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Abstract—Authority flow and proximity search have been used —user-defined authority flow bounds on different edge types—
extensively in measuring the association between entities in dataalso require on-the-fly authority flow computation.
graphs, ranging from the Web to relational and XML databases. Another application that will benefit from on-the-fly au-

These two ranking factors have been used and studied separately thority fl tation is k d imit h dat
in the past. In addition to their semantic differences, a key ad- ority flow computation Is keyword proximity search on data

vantage of proximity search is the existence of efficient execution graphs —on the Web [23] or on a database [14], [13], [1], [3],
algorithms. In contrast, due to the complexity of calculating the [19]. The result of such queries is typically a tree of inter-
authority flow, current systems only use precomputed authority connected nodes (pages or database objects) that calgctiv
flows in runtime. This limitation prohibits authority flow to be  gntain all the query keywords. Intuitively, results withter

used more effectively as a ranking factor. In this paper we presa . . . .
a comparative analysis of the two ranking factors. We present '€lationships between their nodes (pages or databasetsjojec

an efficient approximation of authority flow based on proximity ~Should be ranked higher. This “tightness” of the relatiopsh
search. We analytically estimate the approximation error and can be estimated by the authority flow between the nodes. Due

how this affects the ranking of the results of a query. to the prohibiting cost of the on-the-fly computation of thes
authority flows, all the above works estimate the “tightfiess
|. INTRODUCTION by the size of the result-tree, which can be misleading inyman

Authority flow and proximity search have been used e@pplications. o
tensively in measuring the association between entities in!n this work we show how we can efficiently calculate an
data graphs, ranging from the Web to relational and XMgpproxmatlon of the authority flow between two nodes (we
databases. These two ranking factors have been used @@geralize for multiple nodes as well) given the paths gree
studied separately in the past. We present a comparatigé more than two nodes) with length up @ connecting
analysis of the two ranking factors. In particular, we shof?€ nodes. The latter problem has been extensively studied i
how the cheaper proximity search can be used to approximBfor work [14], [13], [1], [3], [9], [17], [19] where efficiat
the expensive authority flow. Authority flow is being used b@gorithms are presented to find all paths otdata graph
various applications [4], [2] to measure the importance of @ 9raph of pages and hyperlinks for the web, or of data
query result. The validity of this factor has been proven HgPiects and their relationships for databases as we exjlain
the success of using PageRank in Google. ection Ill-A) connecting two nodes. _

Due to the high complexity of calculating the authority The intuition behind this approximation is that there is a
flows, current systems only use a small precomputed §&rrelation between the authority flow between two nodes and
of authority flow values. For example, Google precomputdd® number of paths connecting them. In particular, when
a single PageRank value for each page denoting its glofAfr® aré many paths connecting nodes then there is a
importance. ObjectRank [2], [12] go a step further to compu9°°d chance that there is high flow of authority between,

for each page (database object in ObjectRank) an authoﬁ'@ﬂ inversely. Hence,_ we can approximate the authority flow
flow value for each topic or keyword respectively. bétweenu, v by counting (in a weighted manner) the result-

However, as we explain below, it is desirable to be able {5925 ﬂ;]at conta|r_1bth_em. t thi is that th h th
on-the-fly compute the authority flow between arbitrary reode, nother contribution of this paper is that through the

at query-time. For example, suppose we want to know h %finition of the approximation methoq we show the interplay

much authority is flowing between two pages A and B. Thi etwee_n the proximity and t_he authority flow ranking fa_lctprs

may be useful if we locate a base page A for a topic arie previous work, the authority flow [4], [2] and the prO)fIIYIIt

want to find all pages B with significant relationship to %structure of resglt tree) factor [9], [3]’. [1] were consiee

