2LP: A Double-Lazy XML Parser

Fernando Farfan?®, Vagelis Hristidis?, Raju Rangaswami?,

8 Florida International University, School of Computing and Information Sciences,
Miami, Florida 33199, USA

Abstract

XML is acknowledged as the most effective format for data encoding and exchange
over domains ranging from the World Wide Web to desktop applications. However,
large-scale adoption into actual system implementations is being slowed down due
to the inefficiency of its document-parsing methods. The recent development of lazy
parsing techniques is a major step towards improving this situation, but lazy parsers
still have a key drawback —they must load the entire XML document in order to
extract the overall document structure before document parsing can be performed.
We have developed a framework for efficient parsing based on the idea of placing
internal physical pointers within the XML document that allow the navigation pro-
cess to skip large portions of the document during parsing. We show how to generate
such internal pointers in a way that optimizes parsing using constructs supported
by the current W3C XML standard. A double-Lazy Parser (2LP) exploits these
internal pointers to efficiently parse the document. The usage of supported W3C
constructs to create internal pointers allows 2LP to be backward compatible — i.e.,
the pointer-augmented documents can be parsed by current XML parsers. We also
implemented a mechanism to efficiently parse large documents with limited main
memory, thereby overcoming a major limitation in current solutions. We study our
pointer generation and parsing algorithms both theoretically and experimentally,
and show that they perform considerably better than existing approaches.

Key words: XML, DOM, Trees, Document management, Optimization.

1 Introduction

XML has become the de facto standard format for data representation and
exchange in domains ranging from the Web to desktop applications. Exam-

Email addresses: ffarfan@cis.fiu.edu (Fernando Farfin),
vagelis@cis.fiu.edu (Vagelis Hristidis), raju@cis.fiu.edu (Raju
Rangaswami).

ples of XML-based document types include Geographic Information Systems
Markup Language (GML) [5], Medical Markup Language (MML) [7], HLT7 [6],
and Open Document Format (ODF) [8,9]. This widespread use of XML re-
quires efficient parsing techniques. The importance of efficient XML parsing
methods was underscored by Nicola and John [41]; they showed that the pars-
ing process is processor and memory consuming, particularly needing main
memory as much as five times the size of the original document.

There are two de facto XML parsing APIs, DOM [2] and SAX [10]. SAX
reads the whole document and generates a sequence of events according to
the nesting of the elements, and hence it is not possible to skip reading parts
of the document as this would change the semantics of the API. On the other
hand, DOM allows users to explicitly navigate in the XML document using
methods like getFirstChild (), getNextSibling(), and so on. DOM is the
most popular interface to traverse XML documents because of its ease of use.
Unfortunately, its implementation is inefficient since entire subtrees cannot be
skipped when a method like getNextSibling() is invoked. This also leads to
frequent “Out of memory” exceptions. In contrast to SAX, parsing a docu-
ment using DOM could potentially avoid reading the whole document as the
sequence of navigation methods may only request to access a small subset of
the document. In this work we focus on parsing using a DOM-like interface.

Lazy XML parsing has been proposed (e.g., [1]) to improve the performance
of the parsing process by avoiding the loading of unnecessary elements. This
approach substitutes the traditional eager evaluation with a lazy evaluation
as used by functional programming languages [18]. The architecture shown
in Figure 1, based on the terminology of [42], consists of two stages. First, a
preprocessing stage extracts a virtual document tree, which stores only node
types, hierarchical structure information and references to the data associated
with each node. After this structure is obtained, a progressive parsing engine
refines this virtual tree on demand, which grows as needed, expanding the
original virtual nodes into complete nodes with values, attributes, etc.

Progressive

Pre-Parsing Parsing

XML Virtual DOM
Document Document Tree Tree

Fig. 1. Lazy XML Parser Architecture. A pre-parsing phase extracts a virtual doc-
ument tree and a progressive parsing engine refines this virtual tree on demand.

Clearly, the lazy parsing technique is a significant improvement. However, it
still suffers from the high initial cost of pre-parsing (Figure 1) where the whole

document must be read before the lazy/progressive parsing starts. The pre-
parsing stage is inevitable due to the lack of internal physical pointers (or
something equivalent) within the XML document. We propose a method to
(a) insert such internal physical pointers in the document, and (b) exploit
them to optimize the parsing method and specially the pre-parsing stage. In
particular, our approach is called double-Lazy Parsing (2LP) because both
stages in Figure 1 are lazy, in contrast to previous work where only the second
stage is lazy. The pre-parsing phase will lazily process only the subtrees of the
XML document that are necessary to satisfy the navigation request.

We address two key issues in inserting such physical pointers. First, we need to
decide how we can implement the pointers given the current W3C XML stan-
dard specification [20]. Second, we need to decide where to add the pointers,
considering the incurred overhead adding pointers on every node can cause the
size of the file to double. Also, following a pointer would typically require a
random disk access, and hence excessive use of such pointers must be avoided.

Regarding the first issue, we emulate physical pointers, by partitioning the
original XML document into several fragments (subtrees) which are then in-
terlinked using the XML Inclusion [12] feature. A drawback of this approach is
that the XML document is split into a set of smaller XML documents/files® .
However, we shall argue and demonstrate in the rest of this paper that the
performance gains far outweigh this drawback. Regarding the second issue,
we investigate in detail the tradeoff decisions to be made with respect to frag-
ment size, and propose an optimal configuration that can be applied in general
cases.

We also propose a method to manage the parsing of large XML documents
under limited main memory configurations. This approach allows 2LP to scale
to large XML documents, even when the total size of the document surpasses
the available amount main memory. This is not possible with current parsers,
which report “Out of memory” exceptions under such condition.

This paper makes the following contributions:

(1) We develop a framework to allow efficient XML parsing, which improves
the pre-parsing time as well as the memory requirements of parsing. Our
framework is based on the idea of placing internal physical pointers within
the document. Such pointers are currently realized using the XML Inclu-
sion feature.

1 Unfortunately, the XML standard does not support an alternative physical pointer
construct (XPointer [13] is logical and not physical) due to the complication this
would incur during cross-platform document exchange. If such a feature becomes
available in the future, it could be used instead of the described partitioning ap-
proach.

(2) We present algorithms to perform double-Lazy XML Parsing (2LP) for
DOM-like navigation, given internal physical pointers. We have imple-
mented 2LP as a backward compatible modification of the Apache Xerces2
Java Parser [1].

(3) We present algorithms to add internal physical pointer to the XML doc-
ument by partitioning it into subtrees given an optimal partition size.
We show how the theoretically optimal partition size can be computed
assuming knowledge of the navigation patterns on complete XML trees
and knowing the hard disk characteristics.

(4) We efficiently manage the main memory consumption of our XML parser,
making it possible to parse and navigate large documents under condi-
tions in which other approaches fail.

(5) We study our partitioning and parsing algorithms both theoretically and
experimentally. Experiments on various XML navigation patterns, in-
cluding XPath, confirm our theoretical results and show consistent and
often dramatic improvement in the parsing times.

The rest of the paper is organized as follows: Section 2 presents the system
framework and the overview of our approach. We describe our double-Lazy
parsing techniques in Section 3. Section 4 presents techniques for partitioning
the original document into smaller subtrees. An approach to parse using a
limited amount of main memory is presented in Section 5. The implementation
of all these techniques is discussed in Section 6. Our experiments are discussed
in Section 7. We present related work in Section 9. Finally, Section 8 discusses
our conclusions.

2 System Framework and Overview of Approach

2.1 Data and Query Models

XML data: We view an XML document as a labeled tree T', where each node
v has a label A\(v), which is a tag name for non-leaf nodes and a value for leaf
nodes. Non-leaf nodes v have an optional set A(v) of attributes, where each
attribute a A(v) has a name and a value. For simplicity in the presentation
we assume that there are no ID-IDREF edges (which would make the tree a
graph). However, our framework can support ID-IDREF edges by including
the partition id, in addition to the attribute id, in the IDREF attributes.
Figures 2(a) and 2(b) show a sample XML document and its corresponding
tree representation respectively. We annotate each node with its size and the
size of its subtree (in parenthesis) in Figure 2(b). To simplify the discussions
in the rest of the paper, we assume that these sizes are in numbers of disk
blocks. Similarly, the number in the parenthesis represents the size (in blocks

again) of the subtree rooted at the node.

