse.buffalo.edu/bionav

KASHYAP ET AL.: EFFECTIVE NAVIGATION OF QUERY RESULTS BASED ON CONCEPT HIERARCHIES 5

vealed nodes are visualized on the interface as a tree
shown in Fig. 4b. The EdgeCut consists of the edges
(―Proteins‖, ―Transcription Factors‖) and (―Proteins‖,
―Nucleoproteins‖). Intuitively, an EdgeCut allows us to
―skip‖ child nodes (―Proteins‖), navigate directly to des-
cendant nodes located deeper in the tree and show them
as children of the node being expanded. Moreover, an
EdgeCut can selectively reveal only a subset of a poten-
tially large set of descendant nodes, as is the case in Fig.2b
where only 6 out of the 52 descendants of ―Amino Ac-
ids…‖ are revealed.

Definition 3 (Valid EdgeCut). A valid EdgeCut of a tree
𝑇(𝑉,𝐸, 𝑟) is an EdgeCut 𝐶 ⊆ 𝐸 such that no two edges in 𝐶
appear in the same path from the root to some leaf node.

We only consider valid EdgeCuts in the rest of the pa-
per, because invalid EdgeCuts lead to unintuitive naviga-
tions.

Component Subtrees. An EdgeCut causes the creation
of two types of component subtrees, upper and lower. Given
an EdgeCut 𝐶 of a tree 𝑇(𝑉, 𝐸, 𝑟), a lower component subt-
ree 𝐼(𝑦𝑖) rooted at 𝑦𝑖 is created by each node 𝑦𝑖 ∈ 𝑉, such
that (𝑥,𝑦𝑖) ∈ 𝐶 for some node 𝑥. In Fig. 2c, at the expan-
sion of node ―Amino Acids...‖, four lower component
subtrees are created, two of which are shown in Fig. 4a,
rooted at ―Transcription Factors‖ and ―Nucleoproteins‖.
Moreover, for a given EdgeCut 𝐶, a single upper compo-
nent subtree is created and comprises of the nodes not in
any lower component subtree, and is always rooted at the
root of the tree being expanded. In Fig. 4a, the upper
component subtree comprises of the nodes ―Amino Ac-
ids...‖ (root) and ―Proteins‖.

The state of the navigation tree after an EdgeCut, and
the component subtrees created, is captured by the Active
Tree defined below.

Definition 4 (Active Tree). An Active Tree 𝑇𝐴(𝑉,𝐸, 𝑟) is a
Navigation Tree where each node 𝑛 ∈ 𝑉 is annotated with a
node set 𝐼(𝑛) consisting of the nodes in the component subt-
ree rooted at 𝑛. If a node 𝑛 is not a root of a component subt-
ree, then 𝐼 𝑛 = {𝑛}. The non-singleton 𝐼 sets are disjoint.

Before any EdgeCut, a navigation tree is trivially con-
verted to an active tree by annotating the root node with
an 𝐼 set that includes all tree nodes. The rest of the nodes
𝑛𝑖 are annotated with the node set 𝐼 𝑛𝑖 = 𝑛𝑖 . Fig. 5a
shows (part of) the active tree capturing the state of the
navigation tree before the EdgeCut in Fig. 4a (singleton 𝐼
sets, such as ―Histones‖, are not shown).

An EdgeCut (expansion) is an operation on the active
tree, performed on the 𝐼 set of a given node, and updates
the sets 𝐼(𝑛𝑖) of the roots 𝑛𝑖 of the upper and lower sub-
trees created by the EdgeCut based on the nodes included
in these subtrees. The operation is denoted by
Cut: 𝐼(𝑛) → 𝑆 ⊆ 𝐼(𝑛) and returns the set 𝑆 of roots of the
upper and lower subtrees that it creates. Fig. 5b shows the
effect of the EdgeCut operation in Fig. 4a on the active
tree in Fig. 5a. The active tree is closed under the EdgeCut
operation.

Note that the set 𝐼 𝑛 of a node 𝑛 is overloaded to also
denote the ―invisible‖ component subtree of the active
tree that is rooted at 𝑛 and only consists of the nodes in

𝐼 𝑛 . For instance, the invisible subtree 𝐼(―Amino Ac-
ids...‖) in Fig. 5b is the one indicated as the upper compo-
nent subtree in Fig. 4a.

BioNav visualizes the active tree to the user by show-
ing only the nodes that do not appear in any non-
singleton 𝐼 set organized according to the following defi-
nition.

(a) (b)

MESH

…

Amino Acids…

Transcription
Factors

Nucleoproteins

Proteins

… Histones

…

…

…

MESH

…

Amino Acids…

Transcription
Factors

Nucleoproteins

Proteins

… Histones

…

…

…

I(“Amino Acids…”)=
{“Amino Acids…”,
“Proteins”,
“Transcription Factors”,
“Nucleoproteins”,
“Histones”,
…}

I(“Amino Acids…”)=
{“Amino Acids…”,
“Proteins”,
…}

I(“Transcription Factors”)=
{“Transcription Factors”,
…}

I(“Nucleoproteins”)=
{“Nucleoproteins”,
“Histones”,
…}

Fig. 5. The Active Tree Before and After the EdgeCut in Fig. 4

Definition 5 (Active Tree Visualization). The visualization
of an active tree 𝑇𝐴(𝑉,𝐸, 𝑟) is the embedded tree
𝑇𝐴 ′(𝑉′, 𝐸′, 𝑟), where 𝑉′ consists of the nodes not in any non-
singleton 𝐼(𝑛), for all 𝑛 ∈ 𝑉. Shown next to every node
𝑛 ∈ 𝑉′ is the number of distinct citations attached to nodes
in 𝐼(𝑛), given by 𝐿 𝐼(𝑛) = 𝐿(𝑛𝑖)𝑛 𝑖∈𝐼(𝑛) . If 𝑛 has a
non-singleton 𝐼(𝑛), then an expand hyperlink is shown next
to it.

The visualization of the active tree after the EdgeCut in
Fig. 4a is shown in Fig. 4b and is a subset of the nodes
revelaed in Fig. 2c. Note that the citation count 𝐿 𝐼(𝑛)
for ―Nucleoproteins‖ in Fig. 2c is 40 denoting the unique
citations attached to it and its (invisible) component subt-
ree. It is reduced to 19 in Fig. 2d, since its component
subtree is getting smaller as descendant concept nodes
are revealed.

An EdgeCut and the visualization of the resulting ac-
tive tree are capable of reducing the navigation tree both
height- and width-wise. The embedded tree in Fig. 2c,
compared to the navigation tree in Fig. 1, is narrower and
shorter. Note that we do not make any assumptions about
the user’s preference over the tuples in the result and
every citation in the result can be reached by a sequence
of navigation actions, that is, there is no information loss
in navigating the query results using our framework.

Using the ‖>>>‖ hyperlinks, the user can trigger sub-
sequent EdgeCut operations on component subtrees in a
recursive fashion. Although we expect the user to trigger
EdgeCut operations predominantly on the lower compo-
nent subtrees, an EdgeCut is possible on the upper subt-
ree as well. For example, an EdgeCut operation on the

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2009-01-0038

upper component subtree of Fig. 4a would reveals the
―Proteins‖ concept as parent of the previously revealed
concept ―Nucleoproteins‖.

3 NAVIGATION AND COST MODEL

The navigation model of BioNav is formally defined in
this section. Then the navigation cost model is presented,
which is used to devise and evaluate our algorithms in
later sections.

Navigation Model. After the user issues a keyword
query, BioNav initiates a navigation by constructing the
initial active tree (which has a single component tree
rooted at the MeSH root) and displaying its root to the
user. Subsequently, the user navigates the tree by per-
forming one of the following actions on a given compo-
nent subtree 𝐼(𝑛) rooted at concept node 𝑛:

1. EXPAND 𝑰(𝒏): The user clicks on the ”>>>” hyper-
link next to node 𝑛 and causes an EdgeCut(𝐼(𝑛))
operation to be performed on it, thus revealing a
new set of concept nodes from the set 𝐼(𝑛).

2. SHOWRESULTS 𝑰(𝒏): By performing this action,
the user sees the results list 𝐿(𝐼(𝑛)) of citations at-
tached to the component subtree 𝐼(𝑛).

