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Abstract which further complicates query processing.
Top-k queries arise naturally in applications where users

A guery to a web search engine usually consists of a list have relatively flexible preferences or specifications for cer-
of keywords, to which the search engine responds with thetain attributes, and can tolerate (or even expect) fuzzy
best or “top” k pages for the query. This tapguery model ~ matches for their queries. A tap-query in this context is
is prevalent over multimedia collections in general, but also then simply an assignment of target values to the attributes
over plain relational data for certain applications. For exam- of a relation. To answer a top-query, a database system
ple, consider a relation with information on available restau- identifies the objects that best match the user specification,
rants, including their location, price range for one diner, and using a given scoring function.

overall food rating. A user who queries such a relation might . . . .
Example 1: Consider a relation with information about

simply specify the user’s location and target price range, and in the New York Ci Each tuol b
expect in return the best 10 restaurants in terms of some Com__restaurants in the New York City area. Each tuple (or ob-

bination of proximity to the user, closeness of match to theJeCt) in this n_’-zlation has_ a num_ber_ Of_ aftributes, in_cluding
target price range, and overall food rating. Processing such Address, Rating, and Price, which indicate, respectively, the

top-k queries efficiently is challenging for a number of rea- restaurant’s location, the overall food rating for the restau-
sons. One critical such reason is that, in many web appli- rant re.presenteq by a grade between 1 and 30, and the aver-
cations, the relation attributes might not be available other age price for_a diner. A user who lives at 2590 Bfoadway and
than through external web-accessible form interfaces, which'S interested in spending arouds for a top-quality restau-

we will have to query repeatedly for a potentially large set of rant might then ask a top-10 quefpddress="2590 Broad-

candidate objects. In this paper, we study how to process top-Way”’ Price=$25, Rating=3Q. The result to this query is a

k queries efficiently in this setting, where the attributes for list of the 10 restaurants.the'lt match the user's specification
which users specify target values might be handled by exter—the closest, for some definition of proximily.
nal, autonomous sources with a variety of access interfaces.
We present several algorithms for processing such queries, Processing top- queries efficiently is challenging for a
and evaluate them thoroughly using both synthetic and realnumber of reasons. One critical such reason is that, in many
web-accessible data. web applications, the relation attributes might not be avail-
able other than through external web-accessible form inter-
faces. For instance, in our example above Reing at-
tribute might be available through the Zagat-Review web
site!, which, given an individual restaurant name, returns its
food rating as a number between 1 and @h@om accegs

A query to a web search engine usually consists of a list This site might also return a list of all restaurants ordered
of keywords, to which the search engine responds with theby their food rating $orted accegs Similarly, the Price
best or “top”k pages for the query. Thisp-k query model attribute might be available through the New York Times’s
is prevalent over multimedia collections in general, but also NYT-Review web site€. Finally, the scoring associated with
over plain relational data for certain applications where usersthe Addressattribute might be handled by the MapQuest
do not expect exact answers to their queries, but instead aveb site3, which returns the distance (in miles) between the
rank of the objects that best match a specification of tar-restaurant and the user addresses.
get attr!bute values. Adgitionally, some applications require Ihttp://www.zagat.com
accessing data that resides at or is provided by remote, au-  2xttp:/ww.nytoday.com
tonomous sources that exhibit a variety of access interfaces, 3http://imww.mapquest.com

1. Introduction




To process a top-query over web-accessible databases, tribute in Example 1 above might always have an associated
we then have to interact with sources that export different in- query value of 30. (It is unclear why a user would insist on a
terfaces and access capabilities. In our restaurant example, Eesser-quality restaurant, given the target price specification.)
possible query processing strategy is to start with the Zagatdn such cases, we simply omit these attributes from the query,
Review source, which supports sorted access, to identify aand assume default values for them.
set of candidate restaurants to explore further. This sourcere- Considerq = {4y = qo0, 41 = q1,-.-, 4, = qn}, @
turns a rank of restaurants in decreasing order of food rating.top-k query over a relatiodz. The score that each tuple (or
To compute the final score for each restaurant and identifyobjec) ¢ in R receives foy is a function oft's score for each
the top-10 matches for our query, we then obtain the prox- individual attributed; with target valuey;. Specifically, each
imity between each restaurant and the user-specified addressitribute A; has an associatestoring function Scorge that
by querying MapQuest, and check the average dinner priceassigns a proximity score g andt;, wheret; denotes the
for each restaurant individually at the NYT-Review source. value of object for attribute A;. To combine these individ-
Hence, we interact with three autonomous sources and reual attribute scores into a final score for each object, each
peatedly query them for a potentially large set of candidate attribute A; has an associated weight indicating its rela-
restaurants. tive importance in the query. Then, the final score for object

Recently, Fagin et al. [7] have presented query process- is defined as a weighted sum of the individual scotes:
ing algorithms for topk queries for the case where all in-
tervening sources support sorted access (plus perhaps ran- i
dom access as well). Unfortunately, these algorithms are Scordg, t) = ScoreComso, 51,...,5,) = sz " Si
not designed for sources that only support random access =0

(e.g., the MapQuest site), which abound on the web. In fact,yhares. — Scorey, (¢;, t;). The result of a toge query is the

as we will see, simple adaptations of these algorithms do ke Jist of thek objects with highesScorevalue, where
not perform well over random-access sources. In this pa-\ e preak ties arbitrarily.

per, we present novel processing strategies forktopreries
over sources that support just random access, just sorted aCExampIe 1: (cont.) We can define the scoring function for

cess, or ,bOth' We also develop non-trivial adaptations of Fa'the Address attribute of a query and an object as the inverse
gin et al.'s algorithms for random-access sources, and com-

th techni . all ) theti d agf the distance (say, in miles) between the two addresses.
parehese techniques experimentally using synthetic andre imilarly, the scoring function for the Price attribute might
web-accessible data sets.

