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Effective Navigation of Query Results 
Based on Concept Hierarchies 

Abhijith Kashyap, Vagelis Hristidis, Michalis Petropoulos, and Sotiria Tavoulari 

Abstract— Search queries on biomedical databases, such as PubMed, often return a large number of results, only a small 

subset of which is relevant to the user. Ranking and categorization, which can also be combined, have been proposed to 

alleviate this information overload problem. Results categorization for biomedical databases is the focus of this work. A natural 

way to organize biomedical citations is according to their MeSH annotations. MeSH is a comprehensive concept hierarchy used 

by PubMed. In this paper, we present the BioNav system, a novel search interface that enables the user to navigate large 

number of query results by organizing them using the MeSH concept hierarchy. First, the query results are organized into a 

navigation tree. At each node expansion step, BioNav reveals only a small subset of the concept nodes, selected such that the 

expected user navigation cost is minimized. In contrast, previous works expand the hierarchy in a predefined static manner, 

without navigation cost modeling. We show  that the problem of selecting the best concepts to reveal at each node expansion is 

NP-complete and propose an eff icient heuristic as well as a feasible optimal algorithm for relatively small trees. We show 

experimentally that BioNav outperforms state-of-the-art categorization systems by up to an order of magnitude, with respect to 

the user navigation cost. BioNav for the MEDLINE database is available at http://db.cse.buffalo.edu/bionav. 

Index Terms—Interactive data exploration and discovery, Search process, Graphical user interfaces, Interaction styles. 

——————————      —————————— 

1 INTRODUCTION

he last decade has been marked by unprecedented 
growth in both the production of biomedical data and 
the amount of published literature discussing it. The 

MEDLINE database, on which the PubMed search engine 
operates, contains over 18 million citations, and the data-
base is currently growing at the rate of 500,000 new cita-
tions each year [20]. Other biological sources, such as Ent-
rez Gene [18] and OMIM [21], witness similar growth. As 
claimed in previous work [26], the ability to rapidly sur-
vey this literature constitutes a necessary step toward 
both the design and the interpretation of any large scale 
experiment. Biologists, chemists, medical and health 
scientists are used to searching their domain literature –
such as PubMed– using a keyword search interface. Cur-
rently, in an exploratory scenario where the user tries to 
find citations relevant to her line of research and hence 
not known a priori, she submits an initially broad key-
word-based query that typically returns a large number 
of results. Subsequently, the user iteratively refines the 
query, if she has an idea of how to, by adding more key-
words, and re-submits it, until a relatively small number 
of results are returned. This refinement process is prob-
lematic because after a number of iterations the user is not 
aware if she has over-specified the query, in which case 

relevant citations might be excluded from the final query 
result. 

As an example, a query on PubMed for ―cancer‖ re-
turns more than 2 million citations. A more specific 
query, ―breast cancer treatment‖, returns 111,433 cita-
tions. Our running example query for ―prothymosin‖, a 
nucleoprotein gaining attention for its putative role in 
cancer development, returns 313 citations. The size of the 
query result makes it difficult for the user to find the cita-
tions that she is most interested in, and a large amount of 
effort is expended searching for these results. Many solu-
tions have been proposed to address this problem –
commonly referred to as information overload [1,2,3,9,16]. 
These approaches can be broadly classified into two 
classes: ranking and categorization - which can also be 
combined. Ranking presents the user with a list of results 
ordered by some metric of relevance [9] or by content 
similarity to a result or a set of results [16]. In categoriza-
tion [1,2,3], query results are grouped based on hierar-
chies, keywords, tags or attribute values. User studies 
have demonstrated the usefulness of categorization in 
finding relevant results of exploratory queries [12]. While 
ranked results are useful when the ranking function is 
aligned with user preferences or the result list is small in 
size, categorization is generally employed by users when 
ranking fails or the query is too ―broad‖[12]. 

BioNav belongs primarily to the categorization class, 
which is especially suitable for this domain given the rich 
concept hierarchies (e.g., MeSH [19]) available for bio-
medical data. We augment our categorization techniques 
with simple ranking techniques. BioNav organizes the 
query results into a dynamic hierarchy, the navigation tree. 
Each concept (node) of the hierarchy has a descriptive 
label. The user then navigates this tree structure, in a top-
down fashion, exploring the concepts of interest while  
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Fig. 1. Static Navigation on the MeSH Concept Hierarchy1 

ignoring the rest. 
An intuitive way to categorize the results of a query on 

PubMed is by using the MeSH static concept hierarchy 
[19], thus utilizing the initiative of the US National Li-
brary of Medicine (NLM) to build and maintain such a 
comprehensive structure. Each citation in MEDLINE is 
associated with several MeSH concepts in two ways: (i) 
by being explicitly annotated with them, and (ii) by men-
tioning those in their text (see Section 7 for details). Since 
these associations are provided by PubMed, a relatively 
straightforward interface to navigate the query result 
would first attach the citations to the corresponding 
MeSH concept nodes and then let the user navigate the 
navigation tree. Fig. 1 displays a snapshot of such an in-
terface where shown next to each node label is the count 
of distinct citations in the subtree rooted at that node. A 
typical navigation starts by revealing the children of the 
root ranked by their citation count, and is continued by 
the user expanding on or more of them, revealing their 
ranked children and so on, until she clicks on a concept 
and inspects the citations attached to it. A similar inter-
face and navigation method is used by e-commerce sites, 
such as Amazon and eBay. For this example interaction, 
we assume that some of the citations the user is interested 
in are available on the three indicated concepts corres-
ponding to three independent lines of research related to 
prothymosin, and therefore the user is interested in navi-
gating to these concepts. These include, ―Histones‖, 
which play a role in gene regulation and are essential for 
virus replication and tumor growth, ―Cell Groth 
Processes‖ and ―Transcription, Genetic‖, a key process for 
synthesis and replication of RNA and thus plays an im-
portant role in the duplication of cancer cells. 

Note that the user is not aware that the relevant results 
are available specifically on these nodes – she is only in-
terested in narrowing down the results, using a familiar 
concept hierarchy, instead of going through all the re-
sults. 

 

1 The complete tree can be seen at http://db.cse.buffalo.edu/allnav 

(a)

(b)

(c)

(d)  
Fig. 2. Dynamic navigation steps to reach the concept "Histones" for 
the query "prothymosin" 

The above static same for every query result navigation 
method is problematic when the MeSH hierarchy (or one 
with similar properties) is used for categorization for the 
following reasons: 

 The massive size of the MeSH hierarchy (over 
48,000 concept nodes) makes it challenging for the 
users to effectively navigate to the desired con-
cepts and browse the associated records. Even if 
we remove from the MeSH concept nodes with no 
citations attached to them, the 313 distinct query 
results for ―prothymosin‖ are attached to 3,940 
nodes, which is the actual size of the navigation 
tree in Fig. 1. Combined with the fact that the 
MeSH hierarchy is quite bushy on the upper le-
vels, this means that the user has to inspect, for 
example, a total of 152 concept nodes before she 
reaches the indicated concept ―Histones‖; a num-
ber comparable to the distinct citation count in the 
query result. A common practice [28] for hierarchy 
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navigation is to show only a subset of a node’s 
children, which would be appropriate if only few 
nodes contain many results. Unfortunately, this is 
not the case for the MeSH navigation tree; most of 
the 98 children of the root in Fig. 1 have many re-
sults (the first three shown have 310, 217 and 193). 

 A substantial number of duplicate citations are in-
troduced in the navigation tree of Fig. 1, since each 
one of the 313 distinct citations is associated with 
several concepts. Specifically, the total count of ci-
tations in Fig. 1 is 30,895. Naturally, the user 
would like to know which concepts fragment the 
query result into subsets of citations with as few 
duplicate citations as possible across them. Cur-
rently, the only way to figure this out using the in-
terface in Fig. 1 is to click on different concept 
nodes and inspect the attached citations. As an ex-
ample, the query results for ―prothymosin‖ are re-
lated to three independent lines of research, 
represented by the three indicated concepts in Fig. 
1, which are hard to locate. Among the total 139 ci-
tations attached to the three indicated concept 
nodes, only 20 of them are duplicates. 

BioNav introduces a dynamic navigation method that 
depends on the particular query result at hand and is 
demonstrated in Fig. 2. The query results are attached to 
the corresponding MeSH concept nodes as in Fig. 1, but 
then the navigation proceeds differently. The key action 
on the interface is the expansion of a node that selectively 
reveals a ranked list of descendant (not necessarily child-
ren) concepts, instead of simply showing all its children. 

Fig. 2a, for example, shows the initial expansion of the 
root node where only 8 (highlighted) descendants are 
revealed compared to 98 children shown in Fig. 1. The 
concepts are ranked by their relevance to the user query 
and the number of them revealed depends on the charac-
teristics of the query results. Next, assuming the user is 
interested in the ―Amino Acids...‖ node and judging that 

the 310 attached citations is still a big number, she ex-
pands it by clicking on the ‖>>>‖ hyperlink next to it in 
Fig. 2b. The user inspects the 6 concepts revealed and 
decides that she is not interested in any of them. Hence, 
she expands the ―Amino Acids...‖ node one more time in 
Fig. 2c, revealing 4 additional concepts. Note that ―Nuc-
leoproteins‖ is an example of a descendant node being 
revealed, since its parent node ―Proteins‖ is not revealed 
in Fig. 2c. In Fig. 2d, the user expands the ―Nucleoprote-
ins‖ node and reveals ―Histones‖, one of the three key 
concepts for the query. In the last step of the interaction, 
the user clicks on the ―Histones‖ hyperlink and the 15 
corresponding citations are displayed in a separate frame 
as shown in Fig. 3. 

