Review

Eduardo J. Ruiz
December 23, 2010

For any comment or mistake please contact your TA or the Course Professor.

1 Access Path Cost

Consider the relation 7(a, b, ¢, d, e) containing 5,000, 000 records with 10 records per page. (500,000 blocks)
. Attribute a is a candidate key with domain (0 < k < 4,999,999). Considering the following access paths:

e R is stored as a sorted file on a
e A clustered B+ index on a

e A linear unclustered-hash on a
Explain, which is the best access path for each of the following queries:

e a > 4,900, 000:

Sorted: the cost of this access would be the cost of the search + the cost to read all the blocks that
are part of the answer

For searching, the only way to search is using binary search on the sorted file. This is log2(500, 000).
To recover the answer, we need to read all the blocks that contain data that satisfy the condition. In
the worst case we expect to have to read 100,000 tuples, that will occupy [100,000/10] blocks.

cost(Sort) = search + readBlocks = log2(500,000) + [100,000/10] ~ 19 + 10,000 = 10,019

Clustered: the cost of this access would be the cost of the search + the cost of reading all the blocks
that are part of the answer

The index search cost is & logr(500,000) where F is the fan-out of the internal nodes. To calculate
the fan-out, we need the number of keys per node. This information is stored in the catalog.

In this course we assume that the search cost for clustered /unclustered index is at most some constant.
For this guide we would use 3.

Ideally, we would expect to read 10,000 blocks. But in this case we need to consider the index wasted
space. We can suppose that the index always use 1.2 times the space of the ideal.

cost(Clustered) = search + readBlocks = 3 4+ [(100,000/10)] x 1.2 = 34 (1.2 x 10,000) ~ 12,003
Hash Index: hash index is not useful for range queries.
cost(hash) = N/A

e a = 50,000

Sorted: the cost of this access would be the cost of the search + the cost of reading all the blocks that
are part of the answer. Given that a is a key, we read only 1 block

cost(Sort) = log2(500,000) + 1 =19

Clustered: for this course we would use the constant 3 for searching in a clustered index.
cost(Clustered) =3 +1=4

Hash Index: for this course we would use the constant 1 for search and 1 to access the block.
cost(hash) = 2

e a > 50000 A a < 50010

Sorted: the cost of this access would be the cost of the search + the cost of reading all the blocks that
are part of the answer

For search, the only way to search is using binary search on the sorted file. The search cost would be
l0g2(500,000). To recover the answer, we need to read all the blocks that contain data that satisfy the
condition. In the worst case we would recover 10 tuples. But all this tuples will fit in one page or two

pages.
cost(Sorted) = log2(500,000) + 2 ~ 194 2 = 20

Clustered: the cost of this access would be the cost of the search + the cost of reading all the blocks
that are part of the answer.

cost(Clustered) =3+2=15

Hash: we can not use hash for range queries. As the range is small we can try to test each element in
the range in the hash index

cost(Hash) = tuples € [50,000 — 50,010] * 2 =10 % 2 = 20

This kind of semantic optimization is not implemented in real relational database systems.

e a # 50,000
Sort: We use a full scan. So we need to read 500,000 pages
cost(Sort) = 500,000

Clustered: Again we need to do a full scan on the leaves. As we have some wasted space in the pages
we need to consider a grow factor.

cost(Clustered) = blocks x factor = 500,000 x 1.2 = 600, 000
Hash: the hash is not useful in this case.
cost(hash) = N/A

2 Query Optimization

Consider the following relations emp(eid, sal, hobby),dept(did, eid, dname, floor, phone) and finance(did, budget, sales, expen
and the following query:

select D.name, F.budget

from emp E, dept d, finance F

where E.eid = D.eid and D.did = F.did and

D.floor = 1 and E.sal > 59000 and E.hobby = ’golf’

1. Write one possible algebra tree

Tdid,budget

X did

ofloor =1 Finance

Neid

chobby = golf Dept

\
osal > 59000

\
Emp

2. Write the possible orders that would be considered for join:
The only joins that would be considered by the optimizer are (FE, D, F) ,(D,E, F), (F,D,E),(D,F, E).
E and F can not be joined so (E, F, D), (F, E, D) would result in a cartesian product.

3. Consider that the following indexes are created:

e Un-Clustered B+ tree index on emp(eid)
e Un-Clustered B+ tree index on emp(sal)

e Un-Clustered B+ tree index on dept(eid)

e Un-Clustered B+ tree index on dept(did,eid)
e Un-Clustered B+ tree index on finance(did)

and you have the following statistics

e Range Salaries: 10000 - 60000
e Hobbies: 200

e Floors: 2

e Employees: 50,000

e Departments: 500

Each department has one supervisor and each department is associated with one finance tuple

Assume that your database can use: index joins and nested loops. Create a plan based in the algebra
tree that you created before. Calculate the cost for this tree

The proposed plan is the following:

Wdid,budget(Onfly)

Mgiq (indexJoin)

o floor = 1(onFly) Finance
\

Meiq (indexJoin)

ohobby = gol f(onFly) Dept
|
osal > 59000(indexOnSal)
\

Emp

Notice that for each node we must keep track of the IOs and the number of tuples after the node is
executed.