Th t of th is structured as foll Section 2 be a function of the difference between the target price and
gefi € rest ot the pagtzr Its S rug lfre ta‘:’. 0 om&s.t ec |o|n the object’s price, perhaps “penalizing” restaurants that ex-
elines our query and data model, notation and terminologyeqeq the target price more than restaurants that are below

that v(\;e utS?. n Sefclt:|on_3 t? plr,eselnt o_tuhr newv\t/echm:quets 3}” . The scoring function for the Rating attribute might simply
S'Lf{rr a atp ta |?ns_o agineta .tslia gog TS' 56 eva ?ﬁ% tebe the object’s value for this attribute. If price and quality
erent strategies experimentally In section > using the data, o 1,40 important to a given user than the location of the

setskand metrics in Section 4. Section 6 reviews relevantrestaurant, then the query might assign, sag, Aweight to
work. attribute Address, and @.4 weight to attributes Price and

Rating.l
2. Query Model

In traditional relational systems, query results consistofa  R€Cent techniques to evaluate tomueries over tradi-
set of tuples. In contrast, the answer twp-k queryis anor- tional relational DBMSs [4, 5] assume that all attributes of
deredset of tuples, where the ordering is based on how close€Very object are readily available to the query processor.
each tuple matches the given query. Furthermore, the answefiOWeVer, in many applications some attributes might not be
to a top% query does not include all tuples that “match” the available “locally,” but rather will have to be obtained from
query, but rather only the bestsuch tuples. In this section &" external web-accessible source instead. For instance,

we define our data and query models in detail. the Price attribute in our example is provided by the NYT-
Consider a relationR with attributes Ag, A1, ..., A, R_eview We_b site and can only be accessed by querying this

plus perhaps some other attributes not mentioned in oursite’s web interfacé.

queries. A topk query_ over relatiorf simply specifies t_ar' 40ur model and associated algorithms can be adapted to handle other

get values for the attributed;. Therefore, a tog query is scoring functions (e.ginin), which we believe are less meaningful than

an assignment of valudsdo = qo, 41 = q1,.-., An = ¢u} weighted sums for the applications that we consider.

to the attributes of interest. Note that some attributes might. . Of €ourse, in some cases we might be able to download all this remote
information and cache it locally with the query processor. However, this

always have the' same “default” target value in EVEry qUETY. will not be possible for legal or technical reasons for some other sources, or
For example, it is reasonable to assume thatRh&ngat- might lead to highly inaccurate or outdated information.



This paper focuses on the efficient evaluation of top- 3. Evaluating Top-k Queries
queries over a (distributed) “relation” whose attributes are
handled and provided by autonomous sources accessible |, yhis section we present strategies for evaluatingktop-
over the web with a variety of interfaces. Specifically, we ¢,,aries as defined in Section 2. Specifically, in Section 3.1

dlstlngwsh bet.ween three types of sources based on their atye present a naive but expensive approach to evaluate top-
cess interface: queries. Then, in Section 3.2 we introduce our novel strate-

Definition 1: [Source Types]Consider an attributed; with g_ies_. Finally, in Section 3.3 we adapt existing techniques for
target valueg; in a top+ queryg. Assume further that; similar problems to our framework. o

is handled by a sourcs. We say thafS is an S-Sourceif, We make a number of simplifying assumptions in the re-
given ¢;, we can obtain fron§S a list of objects sorted in mainder of this section. Specifically, we assume that the
descen&ing order of Scare by (repeated) invocation of a scoring function for all attributes return values between 0
getNext s(g;) interface. Alternatively, assume thdt is and 1, with 1 denoting a perfect match. Algo, we assume
handled by a sourc® that only returns scoring information  that exactly ones-SourcgdenotedS and associated with at-

when prompted about individual objects. In this case, we tfiPuteAo) and multipleR-Source (denoted?, . ..., i, and
say thatR is an R-Source R provides random access on associated with a_ttnbuteAl, ..., A,) are available. (The
A; through agetScore r(g:,t) interface, where is a set ~ S-S0urceS could in fact be of typeSR-Source In such a
of attribute values that identify an object in question. (As a c@S€, we willignore its random-access capabilities in our dis-
small variation, sometimes an R-Source will return the actual €USSion.) In addition, we assume that only one source is ac-
attribute A; value for an object, rather than its associated €€SSed at a time, so all probes are sequential during query
score.) Finally, we say that a source that provides both sorted Processing. (See Section 7.)
and random access is BR-Source Following Fagin et al. [6, 7], we do not allow our al-
gorithms to rely on “wild guesses”: thus a random access
Example 1 (cont.)In our running example, attribute Rating cannot zoom in on a previously unseen object, i.e., on an
is associated with the Zagat-Review web site. This site pro-object that has not been previously retrieved under sorted
vides both a list of restaurants sorted by their rating (sorted access from a source. Therefore, an object will have to
access), and the rating of a specific restaurant given its namebe retrieved from th&-Sourcebefore being probed on any
(random access). Hence, Zagat-Review is an SR-SourceR-Source Since we have exactly orf& SourceS available,
In contrast, Address is handled by the MapQuest web site,objects inS are then the only candidates to appear in the
which returns the distance between the restaurant addressanswer to a toge query. We refer to this set of candidate
and the user-specified address. Hence, MapQuest is arpbjects a®bjectsS). Besides, we assume that RHSource
R-Sourcel Ry,..., R, “know about” all objects irDbject$.S). In other
words, given a query and an object € ObjectgS), we can

To define query processing strategies for fogueriesin- ~ Probef and obtain the scorBcorey, (¢;, ) corresponding

volving the three source types above, we need to consider thd® ¢ andt for attribute4;, for all i = 1,...,n. Of course,
cost that accessing such sources entails: this is a simplifying assumption that is likely not to hold in
practice, where eadR-Sourcamight be autonomous and not

Definition 2: [Access Cost] Consider an R-Source or coordinated in any way with the other sources. For instance,
SR-Sourcé and a topk query. We refer to thaverage time  in our running example the NYT-Review site might not have
that it takesR to return the score for a given object H(R). reviewed a specific restaurant, and hence it will not be able
(tR stands for “random-access time”) Similarly, consider to return a score for thBrice attribute for such a restaurant.
an S-Source or SR-Sourée We refer to the average time In this case, we use a default value 8norey, (¢;, t).

that it takesS to return the top object for the query #(S) .