To reach ―Histones‖ using the BioNav navigation me-
thod only 23 concepts are revealed, after 4 node expan-
sions, compared to 152 concepts, also after 4 expansions, 
with the static navigation method of Fig. 1. 

For each expansion, the displayed descendant concepts 
are chosen in a way that the expected navigation cost is 
minimized, based on an intuitive navigation cost model 
we present in Section 3. The cost model estimates the ex-
ploration probability for a node based on its selectivity, 
that is, the ratio of attached citations before and after the 
query. The navigation cost for a concept node is also pro-
portional to the density of the navigation subtree rooted 
at this node in terms of citation count. Intuitively, the se-
lection is done such that every expansion reduces max-
imally the expected remaining navigation cost. For exam-
ple, the reason that ―Proteins‖ is not displayed in Fig. 2 is 
that it is too general given the query results and the origi-
nal distribution of citations in the PubMed database (de-
tails in Sections 3 and 4), and hence displaying it would 
lead to an expected increase in the user navigation cost, 
based on the user navigation cost model. 

In addition to the static hierarchy navigation works 
mentioned above, there are works on dynamic categoriza-
tion of query results (e.g., the Clusty search engine [29], 

Fig. 3. BioNav Interface 
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or [2], [3]), which create unsupervised query-dependent 
results clusters, but do not study how the clusters should 
be navigated. BioNav is distinct since it offers dynamic 
navigation on a predefined hierarchy, as is the MeSH 
concept hierarchy. Another difference is that BioNav uses 
a navigation cost model to minimize the navigation cost. 

We make the following contributions: 
1. A comprehensive framework for navigating large 

query results from PubMed using MeSH, an ex-
tensive concept hierarchy used for indexing cita-
tions in MEDLINE (Section 2).  

2. A formal cost model for measuring the navigation 
cost incurred by the user (Sections 3 and 4). 

3. A complexity result proving that expanding the 
tree in a way that minimizes the user’s navigation 
cost is an NP-complete problem (Section 5). 

4. An efficient heuristic and a feasible optimal algo-
rithm for minimizing the navigation cost (Section 
5). 

5. Experimental results validating the effectiveness of 
the BioNav system when compared to state-of-the-
art categorization systems (Section 8). 

6. An online version of the BioNav system is availa-
ble at http://db.cse.buffalo.edu/bionav. 

Although we specifically target the biomedical domain 
in this work, the approach can be directly applied to data-
sets where tuples are classified using terms from a con-
cept hierarchy. The core of the first contribution has been 
presented in our preliminary short paper [13]. The 
BioNav system architecture and implementation is pre-
sented in Section 7. Related work is discussed in Section 9 
and the paper concludes in Section 10. 

2 FRAMEWORK AND BIONAV OVERVIEW 

The MeSH concept hierarchy is the starting point of the 
framework and is defined as follows. 

Definition 1 (Concept Hierarchy). A Concept Hierarchy 
𝐻(𝑉,𝐸,𝑟) is a labeled tree consisting of a set 𝑉 of concept 
nodes, a set 𝐸 of edges and is rooted at node 𝑟. Each node 
𝑛 ∈ 𝑉 has a label 𝑙 and a unique identifier 𝑖𝑑. 

According to the semantics of the MeSH concept hie-
rarchy [19], the label of a child concept node is more spe-
cific than the one of its parent. This also holds for most 
concept hierarchies. 

Once the user issues a keyword query, PubMed Bio-
Nav uses the Entrez Programming Utilities (eUtils) [7] 
returns a list of citations, each associated with several 
MeSH concepts. BioNav constructs an Initial Navigation 
Tree by attaching to each concept node of the MeSH con-
cept hierarchy a list of its associated citations. Formally, 
an Initial Navigation Tree 𝑇𝐼(𝑉𝐼 ,𝐸𝐼 , 𝑟) is a concept hie-
rarchy, where every node (concept) 𝑛 ∈ 𝑉1  is additionally 
labelled with a results (citations) list 𝐿(𝑛). 

In a given initial navigation tree, several concept nodes 
might have an empty results list. Since MeSH is a rather 
large concept hierarchy, BioNav reduces the size of the 
initial navigation tree by removing the nodes with empty 
results lists, while preserving the ancestor/descendant 

relationships. Formally, the resulting structure is defined 
as follows. 

Definition 2 (Navigation Tree). A Navigation Tree 
𝑇(𝑉,𝐸, 𝑟) is the maximum embedding of an initial naviga-
tion tree 𝑇𝐼(𝑉𝐼 , 𝐸𝐼 , 𝑟) such that no node 𝑛 ∈ 𝑉 is labeled with 
an empty results list 𝐿(𝑛), excluding the root (in order to 
maintain the tree structure and avoid the creation of a for-
est). 

An embedding 𝑇(𝑉, 𝐸, 𝑟) of a tree 𝑇𝐼(𝑉𝐼 , 𝐸𝐼 , 𝑟) is an injec-
tion from 𝑉 to 𝑉𝐼 such that every edge in 𝐸 corresponds to 
a path (disjoint from all other such paths) in 𝑇𝐼. An em-
bedding 𝑇 of a tree 𝑇𝐼, where both trees are rooted at node 
𝑟, is maximum if no other node 𝑛 with a nonempty results 
list 𝐿 𝑛  can be added to 𝑉 and 𝑇 still be an embedding. 
The maximum embedding of the initial navigation tree is 
recursively computed in a single depth-first left-to-right 
traversal. If a non-leaf node 𝑛 has an empty results list 
𝐿(𝑛), then add all children of 𝑛 to the parent of 𝑛 and re-
move it. If 𝑛 is a leaf, then remove it. Fig. 4a shows part of 
the navigation tree for the ―prothymosin‖ query, where 
the results lists are omitted for clarity. 

The above procedure reduces the size of the initial na-
vigation tree, but the structure is still too big (3,940 nodes 
for ―prothymosin‖) to simply display it to the user and let 
her navigate it. BioNav minimizes the user’s effort to 
reach the desired citations in the navigation tree by ex-
panding in a way that minimizes the expected overall 
user navigation cost. Moreover, BioNav avoids informa-
tion clutter by hiding unimportant concept nodes leading 
to interesting ones. This is achieved through a series of 
expand actions that reveal only a few descendants (not 
necessarily children) of the user selected node for further 
navigation. 

MESH

…

Proteins

Histones

…

…

……

Amino Acids… >>>

Nucleoproteins >>>

Transcription Factors >>>

MESH

…

…

(a) (b)

Transcription Factors Nucleoproteins

Amino Acids…

 

Fig. 4. (a) Navigation Tree, EdgeCut and Component Subtrees, (b) 
Visualization of the EdgeCut on the user interface. 

We model a node expansion at a given navigation step 
as an EdgeCut in the navigation tree. In graph theory, an 
EdgeCut in a graph 𝐺(𝑉, 𝐸) is a set of edges 𝐸𝐶 ⊆ 𝐸 such 
that the graph 𝐺′(𝑉, 𝐸\𝐸𝐶) has more components than 𝐺. 
For trees, any subset of the edges constitutes an EdgeCut, 
since the removal of any single edge creates a new com-
ponent. 

In Fig. 4a, the dashed line illustrates the EdgeCut cor-
responding to the expansion of the node ―Amino Acids...‖ 
and reveals the highlighted concepts of Fig. 4a. These re-

http://db.cse.buffalo.edu/bionav
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vealed nodes are visualized on the interface as a tree 
shown in Fig. 4b. The EdgeCut consists of the edges 
(―Proteins‖, ―Transcription Factors‖) and (―Proteins‖, 
―Nucleoproteins‖). Intuitively, an EdgeCut allows us to 
―skip‖ child nodes (―Proteins‖), navigate directly to des-
cendant nodes located deeper in the tree and show them 
as children of the node being expanded. Moreover, an 
EdgeCut can selectively reveal only a subset of a poten-
tially large set of descendant nodes, as is the case in Fig.2b 
where only 6 out of the 52 descendants of ―Amino Ac-
ids…‖ are revealed. 

Definition 3 (Valid EdgeCut). A valid EdgeCut of a tree 
𝑇(𝑉,𝐸, 𝑟) is an EdgeCut 𝐶 ⊆ 𝐸 such that no two edges in 𝐶 
appear in the same path from the root to some leaf node. 

We only consider valid EdgeCuts in the rest of the pa-
per, because invalid EdgeCuts lead to unintuitive naviga-
tions. 

Component Subtrees. An EdgeCut causes the creation 
of two types of component subtrees, upper and lower. Given 
an EdgeCut 𝐶 of a tree 𝑇(𝑉, 𝐸, 𝑟), a lower component subt-
ree 𝐼(𝑦𝑖) rooted at 𝑦𝑖  is created by each node 𝑦𝑖 ∈ 𝑉, such 
that (𝑥,𝑦𝑖 ) ∈ 𝐶 for some node 𝑥. In Fig. 2c, at the expan-
sion of node ―Amino Acids...‖, four lower component 
subtrees are created, two of which are shown in Fig. 4a, 
rooted at ―Transcription Factors‖ and ―Nucleoproteins‖. 
Moreover, for a given EdgeCut 𝐶, a single upper compo-
nent subtree is created and comprises of the nodes not in 
any lower component subtree, and is always rooted at the 
root of the tree being expanded. In Fig. 4a, the upper 
component subtree comprises of the nodes ―Amino Ac-
ids...‖ (root) and ―Proteins‖. 