(that is, high flow from A to B). As another example conside ndamentally different ways of ranking the results of a

the query: “Who are the authors of UCSD who receive hig eyvyord) query. . oo

authority from the papers published by FIU?". To answer this This paF’er has the fOIIOW'_ng contrlbutlgns. i

query we need to on-the-fly calculate the authority flows from ¢ We discuss and formalize the relationship between the

the papers of FIU to the authors of UCSD. popular authority flow al_"nd p_rOX|m|ty search facf[ors.
Incorporating structure-based relevance feedback oroauth * We present an approximation method to estimate the

ity flow queries [24] or structure-based query persondtrat authority flow between nodes on-the-fly. This method
uses a proximity search algorithm (as mentioned above

Partly supported by NSF grant 11S-0811922 and DHS grant Z00962- many such algorithm_s exist in prior work [14]’ [13]. [1]’
000016. [3], [9]) as a subroutine.
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The paper is organized as follows. Section Il presents Wehegiodo, 5. Sikant 2"/ cies | G S. Sawgar
the basics of authority flow and proximity search that we Tie= Renge Qeries LALAP Da DilesModelng Mulidimersional
need in this work. Section IIl presents our framework and b\g/ by
a formal definition of authority flow. Section IV presents the Author Name-R. Agrawal”

proposed approximation method and Section V shows how thEig. 1: Data Graph. (Tags are in boldface and underlined.)

approximation error is calculated. Finally, we presenated a node to a keyword query — the base set consists of the nodes
work in Section VI and conclude in Section VII. that contain the keyword.

Il. BACKGROUND B. Background on Proximity Search

This section presents the required background on authorityThe proximity problem on a graph is similar to the Group
flow and proximity search in graphs. Notice that these grapBseiner Tree problem [21], which is known to be NP-hard.
are typically data graphs (formally defined in Section I)-A Prior work has followed various ways to overcome the NP-
which are graphs whose nodes correspond to data entitiesd complexity of the problem. Goldman et al. [9] uses
(web pages or database objects) and the edges to relapsnsprecomputation to minimize the runtime cost. BANKS [3] uses
(hyperlinks, primary-to-foreign key relationships, parehild an algorithm to approximate the Group Steiner Tree problem
relationships, and so on). Also, queries in previous workehafollowing forward edges, whereas [17] also uses backward
been plain keyword queries. edges. References [14], [13], [1] assume the existence of
a schema and exploit the schema properties to achieve ef-
ficient execution. Finally, Kimelfeld and Sagiv [19] presen

We describe next the essentials of PageRank and author#p-algorithm with polynomial delay which repeatedly calls a
based search, and the random surfer intuition. (1&tF') be traditional Steiner Tree approximation algorithm.

a graph, with a set of nodds = {vy,...,v,} and a set of
edgesE. A surfer starts from a random node (web pagedf
V and at each step, he/she follows a hyperlink with probgbilit This section presents the data model (Section IlI-A), and
d or gets bored and jumps to a random node with probabilithe authority flow problem (Section 11I-B) from the point of

1 — d. The PageRank value of is the probabilityr(v;) that Vview of proximity search in order to understand the inteypla
at a given point in time, the surfer is at. If we denote byr between them.

the vector[r(vy),...,rw;),...,r(v,)]" then we have A Data Model

A. Background on Authority Flow

IIl. DEFINITIONS AND FRAMEWORK

(1-d)

\4
whereA is an x n matrix with 4;; = Weg(m if there is
J

1) As mentioned above, the data can be the link-structure of
the web, a structured database, or any other source that can

be modeled as a graph. In particular, we view a database as
i i . a labeled graph, which is a model that easily captures the
an edgev; — v in E and 0 otherwise, wheré)utDeTg(”j) web, relational and XML databases. THata graphD(V, E)
is the outgoing degree of nodg..AIsq, €= .[1’ s 1 is a labeled undirected graph where every nodgypically