3. IGNORE 𝑰(𝒏): The user examines the label of con-
cept node 𝑛, ignores it as unimportant and moves
on to the next revealed concept.

4. BACKTRACK: The user decides to undo the last
EdgeCut operation.

This navigation process continues until the user finds
all the citations she is interested in.

EXPLORE(𝐼(𝑛))
 if 𝑛 is the root
 𝑆 ←EXPAND 𝐼(𝑛) // that is 𝑆 ←EdgeCut(𝐼(𝑛))
 For each 𝑛𝑖 in 𝑆
 EXPLORE(𝐼 𝑛𝑖)
 else, if 𝑛 is not a leaf-node, choose one of the following:
 1. SHOWRESULTS 𝐼(𝑛)
 2. IGNORE 𝐼(𝑛)
 3. 𝑆 ←EXPAND 𝐼(𝑛)
 For each 𝑛𝑖 in 𝑆
 EXPLORE(𝐼(𝑛𝑖))
 else, choose one of the following: // 𝑛 is a leaf node
 1. SHOWRESULTS 𝐼(𝑛)
 2. IGNORE 𝐼(𝑛)

Fig. 6. TOPDOWN Navigation Model

In order to define a cost model, we focus on a simplifi-
cation of the general navigation model, which we call
TOPDOWN, where only EXPAND, SHOWRESULTS and
IGNORE are the available operations, that is, the user
follows a top-down only navigation starting from the
root. TOPDOWN is common in practice. Note that when
the user encounters a leaf node in TOPDOWN the only
available option is SHOWRESULTS. The TOPDOWN
navigation model is formally presented in Fig. 6. It is a
recursive procedure and is initially called on the root of
the initial active tree.

TOPDOWN Cost Model. The cost model, which is in-
spired by a previous work [2], takes into consideration
the number of concept nodes revealed by an EXPAND
action, the number of EXPAND actions that the user per-
forms and the number of citations displayed for a SHO-
WRESULTS action. In particular, the cost model assigns
(i) cost of 1 to each newly revealed concept node that the
user examines after an EXPAND action, (ii) cost of 1 to
each EXPAND action the user executes, and (iii) cost of 1
to each citation displayed after a SHOWRESULTS action.

For example, in the navigation of Fig. 2 above, the cost
for reaching the ―Histones‖ concept and inspecting its
attached citations is 42. That is, 4 EXPAND actions that
reveal a total of 23 concept nodes, and a SHOWRESULTS
action on the ―Histones‖ concept that lists 15 citations.
The user examines all concept nodes and all citations in
order to select the ones of interest.

Since the exact sequence of actions of a user cannot be
known a priori, we estimate the cost based on the following
two probabilities:

 EXPLORE probability 𝑃𝐸(𝐼(𝑛)) is the probability
that the user is interested in the component subt-
ree 𝐼(𝑛) and will hence explore it. The IGNORE
probability is 1− 𝑃𝐸 𝐼(𝑛) .

 EXPAND probability 𝑃𝐶 (𝐼(𝑛)) is the probability
that the user executes an EXPAND action on com-
ponent subtree 𝐼(𝑛) given that she has chosen to
explore 𝐼(𝑛). The SHOWRESULTS probability for
𝐼(𝑛) is 1− 𝑃𝐶 𝐼(𝑛) .

In Section 4, we show how we estimate probabilities
𝑃𝐸 𝐼(𝑛) and 𝑃𝐶 𝐼(𝑛) . The cost of exploring component
subtree 𝐼 𝑛 , rooted at node 𝑛, is:

𝑐𝑜𝑠𝑡 𝐼 𝑛 =

𝑃𝐸
𝑁 𝐼 𝑛 ∙

 1 − 𝑃𝐶 𝐼 𝑛 ∙ 𝐿 𝐼 𝑛

+𝑃𝐶 𝐼 𝑛 ∙ 𝐵 + 𝑆 + 𝑐𝑜𝑠𝑡 𝐼𝐶 𝑠

𝑠∈𝑆

where 𝑃𝐸
𝑁 𝐼(𝑛) is the normalized 𝑃𝐸 𝐼(𝑛) , such that the

sum of 𝑃𝐸
𝑁’s of the component subtrees after an EdgeCut

equals 1. 𝑃𝐸
𝑁 of the original tree is 1. The intuition for this

normalization is that the probability that the user wants
to explore a node 𝑛 should not depend on the specific
expansions sequence that revealed 𝑛.

The first operand of the addition inside the big paren-
thesis is the cost of executing SHOWRESULTS on 𝑛. The
second operand is the cost of executing an EXPAND ac-
tion on 𝑛. The constant B is the cost of executing the EX-
PAND action, and 𝑆 is the set of concept nodes revealed
by the action, or otherwise the roots of component sub-
trees returned by the EdgeCut operation. 𝐼𝐶 𝑠 is the up-
dated 𝐼 set of a node 𝑠 ∈ 𝑆 after the EXPAND action on
𝐼(𝑛) has been performed.

Recall that 𝐿 𝐼 𝑛 in the cost formula is the number
of distinct citations attached to 𝐼 𝑛 . Intuitively, creating a
component subtree with large number of duplicates re-
duces the navigation cost if the SHOWRESULTS proba-
bility for that subtree is high. Moreover, the number of
duplicates across component subtrees should be minimal;

KASHYAP ET AL.: EFFECTIVE NAVIGATION OF QUERY RESULTS BASED ON CONCEPT HIERARCHIES 7

otherwise the user will pay the cost of inspecting a cita-
tion multiple times.

Finally, note that by changing B, the cost assigned to
executing an EXPAND action we affect the number of
revealed concepts after each EXPAND. In particular, in-
creasing this cost leads to more concepts revealed for each
EXPAND action. This cost can be thought of as a cognitive
measure of a user’s expectation of the system behavior as
she navigates the query navigation tree. A small expand
cost would decrease the number of concept nodes re-
vealed during each EXPAND action, whereas the user can
process more. It would also increase the number of EX-
PAND actions thus frustrating the user. In Section 8, we
experiment with various values of B.

4 ESTIMATION OF NAVIGATION PROBABILITIES

We assume that each citation is equally likely to be of inter-
est to the user. If more information about the ―goodness‖
of the citations were available, our approach could be
straightforwardly adapted using appropriate weighting
for 𝐿(𝐼 𝑛).

Estimating EXPLORE Probability 𝑷𝑬. Since all cita-
tions in the query result are assumed to be of equal im-
portance, concept 𝑛 is of higher interest if 𝐿 𝑛 is large.
On the other hand, a concept that is associated with a
very large number of citations 𝐿𝑇 𝑛 of MEDLINE, inde-
pendently of the query, is probably not discriminatory or
important. The latter is inspired by the inverse document
frequency measure in Information Retrieval. Hence, 𝑃𝐸 𝑛
for a node 𝑛 is proportional to 𝐿 𝑛 / 𝐿𝑇 𝑛 . We normal-
ize 𝑃𝐸 𝑛 by dividing by the sum of all 𝑃𝐸 ’s in the naviga-
tion tree 𝑇, that is:

𝑃𝐸 𝑛 =

 𝐿 𝑛
 𝐿𝑇 𝑛

 𝐿 𝑛𝑖
 𝐿𝑇 𝑛𝑖

𝑛 𝑖𝜖𝑇

For a component tree 𝐼(𝑛) rooted at node 𝑛:

𝑃𝐸 𝐼 𝑛 = 𝑃𝐸(𝑛𝑖)
𝑛 𝑖∈𝐼(𝑛)

Given the above formula, for the initial active tree it is
𝑃𝐸 𝐼(𝑛) = 1. The above 𝑃𝐸 formulas, together with the
cost model in Section 3, largely determine the characteris-
tics of the component subtrees BioNav creates during an
EXPAND action. In particular, the upper component
subtree typically groups together (i) concepts with low 𝑃𝐸
and a large number of attached citations, and (ii) concepts
with high 𝑃𝐸 and a small number of attached citations.
The first group is dismissed as uninteresting and the
second could lead to a large number of concepts being
revealed. Intuitively, the two groups of concepts average
each other out according to the 𝑃𝐸(𝐼(𝑛)) formula. The
lower component subtrees typically group concepts with
𝑃𝐸 and number of attached citations in-between the two
extremes in a way that minimizes the average navigation
cost.