The state of the navigation tree after an EdgeCut, and 
the component subtrees created, is captured by the Active 
Tree defined below. 

Definition 4 (Active Tree). An Active Tree 𝑇𝐴(𝑉,𝐸, 𝑟) is a 
Navigation Tree where each node 𝑛 ∈ 𝑉 is annotated with a 
node set 𝐼(𝑛) consisting of the nodes in the component subt-
ree rooted at 𝑛. If a node 𝑛 is not a root of a component subt-
ree, then 𝐼 𝑛 = {𝑛}. The non-singleton 𝐼 sets are disjoint. 

Before any EdgeCut, a navigation tree is trivially con-
verted to an active tree by annotating the root node with 
an 𝐼 set that includes all tree nodes. The rest of the nodes 
𝑛𝑖 are annotated with the node set 𝐼 𝑛𝑖 =  𝑛𝑖 . Fig. 5a 
shows (part of) the active tree capturing the state of the 
navigation tree before the EdgeCut in Fig. 4a (singleton 𝐼 
sets, such as ―Histones‖, are not shown). 

An EdgeCut (expansion) is an operation on the active 
tree, performed on the 𝐼 set of a given node, and updates 
the sets 𝐼(𝑛𝑖) of the roots 𝑛𝑖 of the upper and lower sub-
trees created by the EdgeCut based on the nodes included 
in these subtrees. The operation is denoted by 
Cut: 𝐼(𝑛) → 𝑆 ⊆ 𝐼(𝑛) and returns the set 𝑆 of roots of the 
upper and lower subtrees that it creates. Fig. 5b shows the 
effect of the EdgeCut operation in Fig. 4a on the active 
tree in Fig. 5a. The active tree is closed under the EdgeCut 
operation. 

Note that the set 𝐼 𝑛  of a node 𝑛 is overloaded to also 
denote the ―invisible‖ component subtree of the active 
tree that is rooted at 𝑛 and only consists of the nodes in 

𝐼 𝑛 . For instance, the invisible subtree 𝐼(―Amino Ac-
ids...‖) in Fig. 5b is the one indicated as the upper compo-
nent subtree in Fig. 4a. 

BioNav visualizes the active tree to the user by show-
ing only the nodes that do not appear in any non-
singleton 𝐼 set organized according to the following defi-
nition. 

(a) (b)

MESH

…

Amino Acids…

Transcription
Factors

Nucleoproteins

Proteins

… Histones

…

…

…

MESH

…

Amino Acids…

Transcription
Factors

Nucleoproteins

Proteins

… Histones

…

…

…

I(“Amino Acids…”)=
{“Amino Acids…”,
“Proteins”,
“Transcription Factors”,
“Nucleoproteins”,
“Histones”,
…}

I(“Amino Acids…”)=
{“Amino Acids…”,
“Proteins”,
…}

I(“Transcription Factors”)=
{“Transcription Factors”,
…}

I(“Nucleoproteins”)=
{“Nucleoproteins”,
“Histones”,
…}

 

Fig. 5. The Active Tree Before and After the EdgeCut in Fig. 4 

Definition 5 (Active Tree Visualization). The visualization 
of an active tree 𝑇𝐴(𝑉,𝐸, 𝑟) is the embedded tree 
𝑇𝐴 ′(𝑉′, 𝐸′, 𝑟), where 𝑉′ consists of the nodes not in any non-
singleton 𝐼(𝑛), for all 𝑛 ∈ 𝑉. Shown next to every node 
𝑛 ∈ 𝑉′ is the number of distinct citations attached to nodes 
in 𝐼(𝑛), given by  𝐿 𝐼(𝑛)  =   𝐿(𝑛𝑖)𝑛 𝑖∈𝐼(𝑛)  . If 𝑛 has a 
non-singleton 𝐼(𝑛), then an expand hyperlink is shown next 
to it. 

The visualization of the active tree after the EdgeCut in 
Fig. 4a is shown in Fig. 4b and is a subset of the nodes 
revelaed in Fig. 2c. Note that the citation count  𝐿 𝐼(𝑛)   
for ―Nucleoproteins‖ in Fig. 2c is 40 denoting the unique 
citations attached to it and its (invisible) component subt-
ree. It is reduced to 19 in Fig. 2d, since its component 
subtree is getting smaller as descendant concept nodes 
are revealed. 

An EdgeCut and the visualization of the resulting ac-
tive tree are capable of reducing the navigation tree both 
height- and width-wise. The embedded tree in Fig. 2c, 
compared to the navigation tree in Fig. 1, is narrower and 
shorter. Note that we do not make any assumptions about 
the user’s preference over the tuples in the result and 
every citation in the result can be reached by a sequence 
of navigation actions, that is, there is no information loss 
in navigating the query results using our framework. 

Using the ‖>>>‖ hyperlinks, the user can trigger sub-
sequent EdgeCut operations on component subtrees in a 
recursive fashion. Although we expect the user to trigger 
EdgeCut operations predominantly on the lower compo-
nent subtrees, an EdgeCut is possible on the upper subt-
ree as well. For example, an EdgeCut operation on the 
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upper component subtree of Fig. 4a would reveals the 
―Proteins‖ concept as parent of the previously revealed 
concept ―Nucleoproteins‖. 

3 NAVIGATION AND COST MODEL 

The navigation model of BioNav is formally defined in 
this section. Then the navigation cost model is presented, 
which is used to devise and evaluate our algorithms in 
later sections. 

Navigation Model. After the user issues a keyword 
query, BioNav initiates a navigation by constructing the 
initial active tree (which has a single component tree 
rooted at the MeSH root) and displaying its root to the 
user. Subsequently, the user navigates the tree by per-
forming one of the following actions on a given compo-
nent subtree 𝐼(𝑛) rooted at concept node 𝑛: 

1. EXPAND 𝑰(𝒏): The user clicks on the ”>>>” hyper-
link next to node 𝑛 and causes an EdgeCut(𝐼(𝑛)) 
operation to be performed on it, thus revealing a 
new set of concept nodes from the set 𝐼(𝑛). 

2. SHOWRESULTS 𝑰(𝒏): By performing this action, 
the user sees the results list 𝐿(𝐼(𝑛)) of citations at-
tached to the component subtree 𝐼(𝑛). 

3. IGNORE 𝑰(𝒏): The user examines the label of con-
cept node 𝑛, ignores it as unimportant and moves 
on to the next revealed concept. 

4. BACKTRACK: The user decides to undo the last 
EdgeCut operation. 

This navigation process continues until the user finds 
all the citations she is interested in. 

EXPLORE(𝐼(𝑛)) 
   if 𝑛 is the root 
      𝑆 ←EXPAND 𝐼(𝑛) // that is 𝑆 ←EdgeCut(𝐼(𝑛)) 
      For each 𝑛𝑖 in 𝑆 
         EXPLORE(𝐼 𝑛𝑖 ) 
   else, if 𝑛 is not a leaf-node, choose one of the following: 
      1. SHOWRESULTS 𝐼(𝑛) 
      2. IGNORE 𝐼(𝑛) 
      3.  𝑆 ←EXPAND 𝐼(𝑛) 
           For each 𝑛𝑖 in 𝑆 
              EXPLORE(𝐼(𝑛𝑖)) 
   else, choose one of the following:    // 𝑛 is a leaf node 
      1. SHOWRESULTS 𝐼(𝑛) 
      2. IGNORE 𝐼(𝑛) 

Fig. 6. TOPDOWN Navigation Model 

In order to define a cost model, we focus on a simplifi-
cation of the general navigation model, which we call 
TOPDOWN, where only EXPAND, SHOWRESULTS and 
IGNORE are the available operations, that is, the user 
follows a top-down only navigation starting from the 
root. TOPDOWN is common in practice. Note that when 
the user encounters a leaf node in TOPDOWN the only 
available option is SHOWRESULTS. The TOPDOWN 
navigation model is formally presented in Fig. 6. It is a 
recursive procedure and is initially called on the root of 
the initial active tree. 

TOPDOWN Cost Model. The cost model, which is in-
spired by a previous work [2], takes into consideration 
the number of concept nodes revealed by an EXPAND 
action, the number of EXPAND actions that the user per-
forms and the number of citations displayed for a SHO-
WRESULTS action. In particular, the cost model assigns 
(i) cost of 1 to each newly revealed concept node that the 
user examines after an EXPAND action, (ii) cost of 1 to 
each EXPAND action the user executes, and (iii) cost of 1 
to each citation displayed after a SHOWRESULTS action. 

For example, in the navigation of Fig. 2 above, the cost 
for reaching the ―Histones‖ concept and inspecting its 
attached citations is 42. That is, 4 EXPAND actions that 
reveal a total of 23 concept nodes, and a SHOWRESULTS 
action on the ―Histones‖ concept that lists 15 citations. 
The user examines all concept nodes and all citations in 
order to select the ones of interest. 

Since the exact sequence of actions of a user cannot be 
known a priori, we estimate the cost based on the following 
two probabilities: 

 EXPLORE probability 𝑃𝐸(𝐼(𝑛)) is the probability 
that the user is interested in the component subt-
ree 𝐼(𝑛) and will hence explore it. The IGNORE 
probability is 1− 𝑃𝐸  𝐼(𝑛) . 

