
Using Proximity Search to Estimate Authority Flow
Vagelis Hristidis Yannis Papakonstantinou Ramakrishna Varadarajan

School of Computing and Information Sciences Computer Science and Engineering Dept. Department of Computer Sciences
Florida International University University of California, San Diego University of Wisconsin-Madison

vagelis@cis.fiu.edu yannis@cs.ucsd.edu ramkris@cs.wisc.edu

Abstract—Authority flow and proximity search have been used
extensively in measuring the association between entities in data
graphs, ranging from the Web to relational and XML databases.
These two ranking factors have been used and studied separately
in the past. In addition to their semantic differences, a key ad-
vantage of proximity search is the existence of efficient execution
algorithms. In contrast, due to the complexity of calculating the
authority flow, current systems only use precomputed authority
flows in runtime. This limitation prohibits authority flow to be
used more effectively as a ranking factor. In this paper we present
a comparative analysis of the two ranking factors. We present
an efficient approximation of authority flow based on proximity
search. We analytically estimate the approximation error and
how this affects the ranking of the results of a query.

I. I NTRODUCTION

Authority flow and proximity search have been used ex-
tensively in measuring the association between entities in
data graphs, ranging from the Web to relational and XML
databases. These two ranking factors have been used and
studied separately in the past. We present a comparative
analysis of the two ranking factors. In particular, we show
how the cheaper proximity search can be used to approximate
the expensive authority flow. Authority flow is being used by
various applications [4], [2] to measure the importance of a
query result. The validity of this factor has been proven by
the success of using PageRank in Google.

Due to the high complexity of calculating the authority
flows, current systems only use a small precomputed set
of authority flow values. For example, Google precomputes
a single PageRank value for each page denoting its global
importance. ObjectRank [2], [12] go a step further to compute
for each page (database object in ObjectRank) an authority
flow value for each topic or keyword respectively.

However, as we explain below, it is desirable to be able to
on-the-fly compute the authority flow between arbitrary nodes
at query-time. For example, suppose we want to know how
much authority is flowing between two pages A and B. This
may be useful if we locate a base page A for a topic and
want to find all pages B with significant relationship to A
(that is, high flow from A to B). As another example consider
the query: “Who are the authors of UCSD who receive high
authority from the papers published by FIU?”. To answer this
query we need to on-the-fly calculate the authority flows from
the papers of FIU to the authors of UCSD.

Incorporating structure-based relevance feedback on author-
ity flow queries [24] or structure-based query personalization

Partly supported by NSF grant IIS-0811922 and DHS grant 2009-ST-062-
000016.

–user-defined authority flow bounds on different edge types–
also require on-the-fly authority flow computation.

Another application that will benefit from on-the-fly au-
thority flow computation is keyword proximity search on data
graphs – on the Web [23] or on a database [14], [13], [1], [3],
[19]. The result of such queries is typically a tree of inter-
connected nodes (pages or database objects) that collectively
contain all the query keywords. Intuitively, results with tighter
relationships between their nodes (pages or database objects)
should be ranked higher. This “tightness” of the relationships
can be estimated by the authority flow between the nodes. Due
to the prohibiting cost of the on-the-fly computation of these
authority flows, all the above works estimate the “tightness”
by the size of the result-tree, which can be misleading in many
applications.

In this work we show how we can efficiently calculate an
approximation of the authority flow between two nodes (we
generalize for multiple nodes as well) given the paths (trees
for more than two nodes) with length up toM connecting
the nodes. The latter problem has been extensively studied in
prior work [14], [13], [1], [3], [9], [17], [19] where efficient
algorithms are presented to find all paths of adata graph
(a graph of pages and hyperlinks for the web, or of data
objects and their relationships for databases as we explainin
Section III-A) connecting two nodes.

The intuition behind this approximation is that there is a
correlation between the authority flow between two nodes and
the number of paths connecting them. In particular, when
there are many paths connecting nodesu, v then there is a
good chance that there is high flow of authority betweenu, v,
and inversely. Hence, we can approximate the authority flow
betweenu, v by counting (in a weighted manner) the result-
trees that contain them.