Estimating EXPAND Probability 𝑷𝑪. 𝑃𝐶 𝐼(𝑛) is 0, if 𝑛
is a leaf concept node or has a singleton 𝐼(𝑛) set, since
there is no other choice for the user. For internal nodes in
the active tree with a non-singleton 𝐼(𝑛) set that have a

large 𝐿(𝐼(𝑛)), a typical user will want to further narrow
down when faced with the prospect of seeing too many
citations, that is, 𝑃𝐶 𝐼(𝑛) is 1, if 𝐿(𝐼(𝑛)) is greater than an
upper threshold. 𝑃𝐶 𝐼(𝑛) is 0, if 𝐿(𝐼(𝑛)) is smaller than an
lower threshold. Currently, BioNav operates with 50 and 10
being the upper and lower threshold respectively.

In the remaining cases, a user might want to narrow
down the search of 𝐼(𝑛), by executing an EXPAND action,
if the citations under 𝑛 are widely distributed among the
subconcepts in 𝐼(𝑛). An objective measure for such a wide
distribution (disorder) is information entropy. If the entro-
py of the subtree 𝐼(𝑛) is large, then the user would benefit
by an EXPAND action. So, 𝑃𝐶 (𝐼(𝑛)) is computed as fol-
lows:

𝑃𝑐 𝐼 𝑛 = 𝐸 𝐼 𝑛 =

−
 𝐿 𝑛𝑖

 𝐿 𝐼 𝑛 𝑛 𝑖∈𝐼(𝑛) 𝑙𝑜𝑔
 𝐿 𝑛𝑖

 𝐿 𝐼 𝑛

−𝑙𝑜𝑔
1

 𝐼(𝑛)

The sum can become greater than 1 because of the exis-
tence of duplicates. Hence, we normalize the entropy of
𝐼(𝑛) by dividing with the maximum entropy, where cita-
tions are uniformly distributed to all nodes in 𝐼(𝑛) and
there are no duplicates.

𝑃𝐶 determines the impact of duplicates in a component
subtree after a node expansion. If 𝑃𝐶 (𝐼 𝑛) is low, that is,
the SHOWRESULTS probability is high, then the number
of duplicates in 𝐼 𝑛 plays a bigger role in the way a com-
ponent subtree is expanded.

5 COMPLEXITY RESULTS

To prove that the problem of selecting the optimal valid
EdgeCut for a given tree is NP-hard, where ―optimal‖
means minimize the user navigation cost according to the
navigation model of Section 3, we prove that the problem
is NP-complete for a simplified navigation model, which
we refer to as TOPDOWN-EXHAUSTIVE and is a special
case of the TOPDOWN model shown in Fig. 6.

In TOPDOWN-EXHAUSTIVE, BioNav performs an
EXPAND action (EdgeCut operation) on the root of the
initial active tree, and then the user selects randomly the
root of one of the component subtrees created and per-
forms a SHOWRESULTS action. The cost of TOPDOWN-
EXHAUSTIVE navigation is the cost to read the root label
of all component subtrees revealed by the EdgeCut plus
the cost of SHOWRESULTS for the selected component
subtree.

Intuition on the complexity of computing optimal valid Ed-
geCut: The ―optimal‖ valid EdgeCut is the EdgeCut that
will lead to the minimum expected navigation cost, that
is, the minimum average cost. In order to minimize the
expected cost of TOPDOWN-EXHAUSTIVE navigation,
we need to minimize the cost of EXPAND and of SHO-
WRESULTS. The cost of EXPAND is simply the number 𝑘
of component subtrees produced by the EdgeCut. The
average cost of SHOWRESULTS over all component sub-
trees equals the sum of unique elements (citations) in
every subtree over 𝑘. This sum would be 𝐿(𝑇) where 𝑇
is the navigation tree if there were no duplicates among
the subtrees. However, due to the existence of duplicates

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2009-01-0038

(the same citation can be annotated with multiple MeSH
concepts) this sum depends on the EdgeCut. Hence, the
duplicates are the reason that the problem is NP-complete
for TOPDOWN-EXHAUSTIVE, because we need to max-
imize the number of duplicates within the created sub-
trees, and at the same time create a relatively small num-
ber of component subtrees. Note that even for a given 𝑘,
the problem of selecting the best EdgeCut is NP-hard as
we show in Theorem 1.

Theorem 1. Finding the optimal valid EdgeCut in TOP-
DOWN-EXHAUSTIVE is NP-complete.

Proof. The decision problem corresponding to the prob-
lem of computing the optimal EdgeCut is as follows:

TOPDOWN-EXHAUSTIVE Decision (TED) Problem:
Given a navigation tree 𝑇, where each node 𝑛 contains a
list 𝐿(𝑛) of elements from universe 𝑈 (𝑈 are all the cita-
tions in the query result), that is, 𝐿(𝑛) ⊆ 𝑈, there exists an
EdgeCut 𝐶 of 𝑇 that creates 𝑘 subtrees (including the up-
per subtree) with 𝑑 duplicate elements within the created
subtrees. That is, if 𝑆1 ,… , 𝑆𝑘 are the subtrees and each 𝑆𝑖
contains 𝑏(𝑆𝑖) duplicates, i.e., elements that appear
somewhere in 𝑆1,… ,𝑆𝑖−1 (if an element appears 3 times,
then it counts as 2 duplicates), then 𝑏(𝑆𝑖)𝑖=1…𝑘 = 𝑑.

Note that the cost of a TOPDOWN-EXHAUSTIVE na-
vigation is computed as follows, if we solve the TED
problem for every combination of 𝑘 and 𝑑. If 𝑇 has 𝑊
unique results, then a subtree of the EdgeCut will have on
average (𝑊 +𝑑)/𝑘 results. Hence the whole navigation
cost is 𝑘 + (𝑊 + 𝑑)/𝑘, where 𝑘 is the cost of reading the
labels of the 𝑘 subtrees.

TED is in NP since a solution can be verified in poly-
nomial time. To prove that it is NP-complete, we will re-
duce the MAXIMUM EDGE SUBGRAPH (MES) problem,
which is NP-complete [8], to TED.

MAXIMUM EDGE SUBGRAPH (MES) Problem: Given
graph 𝐺(𝑉,𝐸), a weight function 𝑤:𝐸 → 𝑁 (𝑁 are the nat-
ural numbers) and positive integers 𝑑 and 𝑘′, there is a
subset 𝑉′ ⊆ 𝑉 with 𝑉′ = 𝑘′ such that the sum of the edge
weights of the edges between the nodes in 𝑉′ is 𝑑, that is,
 𝑤 𝑢, 𝑣 = 𝑑 𝑢,𝑣 ∈𝐸⋂(𝑉′×𝑉′) .

Mapping of MES to TED: For each node 𝑢 ∈ 𝑉, we create
a node 𝑢′ in 𝑇 that is a child of the root of 𝑇. That is, the
root 𝑟 of 𝑇 is empty (𝐿 𝑟 = ∅) and it has 𝑉 children.

The universe 𝑈 is defined as follows: for each pair of
edges (𝑢, 𝑣) ∈ 𝐸 with weight 𝑤(𝑢,𝑣), we add elements
𝐵𝑢𝑣

1 ,… , 𝐵𝑢𝑣
𝑤(𝑢,𝑣) in 𝑈.

Each of the nodes of 𝑇 is populated with elements from
𝑈 as follows: For each edge (𝑢, 𝑣) ∈ 𝐸, we add to nodes 𝑢′
and 𝑣′ of 𝑇 the elements 𝐵𝑢𝑣

1 ,…, 𝐵𝑢𝑣
𝑤(𝑢,𝑣). The intuition is

that we map an edge weight in MES to the number of
duplicates between two nodes in TED.We set 𝑘 = 𝑉 −
𝑘 ′ + 1. In the figure below, the EdgeCut splits the tree into
𝑘 subtrees.