 EXPAND probability 𝑃𝐶 (𝐼(𝑛)) is the probability 
that the user executes an EXPAND action on com-
ponent subtree 𝐼(𝑛) given that she has chosen to 
explore 𝐼(𝑛). The SHOWRESULTS probability for 
𝐼(𝑛) is 1− 𝑃𝐶  𝐼(𝑛) . 

In Section 4, we show how we estimate probabilities 
𝑃𝐸  𝐼(𝑛)  and 𝑃𝐶  𝐼(𝑛) . The cost of exploring component 
subtree 𝐼 𝑛 , rooted at node 𝑛, is: 
 

𝑐𝑜𝑠𝑡 𝐼 𝑛  = 

𝑃𝐸
𝑁 𝐼 𝑛  ∙

 

 
 

 1 − 𝑃𝐶 𝐼 𝑛   ∙  𝐿 𝐼 𝑛   

+𝑃𝐶 𝐼 𝑛  ∙  𝐵 +  𝑆 + 𝑐𝑜𝑠𝑡 𝐼𝐶 𝑠  

𝑠∈𝑆

 

 

 
 

 

where 𝑃𝐸
𝑁 𝐼(𝑛)  is the normalized 𝑃𝐸 𝐼(𝑛) , such that the 

sum of 𝑃𝐸
𝑁’s of the component subtrees after an EdgeCut 

equals 1. 𝑃𝐸
𝑁 of the original tree is 1. The intuition for this 

normalization is that the probability that the user wants 
to explore a node 𝑛 should not depend on the specific 
expansions sequence that revealed 𝑛. 

The first operand of the addition inside the big paren-
thesis is the cost of executing SHOWRESULTS on 𝑛. The 
second operand is the cost of executing an EXPAND ac-
tion on 𝑛. The constant B is the cost of executing the EX-
PAND action, and 𝑆 is the set of concept nodes revealed 
by the action, or otherwise the roots of component sub-
trees returned by the EdgeCut operation. 𝐼𝐶 𝑠  is the up-
dated 𝐼 set of a node 𝑠 ∈ 𝑆 after the EXPAND action on 
𝐼(𝑛) has been performed. 

Recall that  𝐿 𝐼 𝑛    in the cost formula is the number 
of distinct citations attached to 𝐼 𝑛 . Intuitively, creating a 
component subtree with large number of duplicates re-
duces the navigation cost if the SHOWRESULTS proba-
bility for that subtree is high. Moreover, the number of 
duplicates across component subtrees should be minimal; 
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otherwise the user will pay the cost of inspecting a cita-
tion multiple times. 

Finally, note that by changing B, the cost assigned to 
executing an EXPAND action we affect the number of 
revealed concepts after each EXPAND. In particular, in-
creasing this cost leads to more concepts revealed for each 
EXPAND action. This cost can be thought of as a cognitive 
measure of a user’s expectation of the system behavior as 
she navigates the query navigation tree. A small expand 
cost would decrease the number of concept nodes re-
vealed during each EXPAND action, whereas the user can 
process more. It would also increase the number of EX-
PAND actions thus frustrating the user. In Section 8, we 
experiment with various values of B. 

4 ESTIMATION OF NAVIGATION PROBABILITIES 

We assume that each citation is equally likely to be of inter-
est to the user. If more information about the ―goodness‖ 
of the citations were available, our approach could be 
straightforwardly adapted using appropriate weighting 
for 𝐿(𝐼 𝑛 ). 

Estimating EXPLORE Probability 𝑷𝑬. Since all cita-
tions in the query result are assumed to be of equal im-
portance, concept 𝑛 is of higher interest if 𝐿 𝑛  is large. 
On the other hand, a concept that is associated with a 
very large number of citations 𝐿𝑇  𝑛  of MEDLINE, inde-
pendently of the query, is probably not discriminatory or 
important. The latter is inspired by the inverse document 
frequency measure in Information Retrieval. Hence, 𝑃𝐸  𝑛  
for a node 𝑛 is proportional to  𝐿 𝑛  / 𝐿𝑇  𝑛  . We normal-
ize 𝑃𝐸 𝑛  by dividing by the sum of all 𝑃𝐸 ’s in the naviga-
tion tree 𝑇, that is: 

𝑃𝐸  𝑛 =  

 𝐿 𝑛  
 𝐿𝑇 𝑛  

  
 𝐿 𝑛𝑖  
 𝐿𝑇  𝑛𝑖  

𝑛 𝑖𝜖𝑇
 
  

For a component tree 𝐼(𝑛) rooted at node 𝑛: 

𝑃𝐸  𝐼 𝑛  =  𝑃𝐸(𝑛𝑖)
𝑛 𝑖∈𝐼(𝑛)

 

Given the above formula, for the initial active tree it is 
𝑃𝐸  𝐼(𝑛) = 1. The above 𝑃𝐸  formulas, together with the 
cost model in Section 3, largely determine the characteris-
tics of the component subtrees BioNav creates during an 
EXPAND action. In particular, the upper component 
subtree typically groups together (i) concepts with low 𝑃𝐸  
and a large number of attached citations, and (ii) concepts 
with high 𝑃𝐸  and a small number of attached citations. 
The first group is dismissed as uninteresting and the 
second could lead to a large number of concepts being 
revealed. Intuitively, the two groups of concepts average 
each other out according to the 𝑃𝐸(𝐼(𝑛)) formula. The 
lower component subtrees typically group concepts with 
𝑃𝐸  and number of attached citations in-between the two 
extremes in a way that minimizes the average navigation 
cost. 

Estimating EXPAND Probability 𝑷𝑪. 𝑃𝐶  𝐼(𝑛)  is 0, if 𝑛 
is a leaf concept node or has a singleton 𝐼(𝑛) set, since 
there is no other choice for the user. For internal nodes in 
the active tree with a non-singleton 𝐼(𝑛) set that have a 

large 𝐿(𝐼(𝑛)), a typical user will want to further narrow 
down when faced with the prospect of seeing too many 
citations, that is, 𝑃𝐶  𝐼(𝑛)  is 1, if 𝐿(𝐼(𝑛)) is greater than an 
upper threshold. 𝑃𝐶  𝐼(𝑛)  is 0, if 𝐿(𝐼(𝑛)) is smaller than an 
lower threshold. Currently, BioNav operates with 50 and 10 
being the upper and lower threshold respectively. 

In the remaining cases, a user might want to narrow 
down the search of 𝐼(𝑛), by executing an EXPAND action, 
if the citations under 𝑛 are widely distributed among the 
subconcepts in 𝐼(𝑛). An objective measure for such a wide 
distribution (disorder) is information entropy. If the entro-
py of the subtree 𝐼(𝑛) is large, then the user would benefit 
by an EXPAND action. So, 𝑃𝐶 (𝐼(𝑛)) is computed as fol-
lows: 

𝑃𝑐  𝐼 𝑛  = 𝐸 𝐼 𝑛  =

− 
 𝐿 𝑛𝑖  

 𝐿 𝐼 𝑛   𝑛 𝑖∈𝐼(𝑛) 𝑙𝑜𝑔
 𝐿 𝑛𝑖  

 𝐿 𝐼 𝑛   

−𝑙𝑜𝑔
1

 𝐼(𝑛) 

 

The sum can become greater than 1 because of the exis-
tence of duplicates. Hence, we normalize the entropy of 
𝐼(𝑛) by dividing with the maximum entropy, where cita-
tions are uniformly distributed to all nodes in 𝐼(𝑛) and 
there are no duplicates. 

𝑃𝐶  determines the impact of duplicates in a component 
subtree after a node expansion. If 𝑃𝐶 (𝐼 𝑛 ) is low, that is, 
the SHOWRESULTS probability is high, then the number 
of duplicates in 𝐼 𝑛  plays a bigger role in the way a com-
ponent subtree is expanded.  

5 COMPLEXITY RESULTS 

To prove that the problem of selecting the optimal valid 
EdgeCut for a given tree is NP-hard, where ―optimal‖ 
means minimize the user navigation cost according to the 
navigation model of Section 3, we prove that the problem 
is NP-complete for a simplified navigation model, which 
we refer to as TOPDOWN-EXHAUSTIVE and is a special 
case of the TOPDOWN model shown in Fig. 6. 

In TOPDOWN-EXHAUSTIVE, BioNav performs an 
EXPAND action (EdgeCut operation) on the root of the 
initial active tree, and then the user selects randomly the 
root of one of the component subtrees created and per-
forms a SHOWRESULTS action. The cost of TOPDOWN-
EXHAUSTIVE navigation is the cost to read the root label 
of all component subtrees revealed by the EdgeCut plus 
the cost of SHOWRESULTS for the selected component 
subtree. 