The above PageRank equation is typically precomputggresponding to a page for the web [4], to an element in
before the queries arrive and provides a global, keyworgh, [2], [14] and to a tuple in relational systems [2], [1],

independent ranking of the pages. Instead of using the wh?i%]) has a label\(v) and anodeid A(v) consists of the tag
set of nodes as thebase seti.e., the set of nodes WhereT(v) and an optional value(v). For example, in Figure 1,

the surfer jumps when bored, one can use an arbitrary subggl pottom nodey has r(v) =‘Author’, v(v) =*Name="R.
S of nodes, hence increasing the authority associated wéth Wgrawal”” and \(v) =<*Author’, “Name”, “R. Agrawal”>.
nodes ofS and the ones most closely associated with them. IN o the data grapP, we can create thauthority transfer
partlcular,_ we (_jefme dase vectos = [SQ,...7si,...,sn] graph DA(V, EA) (Figure 2), if we know the amount of
where s; is 1 if v; € S and 0 otherwise. The PageRankihority flow @uthority transfer raty that each direction of
equation is then each edge can carry. In general, every edgev in D* has
(1—d) two authority transfer ratea(u — v) and a(u «— v). The
r =dAr + 5] S (2) authority transfer data graph is a directed graph, wheresdg
with zero authority transfer rate are ommited. For simplici

The PageRank algorithm solves this fixpoint using a simplge will assume that there are no parallel edges.
iterative method. The notion of the base Setvas suggested

in [4] as a way to do personalized rankings, by settffigo
be the set of bookmarks of a user. ObjectRank [2] took it oneln this section we formally define authority flow from a
step further and used the base set to estimate the relevincpeosspective other than the random surfer (Section 1I-A). In

r = dAr +

B. Definition of Authority Flow
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We approximate the authority flowrlow(u,v) between
nodesu,v with the paths of length up ta\/ (M is the

n}aximum number of edges of the paths). These paths are

fhztlcilﬁé’ (\:Acl)ir?eeélt?: iﬂ??}ggefslov\\llvgi\?{;in ?gguessc')r; te;::vii 8a|cu|ated using proximity search algorithms as described
P 9 ' y P Section II-B. The contribution of each path u ~» v is the

authority flows, that is, we approximate the authority flow o .
between a base set comprised of a single noded a target probability of traversalp(l) as defined above. For example

. . -~ in Figure 3, the pathly : papery — papers — papers
28322. In Section IV-A, we extend for base sets with mumplerepresents less authority transfer frgaper; to papers than
' lo : papery — papery — paperg from paper; to papers.

To formulate the problem, the basic quantity we use is thso, 1, : paper; — papers — papers carries no authority
probability of traversalp(u — v) of an edgeu — v, which  from paper; to papers, because authority only flows along
is defined as the probability that a random surfer currentiife direction of the edges (authority only flows to cited pape
at v will be at v in the next time unit following the edge and not to citing as it is explained in the ObjectRank work
u — v. The probability of traversap([vi,v2, -+, vn]) Of [2]). Note that in case of other edge types, authority could
a pathl = (vi — v2 — -+ — v,) is the probability potentially flow in both directions as shown in Figure 2.
that a random surfer currently a will reach v, in n — 1 If By(u,v) is the set of paths with size up t&/ in
time units following one by one the edges of That is, p, going fromu to v, the authority flow calculated by the
p([vr, v, -+ vn]) = plvr — wv2) - p([ve, -+, va]) Where gpproximation method 191 By (uw) P(1). TO be consistent
P(vi = vj) = Gurpegryy fOr regular edges. Note that we alsQyith the normalization method of Section I1I-B and ensure
discuss below, for virtual edges appearing due to the dagnpifhat the flow value is up td, we divide this quantity by\/.

Fig. 2: Authority Transfer Data Graph.

factor, it isp(v; — v;) =1—d. Hence
To go from path traversal probability to authority flow, we 1 +
define the probability of travel im steps as follows. Flowar(u,v) = 77 Z p(l) = Py(u,0)  (9)

. . l€B (u,v)
Definition 1: The n-step travel probabilityP,, (u,v) from

node u to nodewv is the probability that a random surfer This approximation suffers from thsize error which is

currently atu will be at v after n time units. Furthermore, due to the fact that all works [9], [13], [3] returning result
the up-toﬂ-steps travel probabm 'rj_(u??)) is defined as trees limit their maximum size ta/, but authority may flow

1 along longer paths. In the example above)if= 2, the path
P (u,v) = — Z Pi(u,v) (3) s : paperw — paper; — papers — paperg is ignored since
il it has size greater thah The relative size erroFs is defined