Catalog

Book [tile="XML Book [title="Storage Book [title="XML Queries”
Databases” year="2002"] Principles” year="2001"] year="2002"]
Chapter [title="XML Chapter [title= Chapter [title= Chapter [title= Chapter [title= Chapter [title= Chapter
Introduction] "Semistructured Data"] "Introduction"] "File Systems"] "I/O Scheduling"] "Conclusions"] [title="XPath"]
Section Section Section Section Section Section
[title="SGML"] [title="Overview"] [title="Algorithms"] [title="Analysis"] [titte= "Navigation"] [title= "Applications"]

(a) XML Document

(b) XML Tree

Fig. 2. Sample XML Document and its corresponding tree. We annotate each node
with its size and the size of its subtree (in parenthesis) in Figure 2(b).

We clarify that this work is not aiming at improving the performance of XML
database systems [4,11,17,34,40], where indexes [27,31] and other optimiza-
tions are possible, but at improving the efficiency of using XML as a format
to store documents for general applications as motivated in Section 1.

XML navigation patterns: We consider two types of XML navigation pat-
terns in our experiments. The first type is a simple root-to-leaf traversal, in
which a path is traversed from the root of the XML document to any of
its leaves. We use this simple yet common and useful pattern to model the
theoretical behavior of our approach.

Second, we use XPath queries. We use XPath and not XQuery because our
work tackles the problem of efficient parsing for the purpose of efficiently nav-
igating the XML data, which is XPath’s role. However, our results for XPath
carry to XQuery as well, since XQuery queries are typically evaluated by com-
bining the results of the involved XPath queries. We adopt the “standard”
XPath evaluation strategy [28] shown in Figure 3. Intuitively, this algorithm
processes an XPath query) in a depth-first manner on the XML document,
one step of @ (Q.first) at a time, and stores the intermediate results in a set

S.

procedure processLocationStep(n0, Q)
/* Node n0O is the context node;
* Query @ is a list of location steps */
1 NodeSet S := apply Q.first to node nO;
2 if(Q.tail is not empty) then
3 for each node n in S do
4 processLocationStep(n, Q.tail)

Fig. 3. Standard XPath evaluation strategy according to [28].
2.2 Disk Drive Modeling

We base our disk drive modeling on the work of [43]. In their model, seek,
rotation, and transfer times, combine the following features:

e A seek time that is linear with the distance, using the single-cylinder and
full-stroke seek times published in the disk drive specification.

No head-settle effects or head-switching costs.

A rotational delay drawn from a uniform distribution over the interval [0,
rotation time).

A fixed controller overhead.

A transfer time linear with the length of the request [43].

Given these characteristics, we utilize their models to obtain the transfer time
and random access time for the set of hard disk drives that use for our theoret-
ical model and experimental section. In Appendix A we present an extended
explanation on how the model was used, as well as the summarized data sheet
for the featured disk drives.

2.8 Querview of Approach

Our approach for parsing XML documents consists of two stages. First, the
document is partitioned into a set of smaller XML files, which are then inter-
linked using XInclude [12] pointers. The optimal size of a partition is computed
using a formula which considers the random versus sequential access charac-
teristics of a hard disk. The second stage involves the parsing of a partitioned
document. The key goal is to read a minimal set of partitions in order to
perform the sequence of navigation commands. 2LP loads (pre-parses using
the terminology of Figure 1) the partitions in a lazy manner, that is, only
when they are absolutely necessary for the navigation sequence. In the case
of DOM, we maintain an overall DOM tree D(T') which is initially the DOM
tree of the root partition Py of 7. Then D(T) is augmented with the DOM
trees D(P;) of the loaded partitions P;.

Further, to control memory usage, our approach also performs lazy unloading
of inactive partitions (discussed in Section 3) if the total amount of main
memory used by the DOM tree exceeds a threshold. Thus, in addition to
a fast pre-parsing stage, our method also allows DOM-based parsing with
limited memory resources. Note that previous lazy parsing techniques can
also implement the proposed technique for optimizing memory usage, but to
a smaller extent since the virtual document tree must be stored in memory at
all times.

3 2LP on Partitioned XML Documents

Let T be the original XML document, and F,,... P, be the partitions to
which T" was split during the partitioning stage, explained in Section 4. Py
is the root partition, since it contains the root element of T. Figure 4 shows
an example of a partitioned XML tree. All the partitions are connected by
XInclude elements, containing the Uniform Resource Identifier (URI) to the
partition file. The XInclude elements are represented in the figure by nodes
b', f" and j', as explained in Section 4.1.

p0.xml

Fig. 4. Partitioned XML Tree after partitioning the tree in Figure 2(b).

Note that by creating a partition (e.g., P»), the key result is that we facilitate
skipping the subtree rooted at this partition. That is, by creating partition P,
we can directly access node n from node f'.

The XML representation of two of the partitions in Figure 4 is shown in Fig-
ure 5. Partition P, corresponds to the root partition since it contains the
root of the original XML document. The subtree rooted at the first Book

element was partitioned and the Book element has been replaced by the XIn-
clude pointer to the XML document of Partition P;. This additional element
added to the tree upon partitioning will hold the reference to the root of the
partition’s subtree. We explain this aspect in detail in Section 4.

p0.xml
<Catalog>
<xi:include href="pl.xml"
xmlns:xi="http://www.w3.0rg/2001/XInclude" />
<xi:include href="p2.xml"
xmlns:xi="http://www.w3.0rg/2001/XInclude" />
<Book title="XML Queries" year="2002">
<xi:include href="p4.xml"
xmlns:xi="http://www.w3.org/2001/XInclude" />
</Book>
</Catalog>

pl.xml
<Book title="XML Databases" year="2002">
<Chapter title="XML Introduction">
<Section title="SGML" />
</Chapter>
<Chapter title="Semistructured Data" />
</Book>

Fig. 5. XML Documents after partitioning.

Figure 6 describes the process of loading (pre-parsing) a partition. After load-
ing a partition, progressive parsing occurs as needed. The loadPartition()
method replaces, in the working DOM tree, the XInclude pointer element e
with the DOM tree of the partition that e points to.

procedure loadPartition(XIncludeElement e) {

1 newPartitionRoot := preParse(e.getAttribute("href"));

2 replace(e, newPartitionRoot); /*replace e by newPartitionRoot
in the node treex/

Fig. 6. Load Partition algorithm.

To ensure the double-lazy processing of the partitions, we need to decide when
it is absolutely necessary for a partition to be loaded. Intuitively, a partition
must be loaded when a navigation method (e.g., getFirstChild()) cannot
be executed without doing so, that is, the return value of the method cannot
be computed otherwise.

Similarly, we also need to decide which partitions to unload and when to do
so in order to accommodate new partitions that need to be loaded, given that
the available system memory is limited. We address unloading of partitions in
detail in Section 5.

We now present the 2LP versions of the key DOM methods that may trig-
ger the loading of a partition: getFirstChild(), getTextContent() and
getNodeName (). Note that the getNextSibling() method cannot trigger a
partition loading, because even if the sibling node is an XInclude pointer, we
do not have to load the partition before the user asks for the details of the
returned node (e.g., using getNodeName () shown below).

Figure 7 presents the getFirstChild() method with the logic to decide
whether a partition has to be loaded. The original method only returns the
firstChild member of the current object (“this”). In our modification, the
loading is performed if the current node is an XlInclude element, and it will
assign the root element of the loaded partition to the firstChild member vari-
able. Thus, instead of returning directly the first child of the XInclude node,
we return the first child of the root element of the partition.

Node getFirstChild() {

1 if this is XIncludeElement {
2 loadPartition(this);
3}

4 return firstChild;

}

Fig. 7. Modified getFirstChild() method to handle the lazy loading of partitions.

Example 3.1 Consider the partitioned XML document depicted in Figure 4.
Let’s also consider the root-to-leaf navigation pattern a— f—j—k. We start
by parsing and traversing the root partition, labeled Py. The first node-step,
a, 1s satisfied in partition Py, but to satisfy the second node-step, f, we need
to follow the XInclude pointer to partition Py, while completely skipping the
processing of Pi. After pre-parsing partition P,, we progressively parse it to
reach f. We need to satisfy the last two node-steps by following the pointer
to partition P, pre-parsing it to then progressively parse the desired nodes. In
this example, we omitted the traversal of partitions P, and P,. O

Example 3.2 Let’s consider the XML document in Figure 5 and the XPath
query /Catalog/Book[@title=‘‘Storage Principles’’]/Chapter.