Intuition on the complexity of computing optimal valid Ed-
geCut: The ―optimal‖ valid EdgeCut is the EdgeCut that 
will lead to the minimum expected navigation cost, that 
is, the minimum average cost. In order to minimize the 
expected cost of TOPDOWN-EXHAUSTIVE navigation, 
we need to minimize the cost of EXPAND and of SHO-
WRESULTS. The cost of EXPAND is simply the number 𝑘 
of component subtrees produced by the EdgeCut. The 
average cost of SHOWRESULTS over all component sub-
trees equals the sum of unique elements (citations) in 
every subtree over 𝑘. This sum would be  𝐿(𝑇)  where 𝑇 
is the navigation tree if there were no duplicates among 
the subtrees. However, due to the existence of duplicates 
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(the same citation can be annotated with multiple MeSH 
concepts) this sum depends on the EdgeCut. Hence, the 
duplicates are the reason that the problem is NP-complete 
for TOPDOWN-EXHAUSTIVE, because we need to max-
imize the number of duplicates within the created sub-
trees, and at the same time create a relatively small num-
ber of component subtrees. Note that even for a given 𝑘, 
the problem of selecting the best EdgeCut is NP-hard as 
we show in Theorem 1. 

Theorem 1. Finding the optimal valid EdgeCut in TOP-
DOWN-EXHAUSTIVE is NP-complete. 

Proof. The decision problem corresponding to the prob-
lem of computing the optimal EdgeCut is as follows: 

TOPDOWN-EXHAUSTIVE Decision (TED) Problem: 
Given a navigation tree 𝑇, where each node 𝑛 contains a 
list 𝐿(𝑛) of elements from universe 𝑈 (𝑈 are all the cita-
tions in the query result), that is, 𝐿(𝑛) ⊆ 𝑈, there exists an 
EdgeCut 𝐶 of 𝑇 that creates 𝑘 subtrees (including the up-
per subtree) with 𝑑 duplicate elements within the created 
subtrees. That is, if 𝑆1 ,… , 𝑆𝑘 are the subtrees and each 𝑆𝑖 
contains 𝑏(𝑆𝑖) duplicates, i.e., elements that appear 
somewhere in 𝑆1,… ,𝑆𝑖−1 (if an element appears 3 times, 
then it counts as 2 duplicates), then  𝑏(𝑆𝑖)𝑖=1…𝑘 = 𝑑. 

Note that the cost of a TOPDOWN-EXHAUSTIVE na-
vigation is computed as follows, if we solve the TED 
problem for every combination of 𝑘 and 𝑑. If 𝑇 has 𝑊 
unique results, then a subtree of the EdgeCut will have on 
average (𝑊 +𝑑)/𝑘 results. Hence the whole navigation 
cost is 𝑘 + (𝑊 + 𝑑)/𝑘, where 𝑘 is the cost of reading the 
labels of the 𝑘 subtrees. 

TED is in NP since a solution can be verified in poly-
nomial time. To prove that it is NP-complete, we will re-
duce the MAXIMUM EDGE SUBGRAPH (MES) problem, 
which is NP-complete [8], to TED. 

MAXIMUM EDGE SUBGRAPH (MES) Problem: Given 
graph 𝐺(𝑉,𝐸), a weight function 𝑤:𝐸 → 𝑁 (𝑁 are the nat-
ural numbers) and positive integers 𝑑 and 𝑘′, there is a 
subset 𝑉′ ⊆ 𝑉 with  𝑉′ = 𝑘′ such that the sum of the edge 
weights of the edges between the nodes in 𝑉′ is 𝑑, that is, 
 𝑤 𝑢, 𝑣 = 𝑑 𝑢,𝑣 ∈𝐸⋂(𝑉′×𝑉′) . 

Mapping of MES to TED: For each node 𝑢 ∈ 𝑉, we create 
a node 𝑢′ in 𝑇 that is a child of the root of 𝑇. That is, the 
root 𝑟 of 𝑇 is empty (𝐿 𝑟 = ∅) and it has  𝑉  children. 

The universe 𝑈 is defined as follows: for each pair of 
edges (𝑢, 𝑣) ∈ 𝐸 with weight 𝑤(𝑢,𝑣), we add elements 
𝐵𝑢𝑣

1 ,… , 𝐵𝑢𝑣
𝑤(𝑢,𝑣) in 𝑈. 

Each of the nodes of 𝑇 is populated with elements from 
𝑈 as follows: For each edge (𝑢, 𝑣) ∈ 𝐸, we add to nodes 𝑢′ 
and 𝑣′ of 𝑇 the elements 𝐵𝑢𝑣

1 ,…, 𝐵𝑢𝑣
𝑤(𝑢,𝑣). The intuition is 

that we map an edge weight in MES to the number of 
duplicates between two nodes in TED.We set 𝑘 =  𝑉 −
𝑘 ′ + 1. In the figure below, the EdgeCut splits the tree into 
𝑘 subtrees. 

Note that the above reduction is linear on the maxi-
mum edge weight in 𝐺, which generally is less than  𝑉 , 
hence the reduction is polynomial on  𝑉  and  𝐸 . Now, a 
solution to MES is mapped to a solution to TED, since 
selecting 𝑘′ nodes in MES corresponds to expanding the 
tree into 𝑘 subtrees in TED. The nodes of 𝑉 corresponding 

to the nodes in the upper subtree of the EdgeCut (the one 
including the root) are the solution to MES. This set of 
nodes has maximum sum of edge weights in MES and 
maximum number of duplicates in TED. 

u’1 u’k’… u’|V|u’k’+1

r

…

 

Note: We assume that a node in TED can have the 
same element 𝐿 multiple times. We could raise this as-
sumption and just replace this node with a subtree that 
contains the element 𝐿 multiple times. We did not do so to 
simplify the presentation of the proof.  

6 ALGORITHMS FOR BEST EDGECUT 

Given the cost equation in Section 3, we can compute the 
optimal cost by recursively enumerating all possible se-
quences of valid EdgeCuts, starting from the root and 
reaching every concept in the navigation tree, computing 
the cost for each step and taking the minimum. However, 
this algorithm is also prohibitively expensive. Instead we 
propose an alternative algorithm Opt-EdgeCut that makes 
use of the dynamic programming technique to reduce the 
computation cost. As shown in Section 6.1 below, Opt-
EdgeCut is still exponential and is just used to evaluate the 
quality of the heuristic we present in Section 6.2 (Heuris-
tic-ReducedOpt). In Section 6.3, we consider an alternate 
navigation strategy (TopKLevelWise), which in several var-
iations is used in existing systems, such as eBay and 
Amazon, and allows users to navigate query results using 
extensive concept hierarchies. In TopKLevelWise, a fixed-
size subset of children is revealed during each EXPAND 
action on a concept node, where the subset is selected 
based on a fixed cost metric. We compare two variations 
of TopKLevelWise with Heuristic-ReducedOpt in Section 6.2 
and show that the navigation cost incurred using our ap-
proach can be an order of magnitude lower than either of 
these approaches. 

6.1 Optimal Algorithm for Best EdgeCut 

The Opt-EdgeCut algorithm to compute the minimum 
expected navigation cost (and the EdgeCut that achieves 
it) traverses the navigation tree in post-order and com-
putes the navigation cost bottom-up starting from the 
leaves. For each node 𝑛, the algorithm enumerates and 
stores the list ℂ(𝑛) of all possible EdgeCuts for the subtree 
rooted at 𝑛, and the list 𝕀(𝑛) of all possible 𝐼(𝑛) sets that 
node 𝑛 can be annotated with. The inclusion-exclusion 
principle [4] is used when enumerating ℂ(𝑛) and 𝕀(𝑛), 
which leads to an ordering that maximizes reuse in the 
dynamic programming algorithm. The algorithm then 
computes the minimum cost for each subtree in 𝕀(𝑛) giv-
en the EdgeCuts in ℂ(𝑛) and the already computed min-
imum costs for the descendants of 𝑛. The complexity of 
Opt-EdgeCut is 𝑂( 𝑉 ∙ 2 𝐸 ). 
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Algorithm Opt-EdgeCut 
Input: The navigation tree 𝑇 
Output: The best EdgeCut 

1 Traversing 𝑇 in post-order, let 𝑛 be the current node 
2 while 𝑛 ≠ 𝑟𝑜𝑜𝑡 do 
3    if 𝑛 is a leaf node then 
4       𝑚𝑖𝑛𝑐𝑜𝑠𝑡 𝑛, ∅ ← 𝑃𝐸  𝑛 ∗ 𝐿(𝑛) 
5       𝑜𝑝𝑡𝑐𝑢𝑡 𝑛,∅ ← {∅} 
6    else 
7       ℂ 𝑛 ← enumerate all possible EdgeCuts 
                              for the tree rooted at 𝑛 
8       𝕀 𝑛 ← enumerate all possible subtrees 
                              for the tree rooted at 𝑛 
9       foreach 𝐼(𝑛) ∈ 𝕀(𝑛) do 
10          compute 𝑃𝐸 𝐼(𝑛)  and 𝑃𝑐  𝐼(𝑛)  
11          foreach 𝐶 ∈ ℂ(𝑛) do 
12             if 𝐶 is a valid EdgeCut for 𝐼(𝑛) then 
13                𝑐𝑜𝑠𝑡 𝐼 𝑛 , 𝐶 ← 

𝑃𝐸  𝐼 𝑛  ∙  
 1 −𝑃𝐶  𝐼(𝑛)  ∙ 𝐿 𝐼 𝑛  

+𝑃𝐶 𝐼 𝑛  ∙  𝐵+  𝑆 + 𝑚𝑖𝑛𝑐𝑜𝑠𝑡 𝐼𝐶 𝑠  𝑠∈𝑆  
   

14             else 
15                𝑐𝑜𝑠𝑡 𝐼(𝑛), 𝐶 = ∞ 
16          𝑚𝑖𝑛𝑐𝑜𝑠𝑡 𝑛, 𝐼(𝑛) ← min𝐶𝑖∈ℂ(𝑛)𝑐𝑜𝑠𝑡 𝐼(𝑛), 𝐶𝑖  

17          𝑜𝑝𝑡𝑐𝑢𝑡 𝑛, 𝐼(𝑛) ← 𝐶𝑖 
18 return 𝑜𝑝𝑡𝑐𝑢𝑡(𝑟𝑜𝑜𝑡,𝐸)      // 𝐸 is the set of all tree edges 

6.2 Heuristic-ReducedOpt Algorithm 

The algorithm to compute the optimal navigation, Opt-
EdgeCut, is exponential and hence infeasible for the navi-
gation trees of most queries. We propose a heuristic to 
select a good EdgeCut for a node expansion. Note that the 
input argument to the heuristic is a component tree 𝐼(𝑛) 
and not the whole active tree 𝑇 as in Opt-EdgeCut. The 
reason is that once Opt-EdgeCut is executed for 𝑇, the 
costs (and optimal EdgeCuts) for all possible 𝐼(𝑛)’s are 
also computed and hence there is no need to call the algo-
rithm again for subsequent expansions. 

