Normal Forms

Eduardo J Ruiz

October 20, 2009

1 Basics

Definition 1.1 Functional Dependency given a relation R, $X \to Y$ is a FD iff $t_1 \in R \land t_2 \in R \land \pi_X(t_1) = \pi_X(t_2) \to \pi_Y(t_1) = \pi_Y(t_2)$

Definition 1.2 Legal Instances a instance r of R is legal wrt to f if it complies with f. A instance r violates a f if the functional dependency does not hold in r

Definition 1.3 Valid Relations/ **R Holds f** a relation R is valid wrt to f if all the possible instances of r complies with the f

You can not prove that a functional dependency is valid given one instance. You can check if the FD is illegal or violated for some instance.

Definition 1.4 Superkey/Key $X \subseteq R \land X \to R$ the X is a superkey. A key is a minimal superkey

Definition 1.5 Implication A FD f is implied by a set F iff f holds whenever F holds

Definition 1.6 Closure we define the closure of F (denoted by F^+) as the set of all the FD implied by F

Definition 1.7 Armstrong Rules the following rules can be used to find F^+

- Reflexibity: $Y \subset X$ then $X \to Y$ (trivial)
- Augmentation: $X \to Y$ then $XZ \to YZ$
- Transitivity: $X \to Y$ and $Y \to Z$ then $X \to Z$

This rules are sound and complete.

- Union: $X \to Y$ and $X \to Z$ then $X \to YZ$
- Decomposition: $X \to YZ$ then $X \to Y$ and $X \to Z$

Definition 1.8 Attribute Closure we define the attribute closure of X wrt F (denoted by X_F^+) as the set of all the attributes such $X \to A$ in F^+

```
closure = X;
repeat until there is no change: {
  if there is an FD U -> V in F such that U in closure,
      then set closure = closure + V
}
```

Definition 1.9 BCNF *R* is in BCNF if for all $X \to A$ in F^+

- $X \subset A$ is trivial
- X contains a key for R

Definition 1.10 3NF R is in 3NF if for all $X \to A$ in F^+

- $X \subset A$ is trivial
- X contains a key for R
- A is part of some key for R

 $BCNF \subseteq 3NF \subseteq 2NF \subseteq 1NF$

Determining the keys is NP complete

Definition 1.11 Decomposition given a relation R a decomposition consist in replace R with two relations R_1 and R_2 such that $R_1 \cup R_2 = R$ and $R_1 \cap R_2 = \emptyset$

Definition 1.12 Lossless Join a descomposition of R in X, Y is lossless wrt F if $\pi_{\ell}X)(R) \bowtie \pi_{Y}(R) = R$

Theorem 1.13 Let R be a relation and F a set of FD over R. Then R_1, R_2 is a lossless decomposition if F^+ contains either $R_1 \cap R_2 \to R1$ or $R_1 \cap R_2 \to R2$.

Definition 1.14 Dependency Preserving A decomposition R in X, Y is dependency preserving wrt F if we can check each original dependency in X or Y. F $((F_X^+ \cup F_Y^+) = F^+)$

BCNF decomposition If $X \to A$ cause problems, create $R - A \ge XA$