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Abstract

A query to a web search engine usually consists of a list
of keywords, to which the search engine responds with the
best or “top” k pages for the query. This top-k query model
is prevalent over multimedia collections in general, but also
over plain relational data for certain applications. For exam-
ple, consider a relation with information on available restau-
rants, including their location, price range for one diner, and
overall food rating. A user who queries such a relation might
simply specify the user’s location and target price range, and
expect in return the best 10 restaurants in terms of some com-
bination of proximity to the user, closeness of match to the
target price range, and overall food rating. Processing such
top-k queries efficiently is challenging for a number of rea-
sons. One critical such reason is that, in many web appli-
cations, the relation attributes might not be available other
than through external web-accessible form interfaces, which
we will have to query repeatedly for a potentially large set of
candidate objects. In this paper, we study how to process top-
k queries efficiently in this setting, where the attributes for
which users specify target values might be handled by exter-
nal, autonomous sources with a variety of access interfaces.
We present several algorithms for processing such queries,
and evaluate them thoroughly using both synthetic and real
web-accessible data.

1. Introduction

A query to a web search engine usually consists of a list
of keywords, to which the search engine responds with the
best or “top”k pages for the query. Thistop-k query model
is prevalent over multimedia collections in general, but also
over plain relational data for certain applications where users
do not expect exact answers to their queries, but instead a
rank of the objects that best match a specification of tar-
get attribute values. Additionally, some applications require
accessing data that resides at or is provided by remote, au-
tonomous sources that exhibit a variety of access interfaces,

which further complicates query processing.
Top-k queries arise naturally in applications where users

have relatively flexible preferences or specifications for cer-
tain attributes, and can tolerate (or even expect) fuzzy
matches for their queries. A top-k query in this context is
then simply an assignment of target values to the attributes
of a relation. To answer a top-k query, a database system
identifies the objects that best match the user specification,
using a given scoring function.

Example 1 : Consider a relation with information about
restaurants in the New York City area. Each tuple (or ob-
ject) in this relation has a number of attributes, including
Address, Rating, and Price, which indicate, respectively, the
restaurant’s location, the overall food rating for the restau-
rant represented by a grade between 1 and 30, and the aver-
age price for a diner. A user who lives at 2590 Broadway and
is interested in spending around$25 for a top-quality restau-
rant might then ask a top-10 queryfAddress=“2590 Broad-
way”, Price=$25, Rating=30g. The result to this query is a
list of the 10 restaurants that match the user’s specification
the closest, for some definition of proximity.

Processing top-k queries efficiently is challenging for a
number of reasons. One critical such reason is that, in many
web applications, the relation attributes might not be avail-
able other than through external web-accessible form inter-
faces. For instance, in our example above theRating at-
tribute might be available through the Zagat-Review web
site1, which, given an individual restaurant name, returns its
food rating as a number between 1 and 30 (random access).
This site might also return a list of all restaurants ordered
by their food rating (sorted access). Similarly, thePrice
attribute might be available through the New York Times’s
NYT-Review web site2. Finally, the scoring associated with
the Addressattribute might be handled by the MapQuest
web site3, which returns the distance (in miles) between the
restaurant and the user addresses.

1http://www.zagat.com
2http://www.nytoday.com
3http://www.mapquest.com



To process a top-k query over web-accessible databases,
we then have to interact with sources that export different in-
terfaces and access capabilities. In our restaurant example, a
possible query processing strategy is to start with the Zagat-
Review source, which supports sorted access, to identify a
set of candidate restaurants to explore further. This source re-
turns a rank of restaurants in decreasing order of food rating.
To compute the final score for each restaurant and identify
the top-10 matches for our query, we then obtain the prox-
imity between each restaurant and the user-specified address
by querying MapQuest, and check the average dinner price
for each restaurant individually at the NYT-Review source.
Hence, we interact with three autonomous sources and re-
peatedly query them for a potentially large set of candidate
restaurants.

Recently, Fagin et al. [7] have presented query process-
ing algorithms for top-k queries for the case where all in-
tervening sources support sorted access (plus perhaps ran-
dom access as well). Unfortunately, these algorithms are
not designed for sources that only support random access
(e.g., the MapQuest site), which abound on the web. In fact,
as we will see, simple adaptations of these algorithms do
not perform well over random-access sources. In this pa-
per, we present novel processing strategies for top-k queries
over sources that support just random access, just sorted ac-
cess, or both. We also develop non-trivial adaptations of Fa-
gin et al.’s algorithms for random-access sources, and com-
pare these techniques experimentally using synthetic and real
web-accessible data sets.

The rest of the paper is structured as follows. Section 2
defines our query and data model, notation and terminology
that we use in Section 3 to present our new techniques and
our adaptations of Fagin et al.’s algorithms. We evaluate the
different strategies experimentally in Section 5 using the data
sets and metrics in Section 4. Section 6 reviews relevant
work.

2. Query Model

In traditional relational systems, query results consist of a
set of tuples. In contrast, the answer to atop-k queryis anor-
deredset of tuples, where the ordering is based on how close
each tuple matches the given query. Furthermore, the answer
to a top-k query does not include all tuples that “match” the
query, but rather only the bestk such tuples. In this section
we define our data and query models in detail.

Consider a relationR with attributesA0; A1; : : : ; An,
plus perhaps some other attributes not mentioned in our
queries. A top-k query over relationR simply specifies tar-
get values for the attributesAi. Therefore, a top-k query is
an assignment of valuesfA0 = q0; A1 = q1; : : : ; An = qng
to the attributes of interest. Note that some attributes might
always have the same “default” target value in every query.
For example, it is reasonable to assume that theRatingat-

tribute in Example 1 above might always have an associated
query value of 30. (It is unclear why a user would insist on a
lesser-quality restaurant, given the target price specification.)
In such cases, we simply omit these attributes from the query,
and assume default values for them.