Note that the above reduction is linear on the maxi-
mum edge weight in 𝐺, which generally is less than 𝑉 ,
hence the reduction is polynomial on 𝑉 and 𝐸 . Now, a
solution to MES is mapped to a solution to TED, since
selecting 𝑘′ nodes in MES corresponds to expanding the
tree into 𝑘 subtrees in TED. The nodes of 𝑉 corresponding

to the nodes in the upper subtree of the EdgeCut (the one
including the root) are the solution to MES. This set of
nodes has maximum sum of edge weights in MES and
maximum number of duplicates in TED.

u’1 u’k’… u’|V|u’k’+1

r

…

Note: We assume that a node in TED can have the
same element 𝐿 multiple times. We could raise this as-
sumption and just replace this node with a subtree that
contains the element 𝐿 multiple times. We did not do so to
simplify the presentation of the proof. 

6 ALGORITHMS FOR BEST EDGECUT

Given the cost equation in Section 3, we can compute the
optimal cost by recursively enumerating all possible se-
quences of valid EdgeCuts, starting from the root and
reaching every concept in the navigation tree, computing
the cost for each step and taking the minimum. However,
this algorithm is also prohibitively expensive. Instead we
propose an alternative algorithm Opt-EdgeCut that makes
use of the dynamic programming technique to reduce the
computation cost. As shown in Section 6.1 below, Opt-
EdgeCut is still exponential and is just used to evaluate the
quality of the heuristic we present in Section 6.2 (Heuris-
tic-ReducedOpt). In Section 6.3, we consider an alternate
navigation strategy (TopKLevelWise), which in several var-
iations is used in existing systems, such as eBay and
Amazon, and allows users to navigate query results using
extensive concept hierarchies. In TopKLevelWise, a fixed-
size subset of children is revealed during each EXPAND
action on a concept node, where the subset is selected
based on a fixed cost metric. We compare two variations
of TopKLevelWise with Heuristic-ReducedOpt in Section 6.2
and show that the navigation cost incurred using our ap-
proach can be an order of magnitude lower than either of
these approaches.

6.1 Optimal Algorithm for Best EdgeCut

The Opt-EdgeCut algorithm to compute the minimum
expected navigation cost (and the EdgeCut that achieves
it) traverses the navigation tree in post-order and com-
putes the navigation cost bottom-up starting from the
leaves. For each node 𝑛, the algorithm enumerates and
stores the list ℂ(𝑛) of all possible EdgeCuts for the subtree
rooted at 𝑛, and the list 𝕀(𝑛) of all possible 𝐼(𝑛) sets that
node 𝑛 can be annotated with. The inclusion-exclusion
principle [4] is used when enumerating ℂ(𝑛) and 𝕀(𝑛),
which leads to an ordering that maximizes reuse in the
dynamic programming algorithm. The algorithm then
computes the minimum cost for each subtree in 𝕀(𝑛) giv-
en the EdgeCuts in ℂ(𝑛) and the already computed min-
imum costs for the descendants of 𝑛. The complexity of
Opt-EdgeCut is 𝑂(𝑉 ∙ 2 𝐸).

KASHYAP ET AL.: EFFECTIVE NAVIGATION OF QUERY RESULTS BASED ON CONCEPT HIERARCHIES 9

Algorithm Opt-EdgeCut
Input: The navigation tree 𝑇
Output: The best EdgeCut

1 Traversing 𝑇 in post-order, let 𝑛 be the current node
2 while 𝑛 ≠ 𝑟𝑜𝑜𝑡 do
3 if 𝑛 is a leaf node then
4 𝑚𝑖𝑛𝑐𝑜𝑠𝑡 𝑛, ∅ ← 𝑃𝐸 𝑛 ∗ 𝐿(𝑛)
5 𝑜𝑝𝑡𝑐𝑢𝑡 𝑛,∅ ← {∅}
6 else
7 ℂ 𝑛 ← enumerate all possible EdgeCuts
 for the tree rooted at 𝑛
8 𝕀 𝑛 ← enumerate all possible subtrees
 for the tree rooted at 𝑛
9 foreach 𝐼(𝑛) ∈ 𝕀(𝑛) do
10 compute 𝑃𝐸 𝐼(𝑛) and 𝑃𝑐 𝐼(𝑛)
11 foreach 𝐶 ∈ ℂ(𝑛) do
12 if 𝐶 is a valid EdgeCut for 𝐼(𝑛) then
13 𝑐𝑜𝑠𝑡 𝐼 𝑛 , 𝐶 ←

𝑃𝐸 𝐼 𝑛 ∙
 1 −𝑃𝐶 𝐼(𝑛) ∙ 𝐿 𝐼 𝑛

+𝑃𝐶 𝐼 𝑛 ∙ 𝐵+ 𝑆 + 𝑚𝑖𝑛𝑐𝑜𝑠𝑡 𝐼𝐶 𝑠 𝑠∈𝑆

14 else
15 𝑐𝑜𝑠𝑡 𝐼(𝑛), 𝐶 = ∞
16 𝑚𝑖𝑛𝑐𝑜𝑠𝑡 𝑛, 𝐼(𝑛) ← min𝐶𝑖∈ℂ(𝑛)𝑐𝑜𝑠𝑡 𝐼(𝑛), 𝐶𝑖

17 𝑜𝑝𝑡𝑐𝑢𝑡 𝑛, 𝐼(𝑛) ← 𝐶𝑖
18 return 𝑜𝑝𝑡𝑐𝑢𝑡(𝑟𝑜𝑜𝑡,𝐸) // 𝐸 is the set of all tree edges

6.2 Heuristic-ReducedOpt Algorithm

The algorithm to compute the optimal navigation, Opt-
EdgeCut, is exponential and hence infeasible for the navi-
gation trees of most queries. We propose a heuristic to
select a good EdgeCut for a node expansion. Note that the
input argument to the heuristic is a component tree 𝐼(𝑛)
and not the whole active tree 𝑇 as in Opt-EdgeCut. The
reason is that once Opt-EdgeCut is executed for 𝑇, the
costs (and optimal EdgeCuts) for all possible 𝐼(𝑛)’s are
also computed and hence there is no need to call the algo-
rithm again for subsequent expansions.

For a given component subtree 𝐼(𝑛), Opt-EdgeCut
enumerates a large number of EdgeCuts on 𝐼(𝑛) and re-
peats this recursively on its subtrees. We propose to run
Opt-EdgeCut on a reduced version 𝐼′(𝑛) of 𝐼(𝑛). The re-
duced tree 𝐼′(𝑛) has to be small enough so that Opt-
EdgeCut can run on it in ―real-time‖. We select the size 𝑧
of 𝐼′(𝑛) according to the processing power of our system.
We set 𝑧 = 15 in our experiments. Also, 𝐼′(𝑛) should ap-
proximate 𝐼(𝑛) as closely as possible. 𝐼′(𝑛) is the tree of
―supernodes‖ created by partitioning 𝐼(𝑛). Each super-
node in 𝐼′(𝑛) corresponds to a partition of tree 𝐼(𝑛). Then,
Opt-EdgeCut is executed on 𝐼′(𝑛).

The algorithm we use to partition the tree is based on
the 𝑘-partition algorithm [14] that processes the tree in a
bottom-up fashion. For each tree node 𝑛, the algorithm
removes the ―heaviest‖ children of 𝑛 one-by-one until the
weight of 𝑛 falls below 𝑘. For each of the removed child-
ren, it creates a partition. The result is a tree-partitioning
with the minimum cardinality. The complexity of the 𝑘-
partition algorithm is 𝑂(𝑉 ∙ log 𝑉).

We adopt the 𝑘-partition algorithm to our needs as fol-
lows. For each node in 𝐼(𝑛), we assign weight equal to
 𝐿(𝑛) ∙ 𝑃𝐸(𝑛), which is an estimation of its navigation

cost. We run the 𝑘-partition algorithm by setting 𝑘, the
weight threshold, to 𝐿 𝑛𝑖 ∙ 𝑃𝐸 (𝑛𝑖)/𝑧𝑛 𝑖 ∈𝐼(𝑛) , where 𝑧 is
the number of desired partitions. However, this might
result in more than 𝑧 partitions, due to some non-full par-
titions. Therefore we repeatedly run 𝑘-partition algorithm
on 𝐼(𝑛), gradually increasing 𝑘 (by decreasing 𝑧) until up
to 𝑧 partitions are obtained. Note that 𝑧 is the maximum
tree size on which Opt-EdgeCut can operate in ―real-time‖.