(tS stands for “sorted-access time”) We make the simplify- 3:1- A Naive Strategy

ing assumption that successive invocations ofgtstext

interface also take timeS(S) on average. A simple technique to evaluate a t@pguery g consists
of retrieving all partial scores for each object@bjectg.S),

Fagin et al. [7] presented “instance optimal” query pro- calculating the corresponding combined scores, and finally
cessing algorithms over sources that are either of typereturningk objects with the highest scores. This simple pro-
SR-SourcgTA algorithm) or of typeS-Source(NRA al- cedure returns a correct answer to the given ioguery.
gorithm). As we will see, simple adaptations of these al- However, we need to retrieve all scores for each object in
gorithms do not perform as well for the common scenario Object$.S). This can be unnecessarily expensive, especially
whereR-Sourcesources are also available. In the remain- since many scores are not needed to produce the final answer
der of this paper, we address this limitation of existing kop- for the query, as we will see. Using Definition 2, this strategy
query processing techniques. takes timgObject$S)| - (tS(S) + i, tR(R;)).



3.2. Our Proposed Strategies which, at each step, aims at greedily minimizing some “dis-
tance” between the current execution state and the final state.

In this section we present novel strategies to evaluate top-

k queries over on&-Sourceand multipleR-Source. Our 3.2.1 The Optimal Strategy

techniques lead to efficient executions by explicitly modeling given a topk querygq, the Optimalstrategy for evaluating

the cost of randpm probes R?rSolurce. Unlike the naive is the most efficient sequencegétNext andgetScore

strategy of Section 3.1, our algorithms chobsghthe best 5|5 that produce top-objects for the query along with their

objectandthe best attribute on which to probe next at each scores. Furthermore, such an optimal strategy must also pro-

step. In fact, we will in general not probe all attributes for y;ige enough evidence (in the form of at least partial scores

each object under consideration, but only those needed Gy additional objects) to demonstrate that the returned ob-

identify a top# answer for a query. jects are indeed a correct answer for the kogdery. In this
Consider an objedtthat has been retrieved frofaSource  section we show one such optimal strategy, built assuming

S and for which we have already probed some subset ofcomplete knowledge of the object scores. Of course, this is

R-Source k' C {Ri,...,R,}. Lets; = Scorey,(q,t:) not a realistic query processing technique, but it provides a

if R; € R'. (Otherwise,s; is undefined.) Then, anpper  seful lower bound on the cost of any processing strategy

bound for the score of obje¢t denoted (¢), is the maxi-  yjthout “wild guesses.” Additionally, the optimal strategy

mum possible score that objeatan get, consistent with the  rovides useful insight that we exploit to define an efficient

information from the probes that we have already performed.a|gorithm in the next section.

U(t) is then the score thatwould get if¢ had the maximum As a first step towards our optimal strategy, consider the

score of 1 for every attribute in the query that has not yet fo|iowing property of any topk processing algorithm:
been processed far U(t) = ScoreCombso, 51, - - -, $n),

wheres; = s; if R; € R', and§; = 1 otherwise. If Property 1: Consider a topk queryq and suppose that, at
objectt has not been retrieved fro yet, then we define  some point in time, we have retrieved a set of objéci®m
U(t) = ScoreCombsy, 1,...,1), wheres, is the Scoregy, S-SourceS and probed some of the R-Sourder these ob-
score for the last object retrieved frof) or 1 if no object  jects. Assume further that the upper bodnd) for an object
has been retrieved yet.t’§ score for4, cannot be larger ¢t € Objectg.S) is strictly lower than the lower bound(¢;)
thans,, sinceS-Sources returns objects in descending order for & different objects,,...,¢; € T. Thent is guaranteed
of Scorey,.) not to be one of the top-objects forg.

Similarly, a lower bound for the score of an object
t already retrieved fromS, denotedL(t), is the min-
imum possible score that obje¢t can get: L(¢)

Using this property, we can view an optimal processing strat-
egy as (a) computing the final scores fotop objects for a
ScoreCombsg, 1, .. ., &), Where; = s; if R; € R', and given query, which are needed in the answer, while (b) prqb—
3; = 0 otherwise. If object has not been retrieved frof ing the fewest and least expensive attributes on the remaining
yet, then we definé () = 0. objects so that their upper bound is no higher than the scores
of the top# objects. (We can safely discard objects with up-
trieved from S, denotedE(t), is obtained by assuming Perbound matching the lowest témbject's score since we
that the score for each attribute that has not yet beenPreak ties arbitrarily.) This way, an optimal strategy identi-

probed is some expected partial scare;): E(f) = fies and scores the top objects, while providing enough evi-
' dence that the rest of the objects have been safely discarded.

Finally, the expected score for an objecttalready re-

ScoreComfxg, 51,...,5,), Wheres; = s; if R, €

R', and s; = e(s;) otherwise. If objectt has not ) )

been retrieved fromS yet, then we defineE(t) =  Algorithm Optimal (Input: top-k queryq)
ScoreComfr(so), e(s1), - .-, €(sn)). Inthe absence of more 1 choose a set of: objects, Answery, such that
sophisticated statistics we set the expected partial s¢esp Answery, is a solution to the tof- queryq 7. (Opti-

to 0.5 for i = 1,...,n, ande(sg) to %, wheres, is the mal assumes complete knowledge of all object scores.)
Scorey, score for the last object retrieved frash or 1 if no
object has been retrieved yet (Scorey, (¢, %) can range
between 0 and,.) 3. Getthe best objecfor attributeA,, with scoresy, from
In Section 3.2.1 we define what constitutes an optimal S-Sources: (t, sg) < getNextg(qo).

strategy in ourframewo_rk. In Section 3.2.2 we dgsgrlbe one , s U(t) < score, and we have seen all objects in
new strategyUpper, which can be seen as mimicking the Answerg, return the topk objects after completely
optimal solution when no complete information is available. probing them and stop. (No unretrieved object in

Finally, in Section 3.2.3 we derive another technigriek, Object4.S) can have a higher upper bound than

2. Letscore; be the lowest score iAnswery,.

SAlternative techniques for estimating expected partial scores include  7|n the presence of score ties, to ensure optimality, this step picks the
sampling and exploiting attribute-score correlation if known. objects that would be the most expensive to discard in Step 5(b).