The careful reader can verify that this query requires loading all the partitions,
even when we lazily process the document. O

Note that in Example 3.2 we had to load partition P; just to read an attribute
of its root element. To save such unnecessary partition loadings we extend the
attributes of the XInclude element to contain additional information about the
root element of the partition. This may save the loading of a partition when
only information about its root node is required. Thus, the partition will be
loaded only if the information needed by the navigation is not included in the
pointer element. The data duplication to implement this idea is minimal, as
shown in Section 7.2, since internal XML nodes typically are very small.

Table 1 summarizes the different inclusion levels based on the data from the
partition’s root element that is duplicated in the corresponding XlInclude el-
ement. The names of the attributes used to store this data in the XInclude
element are also displayed. For the TAG_ATR level, we use a single attribute
whose value will resemble a query string (as used in World Wide Web forms)
of the form fieldl = valuel& field2 = value2& field3 = value3. .. [19].

Table 1
Inclusion Levels

Inclusion Level Data to Include Attribute Name
NONE None N/A

TAG Tag (Default) xiPartitionTag
TAG_ATR Tag + Attributes xiPartitionAtr
TAGATR_TXT | Tag + Attributes + Text | xiPartitionTxt

Example 3.2 (continued) If we extend the XInclude elements depicted in
Figure 5 according to Inclusion level TAG_ATR and execute the same XPath
query, we will find the necessary information about the tag names and attribute
values in the XInclude pointer elements. Thus, partitions P, and P, will not
be processed at all, since the attribute values added to the XInclude pointer can
help us discriminate which “Chapter” elements satisfy the attribute condition
without loading the partition. O

In addition to the getFirstChild() method presented above, which is unaf-
fected by the inclusion level, we now show how other key navigation methods
of DOM need to be modified for the 2L.P. Figure 8 presents two navigation rou-
tines that have been modified to allow the double-lazy processing of XML par-
titions with different inclusion levels. Similar to the getFirstChild () method,
these two methods return (originally) just the corresponding member variable
of the object. By modifying them, the methods will lazily include the cor-
responding partition if and only if this is needed to satisfy the navigation
pattern and if the desired information is not included in the XInclude pointer
element. If the inclusion is performed, the root element of the partition is as-
signed to current object (“this”) and its member variables (name and text
for getNodeName () and getTextContent () respectively) are returned. Similar
modifications are performed for the other DOM methods that can potentially
trigger the loading of a partition.

4 Partitioning the XML File

Our main goal when partitioning XML documents is to minimize the 2LP
parsing time needed for navigating the document.

In what follows, we first describe (in Section 4.1) how to partition an XML

10

String getNodeName() {
1 if this is XIncludeElement {

2 if inclusionLevel != NONE then { /** tag information present
in XInclude element **/
3 name = this.getAttribute("xiPartitionTag");

/** The xiPartitionTag attribute inside the XInclude
element stores the tag name of the root element of the
partition *x*/

4 } else {

5 loadPartition(this); /** ‘‘this’’ is now pointing at
the root element of the loaded partition and the
‘‘name’’ variable is updated **/

6 }

7}

8 return name;
}

String getTextContent() {

1 if this is XIncludeElement then {

2 if inclusionLevel = TAG_ATR_TXT then {

3 text = this.getAttribute("xiPartitionTxt");

4 } else {

5 loadPartition(this); /** ‘‘this’’ is now pointing at the

root element of the loaded partition and the ‘‘text’’
variable is updated **/

7 }

8 }

9 return text;

}
Fig. 8. Key modified Document Object Model Navigation Methods.

document by selecting subtrees of an optimal size. Then in Section 4.2 we
make a theoretical analysis to obtain the optimal partition or subtree size,
based in simplified navigation patterns.

4.1 Partitioning Algorithm

The key criterion to partition the original document is the number of blocks
that each partition will span across the hard disk drive (i.e., the partition
size). This size criterion is independent of the particular tree-structure (or
schema if one exists) and the query patterns, and is shown to lead to efficient
partitioning schemes (Section 7). The rationale behind this is that disk I/O
performance is dictated by the average size of I/O requests when accesses are
random [24].

11

The key idea of the algorithm is a bottom-up traversal of the XML tree, where
nodes are added to a partition until the size threshold (in number of blocks) is
reached. We show how the optimal partition size is calculated in Section 4.2.

Since we are using XInclude to simulate the physical pointers, we need to
comply with the XInclude definition and hence provide partitions that are
themselves well-formed XML documents. This means that our partitions need
to have exactly one root element. Thus, the partitioning algorithm must in-
clude entire subtrees when creating a new partition. This constraint leads to
having a few very large partitions since every XML document typically has
very few nodes with very high fanout (e.g., open_auctions node in XMark [26]).
However, as we shall show in Section 7, this does not degrade the parsing per-
formance since these partitions typically need to be completely navigated by
XPath queries.

Figure 9 describes the basic tree partitioning algorithm. The execution of
partitionTree(T.root, threshold) will recursively traverse 7" in a bottom-
up fashion, calculate the size of each subtree, and if this size exceeds the
threshold, then the createPartition() method is called for this subtree.
The createPartition() method will move the entire subtree to a new XML
document and a new XInclude element will replace its root node in the original
XML file to reference the new partitioned subtree. Also, depending on the
inclusion level flag, specific information of the partition’s root element will be
added to the newly created XInclude element.

Figure 5 shows the resulting partitioned XML tree for the XML tree of Fig-
ure 2(b) with a threshold of 10 blocks per partition. Node ¥’ is the XInclude
element which points to the partition rooted at node b. The same holds for
nodes f', 5, o.

Example 4.1 Consider the XML document in Figure 2(b). When we execute
the method partitionTree(a, 10), the depth-first traversal of the tree rooted
at a begins. The traversal will descend until it reaches the leftmost branch,
and from there it will begin the bottom-up search for the subtree whose size
in blocks is larger or equal to the specified threshold. Hence, we first create
a new partition for the subtree rooted at node b, replacing this node with an
XInclude pointer to the newly created partition. We assume in this case that
we are using the default inclusion level (NONE), and thus an extra block is
used by the pointer to maintain the data. We continue the navigation and
create another partition with the subtree rooted at node j, repeating the same
steps; we further create the new partitions rooted at nodes f and o. O

12

int partitionTree(node n, int threshold) {
1 size = getSize(n); /** Returns the size in bytes of the node n,
including attribute names and values and text section **/

2 for each child c of n {
3 size = size + partitionTree(c);
4}
5 if size >= threshold and not isRoot(n) {
6 createPartition(n);
7 size = getSize(n); /*Recalculates the size after the
partition is created*/
8 }
9 return size;
}

createPartition(node n) {

1 x = create new XML file;

2 addXIncludePtr(n, x); /** Replace the subtree rooted at n in the
current XML document by an XInclude element pointing at
file x **/

3 moveSubtree(n, x); /** Move the subtree rooted at n to file x *x*/

}

Fig. 9. Partitioning Algorithm.
4.2 FEstimating the Optimal Partition Size

To obtain an appropriate value for the partition size, we conduct the following
analysis for the root-to-leaf navigation pattern described in Section 2.1. In
particular, we calculate the average access time to navigate from the root to
each of the leaves of the XML document. While performing a similar analysis
for general XPath patterns is infeasible due to the complexity and variety of
the navigation patterns, we show, in Section 7, that using the theoretically
obtained partition sizes leads to good results for general XPath queries as
well.

We assume, for sake of simplicity, that our tree is complete and each node of T
occupies a single disk block ? . Therefore, the XML tree T, which has N nodes
and degree d, has height h = log,; N. As we shall see in the evaluation section,
the simplifying assumptions used in our theoretical model do not significantly
impact the key results; the theoretically optimal is found to be very close to
the experimentally computed optimal size.