Another contribution of this paper is that through the
definition of the approximation method we show the interplay
between the proximity and the authority flow ranking factors.
In previous work, the authority flow [4], [2] and the proximity
(structure of result tree) factor [9], [3], [1] were considered
fundamentally different ways of ranking the results of a
(keyword) query.

This paper has the following contributions:
• We discuss and formalize the relationship between the

popular authority flow and proximity search factors.
• We present an approximation method to estimate the

authority flow between nodes on-the-fly. This method
uses a proximity search algorithm (as mentioned above
many such algorithms exist in prior work [14], [13], [1],
[3], [9]) as a subroutine.

2

• An analytical model is presented to estimate the quality of
this approximation as a function of the maximum length
M of the paths generated by the proximity algorithm.
Also, we analytically calculate the error in ordering that
this approximation imposes.

The paper is organized as follows. Section II presents
the basics of authority flow and proximity search that we
need in this work. Section III presents our framework and
a formal definition of authority flow. Section IV presents the
proposed approximation method and Section V shows how the
approximation error is calculated. Finally, we present related
work in Section VI and conclude in Section VII.

II. BACKGROUND

This section presents the required background on authority
flow and proximity search in graphs. Notice that these graphs
are typically data graphs (formally defined in Section III-A),
which are graphs whose nodes correspond to data entities
(web pages or database objects) and the edges to relationships
(hyperlinks, primary-to-foreign key relationships, parent-child
relationships, and so on). Also, queries in previous work have
been plain keyword queries.

A. Background on Authority Flow

We describe next the essentials of PageRank and authority-
based search, and the random surfer intuition. Let(V,E) be
a graph, with a set of nodesV = {v1, . . . , vn} and a set of
edgesE. A surfer starts from a random node (web page)vi of
V and at each step, he/she follows a hyperlink with probability
d or gets bored and jumps to a random node with probability
1− d. The PageRank value ofvi is the probabilityr(vi) that
at a given point in time, the surfer is atvi. If we denote byr
the vector[r(v1), . . . , r(vi), . . . , r(vn)]T then we have

r = dAr +
(1− d)

|V |
e (1)

whereA is a n× n matrix with Aij = 1
OutDeg(vj)

if there is
an edgevj → vi in E and 0 otherwise, whereOutDeg(vj)
is the outgoing degree of nodevj . Also, e = [1, . . . , 1]T .

The above PageRank equation is typically precomputed
before the queries arrive and provides a global, keyword-
independent ranking of the pages. Instead of using the whole
set of nodesV as thebase set, i.e., the set of nodes where
the surfer jumps when bored, one can use an arbitrary subset
S of nodes, hence increasing the authority associated with the
nodes ofS and the ones most closely associated with them. In
particular, we define abase vectors = [s0, . . . , si, . . . , sn]T

where si is 1 if vi ∈ S and 0 otherwise. The PageRank
equation is then

r = dAr +
(1− d)

|S|
s (2)

The PageRank algorithm solves this fixpoint using a simple
iterative method. The notion of the base setS was suggested
in [4] as a way to do personalized rankings, by settingS to
be the set of bookmarks of a user. ObjectRank [2] took it one
step further and used the base set to estimate the relevance of

Paper
 Authors
=“H. Gupta
,
V.

Harinarayan
,
A. Rajaraman
,
J.

Ullman”
Title
=“
Index Selection

for
OLAP
.”
Year
=“ICDE 1997”

Paper
 Authors
=“J. Gray, A.

Bosworth, A. Layman, H. Pirahesh”

Title
=“Data Cube: A Relational

Aggregation Operator Generalizing

Group-By, Cross-Tab, and Sub-

Total.”
Year
= “ICDE 1996”

Paper
 Authors
=“C. Ho, R. Agrawal,

N. Megiddo, R. Srikant”

Title
=“Range Queries in
OLAP
 Data

Cubes.”
Year
=“SIGMOD 1997”

Paper
 Authors
=“R. Agrawal, A.