Notice that we divide by, to ensure that the value is up to by the following formula

since P (u,v) is a probability. Note that ifD, was a DAG g = Flow(u,v) — Flowy (u, v) ©)
then this normalization would not be needed because the sum s Flow(u,v)

is always up tol. However, due to the damping factor, WhichotiCe that it is always, > 0 becauseFlow(u, v) includes

introduces virtual backedges, the graph is not a DAG. Thg, ., ). Ignoring the constant factors for simplicity, we
intuition behind summing allP;(u,v)’s is to get an average

over all possible time instances frotrto ¢ + n - £y, Since
the authority flow is the probability of being at a node at a Es =
random time instance.
The authority flowFlow(u, v) from nodeu to nodev is ~ Where Pi, (u,v) = 722 3%, Pi(u,v). Section V esti-
mates the value of’s.
Finally, we must address the issue of whether we should
graph D has a cycle materializ_e the virt_ual edges implied by the damping f_actor
P (u,v) , wheres is length of longest path in d. In particular, a virtual edge — v should be added going
DA if DA is a DAG from each nodeu to every nodev of the base set. To be
(4) accurate, we should do this before applying the proximity
As mentioned above, the graph is not a DAG, so we use thearch algorithms. However, to reduce the complexity of the
first branch of Equation 4. proximity search algorithms, we can omit this step, sidce

get
limnﬂooPJ\ZHm(u, v)
Flow(u,v)

)

limn— oo Py (u,v) , if authority transfer
Flow(u,v) =



Name | #Nodes| #Edges | Size(Mb) iterations. Note that in order to maintaii, > 0 for all M
DS7 | 699,199| 3,533,756] 2,189 values, it is important to initialize the page rank veat@ame
DBLP 876,110 4,166,626 3,950 as the base vectar:

TABLE | Datasets The convergence of the power method is linear, reducing

the error of the eigenvector (i.e., the Euclidean distarme)
about [A2]/|\1] in each iteration [15], where\;,\, are the
first and second eigenvalues. Hence, the relative erroreof th
A. Extend to a Base Set with Multiple Nodes eigenvector afted iterations isEs = O((|Xa|/|M\1)M).
Furthermore, Haveliwala and Kamvar [11] have proven

is typically close tol (d = 0.85 in PageRank [4]), and the
virtual edges have authority transfer ratelof d.

So far we have explained how to approximate the authorit¥ X i
flow from a single-node base set to a naden this section (Theorem 1) thatl, = d, whered is the damping factor,
we generalize to base sets with multiple nodes. To do so, % the web graph. _
use the linearity theorem from Jeh and Widom [16], which heorem 1:For any matrixA = [cP + (1 — d)E]T_, where
states that if a base s@ consists of two sets, and B,, 1 IS @nn xn row-stochastic matrixE is a nonnegative: x n

such thatB = B; U B,, then the PageRank scoré (v) of a rank-one row-stochastic matrix, afid< d < 1, the second
nodev with respect taB is 12 (u) = r5 (v) + 52 (v), where eigenvalue of4 has modulug)\,| < d. Furthermore, ifP has

by 5 (v) we denote the authority flow of nodewith respect at least two irreducible closed subsets, the second eilyenva

to a base sef. A2 =d. ) )
Suppose that the base sBtconsists of nodes, - - -, us. Hence, since\; has been chosen to beby convention
Then from the linearity theorem, we have [11], the error of the eigenvector in each iteration is restlic
. by d. Notice that the conditions of Theorem 1 hold for the
Flow(B,v) = ZFlow(ui,v) ®) \r/éeak():hgraph and most database graphs in practice. Hence, we
i=1

Eg = 0(daM). 9
Hence, to approximate the authority flow of a nodewith 5 (d™) ©

respect to a base s&t, we need to approximate the flow to B. Error in Ordering

f;om 1iaChl§ Odfi 633' dFortungterh proximity search WO;'_‘E‘ The absolute values of the authority flows are typically used
.[ ], [14], .[ 1 [1], [3] adopt under the same assumptiona 4], [2] to create an ordering of the nodes with respect tarthe
is, they find the shortest paths between sets of nodes and ority flow from a base seB, which for simplicity we

between a pair of nodes. assume that it contains a single nadeHence, it is important
V. EVALUATION OF APPROXIMATION METHOD to analyze how applying the approximation method affedts th