5. (a) If objectt is one of theAnswer;, objects, probe
all R-Source to computeScordg, t).
(b) Otherwise, probe a subskt C {R;,..
t such that:
e After probing everyR; € R/, it holds that
U(t) < scorey,.

., Ry} for

for the query and its final value needs to be returned, or its
upper bound will have to be lowered through further probes
so that we can safely discard it. In practice, when several ob-
jects agree on the highest upper bound, one of them will be
arbitrarily chosen for the next probe.

We exploit Properties 1 and 2 and the general structure of

e The cost)_, . tR(R;) is minimal among

the subsets of Ry, ..., R,} with the prop-
erty above.

6. Get the next best objectfrom S-SourceS: (t,sg) +
getNext¢(go) and return to step 4.

The Optimalalgorithm is only of theoretical interest and
cannot be implemented, since it requires complete knowl-

edge about the scores of the objects, which is precisely what 3

we are trying to obtain to evaluate tépgueries.

3.2.2 The Upper Strategy

We now present a novel topguery processing strategy that
we callUpper. This strategy mimics th®ptimalalgorithm
by choosing probes that would have the best chance to be
in the Optimal solution. However, unlik@ptimal Upper
does not assume any “magic” a-priori information on object
scores. Instead, at each stdpperselects an object-source
pair to probe next based @xpectedbject scores. This cho-
sen pair is the one that would most likely have been in the
optimalset of probes.

We can observe an interesting property:

Property 2: Consider a topk query ¢ and suppose that

at some point in time we have retrieved some objects from
S-Sources and probed some of the R-Sowrder these ob-
jects. Suppose that an objecte Object$S) has a score
upper boundJ (t) strictly higher than that of every other ob-
ject (i.e.,U(t) > U(t') Vt' # t € ObjectgS)). Then, at
least one probe will have to be done bhefore the answer

to ¢ is reached:

o If ¢ is one of the actual top-objects, then we need to
probe all of its attributes to return its final score for

e If t is not one of the actual top-objects, its upper
boundU (¢) is higher than the score of any of the tép-
objects. Hence requires further probes so thdf (¢)
decreases before a final answer can be established.

This property is illustrated in Figure 1 for a top-3 query.
In this figure, each object’s possible range of scores is repre-
sented by a segment, and objects are sorted by their expected
score. From Property 1, objects whose upper bound is lower
than the lower bound df other objects cannot be in the final
answer. (Those objects are marked with a dashed segment in
Figure 1.) Also, from Property 2, the object with the highest
upper bound, noted in the figure, will have to be probed be-
fore a solution is reached: eithigris one of the top-3 objects

score

the Optimalalgorithm to define outpperalgorithm:

Algorithm Upper (Input: top+# queryq)
. Get the best objectfor attribute Aq from S-Sources:

(t,s0) ¢ getNextg(qo).

. Initialize Uypseenn = U(t), Candidates = {t}, and

returned = 0.
If Candidates # 0:

e Pick ty from Candidates such thatU(ty) =
maxi eCandidates U(t,) .

Else:ty is undefined.

. Iftg isundefined ot/ (tg) < Uunseen:

e Get the next best obje¢ffor attribute Ay from S:
(t,s0) < getNextg(qo).

e Update Uynseenn. = U(t) and insert¢ into
Candidates.
Else: Ifty is completely probed:

e Return tyg with its score; removety from

Candidates.

° 1};€t|7f”n€d = returned + 1. If returned = k,
alt.

Else:

e Ri < SelectBestSource(ty,Candidates, k —
returned).

e Probe sourceR; on object tyg: s; <«
getScorep (qi,tH)-

5. Go to stef8.

A current top-k X: expected value

"_ : objects that cannot be
in final answer

l i threshold
-_-l o — . — e — . — . —
I

Figure 1. Snapshot of the execution of thpper strategy.



At any point in time, if the final score of the object with

the execution, functiol? focuses ort’, the object with the

the highest upper bound is known, then this is the best objectt*” highest expected score among the objects retrieved from
in the current set. No other object can have a higher score an&-SourceS. FurthermoreB considers the range of possi-

we can safely return this object as one of the kagbjects for
the query. As a corollary)ppercan return results as they are
produced, rather than having to wait for all tégresults to
be known before producing the final answer.

ble scores that each such object can take atit¢8. The
smaller such ranges are, the closer we are to finding the fi-
nal solution for the query. In effect, when we reach the final
statet’ is the object with the actuét” highest score, and all

We now discuss how we select the best source to probe forobjects not in the answer should be knometto have scores

an object in step 4 of the algorithm. As i®ptimal we con-
centrate on (a) computing the final value of the fopbjects,

and (b) for all other objects, decreasing their upper boundso pB —

that it does not exceed the scores of the kogbjects. How-
ever, unlikeOptimal Upperdoes not know the actual scores

a-priori and must rely on expected values to make its choices
For an object, we select the best source to probe as fol-
lows. If t is expected to be in the final answer, i.e., its ex-

pected value is one of thehighest ones, we compute its fi-
nal score, and all sources not yet probedfare considered.