Algorithm Heuristic-ReducedOpt
Input: Component subtree 𝐼(𝑛), number 𝑧 of partitions
Output: The best EdgeCut

1 𝑧′ ← 𝑧
2 repeat
3 𝑘 ← 𝐿 𝑛 ∙ 𝑃𝐸(𝑛)/𝑧′𝑛∈𝑇
4 Partitions ← 𝑘-partition(𝐼(𝑛),𝑘)

 // call 𝑘-partition algorithm [14]
5 𝑧′ ← 𝑧′ − 1
6 until |Partitions| ≤ 𝑧
7 construct reduced subtree 𝐼′(𝑛) from Partitions
8 EdgeCut ← Opt-EdgeCut 𝐼 ′ 𝑛
9 EdgeCut ← corresponding of EdgeCut for 𝐼 𝑛
10 return EdgeCut

6.3 The TopKLevelWise Method

In TopKLevelWise, the navigation model has the following
key difference to our expansion model: the component
subtree generated by an EXPAND on a node 𝑛 are all
rooted at one of the children of 𝑛. The size of the EdgeCut
is limited by a parameter 𝐾, and the component subtree
are chosen using a simple cost metric – the number of
distinct results in a given component subtree. We consid-
er two variations of TopKLevelWise. The first, which we
call static, is employed by GoPubMed [28] and Amazon
and uses 𝐾 = infinity, that is, it selects the entire set of
children to be included in the EdgeCut. The second,
Top10LevelWise, is used by e-commerce websites such as
eBay. Here, a set of 𝐾 = 10 children, with the highest
number of results, are displayed. We compare these two
strategies to Heuristic-ReducedOpt in Section 8 and show
that our approach outperforms both of them.

7 SYSTEM ARCHITECTURE AND IMPLEMENTATION

The BioNav system architecture is shown in Fig. 7 and
consists of two parts. The off-line components populate
the BioNav database with the MeSH concept hierarchy
and the associations of the MEDLINE citations with
MeSH concepts, while the on-line components support
BioNav’s web interface and the EXPAND-
SHOWRESULTS actions of the user.

Off-Line Pre-Processing. The BioNav database is first
populated with the MeSH hierarchy, which is available
online [19] and has more than 48,000 concept nodes.

Then, the BioNav database is populated with the asso-
ciations of the MEDLINE citations to MeSH concepts.
These associations are not directly provided by the Entrez
Programming Utilities (eUtils), so we had to implement
the following method to infer these associations. For each
concept in the MeSH hierarchy, we issued a query on
PubMed using the concept as the keyword. For each cita-

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2009-01-0038

tion ID in the query result, we added to a table in the
BioNav database the tuple < concept,citationID >. Alter-
natively, we could determine the associations by using
the MeSH concepts that each citation is annotated with in
the MEDLINE database. This information is available
through eUtils. In this case though, the navigation trees of
BioNav would not be very informative, since each citation
is annotated with 20 concepts on average in MEDLINE,
while the PubMed indexing associates each citation with
approximately 90 concepts on average (and include the 20
from MEDLINE.)

MeSH
Concepts
Lookup Navigation Subsystem

Keyword
Query

EXPAND &
SHOWRESULTS

Actions

BioNav
Database

MEDLINE
Database

BioNav On-LineOff-Line

PubMed
Central

Entrez
Programming

Utilities (eUtils)

Citations/MeSH Concepts
Associations Download

User



BioNav
Web Interface

Query Result
Citation IDs Retrieval

Navigation Tree
Construction

Active Tree
Visualization

Concepts &
Citations

Heuristic-ReducedOpt
Algorithm

MeSH Concept
Hierarchy

Fig. 7. BioNav System Architecture

Given the number of concepts in the MeSH hierarchy,
the number of citations in MEDLINE (~18 million), and
the PubMed eUtils restrictions on the number of queries
that can be executed within a certain period of time, it
took almost 20 days to collect all the
< concept,citationID > tuples. In the end, there were al-
most 747 million such tuples. To improve the selection
queries on this table, we de-normalized it by concatenat-

ing all concepts associated with each citation into a com-
ma-separated list, that is:

< citationID , (concept1 ,concept2 , …) >
In this work, we assume the dataset 𝐷 to be fixed.

However, in practice, 𝐷 changes frequently as new cita-
tions are added and existing citations are updated to in-
clude new terms from the MeSH hierarchy. In this case,
we assume that 𝐷 is refreshed periodically by an offline
process that issues queries to PubMed using the concept
keyword and updates the concept counts and rows of
retrieved citations. A newly added citation may not ap-
pear immediately in the query result, but we assume that
such delays are acceptable to users.

When executing the queries using the concepts as
keywords, we also store the number of citations 𝐿𝑇 (𝑛) in
the query result, since it is needed for the computation of
𝑃𝐸 in Section 4.

On-Line Operation. Upon receiving a keyword query
from the user, BioNav executes the same query against
the MEDLINE database and retrieves only the IDs
(PubMed Identifiers) of the citations in the query result.
This is done using the ESearch utility of the Entrez Pro-
gramming Utilities (eUtils) [7]. eUtils are a collection of
web interfaces to PubMed for issuing a query and down-
loading the results with various levels of detail and in a
variety of formats. Next, the navigation tree is con-
structed by retrieving the MeSH concepts associated with
each citation in the query result from the BioNav data-
base. This is possible since MeSH concepts have tree iden-
tifiers encoding their location in the MeSH hierarchy,
which are also retrieved from the BioNav database. This
process is done once for each user query. The navigation
tree is trivially converted to an active tree (see Section 2)
and passed on the Navigation Subsystem that supports the
user’s actions on the BioNav web interface.

Initially, the navigation subsystem just visualizes the
active tree on the web interface, that is, it simply shows its
root node. Subsequently, the user requests an EXPAND
action on the root. Then, the navigation subsystem ex-
ecutes the Heuristic-ReducedOpt algorithm on the tree 𝐼 𝑟
of the root 𝑟, and the resulting active tree is visualized on

Keyword(s)

of Citations in

Query Result

Navigation

Tree Size

Max Tree

Width/Height

Tree Citations

w/ Duplicates Target Concept

MeSH Level of

Target Concept

|L(n)| of

Target Concept

|LT (n)| of

Target Concept

Biochemistry

Q1 LbetaT2 116 1947 1009/10 14927 Mice, Transgenic 5 11 90804

Q2 melibiose permease 160 1324 722/8 14419 Substrate Specificity 3 31 79470

Q3 Na+/I symporter 163 2596 1367/6 17146 Perchloric Acid 3 7 4250

Q4 ibogaine 287 3020 1656/11 28148 Serotonin 5 43 101567

Q5 prothymosin 313 3941 2113/10 30897 Histones 4 15 22741

Q6 ice nucleation 474 3181 1776/9 27440 Plants, Genetically Modified 3 2 12330

Q7 dyslexia genetics 517 3056 1691/9 45079 Polymorphism, Single Nucleotide 4 18 18843

Q8 syntaxin 1A 1115 6589 3764/10 105503 GABA Plasma Membrane Transport Proteins 7 11 650

Q9 follistatin 1183 6446 3656/10 102946 Follicle Stimulating Hormone 6 157 34540

Q10 norepinephrine transporter 1681 6482 3816/11 124199 Protein Kinase C 7 18 46928

Medicine

Q11 varenicline 162 1830 962/6 11370 Nicotinic Agonists 7 81 18277

Q12 vardenafil 486 3424 2014/8 40987 Phosphodiesterase Inhibitors 5 401 69984

Q13 duloxetine 695 3884 2323/10 57979 Fibromyalgia 3 28 4683

Q14 ebola virus 1062 5187 2992/11 83602 Ebola Vaccines 5 25 27

Q15 asperger’s syndrome 1126 3884 2323/9 57979 Early Diagnosis 2 28 4683

Q16 nocturia 1297 4646 2660/11 77083 Nocturnal Enuresis 5 39 1397

Q17 oxaluria 1727 5097 2913/10 85536 Celiac Disease 4 2 12871

Q18 blepharosmasm 1329 5603 2145/9 72419 Blepharospasm 3 984 1313

Q19 cadmium poisoning 1882 6217 3628/11 79808 Infertility, Male 4 2 18839

Q20 tourette syndrome 3029 5196 1977/9 76835 Tourette Syndrome 5 36 2289

TABLE 1. QUERY WORKLOAD

KASHYAP ET AL.: EFFECTIVE NAVIGATION OF QUERY RESULTS BASED ON CONCEPT HIERARCHIES 11

the web interface.When the user makes a SHOWRE-
SULTS request, BioNav uses the Entrez ESummary utility
to download high level information of the citations to be
shown, such title and authors.