Considerq = fA0 = q0; A1 = q1; : : : ; An = qng, a
top-k query over a relationR. The score that each tuple (or
object) t in R receives forq is a function oft’s score for each
individual attributeAi with target valueqi. Specifically, each
attributeAi has an associatedscoring function ScoreAi

that
assigns a proximity score toqi andti, whereti denotes the
value of objectt for attributeAi. To combine these individ-
ual attribute scores into a final score for each object, each
attributeAi has an associated weightwi indicating its rela-
tive importance in the query. Then, the final score for object
t is defined as a weighted sum of the individual scores:4

Score(q; t) = ScoreComb(s0; s1; : : : ; sn) =
nX

i=0

wi � si

wheresi = ScoreAi
(qi; ti). The result of a top-k query is the

ranked list of thek objects with highestScorevalue, where
we break ties arbitrarily.

Example 1: (cont.) We can define the scoring function for
the Address attribute of a query and an object as the inverse
of the distance (say, in miles) between the two addresses.
Similarly, the scoring function for the Price attribute might
be a function of the difference between the target price and
the object’s price, perhaps “penalizing” restaurants that ex-
ceed the target price more than restaurants that are below
it. The scoring function for the Rating attribute might simply
be the object’s value for this attribute. If price and quality
are more important to a given user than the location of the
restaurant, then the query might assign, say, a0:2 weight to
attribute Address, and a0:4 weight to attributes Price and
Rating.

Recent techniques to evaluate top-k queries over tradi-
tional relational DBMSs [4, 5] assume that all attributes of
every object are readily available to the query processor.
However, in many applications some attributes might not be
available “locally,” but rather will have to be obtained from
an external web-accessible source instead. For instance,
the Price attribute in our example is provided by the NYT-
Review web site and can only be accessed by querying this
site’s web interface5.

4Our model and associated algorithms can be adapted to handle other
scoring functions (e.g.,min), which we believe are less meaningful than
weighted sums for the applications that we consider.

5Of course, in some cases we might be able to download all this remote
information and cache it locally with the query processor. However, this
will not be possible for legal or technical reasons for some other sources, or
might lead to highly inaccurate or outdated information.



This paper focuses on the efficient evaluation of top-k

queries over a (distributed) “relation” whose attributes are
handled and provided by autonomous sources accessible
over the web with a variety of interfaces. Specifically, we
distinguish between three types of sources based on their ac-
cess interface:

Definition 1: [Source Types]Consider an attributeAi with
target valueqi in a top-k queryq. Assume further thatAi

is handled by a sourceS. We say thatS is an S-Sourceif,
given qi, we can obtain fromS a list of objects sorted in
descending order of ScoreAi

by (repeated) invocation of a
getNext S(qi) interface. Alternatively, assume thatAi is
handled by a sourceR that only returns scoring information
when prompted about individual objects. In this case, we
say thatR is an R-Source. R provides random access on
Ai through agetScore R(qi; t) interface, wheret is a set
of attribute values that identify an object in question. (As a
small variation, sometimes an R-Source will return the actual
attributeAi value for an object, rather than its associated
score.) Finally, we say that a source that provides both sorted
and random access is anSR-Source.

Example 1: (cont.)In our running example, attribute Rating
is associated with the Zagat-Review web site. This site pro-
vides both a list of restaurants sorted by their rating (sorted
access), and the rating of a specific restaurant given its name
(random access). Hence, Zagat-Review is an SR-Source.
In contrast, Address is handled by the MapQuest web site,
which returns the distance between the restaurant address
and the user-specified address. Hence, MapQuest is an
R-Source.

To define query processing strategies for top-k queries in-
volving the three source types above, we need to consider the
cost that accessing such sources entails:

Definition 2 : [Access Cost] Consider an R-Source or
SR-SourceR and a top-k query. We refer to theaverage time
that it takesR to return the score for a given object astR(R).
(tR stands for “random-access time.”) Similarly, consider
an S-Source or SR-SourceS. We refer to the average time
that it takesS to return the top object for the query astS(S).
(tS stands for “sorted-access time.”) We make the simplify-
ing assumption that successive invocations of thegetNext
interface also take timetS(S) on average.

Fagin et al. [7] presented “instance optimal” query pro-
cessing algorithms over sources that are either of type
SR-Source(TA algorithm) or of typeS-Source(NRA al-
gorithm). As we will see, simple adaptations of these al-
gorithms do not perform as well for the common scenario
whereR-Sourcesources are also available. In the remain-
der of this paper, we address this limitation of existing top-k

query processing techniques.

3. Evaluating Top-k Queries

In this section we present strategies for evaluating top-k

queries, as defined in Section 2. Specifically, in Section 3.1
we present a naive but expensive approach to evaluate top-k

queries. Then, in Section 3.2 we introduce our novel strate-
gies. Finally, in Section 3.3 we adapt existing techniques for
similar problems to our framework.

We make a number of simplifying assumptions in the re-
mainder of this section. Specifically, we assume that the
scoring function for all attributes return values between 0
and 1, with 1 denoting a perfect match. Also, we assume
that exactly oneS-Source(denotedS and associated with at-
tributeA0) and multipleR-Sources (denotedR1; : : : ; Rn and
associated with attributesA1; : : : ; An) are available. (The
S-SourceS could in fact be of typeSR-Source. In such a
case, we will ignore its random-access capabilities in our dis-
cussion.) In addition, we assume that only one source is ac-
cessed at a time, so all probes are sequential during query
processing. (See Section 7.)