Gupta, S. Sarawagi”

Title
=
“Modeling Multidimensional

Databases.”
Year
=“ICDE 1997”

Author
 Name
=“R. Agrawal”

cites

by

Year
 Name
=“ICDE”,

Year
=1997,

Location
=
Birmingham

contains

contains
 cites

cites

cites

by

Conference

Name
=“ICDE”

has

instance

Fig. 1: Data Graph. (Tags are in boldface and underlined.)

a node to a keyword query – the base set consists of the nodes
that contain the keyword.

B. Background on Proximity Search

The proximity problem on a graph is similar to the Group
Steiner Tree problem [21], which is known to be NP-hard.
Prior work has followed various ways to overcome the NP-
hard complexity of the problem. Goldman et al. [9] uses
precomputation to minimize the runtime cost. BANKS [3] uses
an algorithm to approximate the Group Steiner Tree problem
following forward edges, whereas [17] also uses backward
edges. References [14], [13], [1] assume the existence of
a schema and exploit the schema properties to achieve ef-
ficient execution. Finally, Kimelfeld and Sagiv [19] present
an algorithm with polynomial delay which repeatedly calls a
traditional Steiner Tree approximation algorithm.

III. D EFINITIONS AND FRAMEWORK

This section presents the data model (Section III-A), and
the authority flow problem (Section III-B) from the point of
view of proximity search in order to understand the interplay
between them.

A. Data Model

As mentioned above, the data can be the link-structure of
the web, a structured database, or any other source that can
be modeled as a graph. In particular, we view a database as
a labeled graph, which is a model that easily captures the
web, relational and XML databases. Thedata graphD(V,E)
is a labeled undirected graph where every nodev (typically
corresponding to a page for the web [4], to an element in
XML [2], [14] and to a tuple in relational systems [2], [1],
[13]) has a labelλ(v) and anodeid. λ(v) consists of the tag
τ(v) and an optional valueν(v). For example, in Figure 1,
the bottom nodev has τ(v) =“Author”, ν(v) =“Name=“R.
Agrawal”” and λ(v) =<“Author”, “Name”, “R. Agrawal”>.

From the data graphD, we can create theauthority transfer
graph DA(V,EA) (Figure 2), if we know the amount of
authority flow (authority transfer rate) that each direction of
each edge can carry. In general, every edgeu− v in DA has
two authority transfer ratesa(u → v) and a(u ← v). The
authority transfer data graph is a directed graph, where edges
with zero authority transfer rate are ommited. For simplicity
we will assume that there are no parallel edges.

B. Definition of Authority Flow

In this section we formally define authority flow from a
perspective other than the random surfer (Section II-A). In

3

Paper
 Authors
=“H. Gupta, V.

Harinarayan, A. Rajaraman, J.

Ullman”
Title
=“Index Selection

for
OLAP
.”
Year
=“ICDE 1997”

Paper
 Authors
=“J. Gray, A.

Bosworth, A. Layman, H. Pirahesh”

Title
=“Data Cube: A Relational

Aggregation Operator Generalizing

Group-By, Cross-Tab, and Sub-

Total.”
Year
= “ICDE 1996”

Paper
 Authors
=“C. Ho, R. Agrawal,

N. Megiddo, R. Srikant”

Title
=“Range Queries in
OLAP
 Data

Cubes.”
Year
=“SIGMOD 1997”

Paper
 Authors
=“R. Agrawal, A.

Gupta, S. Sarawagi”

Title
=
“Modeling Multidimensional

Databases.”
Year
=“ICDE 1997”

Author
 Name
=“R. Agrawal”

0.7

Year
 Name
=“ICDE”,

Year
=1997,

Location
=Birmingham

0.15

0.15
 0.7

0.35

0.35
0.1

0.1

0.05

0.066

0.1
 0.1

Conference

Name
=“ICDE”

0.3

0.3

Fig. 2: Authority Transfer Data Graph.

particular, we define authority flow between nodes in terms of
the paths connecting the nodes. We initially focus on pairwise
authority flows, that is, we approximate the authority flow
between a base set comprised of a single nodeu and a target
nodev. In Section IV-A, we extend for base sets with multiple
nodes.