Cost with no partitions: When the XML document is not partitioned (and
hence 2LP is not applicable), the average cost of a root-to-leaf traversal is given

2 Later on, we shall show that in spite of these simplifying assumptions, the exper-
imentally obtained optimal partition sizes closely match our theoretical estimates.

13

by the following equation. Note that for simplicity we assume the document
is parsed from scratch every time a navigation pattern occurs.

COStnOPmiiaf = trand + IV - ttr(msf (1)

root—

where t,,,4 1 the random access time needed to reach the root of the tree and
tiranss 1S the time required to transfer one block of data for the specific disk
drive. Note that the whole tree must be read (pre-parsed in Figure 1) to create
the intermediate structure used to later progressively parse the document. No
cost is assigned to the progressive parsing phase since the document has been
already loaded in memory during pre-parsing.

Cost with partitions: Let us assume that the tree will be segmented into
equally sized partitions, and we can describe each partition as having:

2: Number of nodes in partition
h' = logysx: Height of the partition

In this case, the average cost for a root-to-leaf traversal is given by the following
equation:

Costlmil 1ar = (# partitions accessed) X (trand + T - tiransy)

where t,4n.a% - tiransy 1s the cost to pre-parse and load a partition. The number
of partitions along a root-to-leaf traversal is h/h’. Hence we have the following
equation:

COStPMt %(trand +x- ttransf)

root—leaf —

Observe that the ratio of heights can be simplified using logarithmic properties,
and is independent of d. As a result, we obtain:

In N
COStfoaort‘t—leaf = m(trand +x- ttransf) (2)

Based on (2), we model the optimal cost of the partition size for four different
hard disk drives, described in Table 2. A detailed description of our hard disk
drive model and how we calculate the data transfer and random access times
is included in Appendix A.

Figure 10 presents the times C’ostfo‘fﬁileaf for the four different disk drives
presented in Table 2 for varying partition sizes x. The optimal partition size
is the value of z that minimizes the time.

The un-partitioned cost Cost]on®7,; is equal to the time for the maximum

partition size, where the whole document fits in a single partition.

14

Table 2
Disk Drive Characteristics

Disk Model Size (GB) | tiranss (mS) | trand (ms)
Maxtor D740X 20.0 0.009446 5.441876
Fireball Plus 27.3 0.007688 5.359013
Cheetah 15K.4 36.7 0.002560 2.359615
Hitachi Ultrastar | 73.4 0.003810 3.520530

100000 \\
10000 A

10 100 1000 10000 100000 1000000

Blocks per partition (x)

-
o
o

Average Root-To-Leaf
Access Time (ms)

-
o

-

\-O-Maxtor D740X —=-Fireball Plus —+— Cheetah 15K.4 Hitachi Ultrastar\

Fig. 10. Effect of varying the partition sizes on the average root-to-leaf navigation
access time.

5 Management of Limited Main Memory

As mentioned earlier, the DOM representation of an XML document can span
up to five times its size in main memory. This fact combined to the increasing
size of XML documents causes current XML parsers to often fail with an “Out
of Memory” exception.

We have created and implemented a mechanism to unload inactive partitions
from the overall DOM tree. A partition P is considered as inactive if the path
from the root of the DOM tree to the point of the current navigation sequence
does not include any element from P.

To achieve the unloading of inactive partitions, we add a data structure that
stores the information about the root element of the partition, the path of the
partition document in the file system as well as a pointer to such root element.
Every time a partition is loaded, all the metadata and the pointer are stored
for further analysis. Also, after each partition is loaded, the system checks for
the size of the overall DOM tree to decide whether one or more partitions have
to be unloaded.

Figure 11 presents a modified version of the loadPartition() method pre-
sented in Figure 6. This new version adds the logic for unloading partitions to
restrict the total amount of main memory used by the overall DOM tree to a
fixed threshold. Every time a new partition is loaded, the method checks for
the overall memory utilization and unload suitable partitions until the mem-

15

procedure loadPartition(XIncludeElement e) {

1 newPartitionRoot = preParse(e.getAttribute("href"));

2 replace(e, newPartitionRoot); /** replace e by newPartitionRoot
in the DOM tree **/

3 registerPartition(this, e);
4 while(size(T) > memory_threshold) {
5 unloadPartition(getPartitionToUnload(T)) ;
6 }
}

Fig. 11. Modified Load partition Algorithm with Partition Unloading mechanism.

ory usage is below the threshold. Three auxiliary methods are added to handle
the logic:

registerPartition(): This method receives as parameters the current element
at which the partition has been added as well as the metadata of the partition.
It stores the filename of the partition document in the file system and all the
necessary information to recreate the XInclude pointer when the partition has
to be unloaded.

getPartitionToUnload(): This method analyzes the information stored by
the registerPartition() method and decides which partition has to be un-
loaded. We implemented two variants of this method to implement the First-
in, First-out (FIFO) and Least Recently Used (LRU) [46] strategies, as used
in the context of virtual memory page replacement. The FIFO strategy picks
the oldest partition, taking the one at the head of the partition queue. When
a partition is loaded, we insert it at the tail of the queue. Notice that the
root partition, Py, will never be unloaded, since it contains the root of the
original XML document and we need to maintain that information accessible
at all times. The LRU strategy discards the least recently used partitions; it
requires keeping track of what was used when, which is more expensive than
FIFO.

unloadPartition(): Once the getPartitionToUnload() method selects a
partition, this method removes the underlying subtree from the overall DOM
tree and reconstructs the XInclude pointer using the metadata stored by the
registerPartition() method.

6 System Implementation

In this section, we describe the architecture and implementation of the two
key components of our system: the XML Partitioner and the 2LP parser.

The system architecture is shown in Figure 12. The XML Partitioner takes
a source XML document and partitions it based on a threshold determined

16

using the model presented in the previous section. The 2LP Parser can also
parse un-partitioned XML documents.

XML deries XSLT GJS
XML
DOM API
Y
XML 2LP Xerces
Partitioner Parser Parser

XML

y xi:
Xi:

XML &=~ XML XML

_/

Fig. 12. XML Partitioning and 2LP Architecture.

The 2LP parser was implemented by modifying the Xerces2 Java Parser, al-
lowing it to handle the XlInclude-defined partitions, but also preserving its
backward compatibility. Figure 13 shows a simplified class diagram in Uni-
fied Modeling Language (UML) notation [21,30], for the classes involved in
our modification. The top layer is the W3C DOM Interface, followed by the
Xerces2 Java Parser which is the implementation of such interface. The shad-
owed classes are the ones modified from the open-source package. The bottom
layer is our own package, which encapsulates the modifications required to
handle the partitioning and inclusion mechanisms.

Below, we describe the key ideas behind the modified and newly added classes
in the implementation.

ElementImpl: This class was modified to handle inclusion behavior for two
methods, getNodeName () and getAttributes(). Depending on the inclusion
level, these methods may answer a query with local information or require an
inclusion to import a new partition and answer the query.

PartitionMgr: The PartitionMgr class is attached to the CoreDocumentImpl
class in the Xerces package, to manage the orchestration of traversal and in-
clusion. Every time a new partition is required, the XIncludeHandler will
process the specified URI and a new Partition object will be created. It also
manages the unloading mechanism.

XIncludeHandler: This class handles directly the inclusion operations when

17

org.w3c.dom

| Document '—(>| Node | | NodeList | | Element |

<<implements>>

org.apache xerces |

<<i >> i
implements: <<implements>>

ChildNode '—' NodelList

<<extends>>

<<implements>>
<>|CoreDocumentlmpl

<<extends>>

| Documentimpl ChildNode ! <<extends>> I Elementimpl
|

t

edy.fiu.cis.xincluder |

D Unmodified Class A Inheritance —— Association
D Modified Class <« Composition <> Aggregation
. New Class

Fig. 13. XML Partitioning and 2LP Class Diagram.

invoked from the ParentNode and ElementImpl objects in the Xerces package.
This class works as a replacement to the default XInclude processor provided
by the Xerces parser. In order to achieve this, we turn off the XInclude feature,
and let our package handle these pointers.

Partition: This class is an abstraction to manage each partition as it is pro-
cessed by the XIncludeHandler class. Notice that all the user-level interaction
is still performed via the DOM Interface, guaranteeing the backward compat-
ibility desired as a design goal. We have made our XML Inclusion feature
backward compatible, so another XML document that has XInclude pointers
in it will be treated in the same way by our double lazy parser, and any par-
titioned document joined by XInclude pointers will be handled by any Xerces
parser in a correct way.