Following Fagin et al. [6, 7], we do not allow our al-
gorithms to rely on “wild guesses”: thus a random access
cannot zoom in on a previously unseen object, i.e., on an
object that has not been previously retrieved under sorted
access from a source. Therefore, an object will have to
be retrieved from theS-Sourcebefore being probed on any
R-Source. Since we have exactly oneS-SourceS available,
objects inS are then the only candidates to appear in the
answer to a top-k query. We refer to this set of candidate
objects asObjects(S). Besides, we assume that allR-Source
R1; : : : ; Rn “know about” all objects inObjects(S). In other
words, given a queryq and an objectt 2 Objects(S), we can
probeRi and obtain the scoreScoreAi

(qi; t) corresponding
to q andt for attributeAi, for all i = 1; : : : ; n. Of course,
this is a simplifying assumption that is likely not to hold in
practice, where eachR-Sourcemight be autonomous and not
coordinated in any way with the other sources. For instance,
in our running example the NYT-Review site might not have
reviewed a specific restaurant, and hence it will not be able
to return a score for thePrice attribute for such a restaurant.
In this case, we use a default value forScoreAi

(qi; t).

3.1. A Naive Strategy

A simple technique to evaluate a top-k queryq consists
of retrieving all partial scores for each object inObjects(S),
calculating the corresponding combined scores, and finally
returningk objects with the highest scores. This simple pro-
cedure returns a correct answer to the given top-k query.
However, we need to retrieve all scores for each object in
Objects(S). This can be unnecessarily expensive, especially
since many scores are not needed to produce the final answer
for the query, as we will see. Using Definition 2, this strategy
takes timejObjects(S)j � (tS(S) +

Pn
i=1 tR(Ri)).



3.2. Our Proposed Strategies

In this section we present novel strategies to evaluate top-
k queries over oneS-Sourceand multipleR-Sources. Our
techniques lead to efficient executions by explicitly modeling
the cost of random probes toR-Sources. Unlike the naive
strategy of Section 3.1, our algorithms chooseboth the best
objectand the best attribute on which to probe next at each
step. In fact, we will in general not probe all attributes for
each object under consideration, but only those needed to
identify a top-k answer for a query.

Consider an objectt that has been retrieved fromS-Source
S and for which we have already probed some subset of
R-Sources R0 � fR1; : : : ; Rng. Let si = ScoreAi

(qi; ti)
if Ri 2 R0. (Otherwise,si is undefined.) Then, anupper
bound for the score of objectt, denotedU(t), is the maxi-
mum possible score that objectt can get, consistent with the
information from the probes that we have already performed.
U(t) is then the score thatt would get ift had the maximum
score of 1 for every attribute in the query that has not yet
been processed fort: U(t) = ScoreComb(s0; ŝ1; : : : ; ŝn),
where ŝi = si if Ri 2 R0, and ŝi = 1 otherwise. If
object t has not been retrieved fromS yet, then we define
U(t) = ScoreComb(s`; 1; : : : ; 1), wheres` is theScoreA0

score for the last object retrieved fromS, or 1 if no object
has been retrieved yet. (t’s score forA0 cannot be larger
thans`, sinceS-SourceS returns objects in descending order
of ScoreA0

.)
Similarly, a lower bound for the score of an object

t already retrieved fromS, denotedL(t), is the min-
imum possible score that objectt can get: L(t) =
ScoreComb(s0; ŝ1; : : : ; ŝn), whereŝi = si if Ri 2 R0, and
ŝi = 0 otherwise. If objectt has not been retrieved fromS
yet, then we defineL(t) = 0.

Finally, the expected score for an objectt already re-
trieved from S, denotedE(t), is obtained by assuming
that the score for each attribute that has not yet been
probed is some expected partial scoree(si): E(t) =
ScoreComb(s0; ŝ1; : : : ; ŝn), where ŝi = si if Ri 2
R0, and ŝi = e(si) otherwise. If objectt has not
been retrieved fromS yet, then we defineE(t) =
ScoreComb(e(s0); e(s1); : : : ; e(sn)). In the absence of more
sophisticated statistics we set the expected partial scoree(si)
to 0:5 for i = 1; :::; n, and e(s0) to s`

2 , wheres` is the
ScoreA0

score for the last object retrieved fromS, or 1 if no
object has been retrieved yet6. (ScoreA0

(q0; t0) can range
between 0 ands`.)

In Section 3.2.1 we define what constitutes an optimal
strategy in our framework. In Section 3.2.2 we describe one
new strategy,Upper, which can be seen as mimicking the
optimal solution when no complete information is available.
Finally, in Section 3.2.3 we derive another technique,Pick,

6Alternative techniques for estimating expected partial scores include
sampling and exploiting attribute-score correlation if known.

which, at each step, aims at greedily minimizing some “dis-
tance” between the current execution state and the final state.

3.2.1 The Optimal Strategy

Given a top-k queryq, theOptimalstrategy for evaluatingq
is the most efficient sequence ofgetNext andgetScore
calls that produce top-k objects for the query along with their
scores. Furthermore, such an optimal strategy must also pro-
vide enough evidence (in the form of at least partial scores
for additional objects) to demonstrate that the returned ob-
jects are indeed a correct answer for the top-k query. In this
section we show one such optimal strategy, built assuming
complete knowledge of the object scores. Of course, this is
not a realistic query processing technique, but it provides a
useful lower bound on the cost of any processing strategy
without “wild guesses.” Additionally, the optimal strategy
provides useful insight that we exploit to define an efficient
algorithm in the next section.

As a first step towards our optimal strategy, consider the
following property of any top-k processing algorithm:

Property 1: Consider a top-k queryq and suppose that, at
some point in time, we have retrieved a set of objectsT from
S-SourceS and probed some of the R-Sources for these ob-
jects. Assume further that the upper boundU(t) for an object
t 2 Objects(S) is strictly lower than the lower boundL(ti)
for k different objectst1; : : : ; tk 2 T . Thent is guaranteed
not to be one of the top-k objects forq.

Using this property, we can view an optimal processing strat-
egy as (a) computing the final scores fork top objects for a
given query, which are needed in the answer, while (b) prob-
ing the fewest and least expensive attributes on the remaining
objects so that their upper bound is no higher than the scores
of the top-k objects. (We can safely discard objects with up-
per bound matching the lowest top-k object’s score since we
break ties arbitrarily.) This way, an optimal strategy identi-
fies and scores the top objects, while providing enough evi-
dence that the rest of the objects have been safely discarded.