For a given component subtree 𝐼(𝑛), Opt-EdgeCut 
enumerates a large number of EdgeCuts on 𝐼(𝑛) and re-
peats this recursively on its subtrees. We propose to run 
Opt-EdgeCut on a reduced version 𝐼′(𝑛) of 𝐼(𝑛). The re-
duced tree 𝐼′(𝑛) has to be small enough so that Opt-
EdgeCut can run on it in ―real-time‖. We select the size 𝑧 
of 𝐼′(𝑛) according to the processing power of our system. 
We set 𝑧 = 15 in our experiments. Also, 𝐼′(𝑛) should ap-
proximate 𝐼(𝑛) as closely as possible. 𝐼′(𝑛) is the tree of 
―supernodes‖ created by partitioning 𝐼(𝑛). Each super-
node in 𝐼′(𝑛) corresponds to a partition of tree 𝐼(𝑛). Then, 
Opt-EdgeCut is executed on 𝐼′(𝑛). 

The algorithm we use to partition the tree is based on 
the 𝑘-partition algorithm [14] that processes the tree in a 
bottom-up fashion. For each tree node 𝑛, the algorithm 
removes the ―heaviest‖ children of 𝑛 one-by-one until the 
weight of 𝑛 falls below 𝑘. For each of the removed child-
ren, it creates a partition. The result is a tree-partitioning 
with the minimum cardinality. The complexity of the 𝑘-
partition algorithm is 𝑂( 𝑉 ∙ log 𝑉 ). 

We adopt the 𝑘-partition algorithm to our needs as fol-
lows. For each node in 𝐼(𝑛), we assign weight equal to 
 𝐿(𝑛) ∙ 𝑃𝐸(𝑛), which is an estimation of its navigation 

cost. We run the 𝑘-partition algorithm by setting 𝑘, the 
weight threshold, to  𝐿 𝑛𝑖 ∙ 𝑃𝐸 (𝑛𝑖)/𝑧𝑛 𝑖  ∈𝐼(𝑛) , where 𝑧 is 
the number of desired partitions. However, this might 
result in more than 𝑧 partitions, due to some non-full par-
titions. Therefore we repeatedly run 𝑘-partition algorithm 
on 𝐼(𝑛), gradually increasing 𝑘 (by decreasing 𝑧) until up 
to 𝑧 partitions are obtained. Note that 𝑧 is the maximum 
tree size on which Opt-EdgeCut can operate in ―real-time‖. 

Algorithm Heuristic-ReducedOpt 
Input: Component subtree 𝐼(𝑛), number 𝑧 of partitions 
Output: The best EdgeCut 

1 𝑧′ ← 𝑧 
2 repeat  
3    𝑘 ←  𝐿 𝑛 ∙ 𝑃𝐸(𝑛)/𝑧′𝑛∈𝑇  
4    Partitions ← 𝑘-partition(𝐼(𝑛),𝑘) 

   // call 𝑘-partition algorithm [14] 
5    𝑧′ ← 𝑧′ − 1 
6 until |Partitions| ≤ 𝑧 
7 construct reduced subtree 𝐼′(𝑛) from Partitions 
8 EdgeCut ← Opt-EdgeCut 𝐼 ′  𝑛   
9 EdgeCut ← corresponding of EdgeCut for 𝐼 𝑛  
10 return EdgeCut 

6.3 The TopKLevelWise Method 

In TopKLevelWise, the navigation model has the following 
key difference to our expansion model: the component 
subtree generated by an EXPAND on a node 𝑛 are all 
rooted at one of the children of 𝑛. The size of the EdgeCut 
is limited by a parameter 𝐾, and the component subtree 
are chosen using a simple cost metric – the number of 
distinct results in a given component subtree. We consid-
er two variations of TopKLevelWise. The first, which we 
call static, is employed by GoPubMed [28] and Amazon 
and uses 𝐾 = infinity, that is, it selects the entire set of 
children to be included in the EdgeCut. The second, 
Top10LevelWise, is used by e-commerce websites such as 
eBay. Here, a set of 𝐾 = 10 children, with the highest 
number of results, are displayed. We compare these two 
strategies to Heuristic-ReducedOpt in Section 8 and show 
that our approach outperforms both of them. 

7 SYSTEM ARCHITECTURE AND IMPLEMENTATION 

The BioNav system architecture is shown in Fig. 7 and 
consists of two parts. The off-line components populate 
the BioNav database with the MeSH concept hierarchy 
and the associations of the MEDLINE citations with 
MeSH concepts, while the on-line components support 
BioNav’s web interface and the EXPAND-
SHOWRESULTS actions of the user. 

Off-Line Pre-Processing. The BioNav database is first 
populated with the MeSH hierarchy, which is available 
online [19] and has more than 48,000 concept nodes. 

Then, the BioNav database is populated with the asso-
ciations of the MEDLINE citations to MeSH concepts. 
These associations are not directly provided by the Entrez 
Programming Utilities (eUtils), so we had to implement 
the following method to infer these associations. For each 
concept in the MeSH hierarchy, we issued a query on 
PubMed using the concept as the keyword. For each cita-
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tion ID in the query result, we added to a table in the 
BioNav database the tuple < concept,citationID >. Alter-
natively, we could determine the associations by using 
the MeSH concepts that each citation is annotated with in 
the MEDLINE database. This information is available 
through eUtils. In this case though, the navigation trees of 
BioNav would not be very informative, since each citation 
is annotated with 20 concepts on average in MEDLINE, 
while the PubMed indexing associates each citation with 
approximately 90 concepts on average (and include the 20 
from MEDLINE.) 

MeSH
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Lookup Navigation Subsystem
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Actions
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Fig. 7. BioNav System Architecture 

Given the number of concepts in the MeSH hierarchy, 
the number of citations in MEDLINE (~18 million), and 
the PubMed eUtils restrictions on the number of queries 
that can be executed within a certain period of time, it 
took almost 20 days to collect all the 
< concept,citationID > tuples. In the end, there were al-
most 747 million such tuples. To improve the selection 
queries on this table, we de-normalized it by concatenat-

ing all concepts associated with each citation into a com-
ma-separated list, that is: 

< citationID , (concept1 ,concept2 , … ) > 
In this work, we assume the dataset 𝐷 to be fixed. 

However, in practice, 𝐷 changes frequently as new cita-
tions are added and existing citations are updated to in-
clude new terms from the MeSH hierarchy. In this case, 
we assume that 𝐷 is refreshed periodically by an offline 
process that issues queries to PubMed using the concept 
keyword and updates the concept counts and rows of 
retrieved citations. A newly added citation may not ap-
pear immediately in the query result, but we assume that 
such delays are acceptable to users. 

When executing the queries using the concepts as 
keywords, we also store the number of citations 𝐿𝑇 (𝑛) in 
the query result, since it is needed for the computation of 
𝑃𝐸  in Section 4. 

On-Line Operation. Upon receiving a keyword query 
from the user, BioNav executes the same query against 
the MEDLINE database and retrieves only the IDs 
(PubMed Identifiers) of the citations in the query result. 
This is done using the ESearch utility of the Entrez Pro-
gramming Utilities (eUtils) [7]. eUtils are a collection of 
web interfaces to PubMed for issuing a query and down-
loading the results with various levels of detail and in a 
variety of formats. Next, the navigation tree is con-
structed by retrieving the MeSH concepts associated with 
each citation in the query result from the BioNav data-
base. This is possible since MeSH concepts have tree iden-
tifiers encoding their location in the MeSH hierarchy, 
which are also retrieved from the BioNav database. This 
process is done once for each user query. The navigation 
tree is trivially converted to an active tree (see Section 2) 
and passed on the Navigation Subsystem that supports the 
user’s actions on the BioNav web interface. 