7 Experiments

In this section, we evaluate our XML Partitioning and 2LP schemas. First,
we experiment with optimal size of partitions based on the theoretical model
proposed in Section 4.2. Second, we measure the performance of our tech-
niques with two navigation patterns, root-to-leaf patterns and XPath queries,
as presented in Section 2.1. Third, we evaluate the impact of our memory
management optimization by unloading unnecessary partitions, as presented

18

in Section 5.

Our framework was developed in Java using JDK 5.0. We modified the Xerces2
Java Parser 2.9.1 [1]. The experiments were performed on a 2.0GHz Pentium

IV workstation with 512MB of memory running Linux. The workstation has
a 20GB Maxtor D740X disk.

7.1 FEvaluation of the Theoretical Model

We generated XML files of various sizes using the XMark generator [44]. We
applied the partitioning algorithm to these documents, with several partition
sizes (in blocks) to compare our theoretical model described in Section 4.2
against experimental results performing the same type of root-to-leaf naviga-
tion patterns described in Section 2. Note that throughout the experiments
the 2LP parser is used for partitioned documents and the Xerces for un-
partitioned.

Figure 14 shows the average time to traverse all the root-to-leaf paths for an
XML document with XMark factor 0.5 (50MB), running on a Maxtor D740X
hard drive as described in Section 4.2. The theoretical curves are based on the
model presented in Section 4.2. Notice that the scale is logarithmic and the
patterns of the graphs are similar, with a slight deviation in the experimen-
tal graph. We believe that the gap between the theoretical and experimental
graphs is caused because the theoretical model does not take into account the
processing time needed to navigate these paths and the effect of paging due
to the limited amount of memory, but only the primary I/O time involved
in reading the partition for the XML file. From the graph, we can infer the
optimal size of the partition to be 2680 disk blocks, which is approximately
one Megabyte.

Next we compare the optimal partition size (obtained experimentally) for var-
ious document sizes (by varying the XMark factor) with the theoretical opti-
mum. Figure 15 shows these results for the same hard drive, where again the
theoretical and experimental values are close. For the first two XMark factors,
the experimental optimal values are considerably smaller than the theoretical
prediction. This is due to the fact that for the case of small files, having smaller
partitions will benefit the performance of the navigation patterns, since it is
more likely that the partitions (stored in the same directory) are contiguously
placed on disk. The file system can efficiently (sequentially) retrieve all the
partitions from the disk.

19

100000

10000

1000

-
o
o

Average Root-To-Leaf
Access Time (ms)

1 T T T T T
1 10 100 1000 10000 100000 1000000

Blocks per partition (x)

—a— Theoretical without partitions Theoretical with partitions
—— Experimental without partitions —# Experimental with partitions

Fig. 14. Average Traversal Time for Partition Sizes.

3500

3000

2500 +—

2000 +—

1500 —

Blocks per partition

1000 +—

500 +—

0.050 0.100 0.500 0.650 0.750 1.000
XMark Factor

‘I:I Theoretical optimal size B Experimental optimal size‘

Fig. 15. Optimal Size of Partitions.

7.2 Performance Evaluation

We now present the evaluation of our approach using two types of naviga-
tion patterns, root-to-leaf traversals and XPath queries. As explained in Sec-
tion 4.2, the comparisons assume that the XML document has not been al-
ready parsed before a query or navigation pattern, that is, we measure both
the pre-parsing and progressive parsing times of Figure 1. We measure three
time components in the total execution time:

Pre-Parsing: The Xerces parser uses its deferred expansion node feature by
initially creating only a simple data structure that represents the document’s
branching and layout. This phase requires scanning the whole document to
retrieve this structure. For un-partitioned documents, it means that the first
time we load the file, the whole document has to be traversed and processed;

20

for partitioned documents, every time we process a new partition, it is pre-
parsed to create the logical structure in memory.

Progressive Parsing: As the navigation advances, this initial layout built
in the pre-parsing phase is refined, and all the information about the nodes is
added to the skeleton. This phase is performed only on the visited nodes and
will have the same behavior in both un-partitioned and partitioned documents.

Inclusion: This phase is introduced by the 2LP components, and captures
the time required to include and import the new partition into the working
document. This component does not apply to un-partitioned documents.

Root-to-leaf traversal cost: Figure 16 shows the average access cost in mil-
liseconds for the root-to-leaf access patterns, comparing the performance for
different XMark factors. To compute the average time, we sampled 10% of
the leaves of each document, adding each tenth leaf into the sample, and per-
formed. root-to-leaf traversals for each sampled leaf. A traversal in this case
results in a sequence of parent-to-first-child and sibling-to-next-sibling oper-
ations in order to reach the desired leaf. These experiments were performed
with the theoretical optimal partition size and the NONE inclusion level (the
inclusion level does not impact the simple root-to-leaf traversals).

30000

25000

20000
2
E
o 15000 [}
E
F .
10000
5000
ol = H
£ ¢ £ ¢ £ ¢ £ ¢ £ ¢ £ ¢
© © ®© © © © ® © © © ® @
Q Qo Q o Q Qo Q o Q o Q o
c c c c c c
] =}] =}] =}
0.050 0.100 0.500 0.650 0.750 1.000

XMark Factor

‘I:I Pre-parsing B Progressive parsing [IInclusion ‘

Fig. 16. Root-To-Leaf Access Cost.

XPath query cost: Our second experiment executes a set of XPath queries
over the XML data. The queries are shown in Table 3. We have included
the performance queries from XPathMark [26], that is, the ones that test the
execution time and not specific XPath functional aspects. We added more
queries to have more reliable results.

For this set of experiments, we used several XML document sizes correspond-
ing to various XMark factors. Once again, we use the theoretically optimal

21

Table 3
XPath Queries

Query

Q1 /site/closed_auctions/closed_auction/annotation/description /parlist/listitem [text/keyword

Q2 / site/people/person/watches

Q3 / site/open_auctions [open_auction/annotation/description /text/keyword
Q4 / site/people /person/address/country

Qs /site/regions/australia/item/description/tex/emph

Qs /site/people/person/ x [business

Q7 /site/closed_auctions/closed_auction/ x /description

Qs /site/regions/ x [item/description /text

Qo / site/open_auctions [openauction

Q10 | /site/closed_auctions

Q11 | /site/regions/australia

Q12 | /site/closed_auctions/closedauction

Q13 | /site/regions/ x [item

Q14 | /site/ x [australia

Q15 | /site/open_auctions/open_auction[@id =' openauction0']/bidder
Q16 | /site/regions/asia/item|[Qid =" item4']/mailbox/mail/from
Q17 | //keyword

Q1s | /site/closed_auctions//itemref

partition size for partitioning the XML documents. We used the default in-
clusion level (TAG) for these experiments.

Figures 17 and 18 show the performance of such queries for XMark factors
of 0.5 and 1 (100MB) respectively. Figure 19 shows the average values for
the same experiment over three datasets with XMark factors 0.500, 0.750
and 1.000. We see how for un-partitioned files, the pre-parsing time is always
similar, since the whole document has to be processed to load the initial layout.
For partitioned files, only the required partitions are processed, leading to
significant reduction in the pre-parsing phase in most of the cases. We can
observe that the partitioned documents perform consistently better than the
un-partitioned ones. We have some cases in which the performance of the
partitioned documents is almost equal to the performance of the original files.
These cases, such as @3, @9, @14 and @15, need to traverse most sections of
the tree, requiring the inclusion of most partitions.

In the cases of @y, Q14 and)17, the open_auctions partition is loaded which
has a size of 15MB (due to the fact that each partition must be a well-formed
XML document, as explained in Section 4.1). Pre-parsing and progressively
parsing this large partition penalizes these queries and they almost match the
execution time of the un-partitioned version. However, in a typical scenario,
such large partitions must be completely accessed anyways, except for the rare
case when a navigation pattern specifies a child at a particular position (e.g.,
1000 child).

22

8000

7000

6000

a

o

o

o
L

Execution Time (ms)

Q1 Q2 Q3 Q5 Q5 Q6 Q7 Qs Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18
XPath Query

‘I Pre-parsing B Progressive parsing O Inclusion ‘

Fig. 17. XPath Query Performance for XMark Factor = 0.5 using the performance
XPath queries from XPathMark.