Algorithm Optimal (Input: top-k queryq)

1. Choose a set ofk objects, Answerk , such that
Answerk is a solution to the top-k queryq 7. (Opti-
mal assumes complete knowledge of all object scores.)

2. Letscorek be the lowest score inAnswerk .

3. Get the best objectt for attributeA0, with scores0, from
S-SourceS: (t; s0) getNextS(q0).

4. If U(t) � scorek and we have seen all objects in
Answerk , return the top-k objects after completely
probing them and stop. (No unretrieved object in
Objects(S) can have a higher upper bound thant.)

7In the presence of score ties, to ensure optimality, this step picks the
objects that would be the most expensive to discard in Step 5(b).



5. (a) If objectt is one of theAnswerk objects, probe
all R-Sources to computeScore(q; t).

(b) Otherwise, probe a subsetR0 � fR1; : : : ; Rng for
t such that:
� After probing everyRi 2 R0, it holds that
U(t) � scorek.
� The cost

P
Ri2R0 tR(Ri) is minimal among

the subsets offR1; : : : ; Rng with the prop-
erty above.

6. Get the next best objectt from S-SourceS: (t; s0)  
getNextS(q0) and return to step 4.

TheOptimalalgorithm is only of theoretical interest and
cannot be implemented, since it requires complete knowl-
edge about the scores of the objects, which is precisely what
we are trying to obtain to evaluate top-k queries.

3.2.2 The Upper Strategy

We now present a novel top-k query processing strategy that
we callUpper. This strategy mimics theOptimalalgorithm
by choosing probes that would have the best chance to be
in the Optimal solution. However, unlikeOptimal, Upper
does not assume any “magic” a-priori information on object
scores. Instead, at each stepUpperselects an object-source
pair to probe next based onexpectedobject scores. This cho-
sen pair is the one that would most likely have been in the
optimalset of probes.

We can observe an interesting property:

Property 2: Consider a top-k query q and suppose that
at some point in time we have retrieved some objects from
S-SourceS and probed some of the R-Sources for these ob-
jects. Suppose that an objectt 2 Objects(S) has a score
upper boundU(t) strictly higher than that of every other ob-
ject (i.e.,U(t) > U(t0) 8t0 6= t 2 Objects(S)). Then, at
least one probe will have to be done ont before the answer
to q is reached:

� If t is one of the actual top-k objects, then we need to
probe all of its attributes to return its final score forq.

� If t is not one of the actual top-k objects, its upper
boundU(t) is higher than the score of any of the top-k

objects. Hencet requires further probes so thatU(t)
decreases before a final answer can be established.

This property is illustrated in Figure 1 for a top-3 query.
In this figure, each object’s possible range of scores is repre-
sented by a segment, and objects are sorted by their expected
score. From Property 1, objects whose upper bound is lower
than the lower bound ofk other objects cannot be in the final
answer. (Those objects are marked with a dashed segment in
Figure 1.) Also, from Property 2, the object with the highest
upper bound, notedU in the figure, will have to be probed be-
fore a solution is reached: eitherU is one of the top-3 objects

for the query and its final value needs to be returned, or its
upper bound will have to be lowered through further probes
so that we can safely discard it. In practice, when several ob-
jects agree on the highest upper bound, one of them will be
arbitrarily chosen for the next probe.

We exploit Properties 1 and 2 and the general structure of
theOptimalalgorithm to define ourUpperalgorithm:

Algorithm Upper (Input: top-k queryq)

1. Get the best objectt for attributeA0 from S-SourceS:
(t; s0) getNextS(q0).

2. Initialize Uunseen = U(t), Candidates = ftg, and
returned = 0.

3. If Candidates 6= ;:

� Pick tH from Candidates such thatU(tH) =
maxt02Candidates U(t

0).

Else:tH is undefined.

4. If tH is undefined orU(tH) < Uunseen:

� Get the next best objectt for attributeA0 from S:
(t; s0) getNextS(q0).

� Update Uunseen = U(t) and insert t into
Candidates.

Else: If tH is completely probed:

� Return tH with its score; removetH from
Candidates.

� returned = returned + 1. If returned = k,
halt.

Else:

� Ri  SelectBestSource(tH ; Candidates; k �
returned).

� Probe sourceRi on object tH : si  
getScoreRi

(qi; tH).

5. Go to step3.

score
current top-k

x

x
x

x

x
x

x
x

x

x
x

x : expected value

U

threshold

: objects that cannot be
in final answer

Figure 1. Snapshot of the execution of theUpperstrategy.



At any point in time, if the final score of the object with
the highest upper bound is known, then this is the best object
in the current set. No other object can have a higher score and
we can safely return this object as one of the top-k objects for
the query. As a corollary,Uppercan return results as they are
produced, rather than having to wait for all top-k results to
be known before producing the final answer.

We now discuss how we select the best source to probe for
an objectt in step 4 of the algorithm. As inOptimal, we con-
centrate on (a) computing the final value of the top-k objects,
and (b) for all other objects, decreasing their upper bound so
that it does not exceed the scores of the top-k objects. How-
ever, unlikeOptimal, Upperdoes not know the actual scores
a-priori and must rely on expected values to make its choices.

For an objectt, we select the best source to probe as fol-
lows. If t is expected to be in the final answer, i.e., its ex-
pected value is one of thek highest ones, we compute its fi-
nal score, and all sources not yet probed fort are considered.
Otherwise, we only consider the fastest subset of sources not
probed fort that is expected to decreaseU(t) to not exceed
the value of thekth largest expected score (thresholdT ). The
best source fort is the one that has the highestweight

cost
ratio,

i.e., the one that is expected to have a high impact ont’s pos-
sible score range while being fast:

Function SelectBestSource (Input: object t, set of objects
Candidates, integer r)

1. Let t0 be the object inCandidates with therth largest
expected score. LetT = E(t0).

(a) If E(t) � T :

� DefineR0 � fR1; : : : ; Rng as the set of all
sources not yet probed fort.
(t is expected to be one of the top-k objects,
so it needs to be probed on all attributes.)