Otherwise, we only consider the fastest subset of sources no,

probed fort that is expected to decreaBét) to not exceed
the value of the:*" largest expected scorta(esholdr’). The
best source fot is the one that has the highéﬁ% ratio,
i.e., the one that is expected to have a high impactspos-
sible score range while being fast:

Function SelectBestSource (Input: object t, set of objects
Candidates, integerr)

1. Lett' be the object ilCandidates with thert" largest
expected score. Lt = E(t').

@) IfE(t) > T:

e DefineR’ C {Ry,...,R,} as the set of all
sources not yet probed for
(t is expected to be one of the tdpebjects,
so it needs to be probed on all attributes.)

(b) Else, defind?’ C {Ry,...,R,} sothat:
e U(t) < T if each sourceR; € R’ were to
return the expected value forand
e The costy , p tR(R;) is minimal among
the subsets of Ry, ..., R,} with the above
property.
(SinceE(t) < T, we are guaranteed to find at
least one such set of attributes.)

such that=%—~ is maximum.

2. Return a sourc®; € R TR

3.2.3 The Pick Strategy

We now present thBick algorithm, which uses an alternative
approach to evaluate tdp-queries. WhileUpper chooses

the probe that is most likely to be in the “optimal” set of
probes, at each stdtick chooses the probe that minimizes a
certain functionB, which represents the “distance” between

above that of’. The definition of functiomB is:®

>

teObjectss)

max{0, U(t) — max{L(t), E(t')}}

Figure 2 shows a snapshot of a query execution step, high-
lighting the score ranges that “prevent” the current state from
being the final state. Note that the valuekfs never nega-
tive. WhenB becomes zero, all top-scores are known, and

f‘:l objects not in the final answer have an upper bound for
eir score that is no higher than(t').

X : expected value

| range of values in B

T : objects that cannot be
in final answer

lﬂj NS

| ‘ 1
\ | X
| !

current top-k

score

Figure 2. Snapshot of the execution of ®iek strategy.

At each stepPick greedily chooses the probe that would
decreaseB the most in the shortest timePick selects for
each object the best source to probe, i.e., the attribute value
that will result in the highest decrease ih If the object
is expected to be in the final tdpanswer, all unprobed at-
tributes are considered. Otherwise, only attributes from the
best (fastest) set of attributes that will be needed to eliminate
the object are considered. This is completely analogous to
how theSelectBestSourdanction works. Then, among all
selected objecR-Sourcepairs,Pickchooses the one with the

H expected decrease of B :
highest iR(R) ratio.

Observe that, unliké&Jpper, Pick retrieves all candidate
objects to consider during an initialization step, and does not
access th&-Sourcafterwards.

8We studied several alternative definitions fthat did not work as well

the current execution state and the final state, in which thein our experiments as the one that we present here. For space limitations we

top-k tuples are easily extracted. At a given point in time in

do not discuss these alternatives further.



Algorithm Pick (Input: top-%£ queryq) 2. Define a threshold value &soreComgxg, s1, . . ., Sn),
wheres; is the last score seen in thieh source. The

1. Retrieve all objects that can be in the tosolution threshold represents the highest possible value of any
from S-Sources: object that has not been seen so far in any source.
(@) Get thek best objects, ..., t;, for attribute Ao 3. If the current topk objects seen so far have scores
from S-Sources: (t;, so) < getNextg(qo). greater than or equal to the threshold, return those val-
(b) Initialize Candidates = {t1,...,t;}; initialize ues. Otherwise, return to step 1.
t=1y.

) . Although this algorithm is not designed f&-Source,
(c) While L(ty) < U(t)'_ getthe nextbestobjetfor e can adapt it in the following way. In step 1, we access the
i"’:]tgé?gt?n%) Ctron;.g : t(t’ s0) ¢ getNextg(qo); only S-SourceS using sorted access, and retrieve an object
anaaares. t. In step 2, we define the threshold valud&s), since the

2. WhileB > 0: maximum possible score for aRtSources always 1. Then,
(a) For each object € Candidates select for each object retrieved fromS we probe alR-Source to
the best source:R; + SelectBestSourcel(t, get the final score for. For a model with a singl&-Source
Candidates, k). S, the modified algorithm retrieves in order all objects in

ObjectdS) one by one and determines whether each object

(b) Choose among the selected paiisiz;) the one is in the final answer by probing the remainiRgSource.

that has the highest expected gain per unit of time

(ewpectedtzg(c]gr)zase in B and probe it. The complete procedure is described next.
3. Return the topk objects. Algorithm TA-Adapt (Input: top+ queryq)

Selecting a probe usinBick is more expensive than with 1. Get the best objectfor attribute Ag from S-Sources:
Uppersince we have to consider probes on all objects. More- (t, 50) ¢ getNexts(qo)-
over, Pick needs to retrieve all objects that might belong to 2 Update threshold = U (¢).

the top4 answer from thes-Sourceat initialization, which . _ _ _
might result in all objects being retrieved. 3. Retrieve score; for attributeA; and object via a ran-
dom probe toR-SourceR;: s; < getScoreg, (¢i,t)

3.3. Existing Approaches fori=1,...,n.

4, Calculate t's final score for g¢: score =
Existing algorithms in the literature assume that all ScoreComgo, 51, - - - , $n).

sources areSR-Source or S-Source, and do not directly 5. If score is one of the topk scores seen so far, keep ob-
handle sources with only a random-access interface. In Sec-  jectt along with its score.
tion 3.3.1 we adapt Fagin et al.’s TA algorithm [7] so that it
also works oveR-Source, and in Section 3.3.2 we extend
the resulting algorithm so that it also incorporates ideas from
the expensive-predicates literature. As an important differ- . .
ence with our strategies of the previous section, the tech- (0) gtgermse: get the next best objetfrom

. . -SourceS: (t,sog) < getNextg(go) and return
nigues below choose an object and praieneeded sources to step 2.
before moving to the next object. This “coarser” strategy can
degrade the overall efficiency of the techniques, as shown in  We can improve the algorithm above by interleaving the
Section 5. execution of steps 3 and 4 and adding a shortcut test con-
dition. Given an object, we calculate the valuE (t) after
each random probe to d&SourceR;, and we skip directly
to step 5 if the current obje¢is guaranteed not to be a tép-
Fagin et al. [7] presents the TA algorithm for processing top- object. That is, ift/(t) is no higher than the score &fob-
k queries oveSR-Source jects, we can safely ignore(Property 1) and continue with

the next object. We call this algorithivA-Opt

6. (a) If thresholdl is lower than or equal to the scores
of the current top objects, return thegeobjects
along with their scores and stop.