This section analytically estimates the error imposed denng.lln parthular, this section e/stlmag-zs t_he praoplof
the error in ordering of two nodeas v’ of D“* with respect to

applying the approximation method of Section IV. In partics . .
ular, we first (Section V-A) estimate the relative erigg of their aqt_honty floyv from ”F’de‘-
the authority flow value calculated using the approximatigarobability Density Function of Es. To do so, we need
method, and then (Section V-B) we present how this err8® know the ]<\:i4|str|but|on fun_c'uon.of the .errdﬁs, which h_as
affects the ordering of the results of a query that uses aitgho Mean value/™ as we explained in Section V-A. There is no
flow as the ranking factor. Finally, we present an experimen@nalytical work on calculating the probability density &ion
analysis (Section V-C) of performance and quality of result(PDF) of Es, hence we adopted an experimental approach.
Datasets: We use two real datasets (Table 1). DBLR a In particular, we executed the power method for the DBLP
bibliographical dataset with papers, conference, autaoi dataset (see ObjectRank [2] for details on how to create the

year of publication. DS7 is a biological dataset with Pubftedtuthority flow graph for the DBLP dataset) for multiple base
publications, Entrez genes, nucleotides, proteins and DMISELS (éach base set corresponds to a keyword as in [2]) and

objects created following an experimental protocol thattst Multiple numbers of iterations.
from annotated gene records in public Web accessible sgurce FOr €ach number of iterations we recorded the eigr

and follows hyperlinks, to reach publications in PubMed. for multiple nodes (the top-20 results for the base set) and
multiple base sets. By analyzing the results, we observaid th

A. Estimation ofEs the PDF ofEg is similar to the exponential distribution. For
As explained in Section II-A, the authority flow is calculdte example, Figure 4a shows the distribution/of values in the
using Equation 1. This equation can be calculated (as in [4)BLP dataset for the top-20 nodes for 12 different base-sets
[2]) using the power method, which is an iterative methotdr M = 3 iterations. Figure 4b shows similar distribution in
which calculates the primary eigenvalue of a matAx To the DS7 dataset for/ = 3 iterations. Note that in order to
estimateEs we make the following observation: Taking intoguarantee positivé’s values for each test node for every path
account the connecting paths of size upMb is equivalent length M, we initialize the ObjectRank vector with the base
to executing the power method fdd iterations. HenceFgs Vvector.
is equal to the error of stopping the power method aftér  Hence, since the mean value of the exponential distribution
3 flx)=s-e %% is 1/s, we approximate the PDF dfs by
Ihttp://www.informatik.uni-trier.deéy/db/ ) Y
2http://www.ncbi.nlm.nih.gov/pubmed/ flz)=d Me=d (20)



o Relative Error for M=3 iterations since0 < d < 1.
e C. Performance vs. Results’ Quality
§ 30 1 The experiments were evaluated on a Windows Server 2003
Q 20 machine with Intel Xeon 2.40 GHz processor and 2GB of
101 RAM. All algorithms were implemented in Java (JDK version
%6 0001 0.002 0.003 0,004 0.005 0,006 0.007 0.008 .01 0.011 1.6.0.10). Oracle DBMS (version 10g Enterprise Edition
Relative Error E, Release 10.2.0.1.0) was used to store the database and JDBC
(a) DBLP Dataset was used to connect to the database system. We use the global
ObjectRank scores to initialize the nodes in the data graph
Relative Error for M=3 iterations as done in [12]. Figures 5a and 6a show the performance
for increasing values of path length/ for DBLP and DS7
@1 datasets respectively. To provide a baseline, we compare ou
S 0 execution time and results’ quality with the exact solutidhe
é original ObjectRank algorithm executed over the data graph
This is equivalent to setting/ to oo.
Figures 5b and 6b show the quality of the top-1000 results
R oottt for increasing values o/ with respect to the exact top-1000

results using the top-Spearman’s rho metric [6]. Notice that
as the path length\/ increases, the performance degrades
Fig. 4: Distribution of Eg and the quality improves (lower value of Spearman’s rho