(b) Else, defineR0 � fR1; : : : ; Rng so that:

� U(t) � T if each sourceRi 2 R0 were to
return the expected value fort, and
� The cost

P
Ri2R0 tR(Ri) is minimal among

the subsets offR1; : : : ; Rng with the above
property.

(SinceE(t) < T , we are guaranteed to find at
least one such set of attributes.)

2. Return a sourceRi 2 R0 such that wi

tR(Ri)
is maximum.

3.2.3 The Pick Strategy

We now present thePickalgorithm, which uses an alternative
approach to evaluate top-k queries. WhileUpper chooses
the probe that is most likely to be in the “optimal” set of
probes, at each stepPick chooses the probe that minimizes a
certain functionB, which represents the “distance” between
the current execution state and the final state, in which the
top-k tuples are easily extracted. At a given point in time in

the execution, functionB focuses ont0, the object with the
kth highest expected score among the objects retrieved from
S-SourceS. Furthermore,B considers the range of possi-
ble scores that each such object can take aboveE(t0). The
smaller such ranges are, the closer we are to finding the fi-
nal solution for the query. In effect, when we reach the final
state,t0 is the object with the actualkth highest score, and all
objects not in the answer should be knownnot to have scores
above that oft0. The definition of functionB is:8

B =
X

t2Objects(S)

maxf0; U(t)�maxfL(t); E(t0)gg

Figure 2 shows a snapshot of a query execution step, high-
lighting the score ranges that “prevent” the current state from
being the final state. Note that the value ofB is never nega-
tive. WhenB becomes zero, all top-k scores are known, and
all objects not in the final answer have an upper bound for
their score that is no higher thanE(t0).

score

x

x
x

x
x

x
x

x
x

x
x

x : expected value

current top-k

threshold

: range of values in B

: objects that cannot be
in final answer

Figure 2. Snapshot of the execution of thePickstrategy.

At each step,Pick greedily chooses the probe that would
decreaseB the most in the shortest time.Pick selects for
each object the best source to probe, i.e., the attribute value
that will result in the highest decrease inB. If the object
is expected to be in the final top-k answer, all unprobed at-
tributes are considered. Otherwise, only attributes from the
best (fastest) set of attributes that will be needed to eliminate
the object are considered. This is completely analogous to
how theSelectBestSourcefunction works. Then, among all
selected object-R-Sourcepairs,Pickchooses the one with the
highestexpected decrease of B

tR(R) ratio.

Observe that, unlikeUpper, Pick retrieves all candidate
objects to consider during an initialization step, and does not
access theS-Sourceafterwards.

8We studied several alternative definitions forB that did not work as well
in our experiments as the one that we present here. For space limitations we
do not discuss these alternatives further.



Algorithm Pick (Input: top-k queryq)

1. Retrieve all objects that can be in the top-k solution
from S-SourceS:

(a) Get thek best objectst1; :::; tk for attributeA0

from S-SourceS: (ti; s0) getNextS(q0).

(b) Initialize Candidates = ft1; :::; tkg; initialize
t = tk.

(c) WhileL(tk) < U(t), get the next best objectt for
attributeA0 from S: (t; s0)  getNextS(q0);
insertt intoCandidates.

2. WhileB > 0:

(a) For each objectt 2 Candidates select
the best source:Ri  SelectBestSource(t;
Candidates; k).

(b) Choose among the selected pairs(t; Ri) the one
that has the highest expected gain per unit of time
( expected decrease in B

tR(R) ) and probe it.

3. Return the top-k objects.

Selecting a probe usingPick is more expensive than with
Uppersince we have to consider probes on all objects. More-
over,Pick needs to retrieve all objects that might belong to
the top-k answer from theS-Sourceat initialization, which
might result in all objects being retrieved.

3.3. Existing Approaches

Existing algorithms in the literature assume that all
sources areSR-Sources or S-Sources, and do not directly
handle sources with only a random-access interface. In Sec-
tion 3.3.1 we adapt Fagin et al.’s TA algorithm [7] so that it
also works overR-Sources, and in Section 3.3.2 we extend
the resulting algorithm so that it also incorporates ideas from
the expensive-predicates literature. As an important differ-
ence with our strategies of the previous section, the tech-
niques below choose an object and probeall needed sources
before moving to the next object. This “coarser” strategy can
degrade the overall efficiency of the techniques, as shown in
Section 5.

3.3.1 Fagin et al.’s Algorithms

Fagin et al. [7] presents the TA algorithm for processing top-
k queries overSR-Sources:

Algorithm TA (Input: top-k queryq)

1. Do sorted access in parallel to each source. As each
object t is seen under sorted access in one source, do
random accesses to the remaining sources and apply
theScorefunction to find the final score of objectt. If
Score(q; t) is one of the top-k seen so far, keep objectt
along with its score.

2. Define a threshold value asScoreComb(s0; s1; : : : ; sn),
wheresi is the last score seen in thei-th source. The
threshold represents the highest possible value of any
object that has not been seen so far in any source.

3. If the current top-k objects seen so far have scores
greater than or equal to the threshold, return those val-
ues. Otherwise, return to step 1.

Although this algorithm is not designed forR-Sources,
we can adapt it in the following way. In step 1, we access the
only S-SourceS using sorted access, and retrieve an object
t. In step 2, we define the threshold value asU(t), since the
maximum possible score for anyR-Sourceis always 1. Then,
for each objectt retrieved fromS we probe allR-Sources to
get the final score fort. For a model with a singleS-Source
S, the modified algorithm retrieves in order all objects in
Objects(S) one by one and determines whether each object
is in the final answer by probing the remainingR-Sources.
The complete procedure is described next.