e Cost for the selection (sal > 59000)):
To execute this selection we use the B+ index that is available in (sal). The cost for this access
is costO f Search + number Rows that match the condition.
The cost for search in the B+ is 3
The number of tuples matched is:
tuples = tuples(E) x Mauesscardivalic — 50,000 x g0:550—35'605 = 10,000 x &5 = 1,000
So the cost of the operation is 1,000 + 3 = 1,003 IO and we return 1000 tuples.
e Cost for selection (hobby = gol f)
As we are executing the join on fly we are not paying for any IO cost in this step. Still we need
to update the number of tuples that are passing to the next phase:

Tuples = 1000 X W(habbies) = 1000 X Wlo = 5

e Cost for join with department
In this case we use an index join between the number of resultant employees and the department
table. The cost for a index join is IOT + ((3+ JF) x TOT). where:
— 10T is the number of 10 to read the outer table
— TOT Number of tuples on the outer table
— JF is the ratio of tuples in the inner table that match the outer table.
This formula assume that each tuple in the outer table will have 3 access plus JF' reads for
recovery.

Since we are using a pipe-lined execution, the first term is equal to 0. We should only consider
the cost of the second term. Since each department is related with one supervisor, JF' = 1. Then:

Cost=(34+1)xTOT =4 x5=2010
The number of tuples in the result would be:
Tuples=JF xTOT =1x5=5

e Cost of selection floor =1

Since we are executing this step on fly do not pay for any 10 cost. Still we need to update the
number of tuples that are passed to the next node:

ntuples = origTuples x Ws(ﬂoor) =5xi~3

e Cost for join with finance

In this node we use an index join between the resultant tuples in the left branch and the finance
table. The cost for a index join is TOT + ((3+ JF) x TOT)

As we are using a pipe-lined execution,the first term is equal to 0. We should only consider the
second part. Since each department is related with one finance tuple JF = 1. Then:

cost =4 xTOT =4x3=1210
The number of tuples in the result would be:
JEXTOT =1x3=3

Finally we do 1003 4 20 + 12 = 1035 IO and return 3 tuples.

Considering the same relations and stats and the following information:

e The page size is 4000 bytes

e The employee tuples are 100 bytes long, department tuples are 100 bytes long, finance tuples 50 bytes
long

1. Calculate the number of tuples per block for each table
tuples Per Block(emp) = [blockSize/len(emp)] = 4000/100 = 40
tuplesPer Block(dept) = [blockSize/len(dept)] = 4000/100 = 40
tuplesPer Block(finance) = [blockSize/len(finance)| = 4000/50 = 80

2. Calculate the number of blocks in each table
Blocks(emp) = NumberTuples(emp)/tuplesPerBlock(emp) = 50,000/40 = 1250
Blocks(dept) = NumberTuples(dept) /tuples Per Block(dept) = 500/40 ~ 13
Blocks(finance) = NumberTuples(finance)/tuplesPer Block(finance) = 500/80 ~ 7

3. Calculate the cost for the following plan, supposing that the partial results are wrote to disk in each
step.

M aia (SortMergedoin)

X aiq (SortMergeJoin) Finance

chobby = golf(scan) Dept

\
Emp

e Cost for the selection (hobby = golf):

To execute this selection we use a full scan on employee. So the cost would be the number of
blocks (1250)

Icost = 1250

The number of tuples matched is:

tuples = tuples(E) X gm——tp—r— = 50000 X 545 = 50,000 X 55 = 250

The number of blocks that we are writing back depends on two things: the number of tuples

in the result and the number of tuples that can be packed in one block. As we are selecting of
employee, we would return tuples that are 100 byte long. So we can pack 40 tuples in one block

OCost = tuples/tuplesPerBlock = 250/40 ~ 7
Finally we have that the numbers of 10 is IOCost = [Cost + OCost = 1250 + 7 = 125710 and
we return 250 tuples.

e Cost for join with department

In this case we use a sort merge index join. The cost for this operator is 5 x (M + N) where
M =7 (blocks that we write in the previous step) and N = 13 (Blocks in department)

So we have
Tcost=5x (M+N)=5x (7T+13) =5 x20=100
The number of tuples is 250 since we have one department per employee.

The number of blocks that we are writing back depends on two things: the number of tuples in
the result and the number of tuples that can be packed in one block. In this case we have a tuple

that have the length of employee + length of dept, so we are returning tuples that are 200 byte
long. So we can pack 20 tuples in one block

OCost = tuples/tuplesPer Block = 250/20 ~ 13
Finally we have that the number of 10 is equal to IOCost = ICost + OCost = 100+ 13 = 11310
and we return 250 tuples.

e Cost for join with finance In this case we use a sort merge index join. The cost for this operator
is 5 x (M + N) where M = 13 (blocks that we wrote in the previous step) and N = 7 (Finance
used blocks)

So we have

Tcost=5x (M+N)=5x(134+7)=5x20=100

We suppose that at this step we can return the tuples to the user so we do not write the results
again.

Finally, the total cost is 1257 4+ 113 + 100 = 1470 IO to solve the query.