To formulate the problem, the basic quantity we use is the
probability of traversalp(u → v) of an edgeu → v, which
is defined as the probability that a random surfer currently
at u will be at v in the next time unit following the edge
u → v. The probability of traversalp([v1, v2, · · · , vn]) of
a path l = (v1 → v2 → · · · → vn) is the probability
that a random surfer currently atv1 will reach vn in n − 1
time units following one by one the edges ofl. That is,
p([v1, v2, · · · , vn]) = p(v1 → v2) · p([v2, · · · , vn]) where
p(vi → vj) = d

OutDeg(vj)
for regular edges. Note that we also

discuss below, for virtual edges appearing due to the damping
factor, it is p(vi → vj) = 1− d.

To go from path traversal probability to authority flow, we
define the probability of travel inn steps as follows.

Definition 1: The n-step travel probabilityPn(u, v) from
node u to node v is the probability that a random surfer
currently atu will be at v after n time units. Furthermore,
the up-to-n-steps travel probabilityP+

n (u, v) is defined as

P+
n (u, v) =

1

n

∑

i=1···n

Pi(u, v) (3)

Notice that we divide byn to ensure that the value is up to1,
sinceP+

n (u, v) is a probability. Note that ifDA was a DAG
then this normalization would not be needed because the sum
is always up to1. However, due to the damping factor, which
introduces virtual backedges, the graph is not a DAG. The
intuition behind summing allPi(u, v)’s is to get an average
over all possible time instances fromt to t + n · tunit, since
the authority flow is the probability of being at a node at a
random time instance.

The authority flowFlow(u, v) from nodeu to nodev is

Flow(u, v) =











limn→∞P+
n (u, v) , if authority transfer

graphDA has a cycle
P+

s (u, v) , wheres is length of longest path in
DA if DA is a DAG

(4)
As mentioned above, the graph is not a DAG, so we use the

first branch of Equation 4.

paper
1

paper
2

paper
3

paper
4

paper
5

paper
6

...

paper
7
 paper
8

Fig. 3: Example showing the relation between number of
result-trees and authority flow.

IV. A PPROXIMATION METHOD

We approximate the authority flowFlow(u, v) between
nodes u, v with the paths of length up toM (M is the
maximum number of edges of the paths). These paths are
calculated using proximity search algorithms as describedin
Section II-B. The contribution of each pathl : u ; v is the
probability of traversalp(l) as defined above. For example
in Figure 3, the pathl1 : paper1 → paper2 → paper5

represents less authority transfer frompaper1 to paper5 than
l2 : paper1 → paper4 → paper6 from paper1 to paper6.
Also, l2 : paper1 → paper3 ← paper5 carries no authority
from paper1 to paper5, because authority only flows along
the direction of the edges (authority only flows to cited papers
and not to citing as it is explained in the ObjectRank work
[2]). Note that in case of other edge types, authority could
potentially flow in both directions as shown in Figure 2.

If BM (u, v) is the set of paths with size up toM in
DA going from u to v, the authority flow calculated by the
approximation method is

∑

l∈BM (u,v) p(l). To be consistent
with the normalization method of Section III-B and ensure
that the flow value is up to1, we divide this quantity byM .
Hence

FlowM (u, v) =
1

M

∑

l∈BM (u,v)

p(l) = P+
M (u, v) (5)

This approximation suffers from thesize error, which is
due to the fact that all works [9], [13], [3] returning result-
trees limit their maximum size toM , but authority may flow
along longer paths. In the example above, ifM = 2, the path
l4 : paper1 → paper7 → paper8 → paper6 is ignored since
it has size greater than2. The relative size errorES is defined
by the following formula

ES =
Flow(u, v)− FlowM (u, v)

Flow(u, v)
(6)

Notice that it is alwaysEs ≥ 0 becauseFlow(u, v) includes
FlowM (u, v). Ignoring the constant factors for simplicity, we
get

ES =
limn→∞P+

M+1,n(u, v)

Flow(u, v)
(7)

whereP+
m,n(u, v) = 1

n−m

∑

i=m···n Pi(u, v). Section V esti-
mates the value ofES .