Algorithm TA-Adapt (Input: top-k queryq)

1. Get the best objectt for attributeA0 from S-SourceS:
(t; s0) getNextS(q0).

2. Update thresholdT = U(t).

3. Retrieve scoresi for attributeAi and objectt via a ran-
dom probe toR-SourceRi: si  getScoreRi

(qi; t)
for i = 1; : : : ; n.

4. Calculate t’s final score for q: score =
ScoreComb(s0; s1; : : : ; sn).

5. If score is one of the top-k scores seen so far, keep ob-
ject t along with its score.

6. (a) If thresholdT is lower than or equal to the scores
of the currentk top objects, return thesek objects
along with their scores and stop.

(b) Otherwise, get the next best objectt from
S-SourceS: (t; s0)  getNextS(q0) and return
to step 2.

We can improve the algorithm above by interleaving the
execution of steps 3 and 4 and adding a shortcut test con-
dition. Given an objectt, we calculate the valueU(t) after
each random probe to anR-SourceRi, and we skip directly
to step 5 if the current objectt is guaranteed not to be a top-k

object. That is, ifU(t) is no higher than the score ofk ob-
jects, we can safely ignoret (Property 1) and continue with
the next object. We call this algorithmTA-Opt.

3.3.2 Exploiting Techniques for Processing Selections
with Expensive Predicates

Work on expensive-predicate query optimization [10, 12]
has studied how to process selection queries of the form
p1 ^ : : : ^ pn, where each predicatepi can be expensive to



calculate. The key idea is to order the evaluation of predi-
cates to minimize the expected execution time. The evalua-
tion order is determined by the predicates’rank, defined as:
rankpi =

1�selectivity(pi)
cost�per�object(pi)

, wherecost-per-object(pi) is
the average time to evaluate predicatepi over an object.

We can adapt this idea to our framework as follows. Let
R1; : : : ; Rn be theR-Sources, with weightsw1; : : : ; wn in
the Scorefunction. We sort theR-Sources Ri in decreas-
ing order of rank, defined as:rankRi

=
wi�(1�E(ScoreRi))

tR(Ri)
,

whereE(ScoreRi
) is the expected score of an object from

sourceRi (typically 0.5 unless we have additional informa-
tion). Thus, we favor fast sources that might have a large
impact on the final score of an object, i.e., those sources that
are likely to significantly change the value ofU(t).

We combine this idea with our adaptation of the TA algo-
rithm to define the TA-EP algorithm:

Algorithm TA-EP (Input: top-k queryq)

1. Get the best objectt for attributeA0 from S-SourceS:
(t; s0) getNextS(q0).

2. Update thresholdT = U(t).

3. For eachR-SourceRi in decreasing order ofrankRi
:

(a) Retrieve scoresi for attributeAi and objectt
via a random probe toR-SourceRi: si  
getScoreRi

(qi; t).

(b) If U(t) is lower than or equal to the score ofk
objects, skip to step 4.

4. If t’s score is one of the top-k scores seen so far, keep
objectt along with its score.

5. (a) If thresholdT is lower than or equal to the scores
of the currentk top objects, return thesek objects
along with their scores and stop.

(b) Otherwise, get the next best objectt from
S-SourceS: (t; s0)  getNextS(q0) and return
to step 2.

4. Evaluation Setting

In this section we describe the data sets (Section 4.1), met-
rics and other settings (Section 4.2) that we use to evaluate
the strategies of Section 3.

4.1. Data Sets

Synthetic Sources: We generate different synthetic data
sets. Objects in these data sets have attributes from a sin-
gle S-SourceS and fiveR-Sources. The data sets vary in
their number of objects inObjects(S) and in the correlation
between attributes and their distribution. Specifically, given
a query, we generate individual attribute scores for each con-
ceptual object in our synthetic database in three ways:

� “Uniform” data set: We assume that attributes are in-
dependent of each other and that scores are uniformly
distributed (default setting).

� “Correlation” data set: We assume that attributes ex-
hibit different degrees of correlation, modeled by a cor-
relation factorcf that ranges between -1 and 1 and
that defines the correlation between theS-Sourceand
the R-Sourcescores. Specifically, whencf is zero, at-
tributes are independent of each other. Higher values
of cf result in positive correlation between theS-Source
and theR-Sourcescores, with all scores being equal in
the extreme case whencf=1. In contrast, whencf<0,
the S-Sourcescores are negatively correlated with the
R-Sourcescores.

� “Gaussian” data set: We generate the multiattribute
score distribution by producing five overlapping mul-
tidimensional Gaussian bells [16].

The random-access cost for eachR-SourceRi (i.e., tR(Ri))
is a randomly generated integer ranging between 1 and 10,
while the sorted-access cost forS-SourceS (i.e., tS(S)) is
randomly picked fromf0:1; 0:2; : : : ; 1:0g.

Real Web-Accessible Sources: The real sources that we
use are relevant to (an expanded version of) our restaurant ex-
ample of Section 2. Users input a starting address, the type of
cuisine in which they are interested (if any), and importance
weights for the followingR-Sourceattributes:SubwayTime
(handled by the SubwayNavigator site9), DrivingTime(han-
dled by the MapQuest site),Popularity (handled by the Al-
taVista search engine10; see below),ZFood, ZPrice, ZDecor,
andZService(handled by the Zagat Review web site), and
TRatingandTPrice(provided by the New York Times at the
New York Today web site). The Verizon Yellow Pages list-
ing 11, which returns restaurants of the user-specified type
sorted by shortest distance from a given address, is the only
S-Source. We approximate the “popularity” of a restaurant
with the number of web pages that mention the restaurant, as
reported by the AltaVista search engine. (The idea of using
web search engines as a “popularity oracle” has been used
before in the WSQ/DSQ system [8].) Table 1 summarizes
these sources and their interfaces.

Of course, the real sources above do not fit our model of
Section 2 perfectly. For example, some of these sources re-
turn values for multiple attributes simultaneously (e.g., the
Zagat Review site). Also, as we mentioned before, informa-
tion on a restaurant might be missing in some sources (e.g., a
restaurant might not have an entry at the Zagat Review site).
In such a case, our system will give a default (expected) value
to the score of the corresponding attribute.