Initially, the navigation subsystem just visualizes the 
active tree on the web interface, that is, it simply shows its 
root node. Subsequently, the user requests an EXPAND 
action on the root. Then, the navigation subsystem ex-
ecutes the Heuristic-ReducedOpt algorithm on the tree 𝐼 𝑟  
of the root 𝑟, and the resulting active tree is visualized on 

# Keyword(s)

# of Citations in 

Query Result

Navigation

Tree Size

Max Tree 

Width/Height

Tree Citations

w/ Duplicates Target Concept

MeSH Level of

Target Concept

|L(n)| of

Target Concept

|LT (n)| of 

Target Concept

Biochemistry

Q1 LbetaT2 116 1947 1009/10 14927 Mice, Transgenic 5 11 90804

Q2 melibiose permease 160 1324 722/8 14419 Substrate Specificity 3 31 79470

Q3 Na+/I symporter 163 2596 1367/6 17146 Perchloric Acid 3 7 4250

Q4 ibogaine 287 3020 1656/11 28148 Serotonin 5 43 101567

Q5 prothymosin 313 3941 2113/10 30897 Histones 4 15 22741

Q6 ice nucleation 474 3181 1776/9 27440 Plants, Genetically Modified 3 2 12330

Q7 dyslexia genetics 517 3056 1691/9 45079 Polymorphism, Single Nucleotide 4 18 18843

Q8 syntaxin 1A 1115 6589 3764/10 105503 GABA Plasma Membrane Transport Proteins 7 11 650

Q9 follistatin 1183 6446 3656/10 102946 Follicle Stimulating Hormone 6 157 34540

Q10 norepinephrine transporter 1681 6482 3816/11 124199 Protein Kinase C 7 18 46928

Medicine

Q11 varenicline 162 1830 962/6 11370 Nicotinic Agonists 7 81 18277

Q12 vardenafil 486 3424 2014/8 40987 Phosphodiesterase Inhibitors 5 401 69984

Q13 duloxetine 695 3884 2323/10 57979 Fibromyalgia 3 28 4683

Q14 ebola virus 1062 5187 2992/11 83602 Ebola Vaccines 5 25 27

Q15 asperger’s syndrome 1126 3884 2323/9 57979 Early Diagnosis 2 28 4683

Q16 nocturia 1297 4646 2660/11 77083 Nocturnal Enuresis 5 39 1397

Q17 oxaluria 1727 5097 2913/10 85536 Celiac Disease 4 2 12871

Q18 blepharosmasm 1329 5603 2145/9 72419 Blepharospasm 3 984 1313

Q19 cadmium poisoning 1882 6217 3628/11 79808 Infertility, Male 4 2 18839

Q20 tourette syndrome 3029 5196 1977/9 76835 Tourette Syndrome 5 36 2289

TABLE 1. QUERY WORKLOAD 
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the web interface.When the user makes a SHOWRE-
SULTS request, BioNav uses the Entrez ESummary utility 
to download high level information of the citations to be 
shown, such title and authors. 

8 EXPERIMENTAL EVALUATION 

We evaluated the BioNav system in terms of both average 
navigation cost and expansion time performance. Other 
traditional measures of quality such as precision and re-
call are not applicable to our scenario as the objective is to 
minimize the navigation cost on a tree and not classifica-
tion. 

In Section 8.1, we show that the BioNav navigation 
method, which is evaluated using the Heuristic-
ReducedOpt algorithm, leads to considerably smaller na-
vigation cost for a set of real queries on the MEDLINE 
database and navigations on the MeSH hierarchy. In Sec-
tion 8.1, we compare the optimal algorithm (Opt-EdgeCut) 
with Heuristic-ReducedOpt and show that the heuristic is a 
good approximation of the optimal. These experiments 
were executed on a reduced navigation tree (~20 nodes), 
constructed from the original query navigation tree for 
each query, since Opt-EdgeCut is prohibitively expensive 
for most navigation trees. Finally, Section 8.3 shows that 
the execution time of Heuristic-ReducedOpt is small 
enough to facilitate interactive-time user navigation. 

The experiments were executed on a Dell Optiplex ma-
chine with 3Ghz CPU and 2 GB of main memory, running 
Windows XP Professional. All algorithms were imple-
mented in Java and Oracle 10g was used as the database. 

8.1 Navigation Cost Evaluation 

To evaluate the navigation cost benefit of BioNav, we 
asked two researchers, who use PubMed regularly, to 
create a set of 10 queries each. The first researcher was a 
biochemist and the second a medical doctor. We asked 
them to consider queries that cover topics within their 
fields and are of exploratory nature, that is, queries that 
return more than just a few citations. For each query, we 
also asked them to designate a target MeSH concept in the 
corresponding navigation tree that they would subjective-
ly consider as most interesting. The two sets of queries we 
received consist our workload and is show in Table 1. 
Apart from the queries (―Keywords‖ column), listed are 

statistics on the initial navigation trees, the target con-
cepts and information regarding their location depth in 
the MeSH hierarchy, the number of citations  𝐿(𝑛)  at-
tached to them for the given query, and the total number 
of citations  𝐿𝑇 (𝑛)  attached to them in MEDLINE. 

―Follistatin‖ and ―LbetaT2‖ are terms that mainly in-
terest biochemists studying reproductive endocrinology 
and gynecology. The ―dyslexia genetics‖ query accumu-
lates results related to genes associated with dyslexia. 
―Melibiose permease‖ and ―Na+/I- symporter‖ are 
transport proteins related to bacterial growth and thyroid 
function respectively. On the other hand, ―vardenafil‖ 
(Levitra), used for the treatment of erectile dysfunction, 
and ―varenicline‖ (Chantix), used for quitting smoking, 
are two new drugs that interest many medical doctors. 

Interestingly, some queries correlate with quite a few 
fields of research and others concentrate in more specific 
topics. For example, the literature for ―prothymosin‖, 
although not particularly broad in number of citations in 
the query result (313), is associated with several topics 
such as cancer, cell proliferation, apoptosis, chromatin 
remodeling, transcriptional regulation and immunity. In 
contrast, ―vardenafil‖ retrieves a higher number of cita-
tions (486) but the literature is mostly targeted to erectile 
dysfunction and hypertension. This fact is reflected on the 
navigation tree characteristics for the two queries, also 
shown in Table 1. The navigation tree for ―prothymosin‖ 
is bigger than the one for ―vardenafil‖ in every respect, 
that is, tree size, maximum width and height. 

In this experiment we assume that the user follows a 
top-down navigation where she always chooses the right 
node to expand in order to finally reveal the target con-
cept. We compare the navigation cost of BioNav, where 
EXPAND is implemented using the Heuristic-ReducedOpt 
algorithm (with 𝑧 = 10), to the two navigation strategies, 
Static and Top10LevelWise, described in Section 6.3. 

Fig. 8 compares the navigation cost for these three me-
thods. We observe that BioNav often improves the navi-
gation cost by an order of magnitude, over Static naviga-
tion. The average improvement of BioNav, over static 
navigation, is 82%, for 𝐵 = 15. The improvement is high 
regardless of the navigation tree characteristics (87% for 
―prothymosin‖ (Q5), 85% for ―vardenafil‖ (Q12)), and 
regardless of the number of citations in the query result 
(80% for ―LbetaT2‖ (Q1), 90% for ―tourette syndrome‖ 

Fig. 8. Overall Navigation Cost Comparison for Biochemistry and Medicine 
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(Q20)). The smallest improvement (71%) was observed for 
―ebola virus‖ (Q14). The reason is that its target concept 
(Ebola Vaccines) is located far away, in terms of naviga-
tion tree distance, from other query results. Most query 
results are distributed under a MeSH concept called ―Vi-
ruses‖, while the target concept is located under a sibling 
concept called ―Complex Mixtures‖. Hence, it takes sev-
eral EXPAND actions until BioNav reveals the latter. 
Query ―ice nucleation‖ (Q6) also exhibits small improve-
ment (75%), but for a different reason. Its target concept 
(Plants, Genetically Modified) has an extremely low 
 𝐿(𝑛) = 2. Hence, its 𝑃𝐸  is quite low and so it takes sever-
al EXPAND actions until it is revealed.  

Consistent, but more modest, improvement in naviga-
tion cost is achieved by BioNav over Top10LevelWise. The 
average improvement is 41%, with a minimum of 16% for 
query ―asperger’s syndrome‖ (Q15) and a maximum of 
63% for ―tourette syndrome‖ (Q20). Since Top10LevelWise 
explores the navigation tree level-wise, a concept that is 
high up in the hierarchy, such as the target concept of 
―asperger’s syndrome‖, can be reached as fast by 
Top10LevelWise as it does by BioNav. On the other hand, a 
concept that is deep inside the navigation tree but with 
high 𝑃𝐸 , such as the target concept of ―tourette syn-
drome‖, is reached much faster by BioNav. 

 

Fig. 9. Number of Expand Actions Comparision 

Fig. 9 shows the number of EXPAND actions for the 
three methods for the biochemistry query set only. Note 
that these numbers are relatively close, which means that 
the dramatic differences in Fig. 8 are due to the fact that 
BioNav selectively reveals few descendant nodes for each 
EXPAND, instead of a possibly large number of child 
nodes. The worst case is the ―ice nucleation‖ (Q6), where 
BioNav requires 6 EXPAND actions, compared to 4 of 
static navigation, since the target concept is quite high in 
the MeSH hierarchy, and at the same time has a low 𝑃𝐸 , as 
discussed above. A similar increase in the number of EX-
PAND actions is observed for query ―ebola virus‖ (not 
shown in Fig. 9) for the reason discussed above. Fig. 10 
shows the number of revealed concepts for each method 
and demonstrates the superiority of our approach. 