3.3.1 Faginetal.’s Algorithms

Algorithm TA (Input: top-k& queryq)

1. Do sorted access in parallel to each source. As eacts-3-2 Exploiting Techniques for Processing Selections

objectt is seen under sorted access in one source, do with Expensive Predicates

random accesses to the remaining sources and appl)<N . . S
the Scorefunction to find the final score of objett If ork on expensive-predicate query optimization [10, 12]

Scoréq, t) is one of the topk seen so far, keep object ~ has studied how to process selection queries of the form
along with its score. p1 A ... A p,, Where each predicajg can be expensive to



calculate. The key idea is to order the evaluation of predi-

cates to minimize the expected execution time. The evalua-

tion order is determined by the predicatesnk, defined as:
rank,, = Co{g;f;{gefizz’;jzéf(;) , Wherecost-per-object(p;) is
the average time to evaluate predicat®ver an object.

We can adapt this idea to our framework as follows. Let
Ry, ..., R, be theR-Source, with weightswy, ..., w, in
the Scorefunction. We sort theR-Source R; in decreas-
ing order of rank, defined asunkg, %
where E(Scorg;, ) is the expected score of an object from
sourceR; (typically 0.5 unless we have additional informa-

tion). Thus, we favor fast sources that might have a large

impact on the final score of an object, i.e., those sources that

are likely to significantly change the value@ft).
We combine this idea with our adaptation of the TA algo-
rithm to define the TA-EP algorithm:

Algorithm TA-EP (Input: top-%£ queryq)

1. Get the best objec¢tfor attribute Ao from S-Sources:
(t,s0) ¢ getNextg(qo).

Update threshol@ = U ().
For eachR-SourceR; in decreasing order ofankg,:

(a) Retrieve scores; for attribute A; and objectt
via a random probe tdR-SourceR;: s; <+
getScorep (qi, ).

(b) If U(t) is lower than or equal to the score bf
objects, skip to step 4.

If t's score is one of the top-scores seen so far, keep
objectt along with its score.

5. (a) If thresholdl is lower than or equal to the scores
of the current top objects, return thegeobjects

along with their scores and stop.

(b) Otherwise, get the next best objett from
S-SourceS: (t,sg) + getNextg(go) and return
to step 2.

4. Evaluation Setting

“Uniform” data set: We assume that attributes are in-
dependent of each other and that scores are uniformly
distributed (default setting).

e “Correlation” data set: We assume that attributes ex-
hibit different degrees of correlation, modeled by a cor-
relation factorcf that ranges between -1 and 1 and
that defines the correlation between th&ourceand
the R-Sourcescores. Specifically, wheef is zero, at-
tributes are independent of each other. Higher values
of cfresult in positive correlation between tBeSource
and theR-Sourcescores, with all scores being equal in
the extreme case whaf=1. In contrast, whewrf<0,
the S-Sourcescores are negatively correlated with the
R-Sourcescores.

“Gaussian” data set: We generate the multiattribute
score distribution by producing five overlapping mul-
tidimensional Gaussian bells [16].

The random-access cost for ed¥bourceR; (i.e.,tR(R;))

is a randomly generated integer ranging between 1 and 10,
while the sorted-access cost f8+SourceS (i.e., tS(S)) is
randomly picked fron{0.1,0.2,...,1.0}.

Real Web-Accessible Sources: The real sources that we
use are relevant to (an expanded version of) our restaurant ex-
ample of Section 2. Users input a starting address, the type of
cuisine in which they are interested (if any), and importance
weights for the followingR-Sourceattributes: SubwayTime
(handled by the SubwayNavigator sie Driving Time(han-

dled by the MapQuest sitePopularity (handled by the Al-
taVista search engiré; see below)ZFood ZPrice, ZDecor,

and ZService(handled by the Zagat Review web site), and
TRatingandTPrice (provided by the New York Times at the
New York Today web site). The Verizon Yellow Pages list-
ing 1%, which returns restaurants of the user-specified type
sorted by shortest distance from a given address, is the only
S-Source We approximate the “popularity” of a restaurant
with the number of web pages that mention the restaurant, as
reported by the AltaVista search engine. (The idea of using
web search engines as a “popularity oracle” has been used

In this section we describe the data sets (Section 4.1), metbefore in the WSQ/DSQ system [8].) Table 1 summarizes
rics and other settings (Section 4.2) that we use to evaluateahese sources and their interfaces.

the strategies of Section 3.
4.1. Data Sets

Synthetic Sources: We generate different synthetic data

Of course, the real sources above do not fit our model of
Section 2 perfectly. For example, some of these sources re-
turn values for multiple attributes simultaneously (e.g., the
Zagat Review site). Also, as we mentioned before, informa-
tion on a restaurant might be missing in some sources (e.g., a

sets. Objects in these data sets have attributes from a sintéstaurant might not have an entry at the Zagat Review site).

gle S-SourceS and fiveR-Source. The data sets vary in
their number of objects i@bject$.S) and in the correlation
between attributes and their distribution. Specifically, given

In such a case, our system will give a default (expected) value
to the score of the corresponding attribute.

http://www.subwaynavigator.com

a query, we generate individual attribute scores for each con-  10h¢tp:/ww.altavista.com

ceptual object in our synthetic database in three ways:

Lhttp://www.superpages.com



| Source | Attribute(s) | Input | the time that any strategy without “wild guesses” would take
Verizon Yellow | Distance type of cuisine, to process topg: queries. We do not present results Rick
Pages (S) user address (Section 3.2.3) for lack of space. In our experimemigk
Subway Naviga-| SubwayTime | restaurant address, performed on average slightly worse thdpperin terms of
tor (R) - user address source access costs, but with significantly higher “local” pro-
MapQuest (R) | DrivingTime restaurant address, cessing time. (Recall from Section 3.2.3 tRatk selects the

user address

: . . best source to probe for every object at each iteration of the
AltaVista (R) Popularity free-text with .
algorithm.)
restaurant name
and address ]
Zagat Review (R)| ZFood ZService | restaurant name 5. Evaluation Results

ZDecor, ZPrice
NYT Review (R) | TRating TPrice | restaurant name

In this section we present the experimental results for the
techniques of Section 3 using the data sets and general set-

Table 1. Real web-accessible sources used in the experimen- . . . .
tings described in Section 4.

tal evaluation.