Finally, we must address the issue of whether we should
materialize the virtual edges implied by the damping factor
d. In particular, a virtual edgeu → v should be added going
from each nodeu to every nodev of the base set. To be
accurate, we should do this before applying the proximity
search algorithms. However, to reduce the complexity of the
proximity search algorithms, we can omit this step, sinced

4

Name #Nodes #Edges Size(Mb)
DS7 699,199 3,533,756 2,189

DBLP 876,110 4,166,626 3,950

TABLE I: Datasets

is typically close to1 (d = 0.85 in PageRank [4]), and the
virtual edges have authority transfer rate of1− d.

A. Extend to a Base Set with Multiple Nodes

So far we have explained how to approximate the authority
flow from a single-node base set to a nodev. In this section
we generalize to base sets with multiple nodes. To do so, we
use the linearity theorem from Jeh and Widom [16], which
states that if a base setB consists of two setsB1 and B2,
such thatB = B1 ∪B2, then the PageRank scorerB(v) of a
nodev with respect toB is rB(u) = rB1(v) + rB2(v), where
by rS(v) we denote the authority flow of nodev with respect
to a base setS.

Suppose that the base setB consists of nodesu1, · · · , us.
Then from the linearity theorem, we have

Flow(B, v) =

s
∑

i=1

Flow(ui, v) (8)

Hence, to approximate the authority flow of a nodev with
respect to a base setB, we need to approximate the flow tov
from each nodeu ∈ B. Fortunately, proximity search works
[9], [14], [13], [1], [3] adopt under the same assumption. That
is, they find the shortest paths between sets of nodes and not
between a pair of nodes.

V. EVALUATION OF APPROXIMATION METHOD

This section analytically estimates the error imposed by
applying the approximation method of Section IV. In partic-
ular, we first (Section V-A) estimate the relative errorES of
the authority flow value calculated using the approximation
method, and then (Section V-B) we present how this error
affects the ordering of the results of a query that uses authority
flow as the ranking factor. Finally, we present an experimental
analysis (Section V-C) of performance and quality of results.

Datasets:We use two real datasets (Table I). DBLP1 is a
bibliographical dataset with papers, conference, authorsand
year of publication. DS7 is a biological dataset with PubMed2

publications, Entrez genes, nucleotides, proteins and OMIM
objects created following an experimental protocol that starts
from annotated gene records in public Web accessible sources,
and follows hyperlinks, to reach publications in PubMed.

A. Estimation ofES

As explained in Section II-A, the authority flow is calculated
using Equation 1. This equation can be calculated (as in [4],
[2]) using the power method, which is an iterative method
which calculates the primary eigenvalue of a matrixA. To
estimateES we make the following observation: Taking into
account the connecting paths of size up toM is equivalent
to executing the power method forM iterations. Hence,ES

is equal to the error of stopping the power method afterM

1http://www.informatik.uni-trier.de/l̃ey/db/
2http://www.ncbi.nlm.nih.gov/pubmed/

iterations. Note that in order to maintainEs ≥ 0 for all M
values, it is important to initialize the page rank vectorr same
as the base vectors.

The convergence of the power method is linear, reducing
the error of the eigenvector (i.e., the Euclidean distance)by
about |λ2|/|λ1| in each iteration [15], whereλ1,λ2 are the
first and second eigenvalues. Hence, the relative error of the
eigenvector afterM iterations isES = O((|λ2|/|λ1|)

M).
Furthermore, Haveliwala and Kamvar [11] have proven

(Theorem 1) thatλ2 = d, where d is the damping factor,
for the web graph.