14000

12000

10000

8000 -

6000 -

Execution Time (ms)

4000

2000 -

0 -

Q1 Q2 Q3 Q5 Q@5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13 Q14 Q15Q16 Q17 Q18
XPath Query
\I Pre-parsing B Progressive parsing O Inclusion \

Fig. 18. XPath Query Performance for XMark Factor = 1 using the performance
XPath queries from XPathMark..

The inclusion time component varies correspondingly to the size of the par-
titions that have to be included into the working document. We see then
that the inclusion component for Qs3, @, Q14 and @5 is large, but again
this is caused by the large size of the open_auctions partition required to sat-
isfy all these four queries. For these same queries we found large segments
of time consumed by the Inclusion operation. The reason is that we rely on
the Document . importNode () method provided by the DOM model which tra-
verses the whole imported XML tree and updates the owner document for
every single node. Even when the tree is already in memory, this operation is

23

8000 — — — | H

6000 H — — | H — — e

4000 1 = = — - =

- GRILLLLLEELLLRLEL
0 | , | 1 , ,

Q1 Q2 Q3 Q5 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12Q13 Q14 Q15Q16 Q17 Q18
XPath Query

Execution Time (m

Part. | ‘

Part.
Part.
Part.
Unpart.
Part.
Part. I ‘
Unpart.
Part.
Part.
Part.
Part.
Part.
Part.
Part.
Part.
Part. |
Part.
Part.
Part. |

Unpart.
Unpart.
Unpart.
Unpart.
Unpart.
Unpart.
Unpart.
Unpart.
Unpart.
Unpart.
Unpart.
Unpart.
Unpart.
Unpart.
Unpart.
Unpart.

‘EI Pre-parsing B Progressive parsing O Inclusion ‘

Fig. 19. Average XPath Query Performance for XMark factors from 0.050 to 1.000,
using the performance XPath queries from XPath-Mark.

CPU intensive, delaying the process of including the new partition.

Inclusion Levels: We now experiment with the inclusion levels described in
Section 3. Initially, we observe the increase of space required by the partitions
given the distinct inclusion levels, compared against the original unpartitioned
document. We partitioned a document with XMark Factor = 0.5.

Figure 20 presents the results of this experiment, showing low space overhead
even when the full information of the partition root is added to the XInclude
element. Compared to the size of the original size and to the size of the parti-
tioned file with inclusion level NONE, we can say that practically no overhead
exists. We can see how the third inclusion level has the same overhead as the
second one. This is due to the fact that most of the nodes that contain text
are leaf nodes, and none of the internal nodes that were chosen to root a new
partition contain text values.

Figure 21 shows the average query execution time performance when XPath
queries are executed over partitioned documents with different Inclusion lev-
els. We picked several XPath queries that represent different categories of
queries and different axes. Given the practically inexistent space overhead dis-
cussed above, adding information about the root element of the partition in
the XInclude physical pointer can give us a significant percentage of gain. In
particular, the TAG_ATR level is generally the best choice.

24

0.016%

0.014%

0.012% —

0.010% -

Space Overhead %
o
o
o
©
o=

0.006% ——

0.004% —

0.002% —

0.000%

Unpartitioned NONE TAG TAG_ATR TAG_ATR_TXT
Inclusion Factor

Fig. 20. Space Overhead for Inclusion Levels.

6000

[ENONE BTAG OTAG_ATR MTAG_ATR_TXT|

5000

N
o
o
o

3000 +—

Execution Time (ms)

N
o
o
o

1000 +—

Q2 Q14 Q15
Query

Fig. 21. Execution Time with Inclusion Levels.

7.8 Partition Unloading

In this section we evaluate the performance of 2LP when the amount of main
memory designated to store the DOM tree is limited and hence, the partition
unloading mechanism is required. We simulated this by introducing a total
memory threshold factor My, which takes into account the DOM overhead
claimed by [41] which concludes that a DOM document can expand in main
memory up to three or five times the size of the XML file. This factor models
the limited number of Megabytes that can be allocated by the DOM document
at any given moment.

For this experiment, we repeated the execution of our performance evaluation
XPath queries, but this time adding the Partition Unloading mechanism to
our 2LP. The XPath queries from Table 3 were executed sequentially, without
resetting the DOM tree to the initial partition P, this with the objective of

25

having several partitions loaded before each query was executed. To simulate
the Total Memory Threshold My, we set the Java Virtual Machine’s maximum
java heap size to 450MB, and used our partitioned XML document for xmark
factor = 1.0.

Figure 22 shows the total amount of main memory allocated by 2LP after each
query is executed. The JVM Memory Limit resembles the total memory thresh-
old factor My, as limited by the JVM maximum heap size. We measured the
performance of 2LP without Unloading mechanism as well as the behavior of
the unloading mechanism following two strategies: First-In-First-Out (FIFO)
and Least-Recently-Used (LRU), both as used in the context of main memory
page replacement. Both strategies restrict the loaded partitions according to
Mo, replacing the appropriate partition as dictated by each strategy.

500

450

"Out of Memory" Exception raised w

'S
o
o

w
a
o

w
o
o

/—-’
[N [\
/4 N—7"
\ 7

/\m*/'_'
NV 2
Y

2 o
o
o o

Main Memory Consumption (MB)
N
()]
o

N

N

I I I U IR
CFFFIIFIFT TS

XPath Query Sequence

‘—JVM Memory Limit == Without Unloading =+ FIFO Unloading == LRU Unloading ‘

Fig. 22. Loaded Partitions after Sequential Query Executions.

The execution of 2LP without Unloading followed a behavior as shown in Fig-
ure 18, where at a point after the execution of ()14, the application crashed
with an “Out of Memory” exception, not being able to perform the total exe-
cution of our query load. Using a lazy parser like Xerces on the unpartitioned
document leads to the same behavior. This was due to the fact that Q14 uses
a wildcard and requires almost the whole tree to be loaded into main mem-
ory. In contrast, both FIFO and LRU approaches for the unloading strategy
were able to manage the critical point of loading several partitions during
query ()14, working properly until the last query was executed even under
the main memory limitations. We can see that our unloading approach has
the potential to scale better to parse large documents under limited memory
conditions, whereas current approaches including Xerces will raise “Out of
Memory” exceptions.

Both FIFO and LRU strategies lead to similar behaviors, with slight differ-
ences in the order in which the partitions are unloaded as shown for queries)7

26

and ()10; in ()7 a larger partition is unloaded by the FIFO strategy, whereas
LRU unloads a smaller one. Similarly, for)12, the LRU strategy selects a
large partition to unload, while the partitions unloaded by FIFO are not as
large.

Figure 23 compares the execution time of the XPath queries when the 2LP
utilizes the Unloading Mechanism. The figure contains the execution times for
2LP with no Unloading Mechanism, as well as both FIFO and LRU strate-
gies. The execution of the queries was performed sequentially as explained
before, and this caused the first two queries to perform similarly under the
three conditions, since the same partitions have to be loaded in the same or-
der to solve the query. For the execution of query ()3, the size of the overall
DOM tree has surpassed the memory threshold and hence one partition has
to be unloaded, meaning a penalty in the total execution time. Queries ()4
and Q¢ show a similar performance for the three variants, since all the parti-
tions that are needed to solve these queries are already loaded into memory
in these specific moments, not needing to parse any new partitions. Also none
of the currently loaded partitions were unloaded by these queries. In the case
of queries ()14 and ()17, the maximum memory threshold was reached several
times during the query execution, given the large number of partitions re-
quired to be parsed by the 2LP. This causes a lot of partitions to be unloaded
during the query execution, drastically penalizing the total execution time.
Queries ()3 and Q9 need to navigate the open_auctions subtree, requiring a
larger amount of processing time given the large size of such subtree.

14000

12000

10000

8000 M

6000

Execution Time (ms)

4000 -

2000 - I
o 4
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11 Q12 Q13 Q14 Q15Q16 Q17 Q18
XPath Query Sequence

‘EIWithout Unloading B FIFO Unloading CJLRU Unloading

Fig. 23. Execution Time with Unloading Mechanism.