9http://www.subwaynavigator.com
10http://www.altavista.com
11http://www.superpages.com



Source Attribute(s) Input

Verizon Yellow
Pages (S)

Distance type of cuisine,
user address

Subway Naviga-
tor (R)

SubwayTime restaurant address,
user address

MapQuest (R) DrivingTime restaurant address,
user address

AltaVista (R) Popularity free-text with
restaurant name
and address

Zagat Review (R) ZFood, ZService restaurant name
ZDecor, ZPrice

NYT Review (R) TRating, TPrice restaurant name

Table 1. Real web-accessible sources used in the experimen-
tal evaluation.

4.2. Other Experimental Settings

Our query processing strategies attempt to minimize the
total processing time for top-k queries, both for random and
sorted access to the various sources. To measure the rela-
tive performance of the techniques over anS-SourceS and
R-Sources R1; : : : ; Rn, we use the following metric:

ttotal = nS � tS(S) +
nX

i=1

ni � tR(Ri)

wherenS is the number of objects extracted fromS-Source
S, ni is the number of random-access probes forR-Source
Ri, andtS andtR are as specified in Definition 2.ttotal then
approximates the execution time for a query.

For the synthetic data sets and for each setting of the ex-
periment parameters, we generate 100 queries randomly with
their associated weights, and compute the averagettotal val-
ues. We report results for top-k queries for different values of
k, jSj, cf and for various assignments of weights and costs
to sources. In the default setting,k is 50 (i.e., queries ask for
the best 50 objects),jSj = 10; 000, and we use theUniform
data set.

For the real data sets, we use seven queries, some specify-
ing an address on E.73rd Street, and some others specifying
an address on W.112th Street. AttributesDistance, Subway-
Time, DrivingTime, ZFood, ZDecor, ZService, andTRating
have “default” target values in the queries (e.g., aDriving-
Time of 0 and aZFood rating of 30). The target value for
Popularity is 1,000 hits, whileZPrice andTPrice are set to
the least expensive value in the scale. In all seven queries,
the weight of theS-Sourceattribute (i.e.,Distance) is roughly
twice the weight of anyR-Sourceattribute.

Next, we experimentally compare the algorithms that we
discussed in Section 3, namelyTA-Adapt(Section 3.3.1),TA-
Opt (Section 3.3.1),TA-EP (Section 3.3.2), and ourUpper
(Section 3.2.2) strategy. We also report results for theOpti-
mal technique of Section 3.2.1. As discussed, this technique
is only of theoretical interest, and serves as a lower bound for

the time that any strategy without “wild guesses” would take
to process top-k queries. We do not present results forPick
(Section 3.2.3) for lack of space. In our experiments,Pick
performed on average slightly worse thanUpper in terms of
source access costs, but with significantly higher “local” pro-
cessing time. (Recall from Section 3.2.3 thatPickselects the
best source to probe for every object at each iteration of the
algorithm.)

5. Evaluation Results

In this section we present the experimental results for the
techniques of Section 3 using the data sets and general set-
tings described in Section 4.

5.1. Results for Synthetic Data Sets

We first study the performance of the techniques when we
vary the synthetic data set parameters.

Effect of the Number of Objects Requestedk: In Fig-
ure 3 we report results for the default setting, as a function of
k and for both theUniformandGaussiansynthetic data sets.
As k increases, the time needed by each algorithm to return
the top-k objects increases as well, since all techniques need
to retrieve and process more objects. TheUpper strategy
consistently outperforms all other techniques, and has total
execution time close to that of the lower bound,Optimal.
We can see that our optimizations overTA-Adapt, namely
TA-OptandTA-EP, result in dramatic improvements in per-
formance overTA-Adapt. We then removeTA-Adaptfrom
further consideration in the remaining discussion.

Effect of the Number of Objects inS-SourceS: Figure 4
studies the impact of the size ofS-SourceS. As the num-
ber of objects increases, the performance of each algorithm
drops since more objects have to be evaluated before a so-
lution is returned. The time needed by each algorithm is ap-
proximately linear in the number of objects inS. Uppergives
better results and scales better than other techniques.

Effect of Attribute Weights: We now report on the im-
pact of attribute weights on the execution times. We vary the
weight of theS-SourceS (Figure 5(a)) and theR-SourceR5

(Figure 5(b)) relative to the weight of the remaining sources.
In particular, we set the varying weight asn times the average
of the remaining weights. Figure 5(a) shows that for larger
weights inS-SourceS all techniques improve their execution
times, since fewer random probes are needed to identify the
top-k objects. Also, for larger weights inR-SourceR5 (Fig-
ure 5(b)),TA-Optperforms poorly since it does not use any
information about the relative weights of the sources to order
the random probes, in contrast to the other techniques. We
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Figure 3. Performance of the different strategies for the default setting of the experiment parameters, as a function of the number of
objects requestedk, and for two synthetic data-set distributions.

note that we obtained the same results when we varied the
access costs of the different sources instead of their weights.
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Figure 4. Performance of the different strategies for theUni-
form data set, as a function of the number of objects in
S-SourceS.

Effect of Attribute Correlation: We now turn to theCor-
relation data set (Section 4) and evaluate the effect that at-
tribute correlation has on the performance of the query pro-
cessing techniques. As seen in Figure 6, when the corre-
lation factorcf is high and positive the performance of all
techniques improves dramatically. Interestingly, a negative
correlation between theR-Sources and theS-Sourceattribute
scores significantly affects the performance of theTA algo-
rithms. For correlation factors close to -1, the order of the
objects in theS-Sourceis close to the inverse of the order
by final scores. Therefore, bothTA-OptandTA-EPneed to
probe each object almost completely before proceeding to
the next one, and have to consider almost all the tuples in

S-SourceS before returning the top-k objects, which results
in significantly larger execution times compared toUpper.
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Figure 6. Performance of the different strategies for theCor-
relation synthetic data set, as a function of the correlation
factorcf.