8 EXPERIMENTAL EVALUATION

We evaluated the BioNav system in terms of both average
navigation cost and expansion time performance. Other
traditional measures of quality such as precision and re-
call are not applicable to our scenario as the objective is to
minimize the navigation cost on a tree and not classifica-
tion.

In Section 8.1, we show that the BioNav navigation
method, which is evaluated using the Heuristic-
ReducedOpt algorithm, leads to considerably smaller na-
vigation cost for a set of real queries on the MEDLINE
database and navigations on the MeSH hierarchy. In Sec-
tion 8.1, we compare the optimal algorithm (Opt-EdgeCut)
with Heuristic-ReducedOpt and show that the heuristic is a
good approximation of the optimal. These experiments
were executed on a reduced navigation tree (~20 nodes),
constructed from the original query navigation tree for
each query, since Opt-EdgeCut is prohibitively expensive
for most navigation trees. Finally, Section 8.3 shows that
the execution time of Heuristic-ReducedOpt is small
enough to facilitate interactive-time user navigation.

The experiments were executed on a Dell Optiplex ma-
chine with 3Ghz CPU and 2 GB of main memory, running
Windows XP Professional. All algorithms were imple-
mented in Java and Oracle 10g was used as the database.

8.1 Navigation Cost Evaluation

To evaluate the navigation cost benefit of BioNav, we
asked two researchers, who use PubMed regularly, to
create a set of 10 queries each. The first researcher was a
biochemist and the second a medical doctor. We asked
them to consider queries that cover topics within their
fields and are of exploratory nature, that is, queries that
return more than just a few citations. For each query, we
also asked them to designate a target MeSH concept in the
corresponding navigation tree that they would subjective-
ly consider as most interesting. The two sets of queries we
received consist our workload and is show in Table 1.
Apart from the queries (―Keywords‖ column), listed are

statistics on the initial navigation trees, the target con-
cepts and information regarding their location depth in
the MeSH hierarchy, the number of citations 𝐿(𝑛) at-
tached to them for the given query, and the total number
of citations 𝐿𝑇 (𝑛) attached to them in MEDLINE.

―Follistatin‖ and ―LbetaT2‖ are terms that mainly in-
terest biochemists studying reproductive endocrinology
and gynecology. The ―dyslexia genetics‖ query accumu-
lates results related to genes associated with dyslexia.
―Melibiose permease‖ and ―Na+/I- symporter‖ are
transport proteins related to bacterial growth and thyroid
function respectively. On the other hand, ―vardenafil‖
(Levitra), used for the treatment of erectile dysfunction,
and ―varenicline‖ (Chantix), used for quitting smoking,
are two new drugs that interest many medical doctors.

Interestingly, some queries correlate with quite a few
fields of research and others concentrate in more specific
topics. For example, the literature for ―prothymosin‖,
although not particularly broad in number of citations in
the query result (313), is associated with several topics
such as cancer, cell proliferation, apoptosis, chromatin
remodeling, transcriptional regulation and immunity. In
contrast, ―vardenafil‖ retrieves a higher number of cita-
tions (486) but the literature is mostly targeted to erectile
dysfunction and hypertension. This fact is reflected on the
navigation tree characteristics for the two queries, also
shown in Table 1. The navigation tree for ―prothymosin‖
is bigger than the one for ―vardenafil‖ in every respect,
that is, tree size, maximum width and height.

In this experiment we assume that the user follows a
top-down navigation where she always chooses the right
node to expand in order to finally reveal the target con-
cept. We compare the navigation cost of BioNav, where
EXPAND is implemented using the Heuristic-ReducedOpt
algorithm (with 𝑧 = 10), to the two navigation strategies,
Static and Top10LevelWise, described in Section 6.3.

Fig. 8 compares the navigation cost for these three me-
thods. We observe that BioNav often improves the navi-
gation cost by an order of magnitude, over Static naviga-
tion. The average improvement of BioNav, over static
navigation, is 82%, for 𝐵 = 15. The improvement is high
regardless of the navigation tree characteristics (87% for
―prothymosin‖ (Q5), 85% for ―vardenafil‖ (Q12)), and
regardless of the number of citations in the query result
(80% for ―LbetaT2‖ (Q1), 90% for ―tourette syndrome‖

Fig. 8. Overall Navigation Cost Comparison for Biochemistry and Medicine

1
3

9

1
2

7

1
7

4

1
5

7

2
1

0

1
6

8 1
9

4

2
3

8

2
0

1 2
2

3

1
8

1 2
0

6

1
8

7 2
0

3

2
0

7

1
9

8

1
9

8

2
0

7

1
9

7 2
2

3

4
3 4
9

4
5 5

9

5
5

5
2 5
8 7

3 7
8 8
1

5
3

4
7 6

1 7
9

3
2 4

9 5
0

4
9 7

0

6
0

2
8

2
3

2
3 2
6 2
7 4

1

3
0

3
0 4

1 5
3

3
1

3
0 4

2 5
8

2
7 2
9

2
5

2
4

5
3

2
2

0

50

100

150

200

250

300

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Biochemist Medical Doctor

Overall Navigation Cost
(# of Concepts Revealed + # of EXPAND Actions)

Static Top10LevelWise Heuristic -ReducedOpt (B=1) Heuristic -ReducedOpt (B=5) Heuristic -ReducedOpt (B=10) Heuristic -ReducedOpt (B=15)

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2009-01-0038

(Q20)). The smallest improvement (71%) was observed for
―ebola virus‖ (Q14). The reason is that its target concept
(Ebola Vaccines) is located far away, in terms of naviga-
tion tree distance, from other query results. Most query
results are distributed under a MeSH concept called ―Vi-
ruses‖, while the target concept is located under a sibling
concept called ―Complex Mixtures‖. Hence, it takes sev-
eral EXPAND actions until BioNav reveals the latter.
Query ―ice nucleation‖ (Q6) also exhibits small improve-
ment (75%), but for a different reason. Its target concept
(Plants, Genetically Modified) has an extremely low
 𝐿(𝑛) = 2. Hence, its 𝑃𝐸 is quite low and so it takes sever-
al EXPAND actions until it is revealed.

Consistent, but more modest, improvement in naviga-
tion cost is achieved by BioNav over Top10LevelWise. The
average improvement is 41%, with a minimum of 16% for
query ―asperger’s syndrome‖ (Q15) and a maximum of
63% for ―tourette syndrome‖ (Q20). Since Top10LevelWise
explores the navigation tree level-wise, a concept that is
high up in the hierarchy, such as the target concept of
―asperger’s syndrome‖, can be reached as fast by
Top10LevelWise as it does by BioNav. On the other hand, a
concept that is deep inside the navigation tree but with
high 𝑃𝐸 , such as the target concept of ―tourette syn-
drome‖, is reached much faster by BioNav.

Fig. 9. Number of Expand Actions Comparision

Fig. 9 shows the number of EXPAND actions for the
three methods for the biochemistry query set only. Note
that these numbers are relatively close, which means that
the dramatic differences in Fig. 8 are due to the fact that
BioNav selectively reveals few descendant nodes for each
EXPAND, instead of a possibly large number of child
nodes. The worst case is the ―ice nucleation‖ (Q6), where
BioNav requires 6 EXPAND actions, compared to 4 of
static navigation, since the target concept is quite high in
the MeSH hierarchy, and at the same time has a low 𝑃𝐸 , as
discussed above. A similar increase in the number of EX-
PAND actions is observed for query ―ebola virus‖ (not
shown in Fig. 9) for the reason discussed above. Fig. 10
shows the number of revealed concepts for each method
and demonstrates the superiority of our approach.