Ordering error. Given the PDF ofEg, we can calculate the Metric) since the number of paths considered for authority
probability of creating the correct ordering forv’ as follows. flow increases. There is clearly a trade-off; for lowdr we

For simplicity in notation, we set(v) = Flow(u,v), r(v/) = have lower delay but also lower quality. Notice that in both
Flow(u,v"), a(v) = Flow(u,v), a(®’) = Flowyy(u,v"). datasets, forM/=3, we achieve a good tradeoff of quality
That is, 7(.) are the actual flows and(.) are the approxi- @nd performance (higher quality for a relatively shortelayle
mations after)/ iterations. We will calculate the probability time). We note that, on average, f8/=29.1 (in DBLP) and

P (a(v) > a(v')), that is, the probability that the approximatel/=8.5 (in DS7) we get exact results, but this doesn’t mean
method ranksv higher thanv’. Then we show that this that there is no path longer than that, since the graph will
probability goes to 1 (0) ifr(v) > r(v/) (r(v) < r(v)) as contain cycles (especially because of bidirectional edgas

(b) DS7 Dataset

M increases. ) transfer authority flow is both directions in ObjectRank])j12
e The optimal path lengthV/ is computed by progressively
Theorem 2:P (a(v) > a(v/)) =1 — &——0 . . : ; .
: 1+ LT increasing M until the authority scores converge. The highe

Proof: Given Equation 6 and the simplified notation above, it is exactM in DBLP, which also leads to higher execution times,
is due to its higher connectivity.
a(v) = r(v) — Bs(v)r(v) J Y

a(v') = r(') — Es(v)r(v') s

90
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Time(in secs)

P (ats) > ) = P ( Bste) < ML OO )

r(v)

(a) Performance with varying Path Lengttf
Using Equation 10 and the fact thﬁ>o s-e **dr =1 we get

° 0.6
P (a(v) > a(v/)) =1- —— S oas
1 4+t gm £ o4l
r(v) S 2 o35
| §§ 0,02§
P(a(v) > a(v')) is a probability and hence has to take 2 o2
values from 0 to 1. However it is possible that it becomes E o1
negative for some valuegv), r(v') satisfyingr(v) < r(v’). = 00
If such a case arises, we set the probability to 0. Also, Botic M=1  M=2 M=3 M=4 M=5 M=6 M=7
that Path Length M
lima P(a(v) S a(v’) | r(v) > r(v')) -1 (11) (b) Results’ Quality with varying Path Length/
limas P(a(v) > a(') | r(v) < T(U/)) —0 (12) Fig. 5: Performance and Quality Experiments on DBLP
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(a) Performance with varying Path Lengti

Metric

using thek-shortest simple paths. In contrast, we adopt the
standard authority flow semantics, used by PageRank [4],
ObjectRank [2] and other works, which consider all paths. We
do not claim that the one semantics is better than the other. A
key contribution of our work is that we provide a theoretical
approximation bound analysis, whereas [20] does not.

VII. CONCLUSIONS

We presented a method to efficiently approximate the au-
thority flow between a base s& and a nodey. This method
assumes no prior knowledge Bfor v and hence it is suitable
for on-the-fly authority flow computation. Our work allows
authority flow to be used in new real-time applications, like
measuring the quality of a result-tree in a proximity search
system, or answering complex on-the-fly queries. We also
analytically prove the error of our approximation method an
the error it imposes in the ordering of query results.

Normalized Spearman's Rho

M=1 M=2 M=3 M=4 M=5

Path Length M

M=6 M=7

(1]

(b) Results’ Quality with varying Path Length/

Fig. 6: Performance and Quality Experiments on DS7
VI. RELATED WORK

Link-based analysis: The notion of importance has been [4]

(3]

[2] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
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