Theorem 1:For any matrixA = [cP + (1− d)E]T , where
P is ann×n row-stochastic matrix,E is a nonnegativen×n
rank-one row-stochastic matrix, and0 ≤ d ≤ 1, the second
eigenvalue ofA has modulus|λ2| ≤ d. Furthermore, ifP has
at least two irreducible closed subsets, the second eigenvalue
λ2 = d.

Hence, sinceλ1 has been chosen to be1 by convention
[11], the error of the eigenvector in each iteration is reduced
by d. Notice that the conditions of Theorem 1 hold for the
web graph and most database graphs in practice. Hence, we
reach

ES = O(dM). (9)

B. Error in Ordering

The absolute values of the authority flows are typically used
[4], [2] to create an ordering of the nodes with respect to their
authority flow from a base setB, which for simplicity we
assume that it contains a single nodeu. Hence, it is important
to analyze how applying the approximation method affects this
ordering. In particular, this section estimates the probability of
the error in ordering of two nodesv, v′ of DA with respect to
their authority flow from nodeu.
Probability Density Function of ES . To do so, we need
to know the distribution function of the errorES , which has
mean valuedM as we explained in Section V-A. There is no
analytical work on calculating the probability density function
(PDF) of ES , hence we adopted an experimental approach.
In particular, we executed the power method for the DBLP
dataset (see ObjectRank [2] for details on how to create the
authority flow graph for the DBLP dataset) for multiple base
sets (each base set corresponds to a keyword as in [2]) and
multiple numbers of iterations.

For each number of iterations we recorded the errorES

for multiple nodes (the top-20 results for the base set) and
multiple base sets. By analyzing the results, we observed that
the PDF ofES is similar to the exponential distribution. For
example, Figure 4a shows the distribution ofES values in the
DBLP dataset for the top-20 nodes for 12 different base-sets,
for M = 3 iterations. Figure 4b shows similar distribution in
the DS7 dataset forM = 3 iterations. Note that in order to
guarantee positiveES values for each test node for every path
length M , we initialize the ObjectRank vector with the base
vector.

Hence, since the mean value of the exponential distribution
f(x) = s · e−s·x is 1/s, we approximate the PDF ofES by

f(x) = d−Me−d−M x (10)

5

(a) DBLP Dataset

(b) DS7 Dataset

Fig. 4: Distribution ofES

Ordering error. Given the PDF ofES , we can calculate the
probability of creating the correct ordering forv, v′ as follows.
For simplicity in notation, we setr(v) = Flow(u, v), r(v′) =
Flow(u, v′), a(v) = FlowM (u, v), a(v′) = FlowM (u, v′).
That is, r(.) are the actual flows anda(.) are the approxi-
mations afterM iterations. We will calculate the probability
P (a(v) > a(v′)), that is, the probability that the approximate
method ranksv higher thanv′. Then we show that this
probability goes to 1 (0) ifr(v) > r(v′) (r(v) < r(v′)) as
M increases.

Theorem 2:P (a(v) > a(v′)) = 1− e
−(1−

r(v′)
r(v)

)d−M

1+
r(v′)
r(v)

dM

Proof: Given Equation 6 and the simplified notation above, it is

a(v) = r(v) − ES(v)r(v)

a(v′) = r(v′) − ES(v′)r(v′)

Hence,

P
(

a(v) > a(v′)
)

= P

(

ES(v) <
r(v) − r(v′) + r(v′)ES(v′)

r(v)

)

=

∫

∞

0



f(y)

∫
r(v)−r(v′)+r(v′)y

r(v)

0

f(z)dz



 dy

Using Equation 10 and the fact that
∫

∞

0
s · e−sxdx = 1 we get

P
(

a(v) > a(v′)
)

= 1 −
e
−(1−

r(v′)
r(v)

)d−M

1 + r(v′)
r(v)

dM

P
(

a(v) > a(v′)
)

is a probability and hence has to take
values from 0 to 1. However it is possible that it becomes
negative for some valuesr(v), r(v′) satisfyingr(v) < r(v′).
If such a case arises, we set the probability to 0. Also, notice
that

limM→∞P
(

a(v) > a(v′) | r(v) > r(v′)
)

= 1 (11)

limM→∞P
(

a(v) > a(v′) | r(v) < r(v′)
)

= 0 (12)

since0 < d < 1.