8.2 Opt-EdgeCut Comparison

To compare the optimal algorithm Opt-EdgeCut and Heu-
ristic-ReducedOpt, we use the same query workload as in
Section 8.1. As mentioned earlier, it is infeasible to ex-
ecute Opt-EdgeCut on the navigation tree obtained for any

query in Table 1. Therefore, we base our comparison on a
reduced navigation tree 𝐼 ′ (𝑛) obtained by applying the
procedure GenReducedTree to an initial navigation tree
𝐼(𝑛). The procedure GenReducedTree ensures that a re-
duced navigation tree has (1) at least one concept node
with the same label as the target concept of the queries in
Table 1, and (2) up to a maximum number 𝑚𝑎𝑥𝑁 of con-
cept nodes. In this experiment, we set 𝑚𝑎𝑥𝑁 to 25.

Fig. 10. Number of Concepts Revealed Comparison

Fig. 11. Overall Navigation Cost Comparison

Procedure GenReducedTree
Input: Initial Navigation Tree 𝐼 𝑛 , the target concept 𝑐, and the
desired number 𝑚𝑎𝑥𝑁 of nodes in the reduced tree
Output: A reduced tree with at most 𝑚𝑎𝑥𝑁 nodes, including 𝑐

1 collect all nodes of 𝐼(𝑛) in list 𝐿
2 create list 𝐿′ to store the nodes of the reduced tree
3 add to 𝐿′ a concept node in 𝐿 with the same label as 𝑐 and

all its ancestors
4 while (𝑠𝑖𝑧𝑒𝑜𝑓 𝐿′ ≤ 𝑚𝑎𝑥𝑁) repeat
5 select a node 𝑐′ uniformly at random from 𝐿
6 add 𝑐′ and all its ancestors to 𝐿′, excluding duplicates
7 create a tree 𝐼′ (𝑛) from the nodes in 𝐿′, preserving the

parent-child relationship
8 return 𝐼′(𝑛)

Fig. 11 compares the proportional navigation cost of
Opt-EdgeCut over Heuristic-ReducedOpt for the biochemi-
stry query set only. Opt-EdgeCut performs better than
Heuristic-ReducedOpt for all queries. However, the im-
provement varies over a wide range (6% for ―LbetaT2‖
(Q1), to 75% for ―Na+/I symporter‖ (Q3)). This is because
partitioning in Heuristic-ReducedOpt hides away the target
nodes inside one of the partitions during an EXPAND
action, effectively excluding their participation in an Ed-

6

4
5 5 5

4
5

8 8 88

5
6

8

6 6
7

8
9

11

6

4 4
5

4

6
5

6

8
9

0

2

4

6

8

10

12

14

16

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10

of EXPAND Actions (Biochemistry)

Static Top10LevelWise Heuristic-ReducedOpt (B=1)

Heuristic-ReducedOpt (B=5) Heuristic-ReducedOpt (B=10) Heuristic-ReducedOpt (B=15)

1
3

3

1
2

3

1
6

9

1
5

2

2
0

5

1
6

4 1
8

9

2
3

0

1
9

3 2
1

5

3
5 4
4

3
9 5

1

4
9

4
6 5
1 6

5 6
9 7
0

2
2

1
9

1
9 2
1 2
3 3

5

2
5

2
4 3
3 4

4

0

50

100

150

200

250

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10

of Concepts Revealed (Biochemistry)

Static Top10LevelWise Heuristic-ReducedOpt (B=1)

Heuristic-ReducedOpt (B=5) Heuristic-ReducedOpt (B=10) Heuristic-ReducedOpt (B=15)

0

5

10

15

20

25

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10

Overall Navigation Cost (Biochemistry)

Opt-EdgeCut Heuristic-ReducedOpt

KASHYAP ET AL.: EFFECTIVE NAVIGATION OF QUERY RESULTS BASED ON CONCEPT HIERARCHIES 13

geCut. Thus, more EXPAND actions are needed to reach
the target concept, which increases the cost. The opposite
is true for query ―ice nucleation‖ (Q6). The target concept
is relatively high up in the hierarchy and the partition
algorithm creates a partition for the target concept during
the first expansion. Thus the same number of expansions
is needed to reach it, resulting in the same overall cost.

Fig. 12. Heuristic-ReducedOpt EXPAND Performance

8.3 Performance Evaluation

Fig. 12 shows the average time of Heuristic-ReducedOpt to
execute an EXPAND action for each query in Table 1. The
average was taken over the number of EXPAND actions
partially shown in Fig. 9. For an input tree 𝐼(𝑛), Heuristic-
ReducedOpt first creates a reduced tree 𝐼′(𝑛), and then
runs the Opt-EdgeCut algorithm on it. The execution time
is dominated by Opt-EdgeCut as it is an exponential algo-
rithm and depends on the size of the input tree. As stated
earlier, we restrict the size of the reduced tree 𝐼′(𝑛) to 10
nodes and the EXPAND cost 𝐵 is set to 15. However, 𝐼′(𝑛)
can have a smaller size (see Section 6.2), in which case
Opt-EdgeCut executes faster but with reduced accuracy.

For example, the reduced tree 𝐼′(𝑛) for ―oxaluria‖
(Q17), in both EXPAND actions, had sizes 10 and 9 re-
spectively, which explains the highest average execution
time, and also among the highest improvements in Fig. 8.
On the other hand, for ―Na+/I symporter‖ (Q3), the first
three EXPAND actions resulted in an 𝐼′(𝑛) of sizes 8, 8
and 7, respectively. Hence, the average execution time in
Fig. 12 is lower, as is the improvement in navigation cost.

9 RELATED WORK

Biomedical Search Systems. Several systems have been
developed to facilitate keyword search on PubMed using
the MeSH concept hierarchy. Pubmed itself allows the
user to search for citations based on MeSH annotations. A
keyword query ―histones[MeSH Terms]‖ will retrieve all
citations annotated with the MeSH term ―histones‖ in the
MeSH hierarchy. The user can also limit her search to a
MeSH term by using additional filters, e.g., ―[majr]‖ to
filter out all citations in the query result that don’t have
the term as their major term. These filters can be com-
bined by using the Boolean connectives AND, OR and
NOT. This interface poses significant challenges, even to
experienced users, since the annotation process is manual
and thus prone to errors. The closest to BioNav is Go-
PubMed [5,28], which implements a static navigation me-

thod on the results of PubMed. GoPubMed lists a prede-
fined list of high-level MeSH concepts, such as ―Chemi-
cals and Drugs‖, ―Biological Sciences‖ and so on, and for
each one of them displays the top-10 concepts. After a
node expansion, its children are revealed and ranked by
the number of their attached citations, whereas BioNav
reveals a selective and dynamic list of descendant (not
always children) nodes ranked by their estimated relev-
ance to the user’s query. Further, BioNav uses a cost
model to decide which concepts to display at each step.

We could not directly compare BioNav with Go-
PubMed in our experiments, since it indexes citations
differently than PubMed. However, the static navigation
method we implemented very closely approximates the
behaviour and the navigation cost of using GoPubMed.

Other systems that tackle PubMed search using the
MeSH concept hierarchy include PubMed PubReMiner
[25] and XplorMed [22,30]. Both of them are query re-
finement tools and do not implement a particular naviga-
tion method. In particular, PubMed PubReMiner outputs
a long list of all MeSH concepts associated with each
query along with their citation count. The user can select
one or more of them and refine her query. XplorMed per-
forms statistical analysis of the words in the abstracts of
the citations in the query result and proposes query re-
finements/extensions to the user in a multi-step process.
Ali Baba [23] displays the results on a graph where edges
denote associations between the result nodes, which are
typically genes and proteins. iHOP [10,11] shows to the
user the genes associated to a query gene, where the asso-
ciation is measured through co-occurrence in a sentence.
LSLink [15] uses the physical links between objects in the
query result to find meaningful associations between pairs
of terms in different controlled vocabularies annotating
objects in multiple datasources. These associations allow
users to discover novel and interesting relationships be-
tween pairs of concepts and potentially explore objects
that are not retrieved by the initial query.