Figure 24 shows the number of partitions that are loaded, re-loaded and un-
loaded during the execution of each XPath query. A loaded partition means
that it has been parsed for the first time by the 2LP. An unloaded partition

27

is one that has been chosen by the Unloading Mechanism to be discarded. A
re-loaded partition is one that has been previously discarded but it is needed
to satisfy the query and hence is parsed again.

45

40
35
w
_§30
o) -
E 15
=
10
5
o M- o Qﬂm!'hﬂ:ﬂ] ED

0D 0D 02D O O O O O O O O O O O O O O O
Loy bof b Loy W U w0 b b b Lo W LW Lo b b b Lo
e TR TR TR TR TR TR TR 1 T TR " T TR TR TR TR

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18
XPath Query Sequence

|E Loaded O Re-Loaded B Unloaded |

Fig. 24. Loaded, Re-Loaded and Unloaded Partitions.

Again we can see how the performance of queries @1, @2, @3 and @, is sim-
ilar; the same partitions have to be loaded and unloaded for these cases. As
observed in Figure 23, the execution of queries (), and Q¢ do not require the
parsing of any new partitions, since all the necessary partitions are already
in main memory. The performance of queries Q14 and Q7 is also related to
the behavior in the previous figure. The wildcards and descendant operators
require a large number of partitions to be parsed and with this, a large number
of partitions to be unloaded as well.

We can also see that both the FIFO and LRU strategies behave similarly
in terms of re-loaded partitions. In terms of total execution time, LRU is
penalized by the reordering of the partitions in the internal data structures of
the strategy.

8 Related Work

Nicola and John [41] have identified the XML parsing process as a bottle-
neck to enterprise applications. Their study compares XML parsing in several
application domains to similar applications that use relational databases as
their backend. Operations such as shredding XML documents into relational
entities, XPath expression evaluation and XSLT [3,16] processing are often
determined by the performance of the underlying XML parser [41], limiting

28

the massive embracement of native XML databases into large-scale enterprise
applications.

Noga, Schott, and Lowe [42] present the idea of Lazy Parsing as presented in
the Section 1. The virtual document tree can potentially be stored on disk to
avoid the pre-parsing stage; however, the virtual document tree has to still
be read from disk. Schott and Noga apply these ideas to the XSL transfor-
mations [45]. Kenji and Hiroyuki [36] have also proposed a lazy XML parsing
technique applied to XSLT stylesheets, constructing a pruned XML tree by
statically identifying the nodes that will be referred during the transformation
process.

Lu et al. [39] present a parallel approach to XML parsing, which initially
pre-parses the document to extract the structure of the XML tree to then
perform a parallel full parse. This parallel parsing is achieved by assigning the
parsing of each segment of the document to a different thread that can exploit
the multi-core capabilities of contemporary CPU’s. Their pre-parsing phase is
more relaxed than the one proposed by [42] and that we use throughout our
work; this relaxed pre-parsing only extracts the tree shape without additional
information, and is used to decide where to partition the tree to assign the
parsing sub-tasks to the threads. This partitioning scheme differs from ours
since it is performed after the pre-parsing phase is executed, whereas ours is
performed a priori, with the objective of optimizing such pre-parsing stage.

There have been efforts in developing XML pull parsers [15] for both SAX
and DOM interfaces. Also, [14] presents a new API built just one level on top
of the XML tokenizer, hence claiming to be the simplest, quickest, and most
efficient engine for processing XML.

Huang et al. [32,33] present a pre-filtering framework to improve the efficiency
of XPath processing over large XML documents with the existing DOM and
SAX models. Their framework utilizes an inverted index and a tiny search
engine that locates the useful fragments that may be candidates to satisfy
the input XPath query, and only these fragments are submitted to the XML
parser. In contrast to our approach which is minimally invasive and is compat-
ible with current XML parsers and standards, they use specialized proprietary
storage and processing mechanisms.

Van Lunteren et al. [48] propose a programmable state machine technique that
provides high performance in combination with low storage requirements and
fast incremental updates. A related technique has been proposed by Green,
Miklau, Onizuka and Suciu [29], to lazily convert an XPath query into a De-
terministic Finite Automata (DFA). After this conversion is performed, they
submit the XML document to the DFA in order to solve the query. They pro-
pose a lazy construction opposed to an eager creation, since constructing the

29

DFA with the latter technique can lead to an exponential growth in the size
of the DFA.

Kiselyov [37] presents techniques to use functional programming to construct
better XML Parsers.

Kanne and Moerkotte [35] have worked on tree partitioning algorithms, but
their techniques are more oriented to low-level disk placement, mapping each
partition to a single block on the disk drive to be further exploited by native
XML data stores like Natix [40].

Several works have been proposed in the area of XML compression. Some of
these works [25,38] require the document to be decompressed before any query
or navigation can be performed over the XML data. Some others, considered
query-friendly [22], only require a small subset of the document to be de-
compressed. Some recent works [23,47,49] can support navigation in the com-
pressed document. SDOM [23] proposes a succinct way of representing XML
documents in order to reduce their memory fingerprint and allow efficient
navigation. However, SDOM still incurs the pre-parsing cost. Furthermore,
their representation is not backwards compatible with current XML parsers.
[22,25,38,47,49] have similar limitations. These XML compression and parsing
techniques could be viewed as complementary to our work since we mainly
optimize the pre-parsing stage with a slight optimization of the progressive
parsing stage and they mainly optimize the latter one.

9 Conclusions

Lazy XML parsing is a significant improvement to the performance of XML
parsing but to achieve higher levels of performance there is a need to optimize
the pre-parsing phase during which the whole document is read. In this paper,
we address this problem by enabling laziness in the pre-parsing phase as well.
To do so, we have proposed a mechanism to add physical pointers in an XML
document by partitioning the original document and linking the partitions
with XInclude pointers. We have also proposed 2P, an efficient parsing algo-
rithm for such documents, that implements pre-parsing laziness. Additionally,
we implemented a dynamic partition unloading mechanism that can enables
parsing in memory-limited systems, allowing us to parse and navigate large
documents under conditions wherein other parsers typically fail. To aid parti-
tioning decisions, we have proposed a theoretical model for the processing of
partitioned documents and presented methods to compute optimal partition
sizes. We have experimentally showed that 2LP outperforms other deferred
evaluation techniques such as Xerces Java Parser.

30

10 Acknowledgements

This project was supported in part by the National Science Foundation Grant
I1S-0534530 and by the United States Department of Energy Grant ER25739.

References

[1] Apache Xerces2 Java Parser. http://xml.apache.org/xerces2-j/, 2008.

[2] Document Object Model (DOM). http://www.w3.org/DOM/, 2008.

[3] Extensible Stylesheet Language (XSL). http://www.w3.org/TR/xsl/, 2008.
[4] Galax. http://www.galazquery.org, 2008.

[6] Geography Markup Language. http://opengis.net/gml/, 2008.

[6] Health Level Seven XML.
http://www.hl7.org/special/ Committees/xml/index.cfm, 2008.

[7] Medical Markup Language.
http://www.ncbi.nlm.nih.gov/pubmed/10984873?dopt=Abstract, 2008.

[8] OpenDocument Specification v1.0.
http://www.oasis-
open.org/committees/download.php/12572/OpenDocument-v1.0-os.pdf, 2008.

[9] OpenOffice XML File Format v1.0.
http://xml.openoffice.org/xml_specification.pdf, 2008.

[10] Simple API for XML (SAX). http://www.saxproject.org/, 2008.
[11] Xalan-Java. http://xml.apache.org/xalan-j/, 2008.
[12] XML Inclusion. http://www.w3.org/TR/xinclude/, 2008.

[13] XML Pointer Language (XPointer) Version 1.0. http://www.w3.org/TR/WD-
xptr, 2008.

[14] XML Pull Parser (XPP). http://www.extreme.indiana.edu/xgws/xsoap/xpp/,
2008.

[15] XML Pull Parsing. http://www.xmlpull.org/index.shtml, 2008.
[16] XSL Transformations. http://www.w3.org/TR/xslt, 2008.
[17] XT. http://www.blnz.com/xt/index.html, 2008.

[18] S. Abramsky. The Lazy Lambda Calculus. In D. A. Turner, editor, Research
Topics in Functional Programming, pages 65-116. Addison-Welsey, Reading,
MA, 1990.