5.1. Results for Synthetic Data Sets
4.2. Other Experimental Settings
We first study the performance of the techniques when we
Our query processing strategies attempt to minimize thevary the synthetic data set parameters.
total processing time for top-queries, both for random and
sorted access to the various sources. To measure the relaffect of the Number of Objects Requestedk: In Fig-
tive performance of the techniques over@$ourceS and  yre 3 we report results for the default setting, as a function of
R-Source Ry, ..., R,, we use thg following metric: k and for both theJniformandGaussiarsynthetic data sets.
As k increases, the time needed by each algorithm to return
brotar = ns - £5(5) + Z ni - tR(R;) the top% objects increases as well, since all techniques need
= to retrieve and process more objects. Tigper strategy
consistently outperforms all other techniques, and has total
execution time close to that of the lower bour@iptimal

whereng is the number of objects extracted fr@nSource
S, n; is the number of random-access probesRegource

R;, andtS andtR are as specified in Definition 2;,;,; then L
. C We can see that our optimizations ovek-Adapt hamely
approximates the execution time for a query. TA-Optand TA-EP, result in dramatic improvements in per-

For the synthetic data sets and for each setting of the ex-,
periment parameters, we generate 100 queries randomly wit ormance oyeﬂA-Adgpt Wwe then remquA-Adaptfrom
urther consideration in the remaining discussion.

their associated weights, and compute the avetggge val-

ues. We report results for tapeueries for different values of ) . )

k, |S|, cf and for various assignments of weights and costs Effect of the Number of Objects in S-Sources:  Figure 4

to sources. In the default settingis 50 (i.e., queries ask for ~ Studies the impact of the size 8FSourceS. As the num-

the best 50 objects)S| = 10,000, and we use the/niform ber of objects increases, the performance of each algorithm

data set. drops since more objects have to be evaluated before a so-
For the real data sets, we use seven querieS, some Speciwution is returned. The time needed by each algorithm is ap-

ing an address on E3" Street, and some others specifying Proximately linearin the number of objectsSh Uppergives

an address on WL12t" Street. Attribute®istance Subway-  Petter results and scales better than other techniques.

Time DrivingTime ZFood ZDecor, ZService and TRating

have “default” target values in the queries (e.gDraving- Effect of Attribute Weights: We now report on the im-

Timeof 0 and aZFoodrating of 30). The target value for pact of attribute weights on the execution times. We vary the

Popularityis 1,000 hits, whilezPriceand TPrice are setto  weight of theS-Sources (Figure 5(a)) and th&®-SourceR;

the least expensive value in the scale. In all seven queries(Figure 5(b)) relative to the weight of the remaining sources.

the weight of thes-Sourcattribute (i.e.Distancg is roughly In particular, we set the varying weightasimes the average
twice the weight of anjR-Sourceattribute. of the remaining weights. Figure 5(a) shows that for larger
Next, we experimentally compare the algorithms that we weights inS-Sources all techniques improve their execution
discussed in Section 3, naméij-AdaptSection 3.3.1)TA- times, since fewer random probes are needed to identify the
Opt (Section 3.3.1)TA-EP (Section 3.3.2), and oudpper top-k objects. Also, for larger weights iR-SourceR; (Fig-
(Section 3.2.2) strategy. We also report results for@ipdi- ure 5(b)),TA-Optperforms poorly since it does not use any

maltechnique of Section 3.2.1. As discussed, this techniqueinformation about the relative weights of the sources to order
is only of theoretical interest, and serves as a lower bound forthe random probes, in contrast to the other techniques. We



240 /
210 f--m-mmm oo

- 180 - === ===
—e— Optimal — Optimal
—&— Upper = —a&— Upper
——TA-EP g % TA-EP
—=—TA-Opt = —=—TA-Opt
—e— TA-Adapt —e— TA-Adapt

(a) Uniform data set (b) Gaussian data set

Figure 3. Performance of the different strategies for the default setting of the experiment parameters, as a function of the number of
objects requestek, and for two synthetic data-set distributions.

note that we obtained the same results when we varied theS-SourceS before returning the top-objects, which results
access costs of the different sources instead of their weightsin significantly larger execution times comparedipper.
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Figure 4. Performance of the different strategies forlthe Figure 6. Performance of the different strategies forGoe-
form data set, as a function of the number of objects in relation synthetic data set, as a function of the correlation
S-Sources. factorcf.