8.2 Opt-EdgeCut Comparison 

To compare the optimal algorithm Opt-EdgeCut and Heu-
ristic-ReducedOpt, we use the same query workload as in 
Section 8.1. As mentioned earlier, it is infeasible to ex-
ecute Opt-EdgeCut on the navigation tree obtained for any 

query in Table 1. Therefore, we base our comparison on a 
reduced navigation tree 𝐼 ′ (𝑛) obtained by applying the 
procedure GenReducedTree to an initial navigation tree 
𝐼(𝑛). The procedure GenReducedTree ensures that a re-
duced navigation tree has (1) at least one concept node 
with the same label as the target concept of the queries in 
Table 1, and (2) up to a maximum number 𝑚𝑎𝑥𝑁 of con-
cept nodes. In this experiment, we set 𝑚𝑎𝑥𝑁 to 25. 

 

Fig. 10. Number of Concepts Revealed Comparison 

 

Fig. 11. Overall Navigation Cost Comparison 

Procedure GenReducedTree 
Input: Initial Navigation Tree 𝐼 𝑛 , the target concept 𝑐, and the 
desired number 𝑚𝑎𝑥𝑁 of nodes in the reduced tree 
Output: A reduced tree with at most 𝑚𝑎𝑥𝑁 nodes, including 𝑐 

1 collect all nodes of 𝐼(𝑛) in list 𝐿 
2 create list 𝐿′ to store the nodes of the reduced tree 
3 add to 𝐿′ a concept node in 𝐿 with the same label as 𝑐 and 

all its ancestors 
4 while (𝑠𝑖𝑧𝑒𝑜𝑓 𝐿′ ≤ 𝑚𝑎𝑥𝑁) repeat 
5  select a node 𝑐′ uniformly at random from 𝐿 
6  add 𝑐′ and all its ancestors to 𝐿′, excluding duplicates 
7 create a tree 𝐼′ (𝑛) from the nodes in 𝐿′, preserving the 

parent-child relationship 
8 return 𝐼′(𝑛) 

Fig. 11 compares the proportional navigation cost of 
Opt-EdgeCut over Heuristic-ReducedOpt for the biochemi-
stry query set only. Opt-EdgeCut performs better than 
Heuristic-ReducedOpt for all queries. However, the im-
provement varies over a wide range (6% for ―LbetaT2‖ 
(Q1), to 75% for ―Na+/I symporter‖ (Q3)). This is because 
partitioning in Heuristic-ReducedOpt hides away the target 
nodes inside one of the partitions during an EXPAND 
action, effectively excluding their participation in an Ed-
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geCut. Thus, more EXPAND actions are needed to reach 
the target concept, which increases the cost. The opposite 
is true for query ―ice nucleation‖ (Q6). The target concept 
is relatively high up in the hierarchy and the partition 
algorithm creates a partition for the target concept during 
the first expansion. Thus the same number of expansions 
is needed to reach it, resulting in the same overall cost. 

 

Fig. 12. Heuristic-ReducedOpt EXPAND Performance 

8.3 Performance Evaluation 

Fig. 12 shows the average time of Heuristic-ReducedOpt to 
execute an EXPAND action for each query in Table 1. The 
average was taken over the number of EXPAND actions 
partially shown in Fig. 9. For an input tree 𝐼(𝑛), Heuristic-
ReducedOpt first creates a reduced tree 𝐼′(𝑛), and then 
runs the Opt-EdgeCut algorithm on it. The execution time 
is dominated by Opt-EdgeCut as it is an exponential algo-
rithm and depends on the size of the input tree. As stated 
earlier, we restrict the size of the reduced tree 𝐼′(𝑛) to 10 
nodes and the EXPAND cost 𝐵 is set to 15. However, 𝐼′(𝑛) 
can have a smaller size (see Section 6.2), in which case 
Opt-EdgeCut executes faster but with reduced accuracy. 

For example, the reduced tree 𝐼′(𝑛) for ―oxaluria‖ 
(Q17), in both EXPAND actions, had sizes 10 and 9 re-
spectively, which explains the highest average execution 
time, and also among the highest improvements in Fig. 8. 
On the other hand, for ―Na+/I symporter‖ (Q3), the first 
three EXPAND actions resulted in an 𝐼′(𝑛) of sizes 8, 8 
and 7, respectively. Hence, the average execution time in 
Fig. 12 is lower, as is the improvement in navigation cost. 

9 RELATED WORK 

Biomedical Search Systems. Several systems have been 
developed to facilitate keyword search on PubMed using 
the MeSH concept hierarchy. Pubmed itself allows the 
user to search for citations based on MeSH annotations. A 
keyword query ―histones[MeSH Terms]‖ will retrieve all 
citations annotated with the MeSH term ―histones‖ in the 
MeSH hierarchy. The user can also limit her search to a 
MeSH term by using additional filters, e.g., ―[majr]‖ to 
filter out all citations in the query result that don’t have 
the term as their major term. These filters can be com-
bined by using the Boolean connectives AND, OR and 
NOT. This interface poses significant challenges, even to 
experienced users, since the annotation process is manual 
and thus prone to errors. The closest to BioNav is Go-
PubMed [5,28], which implements a static navigation me-

thod on the results of PubMed. GoPubMed lists a prede-
fined list of high-level MeSH concepts, such as ―Chemi-
cals and Drugs‖, ―Biological Sciences‖ and so on, and for 
each one of them displays the top-10 concepts. After a 
node expansion, its children are revealed and ranked by 
the number of their attached citations, whereas BioNav 
reveals a selective and dynamic list of descendant (not 
always children) nodes ranked by their estimated relev-
ance to the user’s query. Further, BioNav uses a cost 
model to decide which concepts to display at each step.  

We could not directly compare BioNav with Go-
PubMed in our experiments, since it indexes citations 
differently than PubMed. However, the static navigation 
method we implemented very closely approximates the 
behaviour and the navigation cost of using GoPubMed. 

Other systems that tackle PubMed search using the 
MeSH concept hierarchy include PubMed PubReMiner 
[25] and XplorMed [22,30]. Both of them are query re-
finement tools and do not implement a particular naviga-
tion method. In particular, PubMed PubReMiner outputs 
a long list of all MeSH concepts associated with each 
query along with their citation count. The user can select 
one or more of them and refine her query. XplorMed per-
forms statistical analysis of the words in the abstracts of 
the citations in the query result and proposes query re-
finements/extensions to the user in a multi-step process. 
Ali Baba [23] displays the results on a graph where edges 
denote associations between the result nodes, which are 
typically genes and proteins. iHOP [10,11] shows to the 
user the genes associated to a query gene, where the asso-
ciation is measured through co-occurrence in a sentence. 
LSLink [15] uses the physical links between objects in the 
query result to find meaningful associations between pairs 
of terms in different controlled vocabularies annotating 
objects in multiple datasources. These associations allow 
users to discover novel and interesting relationships be-
tween pairs of concepts and potentially explore objects 
that are not retrieved by the initial query. 

Hierarchical Results Navigation Systems. In addition 
to GoPubMed discussed above, a few other systems offer 
hierarchical navigation on the query results. Amazon and 
eBay are the most popular systems that use static hierar-
chies to organize query results. Their static navigation 
method works relatively well since their hierarchies are 
significantly smaller than MeSH. BioNav could be ap-
plied on these hierarchies to minimize the navigation 
cost.  

Two academic proposals [2,3] dynamically categorize 
SQL query results by inferring a hierarchy based on the 
characteristics of the result tuples. Their domain is the 
tuple attributes and their problem is how to organize 
them hierarchically in order to minimize the navigation 
cost. They also decide the value ranges for each attribute, 
for both categorical and numerical ones, and how to rank 
them. One of the systems [3] takes into consideration the 
user’s preferences during the inference for a more perso-
nalized experience. Once the hierarchy is inferred, they 
follow a static navigation method. BioNav is distinct since 
it offers dynamic navigation on a predefined hierarchy. 
Hence, BioNav is complementary to these systems, since 
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it can be used to optimize the navigation, after these sys-
tems construct the initial navigation tree. 

Clustering Systems. Clustering systems [27,29,31] 
create unsupervised query-dependent clusters. PubMa-
trix [24] takes as input two sets of keywords terms, in ad-
dition to query keyword, and generates a co-occurrence 
frequency matrix of each pair of terms from the two lists, 
in the query result. The user can then browse this matrix 
and perform independent searches on pairs of terms. The 
Clusty [29] search engine clusters keyword-based query 
results on the web and operates on top of other search 
engines. HighWire Press [27] uses Clusty’s algorithms to 
cluster query results in the biomedical domain. [6] clus-
ters PubMed documents by the drug they refer to based 
on the UMLS [17] drugs classification. Once the clusters 
are created, a static navigation method is followed. Bio-
Nav could be adapted to work on top of the (typically 
shallow) hierarchy created by clustering systems. 

10 CONCLUSION 

Information overload is a common phenomenon encoun-
tered by users searching biomedical databases such as 
PubMed. We address this problem by organizing the 
query results according to their associations to concepts 
of the MeSH concept hierarchy and propose a dynamic 
navigation method on the resulting navigation tree. Each 
node expansion on the navigation tree, reveals a small set 
of nodes, selected from among its descendents, and the 
nodes are selected such that the information overload 
observed by the user is minimized. We formally stated 
the underlying framework and the navigation and cost 
models used for evaluation of our approach. We prove 
that the problem of selecting the set of nodes that minim-
ize the navigation cost is NP-complete and propose an 
efficient heuristic to ensure feasibility of our approach. 
We validate the heuristic for diverse sets of queries and 
navigation trees. The architecture of the proposed system 
was implemented and is available at 
http://db.cse.buffalo.edu/bionav.  
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