31

[19] T. Bernes-Lee. Universal Resources Identifiers.
http://www.w3.org/designissues/axioms.html, 2008.

[20] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, and
J. Cowan. Extensible Markup Language (XML) 1.1. W3C Recommendation,
World Wide Web Consortium. http://www.w3.org/TR/xmll11/, 2006.

[21] Bernd Bruegge and Allen H. Dutoit. Object-Oriented Software Engineering
Using UML, Patterns, and Java. Prentice Hall, Englewood Cliffs, NJ, second
edition, September 2003.

[22] Giorgio Busatto, Markus Lohrey, and Sebastian Maneth. Efficient memory
representation of xml documents. In DBPL, pages 199-216, 2005.

[23] O’Neil Delpratt, Rajeev Raman, and Naila Rahman. Engineering succinct dom.
In EDBT ’08: Proceedings of the 11th international conference on Extending
database technology, pages 49-60, New York, NY, USA, 2008. ACM.

[24] Zoran Dimitrijevic and Raju Rangaswami. Quality of Service Support for Real-
time Storage Systems. Proceedings of International IPSI Conference, October
2003.

[25] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing
and searching xml data via two zips. In WWW ’06: Proceedings of the 15th
international conference on World Wide Web, pages 751-760, New York, NY,
USA, 2006. ACM.

[26] Massimo Franceschet. XPathMark: An XPath Benchmark for the XMark
Generated Data. 2005.

[27] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formulation
and Optimization in Semistructured Databases. In VLDB, 1997.

[28] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient Algorithms for
Processing XPath Queries. Hong Kong, 2002.

[29] Todd J. Green, Gerome Miklau, Makoto Onizuka, and Dan Suciu. Processing
XML Streams with Deterministic Automata. In ICDT ’03: Proceedings of the
9th International Conference on Database Theory, pages 173-189, London, UK,
2002. Springer-Verlag.

[30] Object Management Group. UML Resource Page. http://www.uml.org/, 2008.

[31] Torsten Grust. Accelerating XPath Location Steps. In SIGMOD Conference,
2002.

[32] Chia-Hsin Huang, Tyng-Ruey Chuang, and Hahn-Ming Lee. Prefiltering
techniques for efficient XML document processing. In DocEng ’05: Proceedings
of the 2005 ACM symposium on Document engineering, pages 149-158, New
York, NY, USA, 2005. ACM.

32

[33] Chia-Hsin Huang, Tyng-Ruey Chuang, James J. Lu, and Hahn-Ming Lee.
XML Evolution: a two-phase XML processing model using XML prefiltering

techniques. In VLDB ’06: Proceedings of the 32nd international conference on
Very large data bases, pages 1215-1218. VLDB Endowment, 2006.

[34] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nierman,
S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu.
TIMBER: A Native XML Database. The VLDB Journal, 11(4):274-291, 2002.

[35] Carl-Christian Kanne and Guido Moerkotte. A linear time algorithm for
optimal tree sibling partitioning and approximation algorithms in Natix. In
VLDB ’06: Proceedings of the 32nd international conference on Very large data
bases, pages 91-102. VLDB Endowment, 2006.

[36] Manaka Kenji and Sato Hiroyuki. Static optimization of XSLT stylesheets:
template instantiation optimization and lazy XML parsing. In DocEng ’05:

Proceedings of the 2005 ACM symposium on Document engineering, pages 55—
57, New York, NY, USA, 2005. ACM.

[37] Oleg Kiselyov. A Better XML Parser through Functional Programming. Lecture
Notes in Computer Science, 2257:209+, 2001.

[38] Hartmut Liefke and Dan Suciu. XMill: an efficient compressor for XML data.
pages 153-164, 2000.

[39] Wei Lu, Kenneth Chiu, and Yinfei Pan. A Parallel Approach to XML Parsing.
The Tth IEEE/ACM International Conference on Grid Computing (Grid2006),
Barcelona, Spain, September 28-29, 2006.

[40] Natix. http://www.dataexmachina.de/. 2008.

[41] M. Nicola and J. John. XML Parsing: a Threat to Database Performance.
CIKM, 2003.

[42] Markus L. Noga, Steffen Schott, and Welf Lowe. Lazy XML processing.
In DocEng ’02: Proceedings of the 2002 ACM symposium on Document
engineering, pages 88-94, New York, NY, USA, 2002. ACM.

[43] Christ Ruemmler and John Wilkes. An Introduction to Disk Drive Modeling.
Computer, 2:17-28, 1994.

[44] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey,
Ioana Manolescu, and Ralph Busse. XMark: A Benchmark for XML Data
Management. VLDB, 2002.

[45] Steffen Schott and Markus L. Noga. Lazy XSL transformations. In DocEng
’03: Proceedings of the 2003 ACM symposium on Document engineering, pages
9-18, New York, NY, USA, 2003. ACM.

[46] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System
Concepts Tth Edition with Java 7th Edition. John Wiley & Sons, 2006.

33

[47] Pankaj Tolani and Jayant R. Haritsa. XGRIND: A query-friendly XML
compressor. In ICDE, 2002.

[48] J. van Lunteren, T. Engbersen, J. Bostian, B. Carey, and C. Larsson. XML
Accelerator Engine. First International Workshop on High Performance XML
Processing, 2004.

[49] Raymond K. Wong, Franky Lam, and William M. Shui. Querying and
maintaining a compact xml storage. In WWW °07: Proceedings of the 16th
international conference on World Wide Web, pages 1073-1082, New York,
NY, USA, 2007. ACM.

34

A Disk Drive Modeling

As mentioned in Section 2.2, we base our disk drive modeling on the work
of [43]. In their model, seek, rotation, and transfer times, combine the features
presented in Section 2.2.

Table A.1 presents the disk drive transfer time (tiyanss) and random access time
(trand), required to transfer and access a disk block respectively, for the four
hard drive disks we utilize for our theoretical model and experimental section.
The values presented in this table were gathered from the manufacturers data
sheets.

Table A.1

Hard Drive Modeling Parameters

Maxtor Quantum Seagate Hitachi

Disk Model 6L020J1 Fireball+4 Cheetah UltraStar
KX27.3 15K.4 10K300

Formatted capacity (GB) 20 27.3 36.7 73.4
Heads 1 16 2 3
Rotational Speed (RPM) 7200 7200 15000 10025
Stroke (ms) 17.8 15 7.9 10
Transfer (MBps) 54.2 66.6 200 134.375
Block count 40,132,503 | 54,600,000 | 71,687,372 | 143,374,804
Cylinders 16 383 16 383 50 864 65 494
Avg. seek 8.5 8.5 3.5 4.3
Track switch 0.8 0.8 0.2 0.4
Full Stroke 17.8 15 7.9 10

Notice that according to their model definition, the typical seek times are the
average seek, track-to-track seek, and full stroke. We also consider the analysis
of the average seek distance, utilizing one third of the full stroke as the average
distance seek.

The equations in Table A.2 describe the Gamma function that models the
head positioning effects as stated in [43], approximating the measured seek-
time profile for the different disk drives.

Table A.2
Gamma Function: Seek Curve Modeling

seek distance | <y (distance) (ms)
< 1/3 Cylinders | a+ b- v distance
> 1/3 Cylinders ¢+ d - distance

As stated in A.2 the average seek distance will be less than one third of the
cylinders, we use the first equation to calculate . Table A.3 summarizes the
values for the four parameters a, b, ¢ and d, as well as the Gamma function
value and the final Transfer Time and Random Access Time.

35

Table A.3

Gamma Values, Transfer and Random-access Time

Maxtor | Quantum Seagate Hitachi

Disk Model 6L020J1 | Fireball4 | Cheetah | UltraStar
KX27.3 15K.4 10K300

a 0.694374 0.694374 | 0.174460 0.373425
b 0.105626 0.105626 | 0.025540 0.026575
c 3.850000 5.250000 | 1.300000 1.450000
d 0.000851 0.000595 | 0.000130 0.000131
v(1/3 cylinders) | 1.275209 1.192346 | 0.359615 0.528011
tiransf 0.009446 0.007688 | 0.002560 0.003810
trand 5.441876 5.359013 | 2.359615 3.520530

36