5.2. Results for Real Web-Accessible Data Sets

Our final set of results are for the real data sets that we
described in Section 4 and summarized in Table 1. There are
six web-accessible sources, handling 10 attributes. To model
the access cost for each source, we measured the response
time for a number of queries and computed their average.
We then issued seven different queries to these sources and
timed their execution. Figure 7 shows the execution time for
each of the queries, and for theUpper, TA-EP, andTA-Opt
strategies. We ignoredTA-Adapt, whose results in the syn-
thetic data experiments were significantly worse than those
for other techniques. In contrast with the synthetic-data re-
sults, TA-EP does not outperformTA-Opt. We conjecture
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Figure 5. Performance of the different strategies for various attribute-weight combinations.

that this discrepancy is due to our rough estimates for the
source access costs, to which theTA-EPstrategy would be
particularly sensitive. In general, just as for the synthetic data
sets, ourUpperstrategy performs significantly better than the
two versions of theTA algorithm.
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Figure 7. Experimental results for the real web-accessible
data sets relevant to our New York City restaurant scenario.

In summary, our experimental results consistently show
thatUpperoutperforms all other methods, with performance
close to that of theOptimal technique. Furthermore, our
modifications to theTA algorithm, TA-EP in particular,
resulted in significant improvements in performance.

As a final observation, note that all the algorithms dis-
cussed in this paper correctly identify the top-k objects for
a query according to a given scoring function. Hence there
is no need to evaluate the “correctness” or “relevance” of the
computed answers. The design of appropriate scoring func-
tions is an important problem that we do not address in this
paper.

6. Related Work

Relevant work on top-k query processing can roughly be
divided in two groups: evaluation strategies for multiattribute

top-k queries over multimedia repositories, and for top-k

queries over relational databases.
To process queries involving multiple multimedia at-

tributes, Fagin et al. proposed a family of algorithms [6, 7],
developed as part of IBM Almaden’s Garlic project. These
algorithms can evaluate top-k queries that involve several in-
dependent multimedia “subsystems,” each producing scores
that are combined using arbitrary monotonic aggregation
functions. These techniques do not directly handle sources
that provide only a random-access interface, which are the
focus of our paper. In Section 3.3, however, we adapted
Fagin et al.’s algorithms to our scenario and experimentally
compared the resulting techniques with our new approach in
Section 5.

Nepal and Ramakrishna [14] and G¨untzer et al. [9] pre-
sented variations of Fagin’s original FA algorithm [6] for
processing queries over multimedia databases. In particu-
lar, Güntzer et al. [9] reduce the number of random accesses
through the introduction of more stop-condition tests and by
exploiting the data distribution. The MARS system [15] also
uses variations of the FA algorithm and views queries as bi-
nary trees where the leaves are single-attribute queries and
the internal nodes correspond to “fuzzy” query operators.

Chaudhuri and Gravano also built on Fagin’s original FA
algorithm and proposed a cost-based approach for optimiz-
ing the execution of top-k queries over multimedia reposi-
tories [3]. Their strategy translates a given top-k query into
a selection query that returns a (hopefully tight) superset of
the actual top-k tuples. Ultimately, the evaluation strategy
consists of retrieving the top-k0 tuples from as few sources
as possible, for somek0 � k, and then probing the remaining
sources by invoking existing strategies for processing selec-
tions with expensive predicates [10, 12]. This technique is
then closely related to algorithm TA-EP from Section 3.3.2.

Over relational databases, Carey and Kossmann [1, 2] pre-
sented techniques to optimize top-k queries when the scor-
ing is done through a traditional SQL order-by clause. Don-
jerkovic and Ramakrishnan [5] proposed a probabilistic ap-



proach to top-k query optimization. Finally, Chaudhuri and
Gravano [4] exploited multidimensional histograms to pro-
cess top-k queries over an unmodified relational DBMS by
mapping top-k queries into traditional selection queries.

Additional related work includes the PREFER sys-
tem [11], which uses pre-materialized views to efficiently
answer ranked preference queries over commercial DBMSs.
Recently, Natsev et al. proposed incremental algorithms [13]
to compute top-k queries with user-defined join predi-
cates over sorted-access sources. Finally, the WSQ/DSQ
project [8] presented an architecture for integrating web-
accessible search engines with relational DBMSs. The re-
sulting query plans can manage asynchronous external calls
to reduce the impact of potentially long latencies. The
WSQ/DSQ ideas could be incorporated to speed up the ex-
ecution of our top-k queries further and depart from the se-
quential query plans on which we focused in this paper.

7. Conclusion and Future Work

We studied techniques to efficiently evaluate top-k queries
over web-accessible autonomous databases with a variety of
access interfaces. In particular, we focused on web sources
that can only be accessed via random accesses. We proposed
extensions to existing algorithms for top-k queries so that
they can handle random-access sources, and also introduced
two novel strategies,Upper and Pick, which are designed
specifically for our query model. A distinctive characteristic
of our algorithms is that they interleave probes on several ob-
jects whereas other techniques completely probe one object
at a time. This interleaving has a strong effect on query pro-
cessing efficiency. We conducted a thorough experimental
evaluation of these techniques using both synthetic and real
web-accessible data sets. Our evaluation showed thatUp-
perproduces the best processing plans in terms of execution
time for a variety of data and query parameters, and for both
synthetic and real data sets.

We plan to investigate several interesting directions in
the future. Our model assumes that only oneS-Sourceand
multiple R-Sources are available; we are evaluating algo-
rithms that would work in the general case with arbitrary
numbers ofS-Sources, R-Sources, andSR-Sources. (At least
oneS-Sourceor SR-Sourceis always needed, though, not to
rely on “wild guesses.”) Another assumption is that only one
source can be accessed at a time, which is too restrictive in
the context of web sources. As explained in Section 6, we
can incorporate the ideas in [8] to include parallelism and
speed up query processing.
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