5.2. Results for Real Web-Accessible Data Sets
Effect of Attribute Correlation:  We now turn to theCor-
relation data set (Section 4) and evaluate the effect that at- Our final set of results are for the real data sets that we
tribute correlation has on the performance of the query pro-described in Section 4 and summarized in Table 1. There are
cessing technigues. As seen in Figure 6, when the corresix web-accessible sources, handling 10 attributes. To model
lation factorcf is high and positive the performance of all the access cost for each source, we measured the response
techniques improves dramatically. Interestingly, a negativetime for a number of queries and computed their average.
correlation between the-Source and theS-Sourceattribute We then issued seven different queries to these sources and
scores significantly affects the performance of T#ealgo- timed their execution. Figure 7 shows the execution time for
rithms. For correlation factors close to -1, the order of the each of the queries, and for thipper, TA-EP, andTA-Opt
objects in theS-Sourcds close to the inverse of the order strategies. We ignore@iA-Adapt whose results in the syn-
by final scores. Therefore, boftA-Optand TA-EPneed to thetic data experiments were significantly worse than those
probe each object almost completely before proceeding tofor other techniques. In contrast with the synthetic-data re-
the next one, and have to consider almost all the tuples insults, TA-EP does not outperfornTA-Opt We conjecture
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Figure 5. Performance of the different strategies for various attribute-weight combinations.

that this discrepancy is due to our rough estimates for thetop-k queries over multimedia repositories, and for fop-
source access costs, to which th&-EP strategy would be  queries over relational databases.

particularly sensitive. In general, just as for the syntheticdata To process queries involving multiple multimedia at-
sets, outJpperstrategy performs significantly better than the tributes, Fagin et al. proposed a family of algorithms [6, 7],

two versions of th&@A algorithm. developed as part of IBM Almaden’s Garlic project. These
algorithms can evaluate tdpgueries that involve several in-
6000 dependent multimedia “subsystems,” each producing scores

that are combined using arbitrary monotonic aggregation

functions. These techniques do not directly handle sources

that provide only a random-access interface, which are the
mupper | fOcus of our paper. In Section 3.3, however, we adapted
- ;12;’; Fagin et al.'s algorithms to our scenario and experimentally

compared the resulting techniques with our new approach in
Section 5.

Nepal and Ramakrishna [14] andu@zer et al. [9] pre-
sented variations of Fagin’s original FA algorithm [6] for
processing queries over multimedia databases. In particu-
lar, Glintzer et al. [9] reduce the number of random accesses
through the introduction of more stop-condition tests and by
exploiting the data distribution. The MARS system [15] also

In summary, our experimental results consistently show yses variations of the FA algorithm and views queries as bi-
thatUpperoutperforms all other methods, with performance nary trees where the leaves are single-attribute queries and
close to that of theDptimal technique. Furthermore, our the internal nodes correspond to “fuzzy” query operators.
modifications to theTA algorithm, TA-EP in particular, Chaudhuri and Gravano also built on Fagin’s original FA
resulted in Significant improvements in performance. a|gorithm and proposed a cost-based approach for optimiz_

ing the execution of tof- queries over multimedia reposi-

As a final observation, note that all the algorithms dis- tgries [3]. Their strategy translates a given toguery into
cussed in this paper correctly identify the tbbjects for 3 selection query that returns a (hopefully tight) superset of
a query according to a given scoring function. Hence therethe actual topk tuples. Ultimately, the evaluation strategy
is no need to evaluate the “correctness” or “relevance” of the consists of retrieving the top- tuples from as few sources
computed answers. The design of appropriate scoring func-as possible, for somie > &, and then probing the remaining
tions is an important problem that we do not address in this sources by invoking existing strategies for processing selec-
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Figure 7. Experimental results for the real web-accessible
data sets relevant to our New York City restaurant scenario.

paper. tions with expensive predicates [10, 12]. This technique is
then closely related to algorithm TA-EP from Section 3.3.2.
6. Related Work Over relational databases, Carey and Kossmann [1, 2] pre-

sented techniques to optimize tépgueries when the scor-
Relevant work on toge query processing can roughly be ing is done through a traditional SQL order-by clause. Don-
divided in two groups: evaluation strategies for multiattribute jerkovic and Ramakrishnan [5] proposed a probabilistic ap-



proach to topk query optimization. Finally, Chaudhuriand and 11S-98-17434, and by a gift from Microsoft Research.
Gravano [4] exploited multidimensional histograms to pro- Amélie Marian was partially supported by a Viros Scholar-
cess topk queries over an unmodified relational DBMS by ship. We also thank Ron Fagin for helpful comments on an

mapping topk queries into traditional selection queries.
Additional related work includes the PREFER sys-

earlier version of this paper.

tem [11], which uses pre-materialized views to efficiently References

answer ranked preference queries over commercial DBMSs.
Recently, Natsev et al. proposed incremental algorithms [13] [1]
to compute topk queries with user-defined join predi-
cates over sorted-access sources. Finally, the WSQ/DSQ
project [8] presented an architecture for integrating web- [2]
accessible search engines with relational DBMSs. The re-
sulting query plans can manage asynchronous external calls
to reduce the impact of potentially long latencies. The
WSQ/DSQ ideas could be incorporated to speed up the ex-
ecution of our topk queries further and depart from the se-
guential query plans on which we focused in this paper.

(3]
(4]

7. Conclusion and Future Work 5]

We studied techniques to efficiently evaluate fogueries
over web-accessible autonomous databases with a variety of
access interfaces. In particular, we focused on web sources
that can only be accessed via random accesses. We proposeff]
extensions to existing algorithms for tépgueries so that
they can handle random-access sources, and also introduced
two novel strategiesipper and Pick, which are designed
specifically for our query model. A distinctive characteristic
of our algorithms is that they interleave probes on several ob- 9]
jects whereas other techniques completely probe one object
at a time. This interleaving has a strong effect on query pro-
cessing efficiency. We conducted a thorough experimental[10]
evaluation of these techniques using both synthetic and real
web-accessible data sets. Our evaluation showedUpat
per produces the best processing plans in terms of executior!!
time for a variety of data and query parameters, and for both
synthetic and real data sets.

We plan to investigate several interesting directions in 1]
the future. Our model assumes that only &Sourceand
multiple R-Source are available; we are evaluating algo-
rithms that would work in the general case with arbitrary
numbers ofS-Source, R-Source, andSR-Source (At least
oneS-Sourcer SR-Sourcés always needed, though, not to
rely on “wild guesses.”) Another assumption is that only one
source can be accessed at a time, which is too restrictive iny4
the context of web sources. As explained in Section 6, we
can incorporate the ideas in [8] to include parallelism and
speed up query processing.

6]
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