C. Performance vs. Results’ Quality

The experiments were evaluated on a Windows Server 2003
machine with Intel Xeon 2.40 GHz processor and 2GB of
RAM. All algorithms were implemented in Java (JDK version
1.6.0 10). Oracle DBMS (version 10g Enterprise Edition
Release 10.2.0.1.0) was used to store the database and JDBC
was used to connect to the database system. We use the global
ObjectRank scores to initialize the nodes in the data graph
as done in [12]. Figures 5a and 6a show the performance
for increasing values of path length,M for DBLP and DS7
datasets respectively. To provide a baseline, we compare our
execution time and results’ quality with the exact solution- the
original ObjectRank algorithm executed over the data graph.
This is equivalent to settingM to∞.

Figures 5b and 6b show the quality of the top-1000 results
for increasing values ofM with respect to the exact top-1000
results using the top-k Spearman’s rho metric [6]. Notice that
as the path lengthM increases, the performance degrades
and the quality improves (lower value of Spearman’s rho
metric) since the number of paths considered for authority
flow increases. There is clearly a trade-off; for lowerM we
have lower delay but also lower quality. Notice that in both
datasets, forM=3, we achieve a good tradeoff of quality
and performance (higher quality for a relatively shorter delay
time). We note that, on average, forM=29.1 (in DBLP) and
M=8.5 (in DS7) we get exact results, but this doesn’t mean
that there is no path longer than that, since the graph will
contain cycles (especially because of bidirectional edgesthat
transfer authority flow is both directions in ObjectRank [12]).
The optimal path lengthM is computed by progressively
increasing M until the authority scores converge. The higher
exactM in DBLP, which also leads to higher execution times,
is due to its higher connectivity.

(a) Performance with varying Path LengthM

(b) Results’ Quality with varying Path LengthM

Fig. 5: Performance and Quality Experiments on DBLP

6

(a) Performance with varying Path LengthM

(b) Results’ Quality with varying Path LengthM

Fig. 6: Performance and Quality Experiments on DS7
VI. RELATED WORK

Link-based analysis: The notion of importance has been
defined in the context of the Web using PageRank [4], where
a global score is assigned to each Web page. Recently, the
idea of PageRank has been applied to structured databases
[2]. Faloutsos et al. [7] view the authority flow problem as
the maximization of the electric current between the nodes,
where each edge of the data graph is represented by an electric
resistor.
Performance: A set of works [10], [5], [16], [18] have tackled
the problem of improving the performance of the original
PageRank algorithm. [10], [5] present algorithms to improve
the calculation of a global PageRank. Jeh and Widom [16]
present a method to efficiently calculate the PageRank values
for multiple base sets, by precomputing a set ofpartial
vectorswhich are used in runtime to calculate the PageRanks.
Tong et al. [22] exploit structural properties of real graphs to
efficiently perform random walk over large graphs and employ
precomputation to improve performance. A key motivation
of our work is to on-the-fly compute the authority flow for
personalized search (as in [24]), where different user-specific
authority rates are assigned to the edges of the graph for each
query. This makes pre-computation infeasible. Fogaras et al.
[8] present an approximate and scalable method that achieves
full personalization using fingerprint paths (random walks)
where the length of the walk is of geometric distribution of
damping factor,d. In contrast, in authority flow, the length of
the random walk is of uniform distribution.