Hierarchical Results Navigation Systems. In addition
to GoPubMed discussed above, a few other systems offer
hierarchical navigation on the query results. Amazon and
eBay are the most popular systems that use static hierar-
chies to organize query results. Their static navigation
method works relatively well since their hierarchies are
significantly smaller than MeSH. BioNav could be ap-
plied on these hierarchies to minimize the navigation
cost.

Two academic proposals [2,3] dynamically categorize
SQL query results by inferring a hierarchy based on the
characteristics of the result tuples. Their domain is the
tuple attributes and their problem is how to organize
them hierarchically in order to minimize the navigation
cost. They also decide the value ranges for each attribute,
for both categorical and numerical ones, and how to rank
them. One of the systems [3] takes into consideration the
user’s preferences during the inference for a more perso-
nalized experience. Once the hierarchy is inferred, they
follow a static navigation method. BioNav is distinct since
it offers dynamic navigation on a predefined hierarchy.
Hence, BioNav is complementary to these systems, since

0

200

400

600

800

1000

1200

1400

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Biochemist Medical Doctor

Average Execution Time (ms)

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, TKDE-2009-01-0038

it can be used to optimize the navigation, after these sys-
tems construct the initial navigation tree.

Clustering Systems. Clustering systems [27,29,31]
create unsupervised query-dependent clusters. PubMa-
trix [24] takes as input two sets of keywords terms, in ad-
dition to query keyword, and generates a co-occurrence
frequency matrix of each pair of terms from the two lists,
in the query result. The user can then browse this matrix
and perform independent searches on pairs of terms. The
Clusty [29] search engine clusters keyword-based query
results on the web and operates on top of other search
engines. HighWire Press [27] uses Clusty’s algorithms to
cluster query results in the biomedical domain. [6] clus-
ters PubMed documents by the drug they refer to based
on the UMLS [17] drugs classification. Once the clusters
are created, a static navigation method is followed. Bio-
Nav could be adapted to work on top of the (typically
shallow) hierarchy created by clustering systems.

10 CONCLUSION

Information overload is a common phenomenon encoun-
tered by users searching biomedical databases such as
PubMed. We address this problem by organizing the
query results according to their associations to concepts
of the MeSH concept hierarchy and propose a dynamic
navigation method on the resulting navigation tree. Each
node expansion on the navigation tree, reveals a small set
of nodes, selected from among its descendents, and the
nodes are selected such that the information overload
observed by the user is minimized. We formally stated
the underlying framework and the navigation and cost
models used for evaluation of our approach. We prove
that the problem of selecting the set of nodes that minim-
ize the navigation cost is NP-complete and propose an
efficient heuristic to ensure feasibility of our approach.
We validate the heuristic for diverse sets of queries and
navigation trees. The architecture of the proposed system
was implemented and is available at
http://db.cse.buffalo.edu/bionav.

ACKNOWLEDGMENT

Vagelis Hristidis is partitially supported by NSF grant
IIS-0811922 and DHS grant 2009-ST-062-000016.

REFERENCES

[1] J S . Agrawal, S . Chaudhuri, G. Das and A. Gionis: Automated

Ranking of Database Query Results. In Proceedings of First Bien-

nial Conference on Innovative Data Systems Research. 2003.

[2] K. Chakrabarti, S . Chaudhuri and S .W. Hwang: Automatic Cate-

gorization of Query Results. S IGMOD Conference 2004: 755-766.

[3] Z. Chen and T. Li: Addressing Diverse User Preferences in SQL-

Query-Result Navigation. S IGMOD Conference 2007: 641-652

[4] L. Comtet: Advanced Combinatorics: The Art of Finite and Infinite

Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel. pp.176-

177, 1974.

[5] R. Delfs, A. Doms, A. Kozlenkov and M. Schroeder: GoPubMed:

Ontology-Based Literature Search Applied to Gene Ontology and

PubMed. German Conference on Bioinformatics 2004: 169-178.

[6] D. Demner-Fushman and J. Lin: Answer Extraction, Semantic

Clustering, and Extractive Summarization for Clinical Question An-
swering. International Conference on Computational Linguistics

and the Annual Meeting of the Association For Computational

Linguistics, 2006: 841-848

[7] (2008) Entrez Programming Utilities. [Online]. Available:

http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_he lp.html

[8] U. Feige, D. Peleg and G. Kortsarz: The Dense k-Subgraph Prob-

lem. Algorithmica 29 (2001) 410-421

[9] V. Hristidis and Y. Papakonstantinou: DISCOVER: Keyword

Search in Relational Databases. In Proc. of VLDB Conference, 2002

[10] R. Hoffman and A. Valencia: A gene network for navigating the

literature. Nature Genetics, 36(7):664, 2004

[11] (2008) iHOP - Information Hyperlinked over Proteins.

[Online]. Available: http://www.ihop-net.org/UniPub/iHOP/

[12] M. Kaki. Findex : search results categories help where docu-

ment ranking fails. SIGCHI Conference 2005: 131-140.

[13] A. Kashyap, V. Hristidis, M. Petropoulos, and S . Tavoulari:

BioNav: Effective Navigation on Query Results of Biomedical Data-
bases. (Short Paper), ICDE 2009: 1287-1290

[14] S. Kundu and J. Misra: A Linear Tree Partitioning Algorithm.

S IAM J. Comput. 6(1): 151-154 (1977)

[15] W. Lee, L. Raschid, H. Sayyadi and P. Srinivasan: Exploiting

Ontology Structure and Patterns of Annotation to Mine Significant
Associations between Pairs of Controlled Vocabulary Terms. DILS

2008: 44-60

[16] J. Lin and W.J. Wilbur. Pubmed related articles : a probabilistic topic

based model for content similarity. BMC Bioinformatics Vol. 8. 2007.

[17] D. Lindberg, B. Humphreys, and A. McCray: The Unified Medi-

cal Language System. Methods of Information in Medicine,

32(4):281–291, 1993.

[18] D. Maglott, J. Ostell, K.D. Pruitt and T. Tatusova: Entrez Gene:

Gene-Centered Information at NCBI. Nucleic Acids Res. 2005

January 1; 33(Database Issue): D54–D58

[19] Medical Subject Headings (MeSH®).

http://www.nlm.nih.gov/mesh/

[20] J.A. Mitchell, A.R. Aronson and J.G. Mork: Gene Indexing: Char-

acterization and Analysis of NLM’s GeneRIFs. In Proceedings of

the AMIA Symposium, 8th–12th November, Washington, DC,

pp. 460–464

[21] (2008) OMIM - Online Mendelian Inheritance in Man. [Online].

Available: http://www.ncbi.nlm.nih.gov/Omim/

[22] C. Perez-Iratxeta, P. Bork and M. A. Andrade: Exploring MED-

LINE Abstracts with XplorMed. Drugs of Today. 2002;38:381-389

[23] C. Plake, T. Schiemann, M. Pankalla, J. Hakenberg and U. Leser:

Ali Baba: PubMed as a graph. Bioinformatics, 22(19). 2006

[24] (2003) PubMatrix : A Tool for Multiplex Literature Mining.

[Online]. Available: http://pubmatrix.grc.nia.nih.gov/

[25] (2008) PubMed PubReMiner: A Tool for PubMed Query Build-

ing and Literature Mining. [Online]. Available:

http://bioinfo.amc.uva.nl/human-genetics/pubreminer/

[26] H. Shatkay, R. Feldman: Mining the Biomedical Literature in the

Genomic Era: An Overview. Comput. Biol. 2003;10(6):821-55

[27] (2008) Stanford University – HighWire Press. [Online].

 Available: http://highwire.stanford.edu/

[28] (2008) Transinsight GmbH – GoPubMed. [Online].

Available: http://www.gopubmed.org/

[29] (2008) Vivísimo, Inc. – Clusty. [Online].

Available: http://clusty.com/

[30] (2008) XplorMed: eXploring Medline abstracts. [Online].

Available: http://www.ogic.ca/projects/xplormed/

[31] T. Zhang, R. Ramakrishnan and M. Livny: BIRCH: An Efficient Data
Clustering Method for Very Large Databases. SIGMOD Conference
1996: 103-114

http://db.cse.buffalo.edu/bionav
http://www.ihop-net.org/UniPub/iHOP/
http://www.ogic.ca/projects/xplormed/