Wu and Raschid [25] present approximation methods for
ranking a subgraph assuming that the rest of the data graph
is unchanged. Koren et al. [20] present a new measure of
proximity in graphs, called cycle free effective conductance
(CFEC), which refines the ideas of Faloutsos et al. [7]. CFEC
measure is the probability that a random surfer will go from
a node u to a node y following a simple path (no cycles)
between them. Their approximation algorithm computes CFEC

using thek-shortest simple paths. In contrast, we adopt the
standard authority flow semantics, used by PageRank [4],
ObjectRank [2] and other works, which consider all paths. We
do not claim that the one semantics is better than the other. A
key contribution of our work is that we provide a theoretical
approximation bound analysis, whereas [20] does not.

VII. C ONCLUSIONS

We presented a method to efficiently approximate the au-
thority flow between a base setB and a nodev. This method
assumes no prior knowledge ofB or v and hence it is suitable
for on-the-fly authority flow computation. Our work allows
authority flow to be used in new real-time applications, like
measuring the quality of a result-tree in a proximity search
system, or answering complex on-the-fly queries. We also
analytically prove the error of our approximation method and
the error it imposes in the ordering of query results.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A SystemFor
Keyword-Based Search Over Relational Databases.ICDE, 2002.

[2] A. Balmin, V. Hristidis, and Y. Papakonstantinou. ObjectRank:
Authority-Based Keyword Search in Databases.VLDB, 2004.

[3] G. Bhalotia, C. Nakhey, A. Hulgeri, S. Chakrabarti, and S. Sudarshan.
Keyword Searching and Browsing in Databases using BANKS.ICDE,
2002.

[4] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web
Search Engine.WWW, 1998.

[5] Y. Chen, Q. Gan, and T. Suel. I/O-efficient techniques forcomputing
PageRank.CIKM, 2002.

[6] R. Fagin, R. Kumar, and D. Shivakumar. Comparing top k lists.SODA,
2003.

[7] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discovery of
connection subgraphs.KDD, 2004.

[8] D. Fogaras, B. Racz, K. Csalogany, and T. Sarlos. Towardsscaling fully
personalized pagerank: Algorithms, lower bounds, and experiments.
Internet Mathematics Vol. 2, No. 3: 333-358, 2005.

[9] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Garcia-
Molina. Proximity Search in Databases.VLDB, 1998.

[10] T. Haveliwala. Efficient computation of PageRank.Technical report,
Stanford University (http://www.stanford.edu/ taherh/papers/efficient-
pr.pdf), 1999.

[11] T. Haveliwala and S. Kamvar. The Second Eigenvalue of theGoogle
Matrix. Stanford University Technical Report, 2003.

[12] V. Hristidis, H. Hwang, and Y. Papakonstantinou. Authority-based
keyword search in databases.ACM TODS, 2008.

[13] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword Search in
Relational Databases.VLDB, 2002.

[14] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword Proximity
Search on XML Graphs.ICDE, 2003.

[15] J. H.Wilkinson. The Algebraic Eigenvalue Problem.Oxford University
Press, 1965.

[16] G. Jeh and J. Widom. Scaling Personalized Web Search.WWW, 2003.
[17] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and

H. Karambelkar. Bidirectional expansion for keyword searchon graph
databases.VLDB, 2005.

[18] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub. Extrapolation
Methods for Accelerating PageRank Computations.WWW, 2003.

[19] B. Kimelfeld and Y. Sagiv. Finding and Approximating Top-k Answers
in Keyword Proximity Search.PODS, 2006.

[20] Y. Koren, S. C. North, and C. Volinsky. Measuring and extracting
proximity in networks.KDD, 2006.

[21] G. Reich and P. Widmayer. Beyond Steiner’s Problem: A VLSIOriented
Generalization.WG, 1989.

[22] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with restart and
its applications.ICDM, 2006.

[23] R. Varadarajan, V. Hristidis, and T. Li. Beyond Single-Page Web Search
Results.IEEE TKDE, 2008.

[24] R. Varadarajan, V. Hristidis, and L. Raschid. Explaining and reformu-
lating authority flow queries.ICDE, 2008.

[25] Y. Wu and L. Raschid. Approxrank: Estimating rank for a subgraph.
ICDE, 2009.

